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Abstract 

Drawing inferences about dynamics of psychological constructs from intensive longitudinal data 

requires the measurement model (MM)—indicating how items relate to constructs—to be invariant 

across subjects and time-points. When assessing subjects in their daily life, however, there may be 

multiple MMs, for instance, because subjects differ in their item interpretation or because the 

response style of (some) subjects changes over time. The recently proposed “latent Markov factor 

analysis” (LMFA) evaluates (violations of) measurement invariance by classifying observations 

into latent “states” according to the MM underlying these observations such that MMs differ 

between states but are invariant within one state. However, LMFA is limited to normally 

distributed continuous data and estimates may be inaccurate when applying the method to ordinal 

data (e.g., from Likert items) with skewed responses or few response categories. To enable 

researchers and health professionals with ordinal data to evaluate measurement invariance, we 

present “latent Markov latent trait analysis” (LMLTA), which builds upon LMFA but treats 

responses as ordinal. Our application shows differences in MMs of adolescents’ affective well-

being in different social contexts, highlighting the importance of studying measurement invariance 

for drawing accurate inferences for psychological science and practice and for further 

understanding dynamics of psychological constructs. 

 

Keywords: experience sampling, measurement invariance, latent trait analysis, item response 

theory, latent Markov modeling 

 



LMLTA FOR ORDINAL ILD    1 

 

1. Introduction 

Intensive longitudinal data (ILD; e.g., Hamaker & Wichers, 2017) allow one to investigate 

the dynamics over time of latent (i.e., unobservable) psychological constructs. By frequently 

gathering data (say at more than 50 measurement occasions) of multiple subjects, new insights 

regarding subject-specific dynamics can be obtained, which have clinical implications. For 

instance, studies are being conducted on dynamics in emotions and behaviors related to mental 

health (e.g., Myin‐Germeys et al., 2018; Snippe et al., 2016), and ILD can also be used to tailor 

interventions to the subject’s real-time dynamics of negative affect (van Roekel et al, 2017). Such 

data is efficiently gathered by means of Experience Sampling Methodology (ESM; Scollon, Kim-

Prieto, & Diener, 2003), in which subjects repeatedly rate questionnaire items over several weeks, 

say five times a day, at randomized time-points. The recent steep increase in such datasets (e.g., 

Hamaker & Wichers, 2017; van Roekel, Keijsers, & Chung, 2019) is related to novel technologies 

to efficiently gather these data with the use of smartphone apps. Hence, there is an urgent need to 

also develop novel analytical methods. 

In order to draw valid inferences about the measured constructs, either for scientific or 

clinical purposes, it is crucial that the measurement model (MM) is invariant (i.e., constant) across 

time and subjects (i.e., having within- and between-person invariance). The MM indicates to what 

extent the latent constructs (or “factors”) are measured by which items, as indicated by the “factor 

loadings”. For continuous data, the MM is obtained by factor analysis (FA). If measurement 

invariance (MI) holds, the constructs are conceptually equal and thus comparable across subjects 

and over time. Often, MI is not tenable because response styles, substantive changes in item 

interpretation, or changes in the nature of the measured construct may affect the MM. That is, 

people may differ from each other in their MMs, for instance, depending on psychopathology, but 
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one subject may also differ over time in its own MM, for instance, depending on the social context 

in which the questionnaire is filled in. When the non-invariance patterns are undetected or ignored, 

they cause a potential threat to valid inferences using standard methods for comparing factor means 

across time and subjects. For instance, changes in subjects’ overall emotional well-being may be 

(partly) due to changes in how subjects interpret the items. Changes in the MM are also important 

phenomena in their own right. For instance, detecting MM changes is crucial for valid decisions 

about treatment allocation over time and such changes may even signal the onset of a mental 

episode. Consider, for example, a psychologist who measures positive affect (PA) and negative 

affect (NA) in patients with a bipolar disorder. Patients in manic episodes often encounter high 

arousal PA such as feeling energetic or excited together with high arousal NA such as being 

irritated or distracted (American Psychiatric Association, 2013). This might result in a MM with 

one bipolar “arousal” factor contrasting “low” versus “high” arousal. When patients encounter 

depressive episodes, PA is generally lower and NA at least somewhat higher (Hamaker, Grasman, 

& Kamphuis, 2010), which might correspond to a MM with two separate PA and NA affect factors 

or one bipolar “valence of affect” factor. Assessing MI thus allows for more accurate conclusions, 

but may also open up novel possibilities of early detection of subtle changes in daily functioning. 

In order to assess for whom and when a MM applies, Vogelsmeier, Vermunt, van Roekel, 

and De Roover (2019) developed a novel method called latent Markov factor analysis (LMFA) for 

tracking and diagnosing MM changes for continuous responses in ILD. LMFA combines a latent 

Markov model (LMM; Bartolucci, Farcomeni, & Pennoni, 2014; Collins & Lanza, 2010) with 

mixture FA (McLachlan & Peel, 2000; McNicholas, 2016): The LMM clusters subject- and time-

point-specific observations into a few dynamic latent classes or “states” according to the MMs 

underlying these observations and mixture FA evaluates which MM applies for each state. Thus, 
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every state pertains to a different MM and the MM is invariant within one state. Note that not all 

MMs may apply to each subject. Some subjects may constantly stay in one state while others may 

transition between different states. By investigating the state memberships, one can see which 

subjects and measurements are comparable regarding their underlying MM. Investigating the state-

specific MMs offers insights into the underlying dynamics and it also helps researchers for making 

decisions about subsequent analyses. For example, when at least “partial” invariance holds across 

states (i.e., only a few MM parameters differ; Byrne, Shavelson, & Muthén, 1989), researchers 

could study discrete changes in factor means by repeating the LMLTA analysis, restricting 

invariant MM parameters to be equal across states, and adding factor means to the model.  

The new method has raised awareness of possible MM changes in ILD among fundamental 

and applied researchers who are now eager to evaluate which MM applies to which subject at 

which time-point (Horstmann & Ziegler, 2020). However, an important limitation of LMFA is the 

assumption of having normally distributed continuous response items. This assumption is often 

violated in ILD. Although continuous items are sometimes used (e.g., participants are asked to 

give their answer by sliding on the Visual Analog Scale from 0 (“not at all”) to 100 (“very much”), 

many studies use multiple Likert items with 5 to 7 categories for their assessment. Even though it 

has been shown that items with 5 or more categories might be treated as continuous (Dolan, 1994), 

it becomes problematic if the item response distributions are heavily skewed (e.g., when most 

responses have a 0 score, which is quite common with less frequent thoughts, emotions, or 

behaviors). FA is not robust against strong deviations from normality and, therefore, may yield 

inaccurately estimated parameters (Kappenburg -ten Holt, 2014; Rhemtulla, Brosseau-Liard, & 

Savalei, 2012; Vermunt & Magidson, 2005). Note that the same problem generally applies to 

studies that use ordinal items with less than 5 categories, although this is less common in ILD data. 
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If the normal approximation is clearly incorrect, a better alternative is to treat the items as ordinal 

and to specify the probability of responding in a certain category by means of “item response 

theory” or “latent trait” (LT) models, where “trait” refers to a latent construct in the psychometric 

literature (Vermunt & Magidson, 2016).  

The aim of this paper is to combine the strength of LT models to adequately deal with ordinal 

data with the strengths of LMFA to trace complex measurement non-invariance patterns in the 

data. The novel and much-needed latent Markov latent trait analysis (LMLTA) for ordinal data is 

obtained by replacing the mixture FA by a mixture multidimensional version of Muraki’s (1992) 

“generalized partial credit model” (GPCM) that treats the responses as ordinal. Section 2 describes 

LMLTA and how it compares to LMFA. Section 3 illustrates the empirical value of LMLTA to 

detect MM changes in ordinal data on adolescents’ well-being in different social contexts. Finally, 

Section 4 concludes with some points of discussion and future directions of research. 

2. Method 

2.1.Data Structure  

In LMLTA, we assume intensive longitudinal observations that are nested within subjects 

and we assume multiple Likert and, therefore, ordinal items with response categories ranging, for 

instance, from 1 = “strongly disagree” to 5 = “strongly agree”. The latter differs from LMFA, 

where the items are assumed to be continuous variables. The observations are denoted by 𝑦𝑖𝑗𝑡 with 

𝑖 = 1, … , 𝐼 referring to subjects, 𝑗 = 1,… , 𝐽 referring to items, and 𝑡 = 1,… , 𝑇 referring to time-

points. Furthermore, 𝑔 = 1,… , 𝐺 refers to the item categories and the number of categories 𝐺 is 

assumed to be constant across items. Finally, the number of time-points 𝑇 typically differs across 

subjects but, for simplicity, we mostly omit the index 𝑖 in 𝑇𝑖. The observations are collected in the 

1 × 𝐽 vectors 𝐲𝑖𝑡 = (𝑦𝑖1𝑡, … , 𝑦𝑖𝐽𝑡) that are collected in the 𝑇 × 𝐽 subject-specific data matrices 𝐘𝑖 =
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(𝐲𝑖1
′ , … , 𝐲𝑖𝑇

′ )′. The data matrices are concatenated in the dataset 𝐘 = (𝐘1
′ , … , 𝐘𝐼

′)′ with ∑ 𝑇𝑖
𝐼
𝑖=1  rows. 

2.2.Latent Markov Latent Trait Analysis  

In LMLTA, just as in LMFA, a LMM specifies transitions between discrete latent states 

(e.g., manic and depressive state) characterized by state-specific MMs (e.g., state 1 contains one 

arousal factor and state 2 two affect factors). A LMM is basically a latent class model (Lazarsfeld 

& Henry, 1968) and thus a method to find unobserved classes of observations with comparable 

response patterns. A LMM allows subjects to transition between latent classes over time, which is 

why the classes are called “states”. To get more insight into what possibly predicts state 

memberships, one may explore the relation between the state memberships and time-varying or 

time-constant explanatory variables or “covariates”. For instance, sleep quality and disruptions in 

the daily routine may increase the probability to transition to a manic state (Hamaker et al., 2010). 

The state-specific MMs are latent variable models that indicate which latent constructs are 

measured by which items and to what extent. The choice for the type of latent variable model 

directly follows from the assumed item response distribution: An LT model for ordinal data is used 

in LMLTA and a FA model for continuous data is used in LMFA.  

The parameters in LMLTA can be estimated with the same approaches as in LMFA, using 

Latent GOLD (LG; Vermunt & Magidson, 2016) syntax. The first approach is a one-step full 

information maximum likelihood (FIML) estimation (Vogelsmeier, Vermunt, van Roekel, et al., 

2019) and the second approach is a three-step (3S) procedure that splits the estimation of the LMM 

and the state-specific MMs (Vogelsmeier, Vermunt, Bülow, & De Roover, 2019). The latter 

approach has advantages, especially regarding model selection with covariates. In the following, 

we first describe the LMM and then introduce the particular LT model applied in this paper and 

compare it to the FA model in LMFA. Thereafter, we discuss the two possible estimation 
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procedures and the advantages of the 3S estimation. 

Latent Markov model. The LMM is a probabilistic model with two assumptions (e.g., 

Bartolucci et al., 2014; Collins & Lanza, 2010): (1) The probability of being in state 𝑘 (with 𝑘 =

1, … , 𝐾) at time-point 𝑡 depends only on the state membership at the previous time-point 𝑡 − 1 and 

not on any other state memberships (first-order Markov assumption) and (2) the responses 𝐲𝑖𝑡 at 

time-point 𝑡 depend only on the state membership at this time-point (local independence 

assumption). The sequence of states is called a latent Markov chain (LMC). Figure 1a illustrates a 

LMC for a single subject: The 𝐾 × 1 vectors 𝐬𝑖𝑡 = (𝑠𝑖𝑡1, … , 𝑠𝑖𝑡𝐾)′ contain the binary indicators 

𝑠𝑖𝑡𝑘 that are equal to 1 for state 𝑘 and equal to zero for all other states. They determine the state 

membership at time-point 𝑡. The 𝑈 × 1 vectors 𝐳𝑖𝑡 = (𝑧𝑖𝑡1, … , 𝑧𝑖𝑡𝑈)
′ contain the covariate values 

𝑧𝑖𝑡𝑢, with 𝑢 = 1,… , 𝑈 referring to the subject- and possibly time-point-specific covariates 

influencing the state memberships. In Figure 1a, state 1 (e.g., the manic state) applies to time-

points 1–29 and 55–56, while state 2 (e.g., the depressive state) applies to time-points 30–54. 

[Insert Figure 1 about here] 

A LMM is characterized by the “initial state”, “transition”, and “response” probabilities. 

