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Abstract

Standard latent class modeling has recently been shown to provide a flexible tool for

the multiple imputation (MI) of missing categorical data in cross-sectional studies. This

article introduces an analogous tool for longitudinal studies: MI using Bayesian mixture

Latent Markov (BMLM) models. Besides retaining the benefits of latent class models,

i.e., respecting the (categorical) measurement scale of the variables and preserving possi-

bly complex relationships between variables within a measurement occasion, the Markov

dependence structure of the proposed BMLM model allows capturing lagged dependencies

between adjacent time points, while the time-constant mixture structure allows capturing

dependencies across all time points, as well as retrieving associations between time-varying

and time-constant variables. The performance of the BMLM model for MI is evaluated by

means of a simulation study and an empirical experiment, in which it is compared with

complete case analysis and MICE. Results show good performance of the proposed method

in retrieving the parameters of the analysis model. In contrast, competing methods could

provide correct estimates only for some aspects of the data.

Keywords: Bayesian mixture latent Markov models, missing data, longitudinal analysis, multiple im-

putation.
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1 Introduction

Sociological, psychological and medical research studies are often performed by means of longitudinal

designs, and with variables measured on a categorical scale. An example is the LISS (Longitudinal

Internet Studies for the Social Sciences) panel study consisting of periodically administered internet

surveys by CentERData (Tilburg University, The Netherlands) to a representative sample of the Dutch

population, and covering a broad range of topics such as health, religion, work, and the like.

Different from cross-sectional studies, missing data in longitudinal studies may not only concern

partial missingness within a single measurement occasion, but may also take the form of complete

missing information for certain occasions as a result of missing visits (or complete missingness) or

subjects dropping out from the study.1 It is well known that the presence of missing data can cause

biased or inaccurate inferences, as well as loss of power, if it is not cautiously handled either before

or during the actual statistical analysis. Multiple Imputation (MI) is a method developed by Rubin

(1987) which allows separating the missing data handling from the substantive analyses of interest, and

moreover takes the additional uncertainty resulting from the missing values into account. Assuming that

data are missing at random (MAR)2, in MI the missing values in a dataset are replaced with M > 1

sets of values sampled from the distribution of the missing data given the observed data, Pr(ymis|yobs).

In order to be able to do this, we have to build an imputation model. The substantive model of interest

is then estimated on each of the M completed datasets, where the M sets of estimates can be pooled

through the rules provided by Rubin (1987).

When imputing missing longitudinal data, the imputation model must fulfill several requirements in

order to produce valid imputations. In particular, an imputation model for longitudinal analysis should:

1. capture dependencies among variables within measurement occasions;

2. capture overall dependencies between time points resulting from the fact that individuals differ

from one another in a systematic way;

3. capture potential stronger relationships between adjacent time points;

4. automatically (i.e., without explicit specification) capture complex relationships in the data, such

as higher-order interactions and non-linear associations;

5. respect the measurement scale of the variables (continuous/categorical).

1In the first case (missing visits), subjects fail or refuse to provide information for all variables at one or
more time occasions. In the second case (drop-out), a subject stops providing information for all variables from a
specific time point until the end of the study. Even though this paper generally deals with partial missingness, we
will also test the performance of the BMLM model for MI in presence of missing visits by means of a simulation
study and an empirical experiment. In the latter, few cases of drop-out are also present in the dataset.

2That is, the probability of missingness depends exclusively on the observed data.
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In particular, requirement 4 is motivated by the fact that the imputed datasets could be re-used

for several types of analyses, in which different aspects of the data need to be taken into account. An

imputation model that can automatically describe all the relevant associations of the data provides

datasets that can be re-used in different contexts. Conversely, if an imputation model requires explicit

specification of interaction terms and other complex relationships, the imputed datasets are likely to be

tailored only for some specific analyses, and the imputation step should be re-performed according to the

particular problem under investigation. Furthermore, specifying all the complex interactions that might

arise in a dataset can be a difficult and tedious task (Vermunt, Van Ginkel, Van der Ark, & Sijtsma,

2008).

While for longitudinal continuous data the joint-modeling approach with the multivariate normal

model (Schafer, 1997) and the full conditional specification with the MICE technique (Van Buuren &

Oudshoorn, 1999; Van Buuren & Groothuis-Oudshoorn, 2000) have been proposed and evaluated in

the literature (Romaniuk, Patton, & Carling, 2014), for categorical data the problem has not yet been

settled.

