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Abstract 

When time-intensive longitudinal data is used to study daily-life dynamics of 

psychological constructs (e.g., well-being) within persons over time (e.g., by means of 

experience sampling methodology), the measurement model (MM) – indicating which 

constructs are measured by which items – can be affected by time- or situation-specific 

artefacts (e.g., response styles, altered item interpretation). If not captured, these changes 

might lead to invalid inferences about the constructs. Existing methodology can only test 

for a priori hypotheses on MM changes, which are often absent or incomplete. Therefore, 

we present the exploratory method ‘latent Markov factor analysis’ (LMFA), wherein a 

latent Markov chain captures MM changes by clustering observations per subject into a 

few states. Specifically, each state gathers validly comparable observations and state-

specific factor analyses reveal what the MMs look like. LMFA performs well in 

recovering parameters under a wide range of simulated conditions and its empirical value 

is illustrated with an example. 

Keywords: experience sampling, measurement invariance, factor analysis, latent Markov 

modeling 
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1 Introduction 

Time-intensive longitudinal data for studying daily-life dynamics of psychological 

constructs (such as well-being, positive affect) within persons allows to delve into time- or 

situation-specific effects (e.g., stress) on the (e.g., emotional) experiences of a large number of 

subjects (Larson & Csikszentmihalyi, 2014). The go-to research design to collect such data is 

Experience Sampling Methodology (ESM; Scollon, Kim-Prieto, & Diener, 2003). Participants 

repeatedly answer questionnaires at randomized or event-based time-points via smartphone 

apps, e.g., eight times a day over a few weeks. 

While the technology for collecting ESM data is readily available, the methodology to 

validly analyze this data is lagging behind. This paper provides an upgrade of the methodology 

by presenting a novel method for tracking and diagnosing changes in measurement models 

(MMs) over time. The MM is the model underlying a participant’s answers and indicates which 

unobservable or latent variables (i.e., psychological constructs) are measured by which items. 

Traditionally, it is evaluated by factor analysis (FA; Lawley & Maxwell, 1962), where the 

factors correspond – ideally – to the hypothesized constructs. Factor loadings express the 

degree to which each of the items measure a factor and thus how strongly an item relates to an 

underlying factor. In order to meaningfully compare constructs over time, the MM needs to be 

invariant across measurement occasions (Adolf, Schuurman, Borkenau, Borsboom, & Dolan, 

2014). However, measurement invariance (MI) does not always hold over time because the 

MM likely changes over the course of an ESM study. First, in ESM, the measurement quality 

is undermined by time- or situation-specific artefacts such as response styles (RSs; Moors, 

2003; Paulhus, 1991). Indeed, participants fill in their questionnaires repeatedly in various, 

possibly distracting, situations (e.g., during work) or lose motivation to repeatedly answer 

questions, which may drive the tendency to, for example, use the extreme response categories 

only (extreme RS; Moors, 2003; Morren, Gelissen, & Vermunt, 2011). Second, substantive 
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changes may occur over time in what questionnaire items are measuring. For example,  

depending on the context or mental state, an item may become more important for the measured 

construct (i.e., loading increases) or (also) an indicator of another construct (i.e., loads strongly 

on another factor) (reprioritization or reconceptualization; Oort, Visser, & Sprangers, 2005). 

Moreover, the nature of the measured constructs might change entirely; e.g., when positive and 

negative affect factors are replaced by high and low arousal factors (Feldman, 1995). In any 

case, when ignoring changes in the MM, changes in the scores will be interpreted as changes 

in the psychological constructs, although they are (partly) caused by RSs or changed item 

interpretation. 

To safeguard validity of their time-intensive longitudinal studies, substantive researchers 

need an efficient approach to evaluate which MMs are underlying the data and for which time-

points they apply, so they can gain insight into which artefacts and substantive changes are at 

play and when. Researchers can take these insights into account when analyzing the data, when 

setting up future projects or to derive new substantive findings from the MM changes. To meet 

this need, we present latent Markov factor analysis (LMFA)1, which combines two building 

blocks to model MM changes within subjects over time: (1) Latent Markov modeling (LMM; 

Bartolucci, Farcomeni, & Pennoni, 2014; Collins & Lanza, 2010) clusters time-points into 

states according to the MMs and (2) factor analysis (FA; Lawley & Maxwell, 1962) evaluates 

which MM applies for each state. Note that LMFA can be applied for single cases, when 

enough observations are available for that one subject. 

Within the states of LMFA, exploratory (EFA) rather than confirmatory (CFA) factor 

analysis is used. In CFA, users have to specify which items are measuring which factors based 

on a priori hypotheses. This implies that certain item-factor relations are assumed to be absent 

                                                
1 LMFA builds upon Mixture Simultaneous Factor Analysis (MSFA; De Roover, Vermunt, Timmerman, & 

Ceulemans, 2017), which captures differences in the factor model between groups. Whereas MSFA typically 

models the data of subjects nested within groups, LMFA specifically deals with observations nested within 

subjects and it allows subjects to switch between different MMs over time.  
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and the corresponding factor loadings are set to zero. Thus, for a large part, CFA already 

imposes a certain MM and thus limits the changes in the MM that can be found. In contrast, 

EFA estimates all factor loadings and thus, explores all kinds of (unknown) MM changes, 

including changes in cross-loadings (i.e., items loading on more than one factor) or even in the 

nature and number of factors (e.g., an additional RS factor). However, if desired, CFA can be 

used within the states.  

An existing method to evaluate whether MI holds over time is longitudinal structural 

equation modeling (LSEM; Little, Preacher, Selig, & Card, 2007). However, this method 

merely tests whether MI across time-points holds for all individuals simultaneously, without 

directly providing insight in for which measurement occasions invariance is violated and what 

the alternative MMs look like. In contrast to LMFA, LSEM provides no clues for understanding 

or dealing with the non-invariance. Also, it applies CFA, and thus already assume a certain 

factor structure, and is thus too restrictive to detect many MM differences. A few methods exist 

that combine FA with LMM and thus could potentially be useful for identifying violations of 

MI over time2 (Asparouhov, Hamaker, & Muthen, 2017; Song, Xia, & Zhu, 2017; Xia, Tang, 

& Gou, 2016). However, these methods also apply CFA, making them too restrictive to detect 

all kinds of MM differences. In contrast, factor-analyzed hidden Markov modeling (FAHMM; 

Rosti & Gales, 2002) is similar to LMFA because it combines EFA with LMM, but was 

developed merely for accommodating LMM estimation when conditional independence is 

violated among many variables, using the state-specific FA to reduce the number of parameters 

of the state-specific covariance matrices rather than being the point of interest (Kang & Thakor, 

                                                
2 Note that the overview of existing methods focusses on FA-based methods and thus overlooks switching 

principal component analysis (SPCA; De Roover, Timmerman, Van Diest, Onghena, & Ceulemans, 2014), which 

is a deterministic method similar to LMFA that can be used to take the first steps towards detecting MM changes 

over time, yet only for single-subject data. However, SPCA uses component instead of factor analysis. Although 

components and factors are similar (Ogasawara, 2000; Velicer & Jackson, 1990; Velicer, Peacock, & Jackson, 

1982), components don’t correspond to latent variables (Borsboom, Mellenbergh, & van Heerden, 2003) and are 

thus less ideal for evaluating (changes in) MMs.   



LATENT MARKOV FACTOR ANALYSIS  5 
 

2012; Rosti & Gales, 2002). Also, FAHMM cannot analyze multiple subjects simultaneously. 

Thus, LMFA may be conceived as a multisubject extension of FAHMM, tailored to tackle 

measurement non-invariance in ESM data. 

The remainder of this paper is organized as follows: Section 2 describes the multisubject 

longitudinal data structure, an empirical example, and the LMFA model specifications and 

estimation. Section 3 presents a simulation study, evaluating the goodness-of-recovery of states 

and state-specific MMs under several conditions as well as model selection. Section 4 

illustrates LMFA with an application. Section 5 concludes with some points of discussion and 

directions for future research. 

2 Methods 

2.1 Data Structure and Motivating Example 

Like in ESM, we assume repeated measures data where observations are nested in subjects. 

For each measurement occasion, data on multiple continuous variables are available. The 

observed scores are indicated by 𝑦𝑖𝑗𝑡, where 𝑖 = 1, … , 𝐼 refers to subjects, 𝑗 = 1,… , 𝐽 to items, 

and 𝑡 = 1,… , 𝑇 to time-points, where the latter may differ across subjects (i.e., 𝑇𝑖) but we 

mostly omit the index i for simplicity of notation. The J × 1 vector 𝐲𝑖𝑡 = (𝑦𝑖1𝑡, 𝑦𝑖2𝑡, …, 𝑦𝑖𝐽𝑡) 

contains the multivariate responses for subject i at time-point t and the T × J dataset 𝐘𝑖 =

(𝐲𝑖1′, 𝐲𝑖2′, … , 𝐲𝑖𝑇′)′ contains data for subject i for all time-points T. 

To clarify the data structure and illustrate the problem of measurement non-invariance, 

consider the ESM data of the ‘No Fun No Glory’ study described in more detail by Van Roekel 

et al. (2017). In brief, the data contained repeated emotion measures of 69 young adults with 

persistent anhedonia, which is the diminished pleasure in response to previously enjoyable 

experiences and one of the core symptoms of depression (American Psychiatric Association, 

2013; Treadway & Zald, 2011). Over a course of about three months, every evening, the 

participants rated on a Visual Analogue Scale, ranging from 0 (“Not at all”) to 100 (“Very 
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much”), how much they had felt each of 18 emotions (listed in Table 3, which is further 

described in Section 4) in the past 6 hours3. The number of repeated measures ranged from 86 

to 132 (M = 106.86, SD = 8.21) and resulted in 7373 total observations of which 557 were 

missing4. After the first month, the participants randomly received (1) no intervention (n = 22), 

(2) a personalized lifestyle advice (PLA) (n = 23), or (3) a PLA and tandem skydive (PLA & 

SkyD) (n = 24) to potentially reduce anhedonia. After the second month, all participants chose 

one of the interventions, regardless of their first one (no: n = 3; PLA: n = 17; PLA & SkyD: n 

= 49). In their original study, Van Roekel et al. (2017) investigated whether the interventions 

decreased anhedonia, thereby assuming the two underlying factors ‘positive affect’ (‘PA’) and 

negative affect (‘NA’). However, if the MM changes over the course of participation (e.g., due 

to the interventions) conclusions about changes in PA and NA may be invalid.  In Section 4, 

LMFA is used to trace potential MM changes in this data.   