Together, the parameters form the joint distribution of the observations and states. This is: 

 𝑝(𝐘𝑖, 𝐒𝑖|𝐙𝑖) = 𝑝(𝐲𝑖1, … , 𝐲𝑖𝑇,𝐬𝑖1, … , 𝐬𝑖𝑇|𝐳𝑖1, … , 𝐳𝑖𝑇)

= 𝑝(𝐬𝑖1|𝐳𝑖1)⏞      

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑎𝑡𝑒
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

∏𝑝𝛿𝑡𝑖(𝐬𝑖𝑡|𝐬𝑖𝑡−1, 𝐳𝑖𝑡)
⏞          

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑇

𝑡=2

∏ 𝑝(𝐲𝑖𝑡|𝐬𝑖𝑡)⏞      

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑇

𝑡=1

 
(1) 

for subject 𝑖. The initial state and transition probabilities may depend on subject- and time-point-

specific covariates 𝐳𝑖𝑡 but, in the following, we will omit an index 𝑧 for simplicity. The initial state 

probabilities in Equation (1) define the probabilities to start in state 𝑘 at time-point 𝑡 = 1 and are 

collected in a 𝐾 × 1 probability vector 𝛑 with elements 𝜋𝑘 = 𝑝(𝑠𝑖1𝑘 = 1|𝐳𝑖1) and ∑ 𝜋𝑘
𝐾
𝑘=1 = 1. 

In LG, the initial state probabilities are modeled via a logit model as this prevents parameter range 
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restrictions and the covariates also enter through this parameterization as: 

 
log

𝑝(𝑠𝑖1𝑘 = 1|𝐳𝑖1)

𝑝(𝑠𝑖11 = 1|𝐳𝑖1)
= 𝛽0𝑘 + 𝛃𝑘

′ 𝐳𝑖𝑡=1 (2) 

for 𝑘 = 2, … , 𝐾 and with 𝑘 = 1 as the reference category. Here, the initial state intercepts are 

denoted by 𝛽0𝑘 and the initial state slopes that quantify the effect of the covariates on the initial 

state memberships are captured by the vectors 𝛃𝑘
′ = (𝛽𝑘,𝑍𝑖11 , … , 𝛽𝑘,𝑍𝑖1𝑈)′. 

Transition probabilities are the probabilities to be in state 𝑘 at time-point 𝑡 > 1 conditional 

on state 𝑙 (𝑙 = 1,… , 𝐾) at 𝑡 − 1. In a discrete-time (DT-)LMM, intervals between measurements, 

𝛿𝑡𝑖, are assumed to be equal. A continuous-time (CT-)LMM (Böckenholt, 2005; Jackson & 

Sharples, 2002; Vogelsmeier, Vermunt, Böing-Messing, & De Roover, 2019) allows the intervals 

to differ across time-points and subjects, which is often more realistic in ESM studies and therefore 

applied throughout the rest of this paper. The transition probabilities 𝑝𝛿𝑡𝑖,𝑙𝑘 = 𝑝𝛿𝑡𝑖(𝑠𝑖𝑡𝑘 =

1|𝑠𝑖𝑡−1,𝑙 = 1, 𝐳𝑖𝑡) are collected in the 𝐾 × 𝐾 matrix 𝐏𝛿𝑡𝑖, where the row sums of 𝐏𝛿𝑡𝑖,  ∑ 𝑝𝛿𝑡𝑖,𝑙𝑘,
𝐾
𝑘=1  

are equal to 1. In a DT-LMM, a multinomial logistic model is used for the transition probabilities: 

 
log
𝑝(𝑠𝑖𝑡𝑘 = 1|𝑠𝑖𝑡−1,𝑙 = 1, 𝐳𝑖𝑡)

𝑝(𝑠𝑖𝑡𝑙 = 1|𝑠𝑖𝑡−1,𝑙 = 1, 𝐳𝑖𝑡)
= 𝛾0𝑙𝑘 + 𝛄𝑙𝑘

′ 𝐳𝑖𝑡 (3) 

with 𝑘 ≠ 𝑙, 𝛾0𝑙𝑘 as transition intercepts, and 𝛄𝑙𝑘
′ = (𝛾𝑙𝑘,𝑍𝑖11 , … , 𝛾𝑙𝑘,𝑍𝑖1𝑈)′ as slopes that quantify the 

covariate effects on transitioning to another state compared to staying in a state. In Figure 1b, we 

show how to read a transition probability matrix. The diagonal elements indicate that the 

probability of staying in state 1 is higher than of staying in state 2. If state 1 is the manic and state 

2 the depressive state, we would conclude that the manic state is more persistent for this person. 

In the CT-LMM, the transition probabilities themselves are a function of the interval 𝛿𝑡𝑖 and 

the “transition intensity matrix” 𝐐. The 𝐾 × 𝐾 matrix 𝐐 contains the transition intensities (or rates) 

𝑞𝑙𝑘 that define the transitions from the origin state 𝑙 to the destination state 𝑘 per very small time 

unit. For all off-diagonal elements in the matrix 𝐐 (i.e., 𝑘 ≠ 𝑙) the intensities are: 
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𝑞𝑙𝑘 = lim

𝛿→0

𝑝(𝑠𝑖𝑡𝑘 = 1|𝑠𝑖𝑡−𝛿,𝑙 = 1, 𝐳𝑖𝑡)

𝛿
. (4) 

The diagonal elements are equal to −∑ 𝑞𝑙𝑘𝑘≠𝑙  (Cox & Miller, 1965). The transition probabilities 

𝐏𝛿𝑡𝑖 are obtained by taking the matrix exponential of 𝐐 × 𝛿𝑡𝑖. This implies that the probability to 

transition to another state at two consecutive measurement occasions (i.e., 𝑘 ≠ 𝑙) becomes 

increasingly more likely for larger intervals. As can be seen from Equation (4), one may also 

regress the transition intensities on covariates 𝐳𝑖𝑡 to better understand what may cause the 

transitions to or away from a state. In the CT-LMM, LG uses a log-linear model for the transition 

intensities and the covariates are included as follows (again for 𝑘 ≠ 𝑙):   

 log 𝑞𝑙𝑘 = 𝛾0𝑙𝑘 + 𝛄𝑙𝑘
′ 𝐳𝑖𝑡. (5) 

Hence, covariates to predict any of the parameters (i.e., initial state and transition probabilities or 

intensities) are included by means of regression, as is usually done in LMMs (e.g., Bartolucci et 

al., 2014; Vermunt, Langeheine, & Böckenholt, 1999; Visser, Raijmakers, & van der Maas, 2009). 

Instead of using only observed covariates in any of the parameters, one may also use a time-

constant or time-varying latent categorical variable that classifies subjects according to their 

transition pattern or initial state probabilities into latent classes (Crayen, Eid, Lischetzke, & 

Vermunt, 2017; Vermunt, Tran, & Magidson, 2008). This “mixture (CT-)LMM” captures the most 

relevant between-subject differences in the transition process. The number of latent classes can be 

based on theory and interpretability or selected using information criteria such as the Bayesian 

information criterion (BIC, Schwarz, 1978) or the convex hull (CHull; Ceulemans & Kiers, 2006) 

method. An example is shown in the application (Section 3). 

Finally, the response probabilities 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1) indicate the probability for a certain 

response pattern at time-point 𝑡, given the state membership at that time-point, 𝑠𝑖𝑡𝑘 = 1. These 

response probabilities depend on the state-specific MMs described next.  

Measurement model. The MMs determine how the responses 𝑦𝑖𝑡𝑗 are defined by the state 
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memberships 𝑠𝑖𝑡𝑘 = 1. To this end, a latent variable model with state-specific parameters is used 

in both LMFA and LMLTA. For both methods, it holds that: (1) the responses 𝑦𝑖𝑡𝑗 are indicators 

of underlying latent factors 𝐟𝑖𝑡, (2) the factors are considered to be normally distributed continuous 

variables, (3) the responses 𝑦𝑖𝑗𝑡 are independent given the latent factors, and (4) covariates are 

only indirectly related to the observed responses via the latent states. As explained before, LMFA 

and LMLTA differ in the type of latent variable model that is used. In LMFA, the continuous 

responses 𝑦𝑖𝑗𝑡 are defined by state-specific linear FA models with parameters that may differ 

across the latent states. For a single item 𝑗 this is given by (e.g., McLachlan & Peel, 2000): 

 

𝐸(𝑦𝑖𝑗𝑡|𝐟𝑖𝑡, 𝑠𝑖𝑡𝑘 = 1) =  ∑𝜆𝑗𝑟𝑘 𝑓𝑟𝑖𝑡

𝑅𝑘

𝑟=1

+ 𝜈𝑗𝑘, (6) 

where 𝑅𝑘 is the state-specific number of factors, 𝑟 = 1,… , 𝑅𝑘 indicates a state-specific factor, 𝜆𝑗𝑟𝑘 

is a state-specific loading of item 𝑗 on factor 𝑟, 𝐟𝑖𝑡 = (𝑓1𝑖𝑡, … , 𝑓𝑅𝑖𝑡)′ are subject- and time-point-

specific factor scores with 𝐟𝑖𝑡~𝑀𝑉𝑁(0,𝚽𝑘) (note that possible restrictions of 𝚽𝑘 will be discussed 

further below), and 𝜈𝑗𝑘 indicates a state-specific intercept for item 𝑗. 

In LMLTA, the ordinal responses 𝑦𝑖𝑗𝑡 are defined by state-specific LT models. It is important 

to note that there are several LT models that could be used to model Likert-type data (Andrich, 

1978; Muraki, 1992; Samejima, 1969). The GPCM (Muraki, 1992) is a relatively flexible and 

unrestrictive model (Tijmstra, Bolsinova, & Jeon, 2018) and is therefore considered in this study. 

More specifically, we use the multidimensional version of the GPCM (e.g., Johnson & Bolt, 2010) 

and, in order to allow for parameter differences across states, we employ a mixture variant (for 

previous work on mixture LT models see, e.g., Bolt, Cohen, & Wollack, 2001; Cohen & Bolt, 

2005; Rost, 1990; Smit, Kelderman, & van der Flier, 2000). In contrast to the state-specific FA 

models in LMFA, the state-specific GPCMs used in LMLTA do not consist of a set of linear 
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models but of a set of adjacent-category (i.e., (𝑔, 𝑔 + 1)) ordinal logit models. More specifically, 

using as much as possible the same notation as before, the logarithm of the odds of responding in 

category 𝑔 + 1 instead of responding in category 𝑔 for item 𝑗, given the factor scores 𝐟𝑖𝑡 and the 

state membership 𝑠𝑖𝑡𝑘 = 1 for subject 𝑖 at time-point 𝑡, has the following linear form: 

 

log (
𝑝(𝑦𝑖𝑗𝑡𝑔+1 = 1|𝐟𝑖𝑡, 𝑠𝑖𝑡𝑘 = 1)

𝑝(𝑦𝑖𝑗𝑦𝑔 = 1|𝐟𝑖𝑡, 𝑠𝑖𝑡𝑘 = 1)
) =∑𝜆𝑗𝑟𝑘 𝑓𝑟𝑖𝑡

𝑅𝑘

𝑟=1

+ 𝜈𝑗𝑔𝑘
∗ , (7) 

for 1 ≤ 𝑔 ≤ 𝐺 − 1, with 𝑦𝑖𝑗𝑡 = 𝑔 indicating that this response to item 𝑗 is in category 𝑔. Again, 

𝜆𝑗𝑟𝑘 is the state-specific loading of item 𝑗 on factor 𝑟. The 𝜈𝑗𝑔𝑘
∗  are the 𝐺 − 1 intercepts for each 

of the adjacent-category log-odds. The logistic model for the probability of response 𝑔 equals: 

 
𝑝(𝑦𝑖𝑗𝑡 = 𝑔|𝐟𝑖𝑡, 𝑠𝑖𝑡𝑘 = 1) =

exp (∑ 𝑔 × 𝜆𝑗𝑟𝑘𝑓𝑟𝑖𝑡
𝑅𝑘
𝑟=1 + 𝜈𝑗𝑔𝑘)

∑ exp (∑ 𝑔′ × 𝜆𝑗𝑟𝑘𝑓𝑟𝑖𝑡
𝑅𝑘
𝑟=1 + 𝜈𝑗𝑔′𝑘)

𝐺
𝑔′=1

. (8) 

As shown, the loadings are multiplied with the category number and the intercepts are now 𝜈𝑗𝑔𝑘, 

with ∑ 𝜈𝑗𝑔𝑘 = 0
𝐺
𝑔=1 . The relation between the two sets of intercepts is that 𝜈𝑗𝑔𝑘

∗ = 𝜈𝑗𝑔+1,𝑘 − 𝜈𝑗𝑔𝑘. 

When comparing Equation (6) and Equation (7), the loading parameters for the FA model 

and the GPCM are clearly conceptually similar. In both cases, they indicate how strongly an item 

j measures a latent factor 𝑓𝑟𝑖𝑡 in state 𝑘 (Kankaraš, Vermunt, & Moors, 2011). In contrast, the 

intercepts are not directly comparable across the two models. In the FA model, there is only one 

intercept per item and state, 𝜈𝑗𝑘, because the responses are treated continuous. For the ordinal 

responses in the GPCM, there are 𝐺 − 1 free intercept parameters per state, 𝜈𝑗𝑔𝑘
∗ .  