One possible approach is implementing MICE with generalized linear models using a logistic link

function after converting the data from long to wide format.3 In such a way, relationships among the

variables at different time points can correctly be captured by MICE and reproduced in the imputations

(Allison, 2009; White, Royston, & Wood, 2011). Despite the advantages and the ease of implementation

of the method, MICE is not always guaranteed to work. In the first place, notwithstanding its good

performances in simulation studies, convergence to the true distribution of the missing data is not

ensured, since the method lacks of theoretical and statistical foundation (Vermunt et al., 2008). Second,

conversion from long to wide format causes the number of variables to be imputed (and to be used as

predictors) to grow linearly with the number of time points T , slowing down computations and requiring

regularization techniques if the sample size is small. Lastly, by default MICE only includes linear main

effects into the imputation model, necessitating explicit specification of more complex relationships when

those are needed in the analysis model, and thus failing to meet requirement 4 above.

An alternative solution for categorical data is represented by mixture or latent class (LC) models

(Lazarsfeld, 1950), proposed and shown to provide good results as imputation models by Vermunt et

al. (2008). Mixture modeling allows for flexible joint-density estimation of the categorical variables in

the dataset, and requires only the specification of the number of LCs K. When K is set large enough,

the model can automatically capture the relevant associations of the joint distribution of the variables

(McLachlan & Peel, 2000; Vermunt et al., 2008), achieving requirement 4. However, standard LC models

3That is, converting the dataset in such a way that the different time points (the single rows of the dataset in
the long format) become columns in the wide format. In this way, each row in the wide format corresponds to a
single unit of analysis.
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are better suited for cross-sectional datasets, because they do not account for the longitudinal architecture

of the data, and, accordingly, do not satisfy requirement 3 above.

A natural extension of the LC model to longitudinal categorical data, which in addition accounts

for unobserved heterogeneity between units, is represented by the mixture Latent Markov (MLM) model

(Vermunt, 2010). With the MLM model subjects are clustered at two levels. At the higher level, a time-

constant LC variable groups the units with similar time-varying patterns with each other, meeting in this

way requirement 2. At the within-subject level, dynamic latent states (LSs; i.e., LCs that can vary over

time) are specified for each time point, and -with the first-order Markov assumption- the LS distribution

at time t depends only on the LS occupied at time t − 1. From a MI point of view, the dynamic LSs

help accounting for stronger dependencies across adjacent time points, satisfying requirement 3 above.

Furthermore, the distribution of the observed variables at a specific time point depends not only on the

time-constant LCs but also on the dynamic LSs, allowing to take dependencies within time points into

account, thus meeting requirements 1 and 4. Lastly, the model respects the data scale (requirement 5) by

assuming Multinomial distributions for all variables in the measurement model. As a further advantage,

the MLM model can produce imputations also for time-constant variables with missing values, when

present in the dataset at hand.

In this article, we investigate the performance of MLM modeling as a MI tool for missing categorical

longitudinal data. The model is implemented under a Bayesian paradigm. The choice of Bayesian

modeling in MI is mainly motivated by two arguments: (a) it naturally yields the posterior distribution

of the missing data given the observed data; and (b) it automatically takes into account the variability

of the imputation model parameter, yielding proper imputations (Schafer & Graham, 2002).

The outline of the paper is as follows. In Section 2, the model is formally introduced, and the model

selection issue is addressed. Sections 3 and 4 describe a simulation and an empirical study evaluating

the performance of the Bayesian MLM (BMLM) imputation model. The authors provide final remarks

in Section 5.

2 The Bayesian mixture Latent Markov Model for Multiple Im-

putation

Bayesian estimation of the MLM model requires defining the exact data generating model, such as

the number of classes for the mixture part and the number of states for the latent Markov chain, as

well as the prior distribution of the model parameters. This allows obtaining Pr(θ|yobs), the pos-

terior distribution of the unknown model parameters given the observed data yobs. In MI, the M

sets of imputations are obtained from the posterior predictive distribution of the missing data, i.e.
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Pr(ymis|yobs) =
∫

Pr(ymis|θ) Pr(θ|yobs)dθ. To achieve this, M parameter values θ(m) (m = 1, ...,M)

are first sampled from Pr(θ|yobs), and subsequently the imputations are drawn from Pr(ymis|θ(m)).

2.1 Data generating model and prior distribution

We will assume fixed measurement occasions t (t = 1, ..., T ) over all subjects and variables. For the

i-th unit (i = 1, ..., n), yitj indicates the value observed for the j-th time-varying categorical variable

(j = 1, ..., J) at time t, with yitj ∈ {1, ..., r, ..., Rj} (therefore Rj represents the number of categories

for the j-th variable). The J-dimensional vector of observed values for unit i at time t is denoted by

yit = rt, where r represents a generic pattern, and yi = r∗ is the vector of responses at all time points

for unit i.

Often, also time-constant variables (such as the subject’s gender) are present in the dataset. When

this is the case, zip is used to denote the value on the p-th (p = 1, ..., P ) time-constant variable observed

for unit i. Here zip ∈ {1, ..., u, ..., Up} and the P -dimensional time-constant pattern observed for i is

given by zi = u.