2.2 Latent Markov Factor Analysis 

In this section, we introduce LMM (2.2.1) before describing LMFA in more detail (2.2.2). 

2.2.1 Latent Markov modeling 

The LMM (also a hidden Markov or latent transition model; Bartolucci et al., 2014; Collins 

& Lanza, 2010) captures unobserved heterogeneity or changes over time by means of latent 

states. In contrast to standard latent class models (Hagenaars & McCutcheon, 2002; Lazarsfeld 

& Henry, 1968), which identify subgroups or so-called latent classes within a population (e.g., 

high or low risk for depression), a LMM allows respondents to transition between latent states 

over time and thus to switch between subgroups (e.g., from a high risk to a low risk subgroup). 

Thus, the states may be conceived as dynamic latent classes. Specifically, the LMM is a 

probabilistic model where the probability of being in a certain state at time-point t depends 

                                                
3 In total, participants rated their emotions three times a day with fixed 6-hour intervals. In the morning and 

midday, they rated their ‘momentary’ emotions and in the evening, they rated their emotions ‘since the last 

measure’. To have comparable and evenly spaced measures, we focused on the evening measures. 
4 Missing data will be directly handled in the model estimation by considering only observed values. 
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only on the state of the previous time-point 𝑡 − 1 (first-order Markov assumption). 

Furthermore, the responses at time-point t depend only on the state at time-point t (local 

independence assumption; Bartolucci, 2006; Vermunt, Langeheine, & Böckenholt, 1999). The 

joint probability of observations and states for subject i is then:  

 𝑝(𝐘𝑖, 𝐒𝑖) = 𝑝(𝐬𝑖1)⏞  

initial state 
probabilities

∏𝑝(𝐬𝑖𝑡|𝐬𝑖𝑡−1)⏞      

transition
probabilities𝑇

𝑡=2

∏𝑝 (𝐲𝑖𝑡|𝐬𝑖𝑡)⏞      ,

response 

probabilities𝑇

𝑡=1

 (1) 

where 𝐬𝑖𝑡 are K × 1 binary variables indicating whether an observation belongs to a state or not 

and 𝐒𝑖 = (𝐬𝑖1, 𝐬𝑖2, … , 𝐬𝑖𝑇) is the subject-specific state membership matrix. In the following, 𝑘 =

1, … , 𝐾 refers to the states and, if 𝑠𝑖𝑡𝑘 = 1, subject i is in state k at time-point t. Equation 1 

includes three types of parameters: (1) The initial state probabilities  indicate the probabilities 

to start in a certain state, 𝑝(𝑠𝑖1𝑘 = 1), and thus how the subjects are distributed across the states 

at t = 1. They are often denoted as 𝜋𝑘, with ∑ 𝜋𝑘
𝐾
𝑘=1 = 1, and are gathered in a K × 1 vector  

𝛑. (2) The transition probabilities indicate the probabilities of being in a certain state at time-

point 𝑡 conditional on the state at 𝑡 − 1, 𝑝(𝑠𝑖𝑡𝑘|𝑠𝑖𝑡−1,𝑙), where 𝑙 =  1, … , 𝐾. These may be 

denoted as 𝑎𝑙𝑘, with ∑ 𝑎𝑙𝑘
𝐾
𝑘=1 = 1, and are collected in a K × K transition probability matrix 

𝐀. The transition probabilities are often assumed to be homogeneous (i.e., invariant) across 

time (and subjects). The resulting sequence of states is called a latent Markov chain (LMC). 

(3) The response probabilities indicate the probability of a certain item response given the state 

at time-point t, 𝑝(𝐲𝑖𝑡|𝐬𝑖𝑡), which correspond to a the multivariate normal density for continuous 

responses. 

2.2.2 Latent Markov factor analysis 

In LMFA, a LMM is used to capture the changes in MMs over time and FA (Lawley & 

Maxwell, 1962) is applied per state to model the state-specific MMs. The latter is given by: 

 𝐲𝑖𝑡 = 𝛎𝑘 + 𝚲𝑘 𝐟𝑖𝑡 + 𝐞𝑖𝑡, (2) 
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where 𝚲𝑘 is a state-specific J × Fk loading matrix; 𝐟𝑖𝑡 is a subject-specific Fk × 1 vector of 

factor scores at time-point t (where Fk is the state-specific number of factors); 𝛎k is a state-

specific J × 1 intercept vector; and 𝐞𝑖𝑡 is a subject-specific J × 1 vector of residuals at time-

point t. The distributional assumptions are: 𝐟𝑖𝑡 ~𝑀𝑉𝑁(0;𝚿𝑘) and factor scores are thus 

centered around zero and 𝐞𝑖𝑡~𝑀𝑉𝑁(0;𝐃𝑘), where 𝐃𝑘 contains the unique variances 𝑑𝑘𝑗 on 

the diagonal and zeros on the off-diagonal. To partially identify the model, factor variances in 

𝚿𝑘 are restricted to one and the remaining rotational freedom is dealt with by means of criteria 

to optimize the simple structure or between-state agreement of the factor loadings, such as 

Varimax (Kaiser, 1958), oblimin (Clarkson & Jennrich, 1988) or generalized Procrustes (Kiers, 

1997).  

From Equation 2, it is clear that the states may differ in terms of their intercepts 𝛎𝑘, 

loadings 𝚲𝑘, unique variances 𝐃𝑘, and/or factor covariances 𝚿𝑘. This implies that LMFA 

allows to explore all levels of measurement non-invariance at once. This is: (1) Configural 

invariance (invariant number of factors and pattern of zero loadings), (2) Weak factorial 

invariance (invariant non-zero factor loadings), (3) Strong factorial invariance (invariant item 

intercepts), and (4) Strict factorial invariance (invariant unique variances). Conveniently, in 

any case, the strictest level of invariance applies within each state (for more detail see Little et 

al., 2007; Meredith, 1993; Meredith & Teresi, 2006; Schaie, Maitland, Willis, & Intrieri, 1998). 

Figure 1 illustrates how LMFA captures the different levels of non-invariance over time based 

on an example of what might happen in the empirical data by comparing the state-1 MM 

respectively to the state-2 and state-3 MMs, with dashed lines representing parameter changes.  

[Insert Figure 1 about here] 

The depicted loadings can be thought of as standardized rotated loadings higher than, e.g.,  

.4 in absolute value (Stevens, 1992). We start by comparing the state-1 MM to the state-2 MM. 

Here, configural invariance is violated because a third factor (high arousal; HA) appears, 



LATENT MARKOV FACTOR ANALYSIS  9 
 

implying that the state-1 items measuring either PA or NA with loadings 𝜆141, 𝜆151, and 𝜆162 

measure another construct (i.e., HA) in state 2 (now with loadings 𝜆242, 𝜆252, and 𝜆262). This 

also changes the meaning of the other factors into low arousal PA (LA-PA) and low arousal 

NA (LA-NA)). Next, we compare the state-1 MM with the state-3 MM. Firstly, weak factorial 

invariance is violated here because 𝜆111 differs from 𝜆311 and thus, the items measure PA and 

NA differently. Secondly, strong factorial invariance is violated because 𝜈12 differs from 𝜈22. 

Note that, when weak invariance appears to hold, properly assessing strong invariance would 

require re-estimating the model with invariant factor loadings across the states and non-zero 

state-specific factor means. Finally, strict factorial invariance is violated because 𝑒11 differs 

from 𝑒31. Usually, strong factorial invariance is said to be sufficient for comparing latent 

constructs over time, i.e., differences in factor means then correspond to actual changes in the 

latent variables. 

It is important to note that the subjects don’t have to go through all the states nor do they 

have to go through the states in the same order. Relatedly, LMFA does not assume 

homogeneous transition probabilities across subjects but allows for subject-specific 𝐀𝑖 

matrices, implying that some transition probabilities may be zero for a certain subject if that 

subject does not go through a particular state. This is because subjects likely differ in how 

stable they respond to questionnaires (e.g., some people might switch more between contexts 

than others or may be more sensitive to contextual influence or distractions). The transition 

process 𝐀𝑖 is assumed to be time-homogeneous for each subject, although this is an assumption 

that might be relaxed in the future. 

 To conclude, in LMFA, the states indicate for which time-points the data are validly 

comparable (strict MI applies within each state) and by comparing the state-specific MM 

parameters one may even evaluate which level of invariance holds for which (pairs of) states 

and which specific MM parameters are non-invariant.  
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2.3 Model estimation 

To estimate the LMFA model we aim to find the model parameters 𝛉 (i.e., the initial state 

probabilities 𝛑, the transition probabilities 𝐀𝑖, the intercepts 𝛎𝑘, and the factor-analyzed 

covariance matrices 𝚺𝑘 = 𝚲𝑘𝚲𝑘 + 𝐃𝑘) that maximize the loglikelihood function log 𝐿. The 

log 𝐿 is derived from Equation 1 by summing over all possible state sequences, taking the 

logarithm, and considering all the subjects at once: 

 

log 𝐿(𝛉|𝐘) =∑log(∑…

𝐬𝑖1

∑𝑝(𝐬𝑖1)∏𝑝(𝐬𝑖𝑡|𝐬𝑖𝑡−1)

𝑇

𝑡=2

∏𝑝 (𝐲𝑖𝑡|𝐬𝑖𝑡)

𝑇

𝑡=1𝐬𝑖𝑇

)

𝐼

𝑖=1

. 
(3) 

Note that the model captures the dependencies only between observations that can be explained 

by the states but not the autocorrelations of factors within the states. Because the log 𝐿 is 

complicated by the latent states, non-linear optimization algorithms are necessary to find the 

maximum likelihood (ML) solution (e.g., De Roover et al., 2017; Myung, 2003). LMFA can 

be estimated by means of LG syntax5 (Vermunt & Magidson, 2016; Appendix B). Specifically, 

the ML estimation is performed by an Expectation Maximization (EM; Dempster, Laird, & 

Rubin, 1977) procedure described in Appendix A. Note that this procedure assumes the number 

of states 𝐾 and factors within the states 𝐹𝑘 to be known. The most appropriate K and 𝐹𝑘 is 

determined by comparing competing models in terms of their fit-complexity balance. To this 

end, the Bayesian information criterion (BIC) can be applied, which proved to be effective for 

both FA (Lopes & West, 2004) and LMM (Bartolucci, Farcomeni, & Pennoni, 2015). 

Moreover, it may happen that the estimation converges to a local instead of a global maximum. 