As in LMFA, the state-specific joint response probabilities for LMLTA at time point 𝑡 are 

obtained by marginalizing over the latent factors. Moreover, the 𝐽 item responses are assumed to 

be conditionally independent given the latent factors and the state membership. Therefore, the 

response probabilities are (e.g., Johnson & Bolt, 2010): 
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𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1) = ∫…∫𝑝(𝐟𝑖𝑡; 𝟎,𝚽𝑘)∏𝑝(𝑦𝑖𝑗𝑡 = 𝑔|𝐟𝑖𝑡, 𝑠𝑖𝑡𝑘 = 1)

𝐽

𝑗=1

𝑑𝐟𝑖𝑡 (9) 

with 𝑝(𝑦𝑖𝑡𝑗 = 𝑔|𝐟𝑖𝑡, 𝑠𝑖𝑡𝑘 = 1) as in Equation (8) and 𝑝(𝐟𝑖𝑡; 𝟎,𝚽𝑘) denoting the probability density 

function of the multivariate normal distribution with a mean vector of zero’s and covariance 

matrices 𝚽𝑘.  

To enable the exploration of all kinds of MM changes, including the number and nature of 

the factors, an exploratory model is used in both methods. In contrast to a confirmatory model—

in which certain factor loadings are assumed to be absent and therefore, set to zero—an exploratory 

model estimates all loadings.1 However, both models are unidentified without further constraints. 

To partially identify the models and set a scale to the 𝑅𝑘 factors, one may restrict the factor means 

to zero and the factor (co)variances 𝚽𝑘 to equal an identity matrix, which implies normalized and 

uncorrelated factors. Alternatively, it is possible to freely estimate the covariance matrix of the 

factors and instead fix one loading for each of the 𝑅𝑘 factors to 1 and one extra loading per 

estimated correlation to 0 (e.g., for a state with 𝑅𝑘 = 2, two loadings would be fixed to 1 and one 

loading would be fixed to 0). Remaining rotational freedom in the FA model can be dealt with by 

means of rotation criteria that optimize the simple structure and/or between-state-agreement of the 

factor loadings (Clarkson & Jennrich, 1988; De Roover & Vermunt, 2019; Kiers, 1997). The 

identification of the GPCM is more intricate: Despite the model being identified by the constraints 

imposed so far, one might obtain strongly related parameter estimates and large standard errors. In 

order to prevent this so-called “empirical underidentification”, 𝑅𝑘 − 1 (additional) loadings of 

different items have to be fixed to 0 in each state (Skrondal & Rabe-Hesketh, 2011).2  

                                                 
1 If desired, however, a confirmatory model may also be used in both LMFA and LMLTA. 
2 Note that these constraints could also be used to solve rotational freedom in the FA model (Vermunt & Magidson, 

2016). 
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As becomes apparent from Equation (6) and Equation (7), in either model, the state-specific 

MMs can differ in terms of the number of factors, the loadings, the intercepts, and the factor 

covariance matrices. However, there is an important difference between the two methods. In 

LMFA, states may also differ regarding unique variances, say 𝜓𝑘𝑗 , which is variance that is not 

accounted for by the latent factors. This is possible because the error term in a FA model is 

assumed to be normally distributed, that is, 𝑒𝑖𝑗𝑡~𝑁(0,𝜓𝑘𝑗). In contrast, in the GPCM, the variance 

of the error is not a free parameter but fixed to the value of the variance of the standard logistic 

distribution, 𝜋2 3⁄ , and hence, in LMLTA, also equal across states. Note that, in the GPCM, fixing 

the error variance is necessary to identify the model (Long, 1997).3 Although it might be possible 

to account for error variance heterogeneity by tailoring “scale adjustment” methods (Magidson & 

Vermunt, 2007) to LMLTA, this is beyond the scope of this article.    

Besides this difference, MI analyses with FA and LT models are similar as their primary 

concern is to detect parameter differences. However, different words may be used to describe (non-

) invariance. When using a LT model, researchers typically specify the lack of invariance, which 

is called “differential item functioning” (DIF). More specifically, “uniform DIF” is present when 

only intercepts differ, in our case across latent states, and “non-uniform DIF” is present when 

loadings differ across states, whether intercepts are equal or not (Bauer, 2017). In contrast, when 

using a FA model, researchers typically specify which level of invariance has been reached, 

starting from an invariant number of factors and pattern of zero loadings, followed by invariant 

loadings, intercepts, and finally unique variances (Meredith, 1993). In the next paragraph, we will 

describe how to obtain the estimates that are used to investigate the level of invariance in LMLTA. 

                                                 
3 Note that this is generally a limitation, also in other LT models, and it is often ignored. However, it is important to 

understand that possible differences in error variances across states will be captured as loading and intercept 

differences (Long, 1997). For instance, when in one state the error variance is two times larger than in the other state, 

the loadings and intercepts in that state will be √2 times smaller than in the other state. 
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Maximum likelihood estimation. The parameters in LMLTA are obtained with maximum 

likelihood (ML) estimation. One may choose between (1) the one-step FIML estimation and (2) 

the 3S estimation, just as is the case for LMFA. However, estimating the LMLTA model with 

either approach is computationally more complex than estimating the LMFA model. Therefore, 

LMLTA is limited regarding the number of factors that can be estimated (i.e., including more than 

3 factors is usually unfeasible; see Appendix B for detailed explanations). First, for the FIML 

estimation (Vogelsmeier, Vermunt, van Roekel, et al., 2019), the following loglikelihood function, 

derived from the joint distribution in Equation (1), has to be maximized: 

 

log 𝐿𝐹𝐼𝑀𝐿 =∑log(∑…∑𝑝(𝐘𝑖, 𝐒𝑖|𝐙𝑖)

𝐬𝑖𝑇𝐬𝑖1

)

𝐼

𝑖=1

. (10) 

In LG, the ML estimates are obtained with the forward-backward algorithm (Baum, Petrie, Soules, 

& Weiss, 1970), which is an efficient version of the Expectation Maximization algorithm 

(Dempster, Laird, & Rubin, 1977), tailored to LMMs. Additionally, in the Maximization step, a 

Fisher algorithm is used to update the log-intensities and a combination of the Expectation 

Maximization and the Newton-Raphson algorithm (De Roover, Vermunt, Timmerman, & 

Ceulemans, 2017) is used to update the state-specific MM parameters.  

Second, the 3S estimation (Vogelsmeier, Vermunt, Bülow, et al., 2019) builds upon 

Vermunt’s (2010) ML method and decomposes the estimation into three steps. First, in step 1, the 

state-specific MMs are obtained with a mixture GPCM while treating repeated measures 𝐲𝑖𝑡 as 

independent. This entails that the relations between the latent states 𝐬𝑖𝑡 at consecutive measurement 

occasions (i.e., the transitions) and the relations between the state memberships and covariates 𝐳𝑖𝑡 

are disregarded. This is valid because observations at one time-point are only indirectly related to 

covariates and to observations at other time-points, that is, via the latent states. This can also be 
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seen from the graphical representation in Figure 1a.4 The mixture GPCM is estimated with a 

combination of the Expectation Maximization and Newton-Raphson algorithms. Then, in step 2, 

observations are assigned to the state-specific MMs based on the most likely state membership 

and the corresponding classification error is calculated. Finally, in step 3, the CT-LMM with 

covariates is estimated using the state assignments from the previous step as indicators (thus fixing 

the MMs) while correcting for classification error inherent to the state assignments from step 2. At 

this point, one may also include a latent class variable to capture differences in transition patterns. 

The (mixture) CT-LMM model is estimated with a combination of the forward-backward and 

Newton-Raphson algorithms. Summarized, the steps are: 

1. Estimating state-specific MMs (disregarding the dependence of the observations). 

2. Assigning observations to the states (depending on the most likely state membership). 

3. Estimating the (mixture) CT-LMM with fixed MMs (correcting for step 2’s classification error).  

The 3S estimation is almost as good as the FIML estimation in terms of parameter estimation. 

Only the state recovery is slightly worse and the standard errors can be slightly overestimated 

(Vogelsmeier, Vermunt, Bülow, et al., 2019).5 Apart from that, the 3S approach comes with several 

advantages. First, step-wise procedures are more intuitive for researchers who use complex 

methods such as LMLTA or LMFA to analyze their data because it is in line with how they prefer 

to conduct their analyses (Vermunt, 2010). That is, they see the investigation of the different MMs 

                                                 
4 It is important to note, however, that the standard errors of the parameters would be underestimated without applying 

a correction because observations are nested, and thus dependent, within subjects. This is only necessary when relying 

on hypothesis tests to determine which parameters differ significantly between the states (the possibility to use such 

tests will be describe below). By providing LG with a “primary sampling unit” (PSU) identifier, the estimation takes 

into account that observations may come from the same sampling unit, i.e., the subject (Vermunt & Magidson, 2016).  
5 Note that another limitation concerns the possible violation of the first-order Markov assumption (i.e., that the state-

membership at time-point 𝑡 is not only influenced by the state-membership at 𝑡 − 1 but also, e.g., by the occupied 

state at 𝑡 − 2; see Section 2.2). Only the FIML approach could capture such a dependency. However, with regard to 

other violated assumptions (e.g., covariates having direct effects on indicators), the FIML approach would suffer more 

from bias than the 3S approach but discussing the consequences is beyond the scope of this article (for a description 

of the problems and solutions, see Vermunt & Magidson, 2020). 
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underlying their data as a first step and the investigation of subject’s transitions between the MMs 

over time as well as the exploration of possible covariate effects as a next step.  

Second, LMLTA (like LMFA) is an exploratory method, which entails that the best number 

of states 𝑘 and factors per states 𝑅𝑘 has to be determined. To this end, a large number of (plausible) 

models has to be estimated and compared by means of loglikelihood-based criteria that consider 

fit and parsimony. The evaluation of model selection criteria in LMLTA is beyond the scope of 

this article but, based on previous findings for related methods (Bulteel, Wilderjans, Tuerlinckx, 

& Ceulemans, 2013; Vogelsmeier, Vermunt, van Roekel, et al., 2019), we suggest to use the BIC 

in combination with the CHull and compare the three best models in terms of interpretability. Note 

that CHull balances fit and parsimony without making distributional assumptions and, thus, may 

perform better for some empirical datasets. In the FIML estimation, the number of models to be 

compared grows fast. For example, there are 9 models when comparing models with 1–3 states 

and 1–2 factors per state. When adding different (sets of) covariates to the CT-LMM, the 9 models 

have to be re-estimated for every set of covariates (e.g., 9 × 5 = 45 models for five different sets).6 

This problem is circumvented in the 3S estimation because the MMs and the CT-LMM are 

estimated separately. This implies that the model selection can be conducted in the first step, 

without being concerned about the covariates. Covariates (and latent classes) for the transition 

probabilities are added when estimating the CT-LMM.7 As a result, there would only be 9 + 5 =

14 models for five sets of covariates. Note that LG provides Wald tests (Agresti, 1990) that can 

be used to evaluate whether the covariates are significantly related to the transition or initial state 

parameters and to determine which MM parameters differ between the states. For the latter, one 

                                                 
6 Note that the number of models grows even faster when also exploring different numbers of latent classes. 
7 The MMs are kept fixed (thus, are not re-estimated) once the covariates are included to the CT-LMM. Otherwise, 

the optimal model complexity in terms of factors and states could change (Di Mari, Oberski, & Vermunt, 2016). 
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may also use visual inspection.  

Third, the FIML estimation takes several hours for each model while the 3S estimation is 

usually done in less than 30 minutes. This makes the FIML estimation less desirable, or even 

unfeasible, when researchers want to explore several covariate effects on MM changes. For all 

these reasons, we employ the 3S estimation in this study (for details, see Online Supplement S.1). 

3.  Application 

3.1.Data 

The data stem from a larger “Grumpy or Depressed?” study, which aimed to assess whether 

daily mood profiles (i.e., variability in affect) would predict the risk for depression in adolescents 

in the long run as recent work has indicated that the short-term dynamics could be linked to long-

term psychopathology (e.g., Maciejewski et al., 2019; for a description of the study, see, e.g., de 

Haan-Rietdijk, Voelkle, Keijsers, & Hamaker, 2017; Janssen, Elzinga, Verkuil, Hillegers, & 

Keijsers, 2020; van Roekel et al., 2019). Briefly, during three 7-day measurement bursts or 

“waves” (with approximately 3-month intervals in between), 250 Dutch adolescents (12 to 16 

years old) completed up to eight questionnaires per day at random moments (median interval: 2.25 

hours).8 Out of the 250 adolescents, 164 participated in all three waves, 38 in two of the waves and 

48 in one of the waves. In total, the adolescents completed 14,432 questionnaires.  

3.2.Measures 

For each assessment, adolescents indicated the degree to which 12 affect items applied to 

them (see Table 1) using 7-point Likert items (ranging from 1 = “not feeling the emotion” to 7 = 

                                                 
8 Note that the researcher studied affect dynamics at multiple time scales because affect can change within hours, days, 

and weeks; Houben, Van Den Noortgate, & Kuppens, 2015). This measurement burst design (Nesselroade, 1991) 

enabled the combination of different time scales (i.e., daily fluctuations in affect and long-term change in depression), 

while minimizing the burden for the participants. Furthermore, random measurement occasions facilitated capturing 

the continuously evolving daily dynamics in affect, minimizing effects of anticipated beeps and structural day routines 

on the assessment of affect (van Roekel et al., 2019).   
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“definitely feeling the emotion”). The items covered both PA and NA. The NA items were 

especially heavily right-skewed. Thus, LMLTA is particularly suited to investigate MM changes. 

The adolescents also indicated their current social interactions, resulting in the three “social 

context” covariates “being with friends” (“fri”), “being at school/with classmates” (“cm”), and 

“being with family” (“fam”), with 0 = ”no” and 1 = ”yes”. At the beginning of every ESM wave 

(i.e., three times), the adolescents completed the Dutch version of the Children’s Depression 

Inventory (CDI-I; Kovacs, 1992; Timbremont, Braet, & Roelofs, 2008) to screen for (sub)clinical 

depression (“dep”). The 27 items refer to symptoms during the last two weeks scored on three 

levels representing low severity (0), medium severity (1), and high severity (2); for instance, “I get 

sad from time to time”, “I get sad often”, and “I’m always sad.” Applying CDI-I cut-off scores 

(Kovacs, 1992; Timbremont et al., 2008), adolescents with a total score under 12 were categorized 

as “no depression” (89%) and all others as “(sub-)clinical depression” (11%). 

The dataset contains several covariates but, in this study, we focused on the social context 

and depression as we found these variables particularly interesting to relate to possible MM 

changes: Emotional experiences may vary depending on the social context. For instance, 

adolescents may experience elevated positive mood when being among friends, whereas they may 

be somewhat more irritable and unhappy in the company of their parents, and more demotivated 

at school (Kendall et al., 2014; Soenens, Deci, & Vansteenkiste, 2017; van Roekel et al., 2013). 

For some adolescents, mood may be context-independent. Firstly, some adolescents could be in 

an overall positive mood regardless of the social context (Dietvorst et al., under review). Secondly, 

adolescents with a depression and those at risk for developing a depression may be rather stable in 

their emotions in that they often feel unhappy and irritable in any social context (Dietvorst et al., 

under review; Kendall et al., 2014; Silk et al., 2011). Therefore, for some adolescents, we expect 
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a particular state membership to be more likely in one social context than in another, but also that 

adolescents differ in their state membership stability, for example, based on their depression level.  

3.3.Description of the Applied Mixture CT-LMLTA Model 

We will examine the context-dependency of state memberships by regressing the transition 

intensities (as defined in Equation (5)) on the social context covariates when estimating the CT-

LMM (in step 3 of the estimation). To capture potential between-adolescent differences in stability, 

we will include a latent class variable that automatically classifies the adolescents based on their 

transition patterns, making the model a mixture CT-LMM as briefly introduced in Section 2.2. To 

see how many different patterns there are, we will compare models with 1–3 classes in terms of 

their fit by means of the BIC and CHull. Note that adolescents are allowed to transition to another 

class at the beginning of each wave—because subjects may change in their transition patterns over 

time (possibly related to their wave-specific depression scores—such that the latent class variable 

is, strictly speaking, another state variable modeled via a DT-LMM (note that a DT model makes 

sense here as the intervals between the waves are approximately the same for all adolescents). To 

prevent confusion with the MM state, we will just refer to this latent variable as “class”, with 

𝑐𝑖𝑑𝑣 = 1 referring to being in a particular class 𝑣 (with 𝑣 = 1,… , 𝑉) in a particular wave 𝑑 (with 

𝑑 = 1, 2, 3). To investigate whether experiencing depression affects the class membership, the 

initial class and transition probabilities of the classes will be regressed on depression.9 Moreover, 

we will evaluate the relation between the social context and the state memberships and investigate 

whether these relations depend on the class membership. For 𝑉 > 1 and with 𝑣 = 1 as reference 

                                                 
9 Note that some adolescents (17 in wave 1, 26 in wave 2, and 18 in wave 3) missed out on the CDI-I questionnaire, 

but did participate in the ESM study, and therefore had no depression score in a given wave. For adolescents who had 

at least one score in any wave, we imputed their average total score and calculated the scale scores according to the 

cut-off values. For the other cases (i.e., 9 in wave 1, 1 in wave 2, and none in wave 3), LG automatically uses the 

average effect for predicting the initial class and transition probabilities.  
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category for the class, the specification of the transition intensities of the states (for 𝑘 ≠ 𝑙) is: 

 log 𝑞𝑙𝑘 = 𝛾0𝑙𝑘 + ∑ 𝛾𝑙𝑘,𝑣𝑐𝑖𝑡𝑣
𝑉
𝑣=2 + ∑ 𝛾𝑙𝑘,𝑓𝑎𝑚,𝑣(𝑓𝑎𝑚𝑖𝑡 × 𝑐𝑖𝑡𝑣)

𝑉
𝑣=1   

+∑ 𝛾𝑙𝑘,𝑐𝑚,𝑣(𝑐𝑚𝑖𝑡 × 𝑐𝑖𝑡𝑣)
𝑉
𝑣=1 + ∑ 𝛾𝑙𝑘,𝑓𝑟𝑖,𝑣(𝑓𝑟𝑖𝑖𝑡 × 𝑐𝑖𝑡𝑣)

𝑉
𝑣=1 .  

(11) 

The specification of the initial class (for 𝑣 = 2, … , 𝑉) and the transition probabilities for the classes 

(for 𝑣 ≠ 𝑏 with 𝑏 = 1,… , 𝑉) are given by: 

 
log
𝑝(𝑐𝑖1𝑣 = 1|𝑑𝑒𝑝𝑖1)

𝑝(𝑐𝑖11 = 1|𝑑𝑒𝑝𝑖1)
= 𝛽0𝑣 + 𝛽𝑣,𝑑𝑒𝑝𝑑𝑒𝑝𝑖𝑑   and 

log
𝑝(𝑐𝑖𝑑𝑣 = 1|𝑐𝑖𝑑−1,𝑏 = 1, 𝑑𝑒𝑝𝑖𝑑)

𝑝(𝑐𝑖𝑑𝑏 = 1|𝑐𝑖𝑑−1,𝑏 = 1, 𝑑𝑒𝑝𝑖𝑑)
= 𝛾0𝑏𝑣 + 𝛾𝑏𝑣,𝑑𝑒𝑝𝑑𝑒𝑝𝑖𝑑, 

(12) 

respectively. Note that this application is meant to illustrate the empirical value of tracing MM 

changes with LMLTA. No hypotheses were pre-registered and all analyses are exploratory so that 

interesting findings should be validated in future research before drawing any conclusions.  

3.4.Obtaining and Investigating the Results of the Mixture CT-LMLTA Model 

Below, we follow the three consecutive steps of the 3S estimation described in Section 2.2. 

Step 1 & 2: Estimating state-specific MMs & assigning observations to the states.  

Model selection. To select the best fitting model, we conducted the mixture GPCM analysis 

for models with 1–3 states and 1–2 factors per state (i.e., 9 models10). Considering 1 to 2 factors 

not only preserves computational feasibility but also makes sense for affect questionnaires as PA 

and NA are often found as primary affect dimensions that may collapse into one bipolar factor if 

the emotions are strongly negatively related (Dejonckheere et al., 2018; Vogelsmeier, Vermunt, 

Bülow, et al., 2019). We selected the model with two states and two factors in each state because 

it was the best according to the BIC and among the two best models according to the CHull (for 

model selection details, see the Online Supplement S.2; for the syntax of the selected model, see 

                                                 
10 The 9 models are [2 2 2], [2 2 1], [2 1 1], [1 1 1], [2 2], [2 1], [1 1], [2], and [1]. The notation means, for instance, 

that model [2 1 1] has three states with 2, 1, and 1 factors in each state, respectively.  
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Online Supplement S.4). Forty-two % of the observations belonged to MM 1 and 58% to MM 2. 

Results and interpretation. To examine the between-state MM differences, we first looked 

at the state-specific loadings in Table 1. Note that we modeled the covariance matrices in both 

states. To set the factor scales, we set the loadings of the items “happy” on factor 1 and “unhappy” 

on factor 2 equal to 1 in both states. To eliminate rotational freedom, we set the remaining loadings 

of the same items equal to zero. This has led to a well-interpretable simple structure. State 1 is 

characterized by separate PA and NA factors that correlated negatively (𝑟 = −.55) among 

observations in the same state. This means that adolescents distinguish somewhat between PA and 

NA, but that adolescents who score high on PA tend to score low on NA and vice versa. In contrast, 

in state 2, the three low arousal PA (LA-PA) emotions collapse with the NA emotions into one 

bipolar factor whereas the three high arousal PA (HA-PA) emotions make out the second factor. 

However, the factors have an even larger negative correlation than in state 1 (𝑟 = −.84). This 

implies that adolescents in state 2 distinguish more between LA-PA and HA-PA than they do 

between (LA-)PA and NA. Note that strong negative correlations between PA and NA are common 

in assessments that take place within small time-periods and in questionnaires that contain items 

with semantic antonyms such as "happy" and "unhappy" or "sad" (Dejonckheere et al., 2018).11 

[Insert Table 1 about here] 

Next, we investigated the between-state differences in the mean item scores. These scores 

are directly related to the state- and category-specific intercepts (which are given in Supplement 3 

Table 2), but the item means are easier to interpret. They are calculated as ∑ 𝑔 ×𝐺
𝑔=1

                                                 
11 One might wonder if the loading pattern emerged only because of our chosen identification constraints. Therefore, 

for the same model, we also investigated a solution without correlations between the latent factors, with variances set 

to 1, and with the loadings of the item “irritated” set to 0 for the first factor in both states. The results can be found in 

the Online Supplement S.3. Again, the solution shows that the three HA-PA emotions in state 2 stand out from the 

other emotions. Thus, we are confident about this finding. 
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𝑝(𝑦𝑖𝑡𝑗 = 𝑔|𝐟𝑖𝑡 = 𝟎, 𝑠𝑖𝑡𝑘 = 1) and thus a function of the logistic model for the probability of giving 

a response 𝑔 as defined in Equation (8) with the factor scores 𝐟𝑖𝑡 set equal to 𝟎 = (0, 0)′. As can 

be seen from Table 1, the means of the PA items are higher than the means of the NA items in 

both states. However, the PA means are lower in state 1 than in state 2. Thus, adolescents who 

distinguish more between LA-PA and HA-PA report a slightly better mood.  

Step 3: Estimating the mixture CT-LMM with fixed MMs. Since each adolescent may have 

a different MM at different measurement occasions, we examined adolescents’ transitions from 

one state to another. Additionally, as motivated above, we investigated (1) whether adolescents 

differed in their state- (and thus MM-) membership by classifying the adolescents based on their 

transition patterns (i.e., transitions between states from one measurement occasion to the next) into 

latent classes that could differ across the three waves, (2) whether the wave-specific covariate 

depression had an influence on this class membership, and (3) whether the time-varying social 

context covariates (family, classmates, and friends) affected the transitions between the states and 

whether these effects differ across classes. To this end, we estimated the mixture CT-LMM with 

the state assignments from step 2 of our analysis as indicators, while accounting for the inherent 

classification errors. Note that the correction was hardly necessary as the classification errors were 

very small due to a high state separation (with 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦
2 = .86)12, which means that most 

observations were assigned to a state with a high certainty in step 2 of the analysis.  