To decrease the probability of finding a local maximum, LG applies a multistart procedure, in 

which the initial values are automatically chosen based on the loadings and residual variances 

obtained from PCA (Jolliffe, 1986) on the entire dataset. For each state, randomness is added 

to get K different sets of initial parameter values (for more details see De Roover et al., 2017).  

                                                
5 A user-friendly graphical interface in LG including a tutorial will be developed in the future. 
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3 Simulation Study 

3.1 Problem 

To evaluate how well LMFA performs in recovering states and state-specific factor 

models, we manipulated seven factors that affect state-separation and thus potentially the 

recovery: (a) number of factors, (b) number of states, (c) between-state difference (consisting 

of differences in factor loadings and intercepts), (d) unique variance, (e) frequency of 

transitions, (f) number of subjects, and (g) number of observations per subject and state. For 

the number of factors (a), we expect the performance to be lower for more factors due to the 

higher model complexity and the lower level of factor overdetermination (given a fixed number 

of variables) (MacCallum, Widaman, Preacher, & Hong, 2001; MacCallum, Widaman, Zhang, 

& Hong, 1999; Preacher & MacCallum, 2002). With respect to the number of states (b), a 

higher number of states also increases the model complexity and thus, probably, decreases the 

performance. In case of a Markov model, the increase in model complexity with additional 

states is suppressed by the level of dependency of the states at consecutive time-points, 

however. Thus, with respect to (e), we anticipate LMFA to performance worse in case of more 

frequent state transitions, and thus lower probabilities of staying in a state, because this implies 

a lower dependence on the state of the previous time-point (Carvalho & Lopes, 2007). With 

respect to (c), we expect a decrease in performance for more similar factor loadings (De Roover 

et al., 2017) and/or intercepts across states. Regarding (d), LMFA is expected to perform better 

with a lower unique variance and thus a higher common variance because this increases the 

factor overdetermination (Briggs & MacCallum, 2003; Ximenez, 2009; Ximénez, 2006). 

Factors (f) and (g) pertain to the within-state sample size (i.e., the amount of information) per 

state in terms of number of subjects and observations per subject and state. We expect a higher 

performance with increasing information (de Winter, Dodou, & Wieringa, 2009; Steinley & 

Brusco, 2011). Note that we also tested whether lag-one autocorrelations of factors harm the 
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performance of LMFA, which was not the case (Appendix C). In addition, for selected 

conditions, we evaluated the BIC in terms of the frequency of correct model selection. 

3.2 Design and Procedure 

We crossed seven factors in a complete factorial design with the following conditions6: 

a. number of factors per state Fk at two levels: 2*, 4*; 

b. number of states 𝐾 at three levels: 2*, 3, 4*; 

c. between-state differences at eight levels:  

medium loading difference & no intercept difference,  

low loading difference  & no intercept difference,  

medium loading difference  & low intercept difference*,  

low loading difference  & low intercept difference*,  

no loading difference   & low intercept difference,  

medium loading difference  & medium intercept difference*,  

low loading difference  & medium intercept difference*,  

no loading difference   & medium intercept difference; 

d. unique variance 𝑒 at two levels: .2 and .4*;  

e. frequency of state transitions at three levels: highly frequent, frequent, infrequent*; 

f. number of subjects 𝑁 at three levels: 2, 5*, 10; 

g. number of observations per subject and state 𝑇𝑖𝑘 at three levels: 50, 100*, 200. 

The number of variables J was fixed to 20. The numbers of factors per state Fk was either 

2 or 4 (a) and was the same across the states. The two, three or four states (b) differed in factor 

loadings and intercepts. The degree of the between-state loading difference (c) was either 

medium, low (i.e., highly similar loadings), or non-existent (i.e., identical loadings across 

states). Between the state-specific intercepts, there was either no difference, a medium 

difference or a high difference. The combination of no loading difference and no intercept 

difference was omitted because this implies no difference in MMs and thus only one state. Note 

that the degree of the between-state differences was the same for each pair of states. 

Regarding the factor loadings 𝚲𝑘 of the generating model, for all conditions, a binary 

simple structure matrix was used as a common ‘base’ (see Table 1). The loading matrices were 

representative for the ones commonly found in psychological research (cf., the PA and NA 

structure assumed by the original researchers of the ‘no fun no glory study’). In these matrices, 

                                                
6 The “*” marks the subset of conditions that is included in the evaluation of model selection. 
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all variables loaded on one factor only and the variables were equally divided over the factors. 

In case of two factors, this implied that each factor had ten non-zero loadings, whereas, in case 

of four factors, each factor consisted of five non-zero loadings. For the ‘no loading difference’ 

conditions, the simple structure base matrix was used as 𝚲𝑘 in all the states, implying no change 

in loadings across the states. For the low and medium loading difference conditions, the base 

matrix was altered differently for each state to create the state-specific loading matrices. Thus, 

no state will have a factor loading structure equal to the base matrix in Table 1. For each state, 

regardless of the number of factors, we applied the alteration procedure described below.  

[Insert Table 1 about here] 

Whether Fk = 2 or Fk = 4, the manipulations were only applied to the first two factors. 

Thus, for Fk = 4, the third and fourth factor are identical across states. For the medium loading 

difference conditions, the state-specific loading matrices were created by shifting one loading 

from the first factor to the second one and one loading from the second factor to the first one. 

This implies that the overdetermination of the factors is unaffected. For the low loading 

difference condition, the state-specific loading matrices were created by adding cross-loadings 

of  √. 5 for two variables, i.e., one for factor 1 and one for factor 2, and lowering the primary 

loading accordingly to √. 5. This manipulation preserves both the rowwise and columnwise 

sum of squares (i.e., the variables’ common variance and the variance accounted for by each 

factor). Variables affected by the loading shifts and added cross-loadings differed across states 

(see Table 1)7. 

To quantify the similarity of the state-specific loadings per condition, a congruence 

coefficient8 𝜑  (Tucker, 1951) was computed per factor for each pair of the loading matrices. 

A 𝜑 of one indicates proportionally identical factors (as in the no loading difference 

                                                
7 Note that we use EFA and thus, the zero loadings are not fixed but freely estimated in LMFA. 
8 Tucker’s (1951) congruence coefficient between column vectors x and y is defined as: 𝜑𝑥𝑦 =

𝑥′𝑦

√𝑥′𝑥√𝑦′𝑦
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conditions). The grand mean 𝜑𝑚𝑒𝑎𝑛 across all state pairs and factors amounted to .80 for the 

medium loading difference conditions and .94 for the low loading difference conditions, 

regardless of the numbers of states and factors. Finally, the matrices were rowwise rescaled 

such that the sum of squares of each row equaled 1 − 𝑒, where e was either .40 and .20 (g).  

Intercept differences were induced as follows. For all variables in all states, the intercept 

was initially determined to be 5 and kept as such for the no intercept difference conditions. 

Two of the intercepts (different ones across the states) were increased from 5 to 5.5 for the low 

intercept difference conditions and from 5 to 7 for the medium intercept difference conditions.  

Regarding the frequency of state transitions (e), we manipulated three levels that we 

considered to be realistic for ESM data. Note that we allowed for between-subject differences 

in the transition probabilities by randomly sampling each set of subject-specific probabilities 

from a uniform distribution within a specified range of probabilities. Specifically, the 

probabilities to stay in a state and to switch to another state were respectively sampled from 

U(.73,.77) and U(.01,[ .27/(K−1)]) in the highly frequent condition, from U(.83,.87) and 

U(.01,[ .17/(K−1)]) in the frequent condition and from U(.93,.97) and U(.01,[ .07/(K−1)]) in 

the infrequent condition. Then, for each resulting matrix, we rescaled the off-diagonal elements 

of each row to sum to 1 minus the diagonal element of that row, thus maintaining the 

probabilities to stay in a state and hence also the frequency of switching. As a results, out of 

the total number of possible transitions (i.e., across subjects (i.e., ∑ (𝑇𝑖 − 1)
𝐼
𝑖 ) and across all 

data sets), a switch to another state occurred for 25% of the possible occasions in the highly 

frequent condition, for 15% in the frequent condition and for 5% in the infrequent condition.  

Depending on the condition, datasets with the above described characteristics were 

simulated for 2, 5 or 10 subjects (f). Note that limiting our study to such low subject numbers 

not only confines the computation time but also challenges the method. We expect performance 

to improve with additional subjects because this accumulates the amount of data within the 
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states. Furthermore, the number of observations per subject and state, 𝑇𝑖𝑘, was either 50, 100 

or 200 (g) for i = 1, …, I and k = 1, …, K. Thus, the total number of observations 𝑇𝑖 per subject 

depended on (b) and (g). Similarly, the within-state sample size per state (over subjects) 

depended on (f) and (g).  

For each subject, a LMC was generated indicating in which state subject 𝑖 was at each 

time-point 𝑡. The initial state was randomly sampled from a Bernoulli distribution (for k = 2) 

or multinomial distribution (for k > 2) with equal initial state probabilities9. The remaining 

LMC was generated by sampling a random sequence of states based on the subject-specific 

transition probability matrix (i.e., depending on (e)). Note that whenever a state was not 

represented in a sampled LMC – because the small sample-sizes occasionally led to a data 

matrix wherein a certain state was not represented – we rejected it and sampled another one, 

such that parameter estimation was possible for all states.  

Given this LMC, a subject-specific data set was generated according to Equation 2 

assuming orthogonal factors. Firstly, we sampled a factor score vector 𝐟𝑖𝑡 ~𝑀𝑉𝑁(0; 𝐈) of length 

F and a residual vector 𝐞𝑖𝑡 ~𝑀𝑉𝑁(0;𝐃𝑘) of length J for each of the Ti observations, where the 

diagonal elements of 𝐃𝑘 are equal to .20 or .40 (g). Subsequently, each vector of observations 

𝐲𝑖𝑡 was created with the loading matrix 𝚲𝑘 and vector of intercepts 𝛎𝑘 pertaining to the state 

that subject 𝑖 was in at time-point 𝑡, according to the subject-specific LMC. Finally, the subject-

specific datasets 𝐘𝑖 were concatenated into one data matrix 𝐘 = (𝐘1′, 𝐘2′, … , 𝐘𝐼′)′ with ∑ 𝑇𝑖
𝐼
𝑖  

rows. Twenty data matrices 𝐘  were generated for each cell of the design. In total, 3 (number 

of states) × 2 (number of factors) × 8 (between-state difference) × 3 (transition frequency 

between states) × 3 (number of subjects) × 3 (number of observations per subject and state) × 

2 (unique variance) × 20 (replicates) = 51840 simulated data matrices were generated. The data 

                                                
9 We had no intention to evaluate the recovery of the initial state probabilities because more than a few subjects 

are required to validly estimate the distribution of initial starting states (Vermunt & Magidson, 2016). By sampling 

the initial state from a Bernoulli/multinomial distribution, some randomness in the initial states was obtained. 
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was generated in the open-source program R (R Core Team, 2002) and communicated to LG 

(Vermunt & Magidson, 2016) for analysis. LG syntaxes (for details and an example see 

Appendix B) were used to analyze the data with the correct number of states and factors per 

state. The average time to estimate a model was 85 seconds on an i5 processor with 8GB RAM. 