Model selection. We first estimated the “full” model as summarized in Equation (11) and 

(12) for 1–3 classes (i.e., with all possible covariates as just described). In the 2- and 3-class 

solutions, the effects of depression on the initial class (𝛽𝑣,𝑑𝑒𝑝) and on the transition probabilities 

                                                 
12 The 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦

2  value defines how much the state membership prediction improves when using the observations 𝐲𝑖𝑡  

compared to when the state membership is predicted without them. The values range from zero, where the prediction 

is no better than chance, to one, where the prediction is perfect. 
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for the classes (𝛾𝑟𝑣,𝑑𝑒𝑝) were non-significant. Hence, the class membership was unaffected by the 

level of depression. Furthermore, the effects of being with family (𝛾𝑙𝑘,𝑓𝑎𝑚,𝑣) and classmates 

(𝛾𝑙𝑘,𝑐𝑚,𝑣) on the transitions between the states significantly differed across classes, whereas the 

effect of being with friends (𝛾𝑙𝑘,𝑓𝑟𝑖,𝑣) did not significantly differ across classes. However, being 

with friends in itself had a significant effect on the transitions between the states (i.e., there was 

an effect but it did not differ across classes). Therefore, we re-estimated the 2- and 3-class models 

while omitting depression and the conditional effect of being with friends but including a class-

independent effect of being with friends (i.e., 𝛾𝑙𝑘,𝑓𝑟𝑖). Comparing all full and “reduced” models, 

the reduced 3-class model had the best fit according to the BIC and was among the best three 

models according to the CHull (for model selection details, see Online Supplement S.5; for the 

syntax of the full and reduced 3-class models, see Online Supplement S.4).13 

Results and interpretation. Table 2 shows the parameters of the final model. First, we looked 

at the three classes that captured differences in adolescents’ between-state transitions. To this end, 

we computed the probabilities for the median interval (2.25 h) and mean covariate values: 14 

 

𝐏𝑠𝑡𝑎𝑡𝑒𝑠
𝑣=1 = (

0.86 0.14
0.44 0.56

) , 𝐏𝑠𝑡𝑎𝑡𝑒𝑠
𝑣=2 = (

0.58 0.42
0.15 0.85

) , 𝐏𝑠𝑡𝑎𝑡𝑒𝑠
𝑣=3 = (

1 0
0 1

). (13) 

Class 1 and 2 each include 25% of the adolescents, whereas 50% were assigned to class 3. As can 

be seen from the relatively large values in column 1 of 𝐏𝑠𝑡𝑎𝑡𝑒𝑠
𝑣=1 , adolescents in class 1 had a higher 

probability to transition to and stay in state 1 (i.e., PA vs. NA), whereas adolescents in class 2 had 

a higher probability to transition to and stay in state 2 (HA-PA vs. LA-PA/NA), which can be seen 

                                                 
13 Note that we also explored whether using the total depression scores instead of the dichotomous cut-off scores 

would change the results, which was not the case. 
14 As previously described, Figure 1 shows how to read a transition probability matrix. In Online Supplement S.6, we 

provide R code for calculating the transition probability matrix from the parameter estimates in Table 2 for any class, 

covariate, and time-interval of interest. 
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from the relatively large values in column 2 of 𝐏𝑠𝑡𝑎𝑡𝑒𝑠
𝑣=2 . Thus, 25% of the adolescents are mostly in 

state 1 and 25% are mostly in state 2. In class 3, transitions to another class were highly unlikely 

since the (rounded) off-diagonal elements are equal to zero in 𝐏𝑠𝑡𝑎𝑡𝑒𝑠
𝑣=3 , implying that adolescents 

in this class largely showed within-person invariance. Over the three waves with 3-month intervals, 

more adolescents transitioned to the stable class 3, as can be seen from the third column of the 

matrix containing the probabilities to transition between classes from one wave to another:  

 
𝐏𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = (

0.69 0.09 0.21
0.12 0.59 0.29
0.06 0.05 0.88

) . (14) 

Thus, over the three waves, adolescents developed a more stable assessment of their feelings. 

Perhaps their repeated answers to the questionnaire helped them to develop emotional awareness.  

Considering the most prominent results (i.e., 𝑝 < 0.01) of the social context covariates, we 

can see that the two class-dependent covariates (being with family and with classmates) had no 

effect in the stable class 3. In class 1 and 2, being with family decreased the probability of moving 

to state 1 (𝛾𝑙=2,𝑘=1,𝑓𝑎𝑚,𝑣=1 = −0.63; 𝛾𝑙=2,𝑘=1,𝑓𝑎𝑚,𝑣=2 = −1.12). This implies that the probability 

to be in state 2 increased. Thus, when being with family (compared to not being with family), 

adolescents distinguish more between LA-PA and HA-PA and less between (LA-)PA and NA. 

One can imagine that HA-PA and LA-PA can emerge as separate factors. For example, while 

watching Netflix with the family, adolescents might feel “content” or “relaxed” but not “excited”.  

For adolescents in class 1, being with classmates decreased both the probability of moving 

to state 2 and moving to state 1 (𝛾𝑙=1,𝑘=2,𝑐𝑚,𝑣=1 = −2.62; 𝛾𝑙=2,𝑘=1,𝑐𝑚,𝑣=1 = −1.30), such that 

state memberships became more stable. It is plausible that schools provide a relatively structured 

and therefore stable environment, which affects adolescents’ emotional well-being less strongly 

than the more volatile experiences of being with family and friends.   

In all three classes, being with friends (compared to not being with friends) decreased the 
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probability of moving to state 2 (𝛾𝑙=1,𝑘=2,𝑓𝑟𝑖 = −0.63).15 The same was found for adolescents 

being with classmates in class 2 (𝛾𝑙=1,𝑘=2,𝑐𝑚,𝑣=2 = −0.75). This implies that, for them, the 

probability to be in state 1 increased and thus, that adolescents tended to distinguish more between 

PA and NA. One possible explanation is that social support of friends is very important for 

adolescents (Bokhorst, Sumter, & Westenberg, 2010), so that adolescents who are "unhappy", for 

instance, because they failed a test, may still feel "content" when they are among their friends (and 

possibly classmates). Although one would expect to find an elevated mood when adolescents are 

with their friends (Kendall et al., 2014; van Roekel et al., 2013), the PA in this state is slightly 

lower than in state 2, perhaps because adolescents visit their friends more often when feeling bad 

and/or are more likely to discuss negative emotions with friends than with, for instance, family. 

Summary of the LMLTA findings. We conclude that (1) two MMs were underlying 

adolescents’ responses: in state 1 (42% of all observations), adolescents distinguished mainly 

between PA and NA and had a slightly worse mood than in state 2 (58% of all observations), where 

adolescent distinguished more between LA-PA (e.g., content) and HA-PA (e.g., excited) than they 

did between (LA-)PA and NA; (2) three state-transition patterns were found, implying that 

adolescents indeed differed in the stability of their emotional experience: in class 1, adolescents 

frequently transitioned between the states with a high probability to be in state 1; in class 2 they 

frequently transitioned but were more likely to be in state 2, and in class 3, they mainly stayed in 

one of the two states; (3) depression did not influence the class membership and thus the transition 

pattern; (4) for the unstable classes 1 and 2, being with family increased the probability to be in 

state 1; (5) for class 1, being with classmates increased the probability of staying in either state; 

                                                 
15 Note that there is only one effect because the relation between being with friends and the state membership was 

not conditional on the classes in the final model. 
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(6) for all classes, being with friends—and for class 2, being with classmates—increased the 

probability to be in state 1. Our results show that researchers can obtain valuable insights from 

investigating MM changes and that it is important to consider the possibility that changes in 

positive or negative affect (e.g., evaluated by means of investigating changes in sum scores) could 

come from variability in the underlying MMs. Therefore, the novel method LMLTA (or LMFA) 

can improve the emerging trend of studying emotional dynamics as predictors of future well-being 

and psychopathology. In the future, it would be interesting to study the MMs and transition patterns 

in a larger group of adolescents with (different levels of) depression and to include other covariates 

that may explain differences in transition patterns and state-membership probabilities. For 

example, stress can cause a simplified representation of emotions (Dejonckheere et al., 2019), 

which can lead to very high correlations between emotions.  

4. Discussion 

In recent years, the awareness of potential measurement model (MM) changes in intensive 

longitudinal data—and the associated comparability problems—increased among substantive 

researchers and they are keen to evaluate such changes with new methods like latent Markov factor 

analysis (LMFA) (Horstmann & Ziegler, 2020). Understanding subject- and context-dependent 

MMs in more detail may benefit future studies on daily life dynamics and also have clinical 

implications, for instance, when MMs can be related to the onset of psychopathology. However, 

up to now, only researchers whose data contained (approximately) normally distributed continuous 

items could benefit from LMFA, whereas intensive longitudinal data often contain ordinal item 

responses with few categories or skewed distributions. In this article, we combined the strength of 

LMFA to evaluate MM changes over time with the strength of latent trait (LT) models 

accommodate ordinal data in the new latent Markov latent trait analysis (LMLTA).  
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We showed that LMFA and LMLTA are similar as they both capture discrete changes or 

differences in subjects’ underlying MM and thus in how latent constructs are measured by 

observed item responses. The difference lies in the type of latent variable model that is used to 

specify the relations between the latent constructs and observed variables, which directly follows 

from the assumed distribution of the observed item responses. Whereas the factor analysis (FA) 

model in LMFA assumes normally distributed continuous item responses, the generalized partial 

credit model (GPCM) in LMLTA assumes ordinal responses. The GPCM differs from the FA 

model in that (1) it has one intercept per item category and not one per item, (2) error variances 

cannot be freely estimated as they need to be fixed for identification, (3) rotation is only possible 

by means of setting identifying constraints, and (4) the number of constructs that can be included 

in the model is limited due to the computationally more complex estimation. This implies that, in 

LMLTA, more parameters have to be estimated, error variances are assumed to be identical across 

states, and the model specification is less flexible than in LMFA. For these reasons, we believe 

that LMFA should be the preferred method if the items are approximately normal and are measured 

with at least five categories (Dolan, 1994). The robustness of LMFA against violations of 

normality has never been evaluated, however. In the future, it would therefore be important to 

formulate more concrete guidelines on the basis of a simulation study that is tailored to intensive 

longitudinal data and that provides information on the robustness of LMFA, for instance, in terms 

of sample size and number of measurement occasions, degree of skewness, and number of item 

response categories. In the meantime, researchers should be cautious and, in case of doubt, opt for 

LMLTA and compare its results to those of LMFA. 

By investigating differences in discrete MM changes over time in relation to covariates, 

LMLTA is a valuable step towards validly studying psychological dynamics. Additionally, as 
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briefly described in the introduction, the results of LMLTA may also help researchers decide on 

subsequent analyses. When invariance is clearly untenable, further evaluating dynamics with an 

approach that builds upon the invariance framework is simply not appropriate. However, 

observations for which invariance holds can be used to study dynamics in latent processes with 

standard analyses (e.g., growth models, Muthén, 2002, or dynamic structural equation modeling, 

Asparouhov, Hamaker, & Muthen, 2017), without results being influenced by differences in the 

underlying MMs. Moreover, if partial invariance holds across states, one may also continue with 

latent process analyses either by removing items with invariant parameters or by allowing for state- 

(or subject- and time-point-) specific parameters. Finally, we would like to highlight that there is 

no gold standard yet in how to analyze intensive longitudinal data and the latent variable 

framework that LMLTA is based on is only one possibility. There are various other reasonable 

frameworks for analyzing the data (e.g., network psychometrics; Epskamp, 2020; Marsman et al., 

2018) and decisions about the data analysis can considerably impact, for example, clinical 

recommendations (Bastiaansen et al., 2020). Therefore, in the future, it would be desirable to 

compare perspectives about psychological phenomena from various modeling approaches. 
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6. Figures and Tables 

 
Figure 1. Part a) is a graphical illustration of a latent Markov chain from the latent Markov latent trait 

analysis model. The binary vectors 𝐬𝑡 = (𝑠𝑡1 = 1, 𝑠𝑡2 = 0)
′ = (1, 0)′ indicate the state memberships at 

different time-points 𝑡, implying that the subject is in state 𝑘 = 1 at time-points 1–29 and 55–56 and in 

state 𝑘 = 2 at time-points 30–54, implying transitions from state 1 to state 2 at time-point 30 and from 

state 2 to state 1 at time-point 55. Note that the responses 𝒚𝑖𝑡 are determined by state-specific latent trait 

measurement models. Furthermore, the covariates 𝐳𝑖𝑡 may influence the state memberships 𝐬𝑖𝑡. Part b) 

shows a possible transition probability matrix 𝐏 for the two states and its corresponding transition diagram 

that shows how to read the matrix. The diagonal elements correspond to the probabilities to stay in a state 

and the off-diagonal elements correspond to the transitions away from a state. 
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Table 1 

Differences in Factor Loadings, Factor (Co-)Variances, Factor Correlations, and Item Means Across the two States 

  State 1 loadings 𝜆𝑗𝑟1   State 2 loadings 𝜆𝑗𝑟2  Between-state loading difference statistics  Item means 

  𝑟 = 1 𝑟 = 2  𝑟 = 1 𝑟 = 2  𝑟 = 1  𝑟 = 2  State 1 State 2 

Item 𝑗  PA NA  HA-PA LA-PA/NA  Wald df p-value  Wald df p-value    

relaxed  0.63 0.03  0.17 -0.71  5.34 1 0.02  7.22 1 < 0.01  5.72 6.89 

content  0.96 0.00  0.32 -1.09  6.65 1 < 0.01  7.31 1 < 0.01  5.76 6.92 

confident  0.46 0.02  0.21 -0.48  1.53 1 0.22  6.93 1 < 0.01  5.66 6.85 

happy  1.00 0.00  1.00 0.00  / / /  / / /  5.62 6.81 

energetic  0.51 0.00  1.18 0.30  6.67 1 < 0.01  3.21 1 0.07  5.21 6.41 

excited  0.69 0.00  1.23 0.17  6.27 1 0.01  1.35 1 0.25  5.27 6.60 

sad  0.04 0.74  0.05 0.88  0.18 1 0.67  1.44 1 0.23  1.09 1.03 

unhappy  0.00 1.00  0.00 1.00  / / /  / / /  1.06 1.02 

disappointed  0.08 1.06  0.14 1.18  0.34 1 0.56  0.30 1 0.58  1.07 1.04 

angry  0.14 0.99  0.14 1.08  0.00 1 1.00  0.11 1 0.74  1.04 1.02 

nervous  -0.01 0.41  0.10 0.52  1.70 1 0.19  0.33 1 0.57  1.24 1.09 

irritated  0.00 0.48  0.05 0.48  0.53 1 0.47  0.00 1 1.00  1.24 1.16 

Variances (chol)  3.69 3.53  2.18 0.96  14.02 1 < 0.01  23.94 1 < 0.01  / / 

Cov. (chol) with 𝑞 = 1  / -2.32  / -1.5  / / /  2.38 1 0.12  / / 

Cor. with 𝑞 = 1  / -0.55  / -0.84  / / /  / / /  / / 

Note. PA = Positive Affect; NA = Negative Affect; HA = High Arousal; LA = Low Arousal; Cov. = covariances; chol = Cholesky decomposed; Cor. = correlation; 

𝑗 refers to items, and 𝑟 to factors. For identification purposes, we set the underlined loadings of the items “happy” on the first factors (𝑟 = 1) equal to 1 and on the 

second factors (𝑟 = 2) equal to 0 and the underlined loadings of the item “unhappy” on the first factors (𝑟 = 1) equal to 0 and on the second factors (𝑟 = 2) equal 

to 1. For each item and state, the loading with the largest absolute value is printed in boldface.  
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Table 2 

Parameter Estimates for the Mixture CT-LMM in Step 3 of LMLTA 

  Parameter Estimate SE z-value p-value  Wald df p-value 

DT-LMM for Classes          

 
Initial Class 

𝛽0𝑣=2  0.19 0.22 0.90 0.37  12.12 2 < 0.01 

 𝛽0𝑣=3  0.60 0.19 3.22 < 0.01     

 

Transition 

Intercepts  

 

𝛾0𝑏=1,𝑣=2  -2.02 0.54 -3.75 < 0.01  103.6 6 < 0.01 

 𝛾0𝑏=1,𝑣=3  -1.18 0.33 -3.62 < 0.01     

 𝛾0𝑏=2,𝑣=1  -1.62 0.49 -3.34 < 0.01     

 𝛾0𝑏=2,𝑣=3  -0.70 0.30 -2.35 0.02     

 𝛾0𝑏=3,𝑣=1  -2.61 0.43 -6.04 < 0.01     

 𝛾0𝑏=3,𝑣=2  -2.86 0.47 -6.06 < 0.01     

CT-LMM for States          

 Initial State 𝛽0𝑘=2  0.02 0.13 0.17 0.86  0.03 1 0.86 

 Transition 

Intercepts  

𝛾0𝑙=1,𝑘=2  -0.55 0.20 -2.69 < 0.01  23.19 2 < 0.01 

 𝛾0𝑙=2,𝑘=1  -0.08 0.20 -0.40 0.69     

 

Effect of Class 

𝛾𝑙=1,𝑘=2,𝑣=2  0.00 0.25 -0.01 0.99  588.60 4 < 0.01 

 𝛾𝑙=1,𝑘=2,𝑣=3  -7.21 0.38 -19.16 < 0.01     

 𝛾𝑙=2,𝑘=1,𝑣=2  -1.71 0.27 -6.32 < 0.01     

 𝛾𝑙=2,𝑘=1,𝑣=3  -8.74 0.60 -14.55 < 0.01     

 

Effect of 

Family × Class 

𝛾𝑙=1,𝑘=2,𝑓𝑎𝑚,𝑣=1  -0.48 0.22 -2.17 0.03  40.49 6 < 0.01 

 𝛾𝑙=1,𝑘=2,𝑓𝑎𝑚,𝑣=2  -0.10 0.20 -0.51 0.61     

 𝛾𝑙=1,𝑘=2,𝑓𝑎𝑚,𝑣=3  -1.11 0.55 -2.02 0.04     

 𝛾𝑙=2,𝑘=1,𝑓𝑎𝑚,𝑣=1  -0.63 0.22 -2.81 < 0.01     

 𝛾𝑙=2,𝑘=1,𝑓𝑎𝑚,𝑣=2  -1.12 0.26 -4.22 < 0.01     

 𝛾𝑙=2,𝑘=1,𝑓𝑎𝑚,𝑣=3  -2.27 1.47 -1.54 0.12     

 

Effect of 

Classmates × Class 

𝛾𝑙=1,𝑘=2,𝑐𝑚,𝑣=1  -2.62 0.39 -6.77 < 0.01  113.30 6 < 0.01 

 𝛾𝑙=1,𝑘=2,𝑐𝑚,𝑣=2  -0.75 0.25 -3.04 < 0.01     

 𝛾𝑙=1,𝑘=2,𝑐𝑚,𝑣=3  -2.70 1.87 -1.45 0.15     

 𝛾𝑙=2,𝑘=1,𝑐𝑚,𝑣=1  -1.30 0.26 -4.94 < 0.01     

 𝛾𝑙=2,𝑘=1,𝑐𝑚,𝑣=2  0.51 0.25 2.07 0.04     

 𝛾𝑙=2,𝑘=1,𝑐𝑚,𝑣=3  -0.96 0.84 -1.14 0.25     

 Effect of 

Friends 

𝛾𝑙=1,𝑘=2,𝑓𝑟𝑖  -0.63 0.16 -3.92 < 0.01  16.96 2 < 0.01 

 𝛾𝑙=1,𝑘=2,𝑓𝑟𝑖  -0.39 0.17 -2.36 0.02     

Note. DT = discrete-time, CT = continuous-time, LMM = Latent Markov Model, Family (𝑓𝑎𝑚) refers to being with 

family, Classmates (𝑐𝑚) refers to being at school/with classmates, Friends (𝑓𝑟𝑖) refers to being with friends, 𝑣 refers 

to a class in wave 𝑑,  𝑏 refers to a class in wave  𝑑 − 1, 𝑘 refers to a state at time-point 𝑡, and  𝑙 refers to a state at 

time-point 𝑡 − 1. The overall Wald test for the differences in parameters between the classes for Family × Class was 

Wald (4) = 18.29, 𝑝 <  0.01. For Classmates × Class the Wald test was Wald (4) = 27.86, 𝑝 <  0.01. The covariate 

effects on the state transitions can be understood as follows: negative estimates imply that the log intensities and 

therefore also the transition probabilities decrease (e.g., the estimate 𝛾𝑙=2,𝑘=1,𝑓𝑎𝑚,𝑣=2 = −1.12 means that the 

probability of transitioning from state 𝑙 = 2 to state 𝑘 = 1 for a subject in class 𝑣 = 2 is lower when the subject is 

with family compared to when the subject is not with family). The estimates can also be used to calculate the transition 

probabilities for any class, covariate value and time-interval of interest. An example showing how to calculate the 

parameters in R is provided in Online Supplement S.6.  
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7. Appendix A 

List of abbreviations 

3S Three-step 

BIC Bayesian information criterion 

CDI-I Children’s Depression Inventory 

CHull Convex hull 

CT Continuous-time 

DIF Differential item functioning 

DT Discrete-time 

ESM Experience sampling methodology 

FA Factor analysis 

FIML Full information maximum likelihood 

GPCM Generalized partial credit model 

HA High arousal 

ILD Intensive longitudinal data 

LA Low arousal 

LG Latent GOLD 

LMC Latent Markov chain 

LMFA Latent Markov factor Analysis 

LMLTA Latent Markov latent trait analysis 

LMM Latent Markov model 

LT Latent trait 

MI Measurement invariance 

ML Maximum likelihood 

MM Measurement model 

NA Negative affect 

PA Positive affect 
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8. Appendix B 

The main complication in estimating LMLTA is the lack of a closed form expression for the 

𝑅𝑘-dimensional integral in the marginal density in Equation (9), 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1). This is different 

in LMFA: As the factors and observations are both normally distributed continuous variables, the 

marginal density in Equation (9) can be written as multivariate normal distribution with means 𝛎𝑘 

and covariance matrices 𝚺𝑘 = 𝚲𝑘𝚲𝑘
′ +𝚿𝑘, where 𝚲𝑘 is the state-specific 𝐽 ×  𝑅𝑘 loading matrix 

and 𝚿𝑘 contains the unique variances 𝜓𝑘𝑗 on the diagonal and zeros on the off-diagonal. In 

LMLTA, LG approximates the integral using Gauss-Hermite quadrature with 𝑀 quadrature nodes 

per factor. For instance, with 𝑀 = 10 and 𝑅𝑘 = 2, there are 102 nodes in total. The integration in 

Equation (9) is then substituted by 𝑅𝑘 summations (Vermunt & Magidson, 2016):  

 

𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1) = ∑ …∑(∏𝑝(𝑦𝑖𝑗𝑡 = 𝑔|𝑚,… , 𝑜, 𝑠𝑖𝑡𝑘 = 1)𝐴𝑚

𝐽

𝑗=1

⋯𝐴𝑜)

𝑀

𝑜=1

𝑀

𝑚=1

. (A1) 

Here, 𝑚, 𝑜 = 1,… ,𝑀 indicate the nodes, which are the 𝑀 roots of the 𝑀th-order Hermite 

polynomial, and 𝐴𝑚 indicates their corresponding weights. The values of the nodes and weights 

can be found in Abramowitz and Stegun (1970).16 Note that usually at least 10 nodes per factor 

are used (Lesaffre & Spiessens, 2001). As the number of nodes and thus the computational effort 

increases exponentially, specifying models with more than three factors is often unfeasible. 

                                                 
16 Note that the formula in Equation (A1) assumes that the factor scores are uncorrelated. When covariances are non-

zero, Cholesky decomposition of the covariance matrices is used to orthogonalize the factors and obtained parameters 

in LG are not covariance matrices but Cholesky decomposed covariance matrices (Vermunt & Magidson, 2016). 
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Online Supplement 

S.1. Summary of the 3S Estimation 

In this document, we provide a summary of the 3S estimation of the LMLTA model. In step 1, 

the state-specific MMs are obtained by estimating a mixture GPCM (e.g., Vermunt & Magidson, 

2016). To this end, all repeated observations are treated as independent, which is valid because 

they are assumed to be conditionally independent given the state memberships at consecutive time-

points. Hence, the relations between the states (i.e., the transitions) and the covariate effects that 

influence the transitions (as well as any latent class variable that clusters subjects by their transition 

patterns) are ignored in this step. The parameters of interest encompass (1) the state proportions, 

that is, the proportions of the observations that belong to each state, which is denoted as 𝑝(𝑠𝑘 = 1), 

where 𝑠𝑘 now refers to the state memberships across all subjects and time-points, and (2) the state-

specific response probabilities 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1). The mixture GPCM is   

 

𝑝(𝐲𝑖𝑡) = ∑𝑝(𝑠𝑘 = 1)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1)

𝐾

𝑘=1

 (S2)  

with 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1) as in Equation (9). The loglikelihood function is  

 

logL𝑆𝑇𝐸𝑃1 =∑∑log 𝑝(𝐲𝑖𝑡)

𝑇

𝑡=1

𝐼

𝑖=1

. (S3)  

In order to find the ML estimates for the mixture model, LG combines an Expectation 

Maximization algorithm with Newton-Raphson iterations. 

Subsequently, in step 2, we consider the posterior state probabilities, 𝑝(𝑠𝑖𝑡𝑘 = 1|𝐲𝑖𝑡) =

𝑝(𝑠𝑘 = 1)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘 = 1)/[∑ 𝑝(𝑠𝑘′ = 1)𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘′ = 1)
𝐾
𝑘′=1 ], which are the probabilities for 

every subject and time-point to belong to each of the states. For every observation, we assign a 

state membership 𝑝(𝑤𝑖𝑡𝑚 = 1|𝐲𝑖𝑡) = 1 to the state 𝑘 with the highest posterior probability (i.e., 
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the most likely state membership), which implies a weight of zero for all other states.17 The 

indicators 𝑤𝑖𝑡𝑚 are collected in a new variable 𝐰𝑖𝑡 = (𝑤𝑖𝑡1, … , 𝑤𝑖𝑡𝐾)′ and, instead of the original 

observations 𝐲𝑖𝑡, will be used for the estimation of the CT-LMM in step 3. As the highest posterior 

state probability is typically not equal to 1 for all observations, there will be classification error, 

which would lead to underestimation of the relation between the states and the covariates and the 

states at consecutive time-points if not accounted for in step 3. In order to calculate the errors we 

need to account for in step 3, we condition the assigned state memberships on the expected true 

state memberships 𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1), for all 𝑘,𝑚 = 1, … , 𝐾, and collect them in a 𝐾 × 𝐾 

“classification error probability matrix”. The entries of the matrix are calculated as (for details, see  

Di Mari et al., 2016; Vogelsmeier, Vermunt, Bülow, et al., 2019):  

 

𝑝(𝑤𝑖𝑡𝑚 = 1|𝑠𝑖𝑡𝑘 = 1) =

1
𝐼 × 𝑇

∑ ∑ 𝑝(𝑤𝑖𝑡𝑚 = 1|𝐲𝑖𝑡)𝑝(𝑠𝑖𝑡𝑘 = 1|𝐲𝑖𝑡)
𝑇
𝑡=1

𝐼
𝑖=1

𝑝(𝑠𝑘 = 1)
. (S4) 

Note that the diagonal elements (i.e., where 𝑘 = 𝑚), correspond to the correctly classified 

observations and the off-diagonal elements to the classification errors.  