Model selection was evaluated for a subset of the conditions (indicated by “*”) and for five 

replications per condition, i.e., for 80 data sets. The data sets were analyzed with LMFA models 

with the number of states equal to K – 1, K and K + 1 states, and the number of factors within 

the states equal to Fk – 1, Fk and Fk + 1 and allowed to differ between the states, resulting in 19 

models when K = 2 and 46 when K = 4. 

3.3 Results 

Sensitivity to local maxima. The estimation procedure described in Appendix A, may 

result in a locally maximal solution, i.e., the best solution may have a log 𝐿 value that is smaller 

than the one of the global ML solution. The multistart procedure (described in 2.3) increases 

the chance to find a global ML solution and, in the simulation study—where the global 

maximum is unknown due to violations of FA assumptions, sampling fluctuations and 

residuals—we can compare the best solution of the multistart procedure to an approximation 

(or proxy) of the global ML solution, which we obtain by providing the model estimation with 

the true parameter values as starting values. A solution is then a local maximum for sure when 

its log 𝐿 value is smaller than the one from the proxy. To exclude mere calculation precision 

differences, we only considered negative differences with an absolute value higher than .001 

as a local maximum. Accordingly, a local maximum was found for 947 out of 51840 simulated 

data sets (1.83%), which mainly occurred when K = 4.  

Goodness of state recovery. To investigate the recovery of the state sequence, the Adjusted 

Rand Index (𝐴𝑅𝐼; Hubert & Arabie, 1985) was computed. The 𝐴𝑅𝐼 quantifies the overlap 

between two partitions and is insensitive to permutations of the state labels. It ranges from 0 
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when the overlap is at chance level and 1 when partitions are identical. In general, the recovery 

of states was moderate to good (Steinley, 2004) with a mean 𝐴𝑅𝐼-value of .78 (SD = 0.28).  

Except for the number of states, all manipulated factors had a large influence on the ARI 

(Table 2). In line with our expectations, the recovery improved with a lower number of factors 

(b), a greater between-state difference (c), a lower frequency of change (d), a higher number of 

subjects (e), a higher number of observations per subject and state (f) and lower unique 

variances (g). Figure 2 shows these effects, yet averaged across the number of factors for 

conciseness. A higher total within-state sample size was especially important for the state 

recovery in the high unique variance condition when combined with the low and no loading-

difference conditions. In contrast, for a low unique variance and a medium loading difference 

between the states, the state recovery already stabilized at 400 observations. A lower frequency 

of transitions also further improved the state recovery, but it is most striking that even the most 

difficult conditions and lowest within-state sample size led to a perfect recovery when there 

was a medium difference in intercepts between the states.  

[Insert Table 2 and Figure 2 about here] 

Goodness of loading recovery. To examine the goodness of state-specific loading recovery 

(𝐺𝑂𝑆𝐿), we computed Tucker congruence coefficients 𝜑 between the true loading matrices and 

the estimated loading matrices and averaged across factors and states: 

 
𝐺𝑂𝑆𝐿 =  

∑ ∑ 𝜑(𝚲𝑓
𝑘, �̂�𝑓

𝑘)𝐹
𝑓=1

𝐾
𝑘=1

∑ 𝐹𝐾𝐾
𝑘=1

. (4) 

To deal with the rotational freedom of the factors per state, we rotated the factors prior to 

calculating the congruence coefficient10. Specifically, Procrustes rotation was used to rotate the 

estimated towards the true loading matrices. To account for the permutational freedom of the 

                                                
10 Note that rotation is not yet included in LG, which is why we take the estimated loadings and rotate them in the 

open-source program R (R Core Team, 2002). 
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state labels, the state permutation that maximizes the 𝐺𝑂𝑆𝐿 was retained. The manipulated 

conditions hardly affected the loading recovery. The overall mean 𝐺𝑂𝑆𝐿 was .98 (SD = 0.05), 

indicating an excellent recovery. There was a positive correlation between the ARI value and 

the GOSL (𝑟𝑠 = .45, 𝑝 < 0.001). Note that the loading recovery was often good despite a bad 

state recovery because quite similar (to even identical) loading matrices are mixed up. 

Goodness of transition matrix recovery. To examine the transition matrix recovery, we 

calculated the mean absolute difference (𝑀𝐴𝐷) between the true and estimated matrices 

(applying the best state permutation obtained from the loading recovery):  

 
𝑀𝐴𝐷𝑡𝑟𝑎𝑛𝑠 = 

∑ ∑ ∑ |A𝑖𝑘𝑙 − Â𝑖𝑘𝑙|
𝐾
𝑙=1

𝐾
𝑘=1

𝐼
𝑖=1

𝐼𝐾2
. (5) 

The transition matrix recovery was good with an average 𝑀𝐴𝐷𝑡𝑟𝑎𝑛𝑠 of .08 (SD = 0.10). Overall, 

the effects of the manipulated conditions were rather small (see Table 2). 

Goodness of intercept recovery. To evaluate the recovery of the state-specific intercepts, 

we calculated the MAD between the true intercepts and the estimated ones.  

 
𝑀𝐴𝐷𝑖𝑛𝑡 = 

∑ ∑ |ν𝑘𝑗 − ν̂𝑘𝑗|
𝐽
𝑗=1

𝐾
𝑘=1

𝐾𝐽
. (6) 

The intercept recovery was moderate with an average 𝑀𝐴𝐷𝑖𝑛𝑡 of .12 (SD = 0.02). A higher 

between-state difference of loadings and intercepts (c), more subjects (e), more observations 

per subject and state (f), and a lower unique variance (g) improved the intercept recovery.  

Goodness of unique variance recovery. To examine the recovery of the state-specific 

unique variances, we calculated the MAD between the true and estimated unique variances.  

 
𝑀𝐴𝐷𝑢𝑛𝑖𝑞 = 

∑ ∑ |𝑑𝑘𝑗 − �̂�𝑘𝑗|
𝐽
𝑗=1

𝐾
𝑘=1

𝐾𝐽
. (7) 

The unique variance recovery was good with an average 𝑀𝐴𝐷𝑢𝑛𝑖𝑞 of .04 (SD = 0.06) and no 

notable differences across the manipulated conditions. More prominently, the 𝑀𝐴𝐷𝑢𝑛𝑖𝑞 is 

affected by Heywood cases (Van Driel, 1978), which pertain to “improper” factor solutions 
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with at least one unique variance that is negative or zero. When a Heywood case occurs, LG 

fixed the unique variance(s) to a very small number. A Heywood case is considered to be 

diagnostic of underdetermined factors and/or insufficient sample size (McDonald & Krane, 

1979; Rindskopf, 1984; Van Driel, 1978; Velicer & Fava, 1998). Heywood cases occurred for 

5877 of the estimated datamatrices (12.19%), where 89% of the Heywood cases indeed 

occurred in the conditions with the smallest number of observations per subject and state and/or 

the smallest number of subjects. 

Model selection.  For 74 out of the 80 data sets (93%), the correct model was selected, 

when considering the converged models only, and for 78 (98%) the correct model was among 

the three best models. Five of the six incorrect selections occurred for the data sets with four 

states and four factors and low loading differences as well as low intercept differences. 

Specifically, one state too few was selected which is explained by the low state separability in 

these conditions11. We conclude that the BIC performs very well with regard to selecting the 

most appropriate model complexity for LMFA. 

3.4 Conclusions & Recommendations 

To sum up, LMFA is promising for detecting MM changes over time and for exploring what 

the MM differences look like and for which subjects and which time-points the MMs are 

comparable. However, the performance of the new method in recovering the correct state 

sequence and the correct state-specific MMs largely depends on model characteristics (i.e., the 

number of factors, the MM differences between the states, the unique variances, and the 

frequency of state transitions), and the within-state sample size. Firstly, larger MM differences 

between states benefit the recovery of the states. Especially intercept differences increased the 

separability of the states, to the extent that the states were recovered perfectly even under 

                                                
11 Note that, in case there is only one MM underlying the data, model selection would indicate that the one-state 

model fits best, which was confirmed by a small simulation study with the same design as the one of the model 

selection described in 3.2.. The correct one-state model was correctly chosen for all 10 models (100 %).  
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difficult conditions. Besides intercept differences, less factors, less frequent transitions 

between the states and lower unique variances improved the recovery. Finally, all else equal, 

the within-state sample size greatly enhanced the state recovery. In the following we list 

recommendations for empirical practice:  

 When the above-mentioned model characteristics are unknown (or assumed to be 

unfavorable), aim for 2000 to 4000 observations in total (subjects × observations) to obtain 

reliable results for 2 to 4 states.  

 When favorable model characteristics are assumed – i.e., when between-state differences 

are expected to be pronounced (e.g., changes in intercept are expected), transitions to be 

infrequent (e.g., measurement occasions are closely spaced) and unique variances to be low 

(e.g., using reliable measurement instruments) – 800 to 1000 observations in total (subjects 

× observations) are probably enough to obtain reliable results for 2 to 4 states. 

 The  number of states that can be reliably captured is bound by the total sample size and 

when the sample size does not allow for the ’true’ number of states to be estimated, the 

obtained results will only convey part of the MM differences present in the data. States that 

correspond to a few observations only will not be detected. 

 Including more subjects in the study might be more feasible than obtaining more 

measurements from each participants but be aware that in practice, subjects do not 

necessarily switch between the same set of MMs. LMFA allows for this heterogeneity in 

MMs, since not all subjects need to go through all states. Nevertheless, it is important to 

keep this potential heterogeneity in mind since it would imply that additional subjects 

increase the number of MMs, and thus the number of states. In that case, the number of 

observations per subject is essential for the sample size per state. 

 The BIC is a suitable criterion to decide on the best number of states and factors. However, 

when differences between the states are subtle, researchers are advised to consider the three 
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best models and choose one based on interpretability and stability. 

4 Application 

In order to apply LMFA to the empirical data set introduced in Section 2.1, we first selected 

the number of states and factors by comparing the BIC among LMFA models with one up to 

three states and one up to three factors per state. Models with four states or factors in a state 

failed to converge suggesting sample size limitations or model misspecification. The model [3 

3 2] (i.e., three states with 3, 3, and 2 factors) was selected as it had the lowest BIC among the 

converged models and was the most interpretable. To shed light on the MM differences 

between the three states, we first looked at the state-specific intercepts (Figure 3). The 

intercepts are higher for ‘positive affect’ (PA) items than for ‘negative affect' (NA) items in all 

the states. However, the difference between the PA and NA item scores is most visible in State 

3 (hereinafter ‘pleasure state’), intermediate in State 2 (hereinafter ‘neutral state’) and least 

pronounced in State 1 (hereinafter ‘displeasure state’).  

[Insert Figure 3 & Table 3 about here] 

Second, we investigated the standardized oblimin rotated loadings (Table 3). As a notable 

similarity, we see that the positive items are collected into (i.e., load strongly on) a PA factor 

in all the states, although the strength of the loadings slightly differs between the states. A 

striking difference is that the pleasure state has a NA factor, whereas the neutral and displeasure 

states both have a ‘distress’ factor with high loadings of ‘upset’, ‘anxious’, and ‘nervous’ – 

although they slightly differ in that ‘calm’ has an additional strong negative loading in the 

displeasure state, whereas ‘gloomy’ and ‘sluggish’ load on the distress factor in the neutral 

state only. The neutral and displeasure states are further characterized by a third factor. In the 

neutral state, the third factor pertains to ‘serenity’ with strong loadings of ‘calm’ and ‘relaxed’. 

In the displeasure state, it is a bipolar ‘drive’ factor indicating that being ‘determined’ (strong 

negative loading) is inversely related to feeling ‘sluggish’, ‘bored’, and ‘listless’ (strong 
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positive loadings). This additional drive factor in the displeasure state concurs with theoretical 

models of anhedonia (Berridge, Robinson, & Aldridge, 2009; Treadway & Zald, 2011), which 

divide anhedonia in three dimensions: consummatory anhedonia (no longer enjoying 

pleasurable activities), anticipatory anhedonia (no longer looking forward to pleasurable 

activities) and motivational anhedonia (no longer experiencing motivation to pursue 

pleasurable activities). The drive factor confirms that motivation is distinct from general 

positive affect when individuals are anhedonic. Finally, the state-specific unique variances are 

listed in Table 3. In general, these are highest in the displeasure state, indicating more emotion-

specific variability than in the other states. This concurs with research showing that emotional 

complexity is associated with higher levels of depression (e.g., Grühn, Lumley, Diehl, & 

Labouvie-Vief, 2013). In sum, LMFA allowed for us to find substantively meaningful changes 

in the MM, both in the number and nature of the underlying factors. As an important similarity 

between the states, it is found that PA is captured in each of the three states12. 

To investigate what potentially triggers the latent states, we explored between-state 

differences in evening measures on physical discomfort (such as headache) and the occurrence 

and importance of positive and negative events. We focus on descriptive statistics only since 

hypothesis testing for MM differences is beyond the scope of the paper. A question was, e.g., 

“Think about the most unpleasant event you experienced since the last assessment: how 

unpleasant was this experience?” The scales ranged from 0 (“Not at all”) to 100 (“Very much”). 

Interestingly, when participants were in the displeasure state, they had experienced more 

unpleasant (M = 48.64, SD = 24.24) events than when being in the neutral (M = 32.54, SD = 

19.85) or the pleasure state (M = 29.52, SD = 18.65). Similarly, being in the pleasure state was 

related to the occurrence of more pleasant events (M = 64.54, SD = 15.48) in comparison to the 

                                                
12 Note that the NA items were mostly right skewed, warranting caution when drawing substantive conclusions 

because violations of the normality assumption have yet to be investigated (see Section 5). For the purpose of 

illustrating the aim of LMFA, this is not a problem. 
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displeasure (M = 56.02, SD = 20.41) and the neutral state (M = 58.95, SD = 18.03). These 

findings are in line with the states’ labels.  

[Insert Table 4 about here] 

Moreover, we inspected how the states related to the interventions (Table 4). Before the 

intervention (Phase 1), participants were more often in the displeasure or neutral state than in 

the pleasure state. After the first intervention (Phase 2), the participants in the two intervention 

groups (i.e., PLA and PLA & SkyD) were more often in the pleasure or neutral state than in 

the displeasure state. After receiving a second intervention (Phase 3), the distribution across 

the displeasure and pleasure state stayed about the same or the occurrence of the pleasure state 

increased. Participants who did not receive an intervention after the first month were distributed 

equally across the pleasure and displeasure states and were mostly in the neutral state during 

Phase 2. Notably, in Phase 3, the state membership for these participants – i.e., after receiving 

their first (self-chosen) intervention – changed in that the pleasure state was now also more 

frequent than the displeasure state when participants chose PLA & SkyD while it was the 

opposite for those who chose PLA, perhaps because the more depressed and anhedonic 

participants were the ones refraining from a SkyD. Looking at the examples of individual 

transition plots including the individual transition probabilities (Figure 4), it is apparent that 

participants switched quite often between states, in each phase of the study. This is coherent 

with previous findings that individuals with anhedonia and depression are often found to 

experience strong fluctuations in emotional experiences (Heininga, Van Roekel, Ahles, 

Oldehinkel, & Mezulis, 2017; van Roekel et al., 2015). Some participants switched more often 

between the states than others, which may pertain to between-subject differences in general 

stability and experienced events but also to differences in how one reacts to the interventions.  

Summarized, the interventions appear to have increased the pleasure state membership and 

reduced the displeasure state membership, while leaving membership of the neutral state 
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largely unaffected. It is noteworthy that participants receiving no intervention after the first 

month also slightly moved toward higher pleasure state membership and a lower displeasure 

state membership at that point in time. It appears that daily reflections on ones emotions also 

relieve anhedonia to a certain degree, which was already found in an intervention study using 

ESM in depressed patients (Kramer et al., 2014). Although these findings are merely 

exploratory and need to be validated in future research, we demonstrated that LMFA offers 

valuable insights to applied researchers. 

[Insert Figure 4 about here] 

5 Discussion 

In this paper, we introduced latent Markov factor analysis (LMFA) for modeling 

measurement model (MM) changes that are expected to be prevalent in time-intensive 

longitudinal data like experience sampling data. In this way, LMFA safeguards conclusions 

about changes in the measured constructs. MM changes may pertain to (potentially interesting) 

substantive changes or may signal the onset of response styles (RSs). Between-state differences 

in intercepts and loadings might suggest an extreme RS, whereas differences in intercepts only 

rather suggest an agreeing RS (Cheung & Rensvold, 2000). When one suspects a RS in a 

specific state, RS detection and correction (e.g., adding an agreeing RS factor; Billiet & 

McClendon, 2000; Watson, 1992) can be applied to that specific part of the data, rather than to 

the entire data set. Moreover, the subject-specific transition probabilities of LMFA capture, 

e.g., to what extent each subject is likely to end up and to stay in an extreme RS state. Even 

when RSs are hard to distinguish, the fact that LMFA pinpoints MM changes – and thus the 

reliable and comparable parts of the data – is valuable in itself. 

In the future, it would be interesting to go beyond the purely exploratory approach applied 

in this paper. On the one hand, hypothesis testing to determine which parameters significantly 

differ between the states might be preferred over visually comparing the state-specific MMs. 
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To this end, LG already provides the researchers with Wald test statistics when the rotational 

freedom of the state-specific factors is resolved by a minimal number of restricted loadings 

(e.g., Geminiani, Ceulemans, & De Roover, 2018). On the other hand, including explanatory 

variables (i.e., time-constant or time-varying covariates such as personality traits or social 

contexts) in the model would allow to evaluate whether they significantly predict the state 

memberships and the transition probabilities. 

Moreover, LMFA assumes normally distributed, continuous variables. Categorical Likert-

scale ratings are frequently used in psychology, however. Although these data can often be 

treated as continuous in case of at least five response categories (Dolan, 1994; Olsson, 1979), 

the ratings are often skewed, thus violating the assumption of normality. Additionally, and even 

continuous data, such as our application data, might be skewed. Therefore, the robustness of 

the method to such violations should be examined and, if necessary, possible extensions to deal 

with non-normality should be considered.  

In addition, longitudinal data are often collected in varying time intervals; e.g., when 

testing the long-term influence of interventions on affect by collecting data in waves. In that 

case, the transition probabilities can no longer be considered time-homogeneous and 

continuous time modeling is necessary (Crayen, Eid, Lischetzke, & Vermunt, 2017). Therefore, 

in future research, we will develop a continuous-time extension of LMFA. 

Moreover, a limitation of the method is the assumption that factor scores are centered 

around zero and have a variance of one. When factor scores evolve over time but the MM stays 

the same, changes in factor scores would currently be detected as intercept changes and thus, 

possibly lead to different states according to model selection. In future work, we will 

investigate necessary LMFA extensions to explicitly model changes in factor means within the 

states, e.g., depending on time or another covariate.  

Next to that, we might consider an extension of LMFA using exploratory dynamic FA 
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(EDFA; Browne, 2001; Zhang, 2006) within the states, which models the auto- and cross-

lagged correlations of the factors at consecutive time-points but comes with important 

challenges. Firstly, accurately estimating autocorrelations would require more measurement 

occasions per subject per state (Ram, Brose, & Molenaar, 2012), which may be undesirable. 

Secondly, in EDFA, factor rotation is more intricate since the auto- and cross-lagged relations 

between factors need to be rotated towards specified target matrices (Browne, 2001; Zhang, 

2006), again necessitating the a priori hypotheses about (changes in) the MM we want to avoid. 

The LMM in LMFA already partly captures autocorrelations by the states and uncaptured auto- 

and cross-lagged correlations will not necessarily introduce bias in the estimates of the state-

specific MMs (Baltagi, 2011).  