 Finally, in the third step, we estimate the (mixture) CT-LMM based on the state 

memberships that were determined in the previous step and correct for the inherent classification 

error. As was shown by Di Mari et al. (2016) and Vogelsmeier, Vermunt, Bülow, et al. (2019), 

this is done by treating the state assignments 𝐰𝑖𝑡 as error-containing observed indicators of the 

error-free latent states 𝐬𝑖𝑡 that are inferred through ML estimation and used to determine the 

parameters of the CT-LMM. To this end, the following loglikelihood with the classification-error 

probabilities 𝑝(𝐰𝑖𝑡|𝐬𝑖𝑡) as fixed response probabilities is maximized (Vogelsmeier, Vermunt, 

Bülow, et al., 2019):  

                                                 
17 Note that this so-called “modal” assignment is the only feasible assignment procedure for a LMM with many 

subjects and time-points (Di Mari et al., 2016) 
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log 𝐿𝑆𝑇𝐸𝑃3 =∑log(∑⋯∑𝑝(𝐬𝑖1|𝐳𝑖1)∏𝑝𝛿𝑡𝑖(𝐬𝑖𝑡|𝐬𝑖𝑡−1, 𝐳𝑖𝑡)

𝑇

𝑡=2𝐬𝑖𝑇𝐬𝑖1

∏𝑝(𝐰𝑖𝑡|𝐬𝑖𝑡)

𝑇

𝑡=1

)

𝐼

𝑖=1

. 

(S5) 

Note that the loglikelihood of a mixture CT-LMM as used in our application (Section 3), where 

both the initial state and the transition probabilities may depend on a time-constant or time-varying 

latent class variable, has a slightly different form (e.g., Vermunt et al., 2008). In the simpler case 

of time-constant latent classes one gets: 

 log 𝐿𝑆𝑇𝐸𝑃3,𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = 

∑log(∑∑⋯∑𝑝(𝐜𝑖) 𝑝(𝐬𝑖1|𝐳𝑖1, 𝐜𝑖)∏𝑝𝛿𝑡𝑖(𝐬𝑖𝑡|𝐬𝑖𝑡−1, 𝐳𝑖𝑡, 𝐜𝑖)

𝑇

𝑡=2𝐬𝑖𝑇𝐬𝑖1

∏𝑝(𝐰𝑖𝑡|𝐬𝑖𝑡)

𝑇

𝑡=1𝐜𝑖

)

𝐼

𝑖=1

, 

(S6) 

where 𝐜𝑖 = (𝑐𝑖1, … , 𝑐𝑖𝑉)′ denotes the class memberships and 𝑝(𝐜𝑖) the latent class or “mixture” 

proportions. LG obtains the ML parameter estimates by means of a combination of the forward-

backward algorithm and the Newton-Raphson algorithm. For details on the mixture with a time-

constant latent class variable, see Vermunt et al. (2008). The generalization to a mixture with a 

time-varying latent  variable is straightforward and can be found in Crayen et al. (2017).  
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S.2. Model Selection Procedure Step 1 

In this document, we provide detailed information about the model selection procedure in 

step 1 of the 3S approach to estimate the LMLTA model. In order to see if the ML solutions of the 

nine estimated models were indeed global solutions, we estimated all models five times. The ML 

solutions were considered global solutions (at least, as far as we know) when the absolute 

difference between the solutions was smaller than 0.01. This was the case for the five one- and 

two-state models, but not for the three-state models. First, we compared the BIC values of the 

stable models. As can be seen from the BIC output below, the two-state model with two factors 

per state was the best (i.e. the model “[2 2]”), because it had the lowest BIC value.  

Second, with the R-package “multichull”, we conducted the CHull model selection 

procedure, which can be considered an automated scree test that identifies which models in a 

“loglikelihood versus number of parameters” figure are at the higher boundary of the convex hull 

(Cattell, 1966) and points out where the improvement in fit levels off when adding additional 

parameters (Bulteel et al., 2013; Ceulemans & Kiers, 2006; Ceulemans & Van Mechelen, 2005). 

Note that we also included the best ML solutions of the three-state models in the CHull procedure 

because the method entails that the most complex and most simple model cannot be chosen and 

the most complex model of the stable models would have been the best fitting model according to 

the BIC (i.e., the model [2 2]). However, sensitivity checks using all five local optima solutions 

revealed that the CHull would always come to the same conclusion. As can be seen from the CHull 

output below, the two best models were the one-state model with two factors (i.e., model [2] with 

a “scree test value” 𝑠𝑡 = 4.52), and the two-state model with two factors in each state (i.e., model 

[2 2] with 𝑠𝑡 = 3.17). Looking at the grouping of points that correspond to the different number 

of states in the convex hull figure below, it can be seen that the improvement in fit is largest from 
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one to two states, but that the improvement from two to three states is still substantial. For the 

application we chose the two-state model, [2 2], because it was among the best two models 

according to the CHull, better than the one-state model [2] according to the BIC, parameters 

differed considerably across the states (as is illustrated in Section 3 of the main article), and finally, 

because it was well interpretable.  

Output BIC. 

 
      number of parameters BIC value 
[1]                     84  300418.1 
[2]                     95  286193.3 
[1 1]                  169  273333.9 
[2 1]                  180  263239.3 
[2 2]                  191  259446.7 
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Output CHull. 

SETTINGS BY USER: 
Optimalization: upper bound 
Required improvement in fit: 1% 
Number of considered models: 9  
 
RESULTS: 
Number of selected models: 1 
 
SELECTED MODEL: 
    complexity       fit 
[2]         95 -142641.7 
 
ALL MODELS ON upper BOUND: 
        complexity       fit       st 
[1]             84 -149806.8       NA 
[2]             95 -142641.7 4.520469 
[2 2]          191 -128808.7 3.174246 
[2 2 2]        287 -124450.8       NA 
 
 
ORIGINAL MODELS 
        complexity       fit 
[1]             84 -149806.8 
[2]             95 -142641.7 
[1 1]          169 -135857.7 
[2 1]          180 -130757.7 
[2 2]          191 -128808.7 
[1 1 1]        254 -129577.7 
[2 1 1]        265 -127080.1 
[2 2 1]        276 -125147.9 
[2 2 2]        287 -124450.8 
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S.3. Additional Tables for the Application 

In this document, we provide two additional tables related to the application (Section 3). First, 

we investigated whether the state-specific MM patterns (i.e., that state 1 consists of the two factors 

PA and NA and that state 2 consists of the two factors HA-PA and PA/NA) only emerged as a 

consequence of constraining specific item loadings (i.e., setting the loadings of “happy” and 

“unhappy” equal to zero). To this end, we re-estimated the model [2 2] with factor covariance 

matrices 𝚽𝑘 set to identity matrices (i.e., uncorrelated factors that have variances of 1) and with 

the loadings of the item “irritated” set to equal to 0 for respectively the first factor. The resulting 

loadings are shown in the first table below, Supplement 3 Table 1. It can be seen that the first state 

again consists of the two factors PA and NA and the second state again consists of the two factors 

HA-PA and PA/NA. The only difference compared to the initial solution given in Section 3 (Table 

1) is that, in state 2, the items “happy” and “excited” now have cross-loadings (i.e. they have large 

loadings on both factors) and not only on the first factor. Cross-loadings can be a result from 

constraining truly correlated factors to be uncorrelated. We conclude that the state-specific MM 

patterns emerge regardless of the chosen identification constrains. 

Second, Supplement 3 Table 2, shows the differences in the 𝐺 − 1 category intercept 

parameters for the 12 items across the two states. As can be seen, all intercepts differ significantly 

across the two states. In Section 3, we investigate the between-state differences in the mean item 

scores (Table 1; an explanation of how to calculate the item means is provided in the same section). 

These differences directly follow from the intercept differences but are easier to interpret. 
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Supplement 3 Table 1 

Differences in Item Means and Factor Loadings Across the two States with the Covariance Matrices Being Constrained to Identity Matrices 

  State 1 loadings 𝜆𝑗𝑟1   State 2 loadings 𝜆𝑗𝑟2  Between-state loading difference statistics  Item means 

  𝑟 = 1 𝑟 = 2  𝑟 = 1 𝑟 = 2  𝑟 = 1  𝑟 = 2  State 1 State 2 

Item 𝑗  PA NA  HA-PA PA/NA  Wald df p-value  Wald df p-value    

relaxed  2.88 -1.45  0.60 -1.67  20.01 1 < 0.01  0.61 1 0.43  5.72 6.89 

content  4.47 -2.47  1.02 -2.57  15.13 1 < 0.01  0.04 1 0.84  5.76 6.92 

confident  2.29 -1.22  0.59 -1.29  6.74 1 < 0.01  0.03 1 0.86  5.66 6.85 

happy  3.67 -2.06  1.78 -2.80  19.53 1 < 0.01  6.08 1 0.01  5.62 6.81 

energetic  1.70 -0.93  1.94 -1.74  0.27 1 0.60  5.05 1 0.02  5.21 6.41 

excited  2.28 -1.28  2.29 -2.34  0.00 1 1.00  14.08 1 < 0.01  5.27 6.60 

sad  -0.18 3.31  -0.34 1.42  2.56 1 0.11  13.88 1 < 0.01  1.09 1.03 

unhappy  -0.34 4.20  -0.49 1.78  1.19 1 0.28  21.39 1 < 0.01  1.06 1.02 

disappointed  -0.09 4.26  -0.31 1.72  3.13 1 0.08  22.16 1 < 0.01  1.07 1.04 

angry  0.11 3.81  -0.25 1.83  17.64 1 < 0.01  25.09 1 < 0.01  1.04 1.02 

nervous  -0.17 1.80  -0.09 0.76  1.12 1 0.29  6.38 1 0.01  1.24 1.09 

irritated  0.00 1.96  0.00 0.86  / / /  8.54 1 < 0.01  1.24 1.16 

Note. PA = Positive Affect; NA = Negative Affect; HA = High Arousal; LA = Low Arousal; 𝑗 refers to items, and 𝑟 to factors. For identification purposes, we set 

the underlined loadings of the item “irritated” on the first factors (𝑟 = 1) equal to 0. For each item and state, the loading with the largest absolute value is printed 

in boldface. Note that in state 2 the three items “happy”, “energetic”, and “excited” have high loadings on both factors. 
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Supplement 3 Table 2 

Differences in the 𝐺 − 1 Category Intercept Parameters 𝜈𝑗𝑔𝑘 for the 12 Items Across the two States 

  State 1 intercepts 𝜈𝑗𝑔1 for 𝑔 = (1,… ,6)  State 2 intercepts 𝜈𝑗𝑔2 for 𝑔 = (1,… ,6)  Between-state difference statistics 

Item 𝑗  1 2 3 4 5 6  1 2 3 4 5 6  Wald df p-value 

relaxed  -14.38 -6.97 -1.21 4.07 6.99 7.97  -8.24 -5.94 -2.43 1.23 3.08 5.01  284.20 6 < 0.01 

content  -21.85 -10.89 -1.59 6.36 10.87 12.08  -13.16 -8.83 -3.41 1.71 5.04 8.06  224.20 6 < 0.01 

confident  -9.63 -4.83 -0.68 2.76 4.81 5.71  -6.21 -5.09 -2.15 0.77 2.50 4.01  199.00 6 < 0.01 

happy  -21.30 -10.01 -0.71 6.53 10.64 11.21  -10.8 -6.98 -2.83 1.78 4.51 6.27  295.50 6 < 0.01 

energetic  -9.03 -3.54 0.35 3.76 5.05 4.70  -8.32 -5.48 -1.58 2.25 3.76 4.16  230.40 6 < 0.01 

excited  -13.02 -5.02 0.39 5.03 6.95 6.52  -9.62 -6.45 -2.32 2.27 4.28 5.33  227.20 6 < 0.01 

sad  17.79 15.5 10.34 4.34 -4.04 -12.87  8.27 4.63 2.51 0.56 -2.35 -5.58  131.70 6 < 0.01 

unhappy  23.40 20.61 13.56 5.06 -5.51 -17.20  9.90 6.06 3.32 0.69 -2.91 -7.00  344.10 6 < 0.01 

disappointed  22.34 19.77 13.13 4.89 -5.97 -18.77  9.24 5.72 3.25 0.54 -2.75 -6.42  61.47 6 < 0.01 

angry  21.17 17.93 11.30 3.86 -6.04 -16.70  9.43 5.57 3.01 0.59 -2.62 -6.52  79.08 6 < 0.01 

nervous  8.78 7.45 4.84 1.61 -2.46 -7.10  5.21 2.12 1.06 0.30 -1.32 -2.95  53.37 6 < 0.01 

irritated  9.61 8.32 5.56 2.18 -2.79 -8.23  4.62 1.97 0.94 0.31 -1.30 -2.80  34.28 6 < 0.01 
Note. 𝑗 refers to items; 𝑔 refers to the item categories; 𝐺 refers to the number of item categories, which is 7 in the Grumpy or Depressed study. 
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S.4. Syntax for Running the Models 

This document demonstrates the Latent GOLD (LG) syntax files to obtain the application 

results. Note that only one syntax is required for step 1 and 2 and one separate syntax is required 

for step 3.   