Finally, LMFA is a complex model with many assumptions. Therefore, misspecifications 

can occur and tools to locate local misfit are essential. Local fit measures have been developed 

in some fields (e.g. bivariate residuals measures for multilevel data; Nagelkerke, Oberski, & 

Vermunt, 2016) but future work first needs to develop and extensively evaluate them for 

LMFA. 
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Figures and Tables 

Figure 1. Graphical illustration of a subject-specific LMC from a LMFA model, where the latent states per measurement occasion kt (t = 1, …, 

T) indicate the measurement model underlying a respondent’s observed item scores. Note that to give a clear example, only the standardized 

factor loadings with an absolute value larger than 0.4 are depicted. Also note that the factor scores (e.g., on PA and NA) are not depicted in the 

figure since they are not part of the MM, but that they may or may not change within a state over time but average zero. 
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Figure 2. Goodness of state recovery (y-axis) under various manipulations of the between-state difference (loading difference (LD) per column 

and intercept difference (ID) per row), the unique variances and the frequency of transitions (different lines), and the total number of 

observations per state (number of subjects × number of observations), while averaging across the number of states and factors. Note that the x-

axis value 500 and 1000 occur twice due to two possible combinations (5 × 100 = 10 × 5 and 5 × 200 = 10 × 100, respectively). The dots largely 

overlap and thus state recovery was not visibly influenced by the combination and thus, it did not matter whether the within-state sample size 

was increased by additional subjects or additional observations per subject.
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Figure 3. Intercepts and standard deviations of the 18 items per state (positive (left) and lower 

negative emotions (right)). 
 

  
Figure 4. Three examples of individual transition plots (including probabilities) of subjects 

with three different combinations of interventions. 
 

Table 1. 2-factor base loading matrix and derived loading matrices for state 1 and 2. 
 Base Loading Matrix  State1  State 2 

 Factor 1 Factor 2  Factor 1 Factor 2  Factor 1 Factor 2 

Var.1 1 0  λ1 λ2  1 0 

Var.2 1 0  1 0  λ1 λ2 

Var.3 1 0  1 0  1 0 

Var.4 1 0  1 0  1 0 

Var 5-10  … …  … …  … … 

Var.11 0 1  λ2 λ1  0 1 

Var.12 0 1  0 1  λ2 λ1 

Var.13 0 1  0 1  0 1 
Var.14 0 1  0 1  0 1 
Var. 15-20 … …  … …  … … 

Note. For the medium loading difference, λ1 = 0 and λ2 = 1; for the low loading differences, λ1 = √. 5 and 

λ2 = √. 5. Entries of Var. 5-10 and 15-20 equal those of Var.4 and Var.14, respectively. The 4-factor matrices 

were created by applying the same λ1 and λ2 values to other variables because of fewer loadings per factor. 
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Table 2. Goodness-of-recovery per type of parameter conditional on the manipulated factors  
  Goodness of 

  State 

Recovery 

(𝐴𝑅𝐼) 

 Loading 

Recovery 

(𝐺𝑂𝑆𝐿) 

 Transition 

Matrix 

Recovery 

(𝑀𝐴𝐷𝑡𝑟𝑎𝑛s) 

 Intercept 

Recovery 

(𝑀𝐴𝐷𝑖𝑛𝑡) 

 Unique 

Variance 

Recovery 

(𝑀𝐴𝐷𝑢𝑛𝑖𝑞) 

Condition Manipulated 

Factors 

         

States 

2 0.76  0.97  0.09  0.12  0.04 

3 0.79  0.98  0.08  0.12  0.04 

4 0.8  0.98  0.06  0.12  0.04 

Factors 
2 0.81  0.98  0.07  0.11  0.03 

4 0.75  0.97  0.09  0.12  0.05 

Between-

state-

difference 

(Loading 

Difference-

Intercept 

Difference) 

Medium-No 0.69  0.98  0.07  0.09  0.04 

Low-No 0.47  0.94  0.16  0.26  0.08 

Medium-

Low 

0.81 

 

0.98 

 

0.06 

 

0.08 

 

0.03 

Low-Low 0.68  0.96  0.1  0.16  0.05 

No-Low 0.64  0.96  0.12  0.21  0.06 

Medium-

Medium 

0.99 

 

1 

 

0.04 

 

0.04 

 

0.02 

Low-

Medium 

0.99 

 

0.99 

 

0.04 

 

0.05 

 

0.02 

No-Medium 0.99  0.99  0.04  0.04  0.02 

Transitions 

Highly 

Frequent 

0.71 

 

0.97 

 

0.1 

 

0.13 

 

0.04 

Frequent 0.77  0.98  0.08  0.12  0.04 

Infrequent 0.87  0.98  0.06  0.1  0.04 

Subjects 

2 0.7  0.95  0.12  0.23  0.07 

5 0.81  0.98  0.07  0.09  0.03 

10 0.84  1  0.05  0.04  0.02 

Observations 

per subject 

and state 

50 0.7  0.95  0.13  0.21  0.07 

100 0.8  0.98  0.07  0.09  0.04 

200 0.84  0.99  0.04  0.05  0.02 

Unique 

Variances 

.2  0.88  0.99  0.05  0.07  0.02 

.4 0.69  0.96  0.11  0.16  0.06 

Note.  For the between-state difference condition, the combination of no loading difference and no intercept 

difference was not included because this would imply that the MM does not differ across states. 

 

 



LATENT MARKOV FACTOR ANALYSIS                                                            40 

 

Table 3. Standardized Oblimin rotated factor loadings, unique variances, and proportions of unique variance of the LMFA model with three 

states and respectively three, three and two factors for the evening emotion questionnaires  
 State 1 (Displeasure)  State2 (Neutral)  State 3 (Pleasure) 

 Factors  Unique V.  Factors  Unique V.  Factors  Unique V. 

Items   PA      Distr.  Drive  V (prop)    PA         Distr.  Serenity  V.       (prop)  PA  NA  V.       (prop) 

interested 0.66  0.08  -0.13  178.3 (.48)  0.7  0.04  0  166.2 (.52)  0.85  0.05  52.55 (.32) 

joyful 0.8  -0.01  -0.07  118.5 (.30)  0.86  0  -0.07  63.37 (.26)  0.92  0  25.62 (.16) 

determined 0.39  0.01  -0.48  187.3 (.43)  0.81  0.1  0.16  100.7 (.36)  0.93  0.04  29.18 (.18) 

calm 0.43  -0.43  0.1  269.4 (.56)  0.49  -0.12  -0.61  123.3 (.35)  0.82  -0.08  47.16 (.25) 

lively 0.73  0  -0.13  123.4 (.35)  0.86  -0.01  -0.07  65.4 (.26)  0.9  -0.01  27.62 (.17) 

enthusiastic 0.81  0.14  -0.11  129.1 (.29)  0.87  0.08  -0.01  91.02 (.27)  0.93  0.03  23.98 (.16) 

relaxed 0.62  -0.34  0.22  207.6 (.48)  0.54  -0.14  -0.67  65.9 (.21)  0.85  -0.07  36.89 (.22) 

cheerful 0.84  0.08  0.04  133.7 (.35)  0.84  -0.05  -0.08  69.34 (.27)  0.87  -0.02  39.17 (.23) 

content 0.56  -0.2  -0.09  179.1 (.51)  0.84  0  -0.18  65.29 (.26)  0.93  0.01  24.2 (.14) 

energetic 0.59  0.15  -0.31  183.4 (.41)  0.78  0.13  0.03  140.8 (.41)  0.9  0.01  37.34 (.21) 

upset -0.18  0.51  0.12  290.7 (.58)  0.12  0.87  0  13.01 (.27)  0.01  0.89  13.19 (.21) 

gloomy -0.33  0.27  0.25  301.8 (.59)  -0.03  0.77  -0.03  33.19 (.40)  -0.02  0.91  11.52 (.16) 

sluggish 0.12  0.13  0.92  134.8 (.19)  -0.3  0.26  -0.32  268.5 (.71)  -0.02  0.85  22.45 (.27) 

anxious 0.07  0.76  0.17  183.7 (.39)  0.12  0.86  0.03  15 (.28)  0.05  0.91  14.57 (.19) 

bored -0.09  -0.01  0.4  411.1 (.79)  -0.16  0.38  -0.22  163.5 (.74)  -0.01  0.87  19.53 (.23) 

irritated -0.14  0.25  0.15  460.3 (.84)  0.05  0.63  0.08  92.9 (.61)  -0.01  0.9  13.44 (.18) 

nervous 0.15  0.68  -0.03  326 (.58)  0.1  0.74  0.11  42.21 (.48)  -0.01  0.88  17.39 (.22) 

listless 0.18  0.09  0.58  304.2 (.48)  -0.3  0.33  -0.22  216.9 (.72)  0  0.94  8.98 (.11) 

Note. V. = Variance; prop. = proportion; To enhance interpretation, factor loadings were standardized by dividing the loadings by the state-specific standard deviations of the 

item. The loadings with an absolute value larger than 0.4 are depicted in boldface. Cor(PA,Distr.) = .-31, Cor(PA,Drive) = .52, and Cor(Distr.,Drive) = -.18 in State 1;   

Cor(PA,Distr.) = .-15, Cor(PA,Serenity) = -.07, and Cor(Distr.,Serenity) = -.14 in State 2; Cor(PA,NA) = .-42 in State 3. 
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Table 4. Observed state-memberships per phase and intervention 
  State    State    State  

 1 (Displ.) 2 (Neutral) 3 (Pleasure)  1 (Displ.) 2 (Neutral) 3 (Pleasure)  1 (Displ.) 2 (Neutral) 3 (Pleasure) 

 Int. 1 = No Int. (n = 22, TB = 790 , TA = 786)  Int. 1 = PLA (n = 23, TB = 820 , TA = 832)  Int. 1 = PLA & SkyD (n = 24, TB = 850, TA = 939) 

Before Int. 1  41.7 %  43.0 %  15.3 %   45.0 %  36.3 %  18.7 %   39.3 %  38.1 %  22.6 % 

After Int. 1  27.2 %  45.8 %  27.0 %   27.9 %  30.4 %  41.7 %   27.8 %  40.9 %  31.3 % 

After Int. 2 

Int. after Int. 1 = No Int.  Int. after Int. 1 = PLA  Int. after Int. 1 = PLA & SkyD 

Int. 2 = No Int. (n = 0, T = 0)  Int. 2 = No Int. (n = 2, T = 55)  Int. 2 = No Int. (n = 1, T = 26) 

 /  /  /   30.9 %  16.4 %  52.7 %   26.9 %  26.9 %  46.2 % 

Int. 2 = PLA (n = 3, T = 95)  Int. 2 = PLA (n = 3, T = 102)  Int. 2 = PLA (n = 11, T = 372) 