Step 1 and 2 syntax. In this syntax, the regular ESM dataset is used as input. Note that all 

variables in the dataset that are not necessary in step 1 and 2 but that are necessary in step 3 (i.e., 

all the covariates, time-intervals, and subject IDs) have to be listed under “keep”. The variables 

are then added to the “classificationS1.csv” output file containing the posterior state probabilities. 

This is important because the file serves as only input for step 3 of the analysis as described next.  

options 

   algorithm tolerance=1e-008 emtolerance=0.01 emiterations=250   

     nriterations=50; 

   startvalues seed=0 sets=100 tolerance=1e-005 iterations=100; 

   bayes latent=1 categorical=1; 

   quadrature nodes=10; 

   missing includeall; 

output 

   parameters=effect  

   standarderrors  

   profile 

   estimatedvalues=model 

   iterationdetails; 

 

outfile  

   'classificationS1.csv' classification  

   keep ID deltaT depression family_c classmates_c friends_c NEWWAVE; 

   

variables 

  psuid ID ;  

  dependent  

     PA_LA1, PA_LA2, PA_LA3, PA_HA1, PA_HA2, PA_HA3, NA_LA1, NA_LA2,  

     NA_LA3, NA_HA1, NA_HA2, NA_HA3; 

  latent 

    State nominal coding=first 2, 

    F1 continuous, 

    F2 continuous; 

 

equations 

    (c1)F1| State; 

    (c2)F2| State; 
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    (c3)F1 <-> F2 | State; 

 

     State <- 1 ; 

 PA_LA1<- 1 | State + (a1)F1  | State + (b1)F2   | State; 

 PA_LA2<- 1 | State + (a2)F1  | State + (b2)F2   | State; 

 PA_LA3<- 1 | State + (a3)F1  | State + (b3)F2   | State; 

 PA_HA1<- 1 | State + (a4)F1  | State + (b4)F2   | State; 

 PA_HA2<- 1 | State + (a5)F1  | State + (b5)F2   | State; 

 PA_HA3<- 1 | State + (a6)F1  | State + (b6)F2   | State; 

 NA_LA1<- 1 | State + (a7)F1  | State + (b7)F2   | State; 

 NA_LA2<- 1 | State + (a8)F1  | State + (b8)F2   | State; 

 NA_LA3<- 1 | State + (a9)F1  | State + (b9)F2   | State; 

 NA_HA1<- 1 | State + (a10)F1 | State + (b10)F2  | State; 

 NA_HA2<- 1 | State + (a11)F1 | State + (b11)F2  | State; 

 NA_HA3<- 1 | State + (a12)F1 | State + (b12)F2  | State; 

 

 //Constraints (on "I feel happy/unhappy") 

 a4[1,]=1; 

 a8[1,]=0; 

 b4[1,]=0; 

 b8[1,]=1; 

 a4[2,]=1; 

 a8[2,]=0; 

 b4[2,]=0; 

 b8[2,]=1; 

 

Step 3 syntax full model. In this syntax, the “classificationS1.csv” file is used as input. 

When using LG’s “step3” option, the software automatically calculates the classification error 

probability matrix from the posterior state probabilities. In order to specify the columns of the 

classificationS1.csv file in which LG can find the posterior probabilities, the user has to provide 

the column names as “posterior = (State.1 State.2)”.  Note that the column names depend on the 

name that was used to define the state variable in the step 1 and 2 syntax. Also note that we used 

a CT-LMM for the latent states and a DT-LMM for the latent classes. While subjects were allowed 

to transition between the states with every new observation, subjects were allowed to transition 

between the classes only at the beginning of every new wave. Therefore, we added a variable 

(“NEWWAVE”) that indicated whether a record concerned a new wave (NEWWAVE = 1) or 

whether a record was another observation from the same wave (NEWWAVE = 0). By means of 
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constraints on the logits, all transition probabilities for NEWWAVE = 0 were set to zero. 

Moreover, 19 subjects skipped wave 2. If this was ignored, LG would assume that all intervals 

between the waves were the same (i.e., approximately 3 months) although there were 19 longer 

intervals (i.e., approximately 6 months), which could lead to inaccurate parameter estimates. To 

solve this problem, 19 empty records (i.e., with missing values on all variables but the ID and the 

NEWWAVE variable) were added to the “classificationS1.csv” file. By choosing to including all 

records with missing observation (“missing includeall”), LG accounts for the fact that that the 

second wave has been skipped and corrects for this when estimating the transition probabilities. 

Finally, note that the final latent state assignments may differ from the initial state assignments 

(i.e., the single indicators) when the classification error is rather large. In order to see the final state 

assignments, the user has to add the command “noignoreclassification” to the “step3” option. 

options 

  algorithm tolerance=1e-008 emtolerance=0.01 emiterations=250  

    nriterations=50 expm=pade; 

  startvalues seed=0 sets=10 tolerance=1e-005 iterations=100; 

  bayes latent=1 categorical=1 ct=1; 

  missing includeall; 

  step3 ml modal noignoreclassification; 

 

output 

  parameters=effect  

  standarderrors  

  profile  

  iterationdetails  

  estimatedvalues=model 

  classification; 

 

variables 

  caseid ID; 

  independent family_c nominal coding=first, classmates_c nominal   

    coding=first, friends_c nominal coding=first, NEWWAVE nominal  

    coding=first, depression2 nominal coding=first; 

  timeinterval deltaT; 

 

  latent State nominal dynamic posterior=(State.1 State.2) 

coding=first, Class  

    nominal dynamic dt 3 coding=first; 
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equations 

   Class[=0] <- 1 + depression; 

   Class <- (b~tra) 1 | Class[-1] NEWWAVE 

                      + (~tra) depression| Class[-1]; 

     

   State[=0] <- 1; 

   State <- (~tra) 1 | State[-1]  

                      + (~tra) Class | State[-1]  

                      + (~tra) family_c  | State[-1] Class 

                      + (~tra) classmates_c   | State[-1] Class 

                      + (~tra) friends_c | State[-1] Class; 

 

   b[1] = -100; 

   b[2] = -100; 

   b[3] = -100; 

    

 

Step 3 syntax reduced model. This syntax is the same as the step 3 syntax for the full 

model but without the covariate effects of depression on the initial class and class transition 

probabilities and without the effect of being with friends on the state-transitions conditional on the 

class. Instead, the unconditional effect of being with friends on the state-transitions was added. 

Below, we only stated the changed equations. 

 

equations 

   Class[=0] <- 1; 

   Class <- (b~tra) 1 | Class[-1] NEWWAVE; 

     

   State[=0] <- 1; 

   State <- (~tra) 1 | State[-1]  

                      + (~tra) Class | State[-1]  

                      + (~tra) family_c  | State[-1] Class 

                      + (~tra) classmates_c   | State[-1] Class 

                      + (~tra) friends_c | State[-1]; 

 

   b[1] = -100; 

   b[2] = -100; 

   b[3] = -100; 
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S.5. Model Selection Procedure Step 3 

In this document, we provide information about the model selection procedure that was used 

to determine the number of latent classes in step 3 of the estimation (note that a description of the 

CHull procedure is provided in the Online Supplement S.2). In contrast to the model selection in 

step 1 (Online Supplement S.2), the models in step 3 were estimated only once because local 

maxima are very unlikely when the MMs are fixed. First, we estimated the full model (“F”) as 

specified in Equation (11) with 1–3 classes. Investigating the models with 2 and 3 classes, we saw 

that depression did neither predict the initial state probabilities nor the transition probabilities for 

the classes. Furthermore, the effect of being with friends on the transition intensities for the states 

appeared to be significant but did not significantly differ across classes. Since it was already 

apparent form the BIC that the full 3-class model fitted better than the 1- and 2-class models, we 

also examined a 4-class model in order not to overlook a relevant class. However, the full model 

with 4 classes did not converge and was therefore not considered in the model selection procedure.  

Subsequently, we re-estimated the models with multiple classes (including the 4-class 

model), leaving out the effects that were non-significant in the full models (i.e., the effect of 

depression on the initial class and transition probabilities between classes and the effect of being 

with friends depending on the class), while including the unconditional effect of being with friends 

(i.e., not conditional on the class). All reduced (“R”) models converged. As can be seen from the 

BIC and CHull outputs below, the reduced model with 3 classes (i.e., the model “R3classes”) had 

the best fit according to the BIC, as it has the lowest BIC value, and was under the best three 

models according to the CHull when considering all converged full and reduced models.  

Although we chose the reduced model with three classes, we also investigated the reduced 

model with two classes as the improve in fit when adding a third class was rather small (as can be 
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seen from the BIC and CHull plots). Similar to the three-class solution, the two-class solution had 

one stable class. In the other class, adolescents had a high probability to transition between to states 

with a slightly higher probability to move to and stay in state 2. Therefore, if we would have 

considered the 2-class solution, we would have missed the third class, in which adolescents 

frequently transition between the states but are more likely to transition to and stay in state 1.     

Output BIC. 

 
            number of parameters BIC value 
 F1class                      9  13677.23 
 R2classes                   18  12056.45 
 F2classes                   23  12097.09 
 R3classes                   29  11828.40 
 F3classes                   41  11923.62 
 R4classes                   42  11847.99 
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Output CHull. 

SETTINGS BY USER: 
Optimalization: upper bound 
Required improvement in fit: 1% 
Number of considered models: 6  
 
RESULTS: 
Number of selected models: 1 
 
SELECTED MODEL: 
          complexity       fit 
R2classes         18 -5942.029 
 
ALL MODELS ON upper BOUND: 
          complexity       fit       st 
F1class            9 -6795.519       NA 
R2classes         18 -5942.029 6.257659 
R3classes         29 -5775.329       NA 
 
 
ORIGINAL MODELS 
          complexity       fit 
F1class            9 -6795.519 
R2classes         18 -5942.029 
F2classes         23 -5938.405 
R3classes         29 -5775.329 
F3classes         41 -5765.476 
R4classes         42 -5722.873 
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S.6. R Code to Calculate Transition Probabilities  

In this document, we show how to calculate transition probabilities between the states for a 

given class membership and covariate value and for any interval of interest. More specifically, we 

calculate the transition probability matrix for being with family in class 2 and a median interval 

length (i.e.,  2.25 hours). As explained in Section 2.2, the log intensities can be calculated as  

log 𝑞𝑙𝑘 = 𝛾0𝑙𝑘 + 𝛄𝑙𝑘
′ 𝐳𝑖𝑡 and the transition probabilities 𝐏2.25 are the matrix exponential of 𝐐 ×

2.25. 

library(expm) 

# fill the estimates from table 2 into equation (12) from the article.  
# note that the 0's and 1's are the values on the dummy variables. 
# for example, -0.63 * 0 implies that we calculate the 
# transition intensity when not being with friends. 
 
q12 <- -0.55 +      # transition intercept state 
        0.00 * 1 +  # effect of class for class 2 
       -7.21 * 0 +  # effect of class for class 3 
       -0.48 * 0 +  # effect of family x class 1  
       -0.10 * 1 +  # effect of family x class 2  
       -1.11 * 0 +  # effect of family x class 3  
       -2.62 * 0 +  # effect of classmates x class 1 
       -0.75 * 0 +  # effect of classmates x class 2 
       -2.70 * 0 +  # effect of classmates x class 3 
       -0.63 * 0    # effect of friends 
 
q21 <- -0.08 +      # transition intercept state 
       -1.71 * 1 +  # effect of class for class 2    
       -8.74 * 0 +  # effect of class for class 3    
       -0.63 * 0 +  # effect of family x class 1     
       -1.12 * 1 +  # effect of family x class 2  
       -2.27 * 0 +  # effect of family x class 3  
       -1.30 * 0 +  # effect of classmates x class 1    
        0.51 * 0 +  # effect of classmates x class 2 
       -0.96 * 0 +  # effect of classmates x class 3 
       -0.39 * 0    # effect of friends    
 
# put log intensities in a matrix: 
LogIntensities <- matrix(c(0, q12, 
                           q21, 0), 
                         nrow = 2, ncol = 2, byrow = TRUE) 
 
# exponentiate to obtain intensities: 



LMLTA FOR ORDINAL ILD    57 

 

Intensities <- exp(LogIntensities) 
 
# at this point, we already have the intensities of the 
# off-diagonal elements. the diagonal elements are equal to 
# the negative row sums of the off-diagonal elements: 
for (i in 1:ncol(Intensities)) { 
  Intensities[i, i] <- -(sum(Intensities[i, -i])) 
} 
# get the probabilities for the median interval d = 2.25 
# (note that we can specify any interval of interest here): 
d <- 2.25 
TransitionProbabilities <- expm(Intensities * d) 
 
# transition probabilities when being with family (in class 2). 
# as can be seen, there is a high probability to transition to 
# state 2 (66%) and to stay in state 2 (93%): 
round(TransitionProbabilities, digits = 2) 

##      [,1] [,2] 
## [1,] 0.34 0.66 
## [2,] 0.07 0.93 

 