 51.6 %  37.9 %  10.5 %   8.8 %  22.6 %  68.6 %   26.1 %  41.4 %  32.5 % 

Int. 2 = PLA & SkyD (n = 19, T = 645)  Int. 2 = PLA & SkyD (n = 18, T = 631 )  Int. 2 = PLA & SkyD (n = 12, T = 430) 

 18.5 %  45.1 %  36.4 %   32.5 %  31.7 %  35.8 %   27.2 %  35.4 %  37.4 % 

Note. Int. = Intervention, PLA= positive lifestyle advice, SkyD= skydiving. TB = T ‘Before Int. 1’, TA = T ‘After Int. 1. The state distributions of the observations in the first 

two phases (‘Before Int. 1’ and ‘After Int. 1) are presented per intervention type (3 subgroups). The distributions of the observations in the third phase are presented per 

combination of the first and second intervention (9 subgroups); e.g., the 22 participants who had no first intervention (‘Int. 1 = No Int.’) are divided across  ‘Int. 2 = No Int.’ , 

‘Int 2. = PLA’, ‘Int. 2 = PLA & SkyD’. 
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Appendix A 

 The model is estimated by means of the Expectation Maximization (EM; Dempster et al., 

1977) algorithm that uses the so-called complete-data loglikelihood (log 𝐿𝑐), i.e., assuming the 

state assignments of all time-points to be known and thus replacing the difficult maximization by 

a sequence of easier maximization problems. In the expectation step (E-step, see e.g., Bishop, 

2006; Dias, Vermunt, & Ramos, 2008), we assume the parameters of interest �̂� (i.e., transition 

probabilities, initial probabilities, and state-specific MMs) to be given (i.e., by a set of initial values 

or estimates from the previous iteration �̂�𝐨𝐥𝐝, see De Roover et al., 2017; Vermunt & Magidson, 

2016) and calculate the posterior probabilities (i.e., conditional on the data) to belong to each of 

the states and to make transitions between the states, by means of the forward-backward algorithm 

(Baum, Petrie, Soules, & Weiss, 1970). The obtained posterior probabilities are used as expected 

values of the state assignments to obtain the expected log 𝐿𝑐 (𝐸(log 𝐿𝑐)). Next, in the 

maximization step (M-step), the parameters �̂� are updated such that 𝐸(log 𝐿𝑐) is maximized. The 

E-step (Section A1) and M-step (Section A2) are iterated until convergence (Section A3). 

A1. E-step 

The log 𝐿𝑐 is given by: 

  

log 𝐿𝑐 = log (∏∏[𝜋𝑘
𝑠𝑖1𝑘∏∏𝑎𝑖𝑙𝑘

𝑠𝑖𝑡−1,𝑙 𝑠𝑖𝑡𝑘∏𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘)
𝑠𝑖𝑡𝑘

𝑇

𝑡=1

𝐾

𝑙=1

𝑇

𝑡=2

]

𝐾

𝑘=1

𝐼

𝑖=1

) 

=∑∑[𝑠𝑖1𝑘 log(𝜋𝑘) +∑∑𝑠𝑖𝑡−1,𝑙 𝑠𝑖𝑡𝑘 log(𝑎𝑖𝑙𝑘)

𝐾

𝑙=1

𝑇

𝑡=2

𝐾

𝑘=1

𝐼

𝑖=1

−
1

2
∑𝑠𝑖𝑡𝑘(𝐽 log(2𝜋 ) + log (|𝚺k|) + (𝐲𝑖𝑡 − 𝛎𝑘)𝚺k

−1(𝐲𝑖𝑡 − 𝛎𝑘)′)

𝑇

𝑡=1

] 

(A1) 
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Since the state memberships are in fact unknown, for each subject and time-point, the expected 

probability of being in a certain state 𝛾(𝑠𝑖𝑡𝑘) = 𝑝(𝑠𝑖𝑡𝑘| 𝐘𝑖) and the expected probability of the 

occurrence of two consecutive states 𝜀(𝑠𝑖𝑡−1,𝑙 𝑠𝑖𝑡𝑘) =  𝑝(𝑠𝑖𝑡−1,𝑙 𝑠𝑖𝑡𝑘|𝐘𝑖) are inserted, in order to 

obtain 𝐸(log 𝐿𝑐):  

 

𝐸(log 𝐿𝑐) =∑∑[𝛾(𝑠𝑖1𝑘) log(𝜋𝑘) +∑∑𝜀(𝑠𝑖𝑡−1,𝑙, 𝑠𝑖𝑡𝑘) log(𝑎𝑖𝑙𝑘)

𝐾

𝑙=1

𝑇

𝑡=2

𝐾

𝑘=1

𝐼

𝑖=1

−
1

2
∑𝛾(𝑠𝑖𝑡𝑘)(𝐽 log(2𝜋 ) + log (|𝚺𝑘|) + (𝒚𝑖𝑡 − 𝛎𝑘)𝜮𝑘

−1(𝒚𝑖𝑡 − 𝛎𝑘)′)

𝑇

𝑡=1

] . 

(A2) 

 

The E-step for a LMC is achieved with the forward-backward (or Baum-Welch) algorithm 

(Baum et al., 1970). The algorithm finds the posterior probabilities by making use of the chain rule 

and the first-order Markov assumption: The joint probability of being in state k at time-point t and 

observing the sequence of observations can be expressed as 

 𝑝(𝑠𝑖𝑡𝑘, 𝐘𝑖) = 𝑝(𝑠𝑖𝑡𝑘, 𝐲𝑖1, … , 𝐲𝑖𝑡)𝑝(𝐲𝑖𝑡+1, … , 𝐲𝑖𝑇|𝑠𝑖𝑡𝑘, 𝐲𝑖1, … , 𝐲𝑖𝑡 ). (A3) 

The first-order Markov assumption implies that we can remove the dependency of the observations 

at time-point t on all previous observations and let them depend only on the state at time-point t. 

Thus, the equation reduces to 

 𝑝(𝑠𝑖𝑡𝑘, 𝐘𝑖) = 𝑝(𝑠𝑖𝑡𝑘, 𝐲𝑖1, … , 𝐲𝑖𝑡)𝑝(𝐲𝑖𝑡+1, … , 𝐲𝑖𝑇|𝑠𝑖𝑡𝑘 ). (A4) 

The first factor 𝑝(𝑠𝑖𝑡𝑘, 𝐲𝑖1, … , 𝐲𝑖𝑡) refers to the forward probabilities and the second factor 

𝑝(𝐲𝑖𝑡+1, … , 𝐲𝑖𝑇|𝑠𝑖𝑡𝑘) corresponds to the backward probabilities. On the one hand, the forward 

probabilities, also indicated by 𝛼(𝑠𝑖𝑡𝑘), are the probabilities of observing 𝐲𝑖1:𝑡 and to end in state 

𝑠𝑖𝑡𝑘 and are calculated by the forward algorithm. First, the initial state probabilities are used to 

calculate the forward probabilities for subject i of being in state k at time-point 1: 

 𝛼(𝑠𝑖1𝑘) = 𝜋𝑘𝑝(𝐲𝑖1|𝑠𝑖1𝑘). (A5) 
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Then, for the consecutive measurement occasions, we weight the forward probabilities 𝛼(𝑠𝑖𝑡−1,𝑙) 

of the previous time-point by the corresponding transition probabilities. Next, we sum over all 

possible ways (i.e., transitions) to come to a specific 𝑠𝑖𝑡𝑘 from any 𝑠𝑖𝑡−1,𝑙 and multiply the values 

with the corresponding response probabilities: 

 

𝛼(𝑠𝑖𝑡𝑘) = 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘)∑𝛼(𝑠𝑖𝑡−1,𝑙)𝑎𝑖𝑙𝑘

𝐾

𝑙=1

 . (A6) 

On the other hand, the backward probabilities, also indicated by 𝛽(𝑠𝑖𝑡𝑘), are the probabilities to 

be in state 𝑠𝑖𝑡𝑘 and to generate the remaining sequence 𝐲𝑖𝑡+1:𝑇. Instead of starting at time-point 1, 

the so called backward algorithm starts at time-point T and backtracks to time-point t + 1. The 

probability for the backward algorithm to be in final state 𝑠𝑖𝑇𝑘 and, thus, to produce no outcome 

(∅) anymore is assumed to be 1: 

 𝛽(𝑠𝑖𝑇𝑘) = 𝑝(∅|𝑠𝑖𝑇𝑘) = 1. (A7) 

Henceforth, the backward probabilities can be determined in a similar way as the forward 

probabilities. However, as we go backwards here, we now need to consider the response 

probabilities of all K states at time-point 𝑡 + 1, multiplying them with the backward probabilities 

𝛽(𝑠𝑖𝑡+1,𝑙) and the respective transition probabilities, prior to summing over K: 

 

𝛽(𝑠𝑖𝑡𝑘) =∑𝛽(𝑠𝑖𝑡+1,𝑙)𝑝(𝐲𝑖𝑡+1|𝑠𝑖𝑡+1,𝑙)

𝐾

𝑙=1

𝑎𝑖𝑙𝑘. (A8) 

Next, 𝑝(𝑠𝑖𝑡𝑘, 𝐘𝑖) (Equation A4) is calculated by multiplying the forward and the backward 

probabilities: 

 𝑝(𝑠𝑖𝑡𝑘, 𝐘𝑖) = 𝛼(𝑠𝑖𝑡𝑘) 𝛽(𝑠𝑖𝑡𝑘) (A9) 

Subsequently, we can calculate the conditional probability of being in state 𝑠𝑖𝑡𝑘 given the sequence 

of observations, as we know that: 
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 𝑝(𝑠𝑖𝑡𝑘, 𝐘𝑖) = 𝑝(𝑠𝑖𝑡𝑘| 𝐘𝑖) 𝑝(𝐘𝑖) (A10) 

By inserting this into Equation A9, we obtain 

 𝑝(𝑠𝑖𝑡𝑘| 𝐘𝑖)𝑝(𝐘𝑖) = 𝛼(𝑠𝑖𝑡𝑘) 𝛽(𝑠𝑖𝑡𝑘). (A11) 

It follows that the conditional state probability is equal to 

 
𝑝(𝑠𝑖𝑡𝑘| 𝐘𝑖) =

𝛼(𝑠𝑖𝑡𝑘) 𝛽(𝑠𝑖𝑡𝑘)

𝑝(𝐘𝑖)
= 𝛾(𝑠𝑖𝑡𝑘). 

(A12) 

The denominator can be calculated by marginalizing Equation A9 to 𝑝(𝐘𝑖) by summing over the 

latent states for an arbitrarily chosen t:  

 

𝑝(𝐘𝑖) = ∑𝛼(𝑠𝑖𝑡𝑘) 𝛽(𝑠𝑖𝑡𝑘),

𝐾

𝑘=1

 

(A13) 

which is in its simplest form for t = T, where 𝛽(𝑠𝑖𝑇𝑘) = 1. Thus, the equation reduces to 

 

𝑝(𝐘𝑖) = ∑𝛼(𝑠𝑖𝑇𝑘)

𝐾

𝑘=1

. 
(A14) 

Finally, we can calculate the joint probability of two successive states by applying Bayes’ theorem: 

 
𝑝(𝑠𝑖𝑡−1,𝑙, 𝑠𝑖𝑡𝑘|𝐘𝑖) =

𝑝(𝐘𝑖|𝑠𝑖𝑡−1,𝑙, 𝑠𝑖𝑡𝑘) 𝑝(𝑠𝑖𝑡−1,𝑙, 𝑠𝑖𝑡𝑘)

𝑝(𝐘𝑖)

=
𝛼(𝑠𝑖𝑡−1,𝑙) 𝑝(𝐲𝑖𝑡|𝑠𝑖𝑡𝑘) 𝑎𝑖𝑙𝑘 𝛽(𝑠𝑖𝑡𝑘)

∑ 𝛼(𝑠𝑖𝑇𝑘)
𝐾
𝑘=1

= 𝜀(𝑠𝑖𝑡−1,𝑙, 𝑠𝑖𝑡𝑘) 

(A15) 

A2. M-step 

In the M-step, we maximize 𝐸(log 𝐿𝑐) with respect to �̂�. To maximize, we set the derivatives with 

respect to the parameters to zero, making use of Lagrange multipliers whenever a constraint, such 

as  ∑ 𝜋𝑘 = 1
𝐾
𝑘=1 , needs to be satisfied. The resulting updates are: 

 
π𝑘
𝑛𝑒𝑤 =

∑ 𝛾(𝑠𝑖1𝑘)
𝐼
𝑖=1

∑ ∑ 𝛾(𝑠𝑖1𝑘)
𝐼
𝑖=1

𝐾
𝑘=1

 
(A16) 
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𝑎𝑖𝑙𝑘
𝑛𝑒𝑤 =

∑ 𝜀(𝑠𝑖𝑡−1,𝑙, 𝑠𝑖𝑡𝑘)
𝑇
𝑡=2

∑ ∑ 𝜀(𝑠𝑖𝑡−1,𝑙, 𝑠𝑖𝑡𝑘)
𝑇
𝑡=2

𝐾
𝑘=1

 
(A17) 

 
𝛎𝑘
𝑛𝑒𝑤 =

∑ ∑ 𝛾(𝑠𝑖𝑡𝑘)𝒚𝑖𝑡
𝑇
𝑡=1

𝐼
𝑖=1

∑ ∑ 𝛾(𝑠𝑖𝑡𝑘)
𝑇
𝑡=1

𝐼
𝑖=1

 
(A18) 

The factor models for the state-specific covariance matrices 𝚺𝑘
𝑛𝑒𝑤 = 𝚲𝑘

𝑛𝑒𝑤𝚲𝑘
𝑛𝑒𝑤 + 𝐃𝑘

𝑛𝑒𝑤 are 

estimated by another maximization algorithm within each M-step. Specifically, each observation 

is weighted by the corresponding 𝛾(𝑠𝑖𝑡𝑘)-value, resulting in K weighted data sets 𝐘𝑘. Fisher 

scoring (Lee & Jennrich, 1979; Vermunt & Magidson, 2016) is used to perform factor analysis on 

these weighted data.  

A3.  Convergence 

The convergence can be evaluated either with respect to the log 𝐿 or with respect to the 

parameter estimates. LG applies the latter approach and assesses convergence by computing the 

following quantity: 

 

𝛿 =∑|
𝜃𝑟
𝑣 − 𝜃𝑟

𝑣−1

𝜃𝑟
𝑣−1

|

𝑅

𝑟=1

, 
(A19) 

which is the sum of the absolute values of the relative parameter changes where 𝑟 = 1,… , 𝑅 refers 

to the parameters. In this paper, the stopping criterion is 𝛿 < 1 ×  10−8. The estimation also stops 

if the change in the log 𝐿 becomes smaller than 1 ×  10−10 prior to reaching the stopping criterion 

above.  

Appendix B 

//LG5.1// 

version = 5.1 

infile 'Sim1.csv' quote = single 

 

 

model 

options 
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   algorithm 

      tolerance=1e-008 emtolerance=1e-008 emiterations=3000 nriterations=0; 

   startvalues 

      seed=0 sets=25 tolerance=1e-005 iterations=100 PCA; 

   bayes latent=0; 

montecarlo 

   seed=0 replicates=500 tolerance=1e-008; 

quadrature nodes=10; 

   missing  includeall; 

//classification added to output 

  output 

      profile parameters standarderrors estimatedvalues classification probmeans iterationdetails  

      WriteParameters = 'results_parameters.csv' 

      write = 'results.csv' 

      writeloadings='results_loadings.txt'; 

  outfile  

      'classification.csv' classification; 

       

 variables 

  caseid id; 

  dependent  

   V1 continuous, V2 continuous, V3 continuous, V4 continuous, V5 continuous, V6 continuous, V7 

continuous, V8 continuous, V9 continuous, V10 continuous, V11 continuous, V12 continuous, V13 

continuous, V14 continuous, V15 continuous, V16 continuous, V17 continuous, V18 continuous, V19 

continuous, V20 continuous; 

 latent 

   State nominal dynamic coding=first 2, 

   F1 continuous dynamic, 

   F2 continuous dynamic; 

   independent id nominal; 

equations 

// factor variances 

  (1) F1| State; 

  (1) F2| State; 

// Markov model  

   State[=0] <- 1 ; 

   State <- (~tra) 1 | State[-1] id; 

//dependent variables determined by state specific Factors  

  V1-V20 <- 1 | State + F1 | State + F2 | State; 

//Unique variances 

  V1-V20 | State; 

end model 

 

 

Appendix C 

C1.  Problem of the Additional Simulation Study 
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To test whether lag-one autocorrelations of factors not captured by the within-state EFA 

analyses  harm the performance of LMFA, we manipulated factors (a) to (g) as in the main 

simulation study , leaving out the levels with an already inferior performance, and added an eighth 

factor (h) specifying the autocorrelation. 

C2.  Design and Procedure 

We crossed eight factors in a complete factorial design13: 

a. number of factors per state Fk at two levels: 2, 4; 

b. number of states 𝐾 at three levels: 2, 4*; 

c. between state difference at two levels:  

medium loading difference & low intercept difference,  

medium loading difference & medium intercept difference*; 

d. unique variance 𝑒 : fixed at .2, .4 ; 

e. frequency of transitions between the states at two levels: frequent, infrequent*; 

f. number of subjects 𝑁 at three levels: 2, 10*; 

g. number of observations per subject per state 𝑇𝑖𝑘 at three levels: 50, 100, 200; 

h. autocorrelation 𝜙 at three levels: 0, .3, .7* 

The data was generated by means of the orthogonal dynamic factor model which implies that, 

at time-point t, the factors are uncorrelated with one another but a factor’s scores at time-point t 

are dependent on its scores at time-point t-1. Specifically, they are auto-correlated by the 

coefficient 𝜙  as follows: 

 𝐲𝑖𝑡 = 𝛎𝑘 + 𝚲𝑘 𝐟𝑖𝑡 + 𝐞𝑖𝑡 

𝐟𝑖𝑡 = 𝜙𝐟𝑖𝑡−1 + 𝛆𝑖𝑡, 
(C1) 

where 𝜺𝑖𝑡 is a subject-specific Fk × 1 vector of noise at time-point t which is assumed to be 

multivariate normally distributed with zero mean and the identity matrix as covariance matrix 

(~𝑀𝑉𝑁(0; 𝐼)). Thus, to generate the subject-specific datasets 𝐘𝑖, first, the 𝐞𝑖𝑡 and 𝛆𝑖𝑡 vectors were 

sampled for each observation. Subsequently, we created the autocorrelated factor score vectors 𝐟𝑖𝑡 

by applying a recursive filter (Hamilton, 1994). This filter sets the first noise element as the first 

                                                
13 The conditions marked by “*” are the ones that now have less levels than in simulation study 1. 
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factor score and computes the remaining factor scores as in Equation C1. The resulting factor 

scores were multiplied by √1 − 𝜙2 to retain an expected variance of 1 (De Roover et al., 2014). 

Finally, the datasets 𝐘𝑖 were again merged into one data matrix 𝐘 . Note that, for the strength of 

the autocorrelation (h), we used the values suggested by Cabrieto, Tuerlinckx, Kuppens, 

Grassmann and Ceulemans (2016). To check how the manipulation played out, we calculated the 

average autocorrelation across the datasets for each of the three conditions: they amounted to .05, 

.29 and .68. 

For each cell of the factorial design, 20 data matrices 𝐘 were generated as described above. In 

total 2 (number of states) × 2 (number of factors) × 2 (between-state difference) × 2 (transition 

frequency between states) × 2 (number of subjects) × 3 (number of observations per subject and 

state) × 2 (unique variance) × 3 (autocorrelation) × 20 (replicates) = 5760 simulated data matrices 

were generated. As in Simulation Study 1, the data was generated in R and analyzed in LG with 

the same settings and the correct number of states and factors per state. 

C3. Results    

In general, the recovery was largely unaffected by the autocorrelation conditions (h). 

Specifically, the recovery of the transition matrices and unique variances was not affected − 

MADtrans = .05 and MADuniq = .03 for 𝜙 = 0,𝜙 = .3, 𝜙 = .7 − whereas the recovery of the states, 

loadings and intercepts was only slightly affected − 𝐴𝑅𝐼 = .91 for 𝜙 = 0  𝑎𝑛𝑑 𝜙 = .3  and . 90 

for 𝜙 = .7; 𝐺𝑂𝑆𝐿 = .99 for 𝜙 = 0, 𝜙 = .3  and . 98 for 𝜙 = .7; 𝑀𝐴𝐷𝑖𝑛𝑡 = .07 for 𝜙 = 0, .08 for 

𝜙 = .3  and  .11 for 𝜙 = .7. Note that the mild decrease in intercept recovery with an increased 

autocorrelation is merely a consequence of the higher variance of the estimated intercepts, since 

they capture part of the autocorrelation and thus vary more around the population values.  

 