The MLM describes the joint distribution of the data Pr(zi,yi) by introducing two types of cate-

gorical latent variables: a time-constant LC variable w (w ∈ {1, ..., l, ..., L}) and a sequence of dynamic

LSs s1, s2, ..., st, ..., sT |w = l (st ∈ {1, ..., k, ...,K} ∀ t). For the first-order Markov assumption, the

distribution of the LSs at time t is dependent on the past only through state at time t − 1, that is

Pr(st|st−1, ..., s1, w = l) = Pr(st|st−1, w = l). Furthermore, the model assumes local independence for

the distribution of both time-constant and time-varying variables conditioned on the latent variables:

Pr(yit = rt|st = k,w = l) =
∏
j Pr(yitj = r|st = k,w = l) and Pr(zi = u|w = l) =

∏
p Pr(zip = u|w = l).

The MLM model is composed of four parts:

• the latent class probabilities for the time-constant latent clusters, expressed by Pr(w = l) = ωl ∀ l;

• the latent states probabilities, which represent the distribution of the LSs at each time point; these

are given by:

– the initial state probabilities, which describe the distribution of the latent states at time t = 1,

and denoted by Pr(s1 = κ|w = l) = νκl ∀ κ, l;

– the transition probabilities, the probabilities for a unit to switch from state st−1|w = l to

state st|w = l (t = 2, ..., T ), and indicated with Pr(st = k|st−1 = q, w = l) = ξq,k(t)l;

• the conditional response probabilities of the time-constant variables given the LC w, denoted with

Pr(zip = u|w = l) = λupl for the p-th variable and Pr(zi = u|w = l) = Λul for the whole pattern:

under local independence, Λul =
∏
p λupl;
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Figure 1: MLM model, graphical representation. w: time-constant latent class variable; z:
time-constant variables; s: dynamic latent variable; y: time-varying variables.

• the emission probabilities, which define the probability of the time-varying variables conditioned on

the LC w and the LS at time t: Pr(yitj = r|st = k,w = l) = φrtjkl, and -for the local independence-

Pr(yit = rt|st = k,w = l) = Φrtkl =
∏
j φrtjk.

Given the model components above, the MLM model describes the probability of the observed

variables as

Pr(zi = u,yi = r∗) =
∑
l

ωlΛulπr∗l (1)

where, at the within-subject level,

πr∗l = Pr(yi = r∗|w = l) =
∑

s1,...,sT

νκlΦr1kl

∏
t>1

ξq,k(t)lΦrtkl. (2)

Figure 1 represents the path diagram of the data generating model. The picture stresses the double

task executed by the subject-level mixture component w: capturing dependencies among the time con-

stant variables and overall dependencies between all time points. Figure 1 also shows how the LS st at

time t affects the distribution of both st+1 and yit, capturing dependencies between variables within time

point t (by means of the emission probabilities) as well as relationships between adjacent time points

(by means of the transition probabilities). With such a model configuration, requirement 2 of Section

1 is satisfied with the time-constant latent variable w, while requirements 1 and 3 are met by means of

the latent Markov structure assumed upon the time-varying variables.

Importantly, the model can also be implemented in absence of the time-constant variables, which
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involves dropping the term Λul from equation (1) and the nodes representing the time-constant variables

zi1, ..., ziP from Figure 1.

The transition probabilities ξq,k(t)l are stored in T K × K squared matrices Xt
l ∀ t ≥ 2. Xt

l is a

stochastic matrix, the rows of which must sum to 1: an entry in row q and column k of the matrix

represents the probability for a unit to switch from state q at time t − 1 to state k at time t. The q-th

row of Xt
l will be denoted by ξtql.

In order to improve class identification, and to reduce the computational burden during the estimation

step, we will assume homogeneous transition and emission probabilities across time points: ξq,k(t)l =

ξq,k(h)l ∀ t 6= h and t, h ≥ 2 and φrtjkl = φrhjkl, which entails Φrtk = Φrhk ∀ t 6= h and t, h ≥ 1. Thus, the

time-identifier subscript will be dropped from the transition and emission probabilities in the remainder

of this article, i.e., ξq,k(t)l = ξq,kl,X
t
l = Xl and ξtql = ξql∀ t ≥ 2, and φrtjk = φrjk,Φrtk = Φrk ∀ t ≥ 1.

For the Bayesian specification of the model, distributional assumptions must be made for all variables

and parameters in model (1)-(2). Since all (latent and observed) variables in the model are categorical,

a Multinomial distribution will be adopted for each of them. Formally:

• w ∼Multinomial(ω), with ω the latent weights vector (ω1, ..., ωL);

• zip|w = l ∼Multinomial(λpl), with λpl = (λ1pl, ..., λUppl) ∀ p, l;

• s1|w = l ∼Multinomial(νl), where νl is the initial state probabilities vector (ν1l, ..., νKl) ∀ l;

• st|st−1 = q, w = l ∼Multinomial(ξql) ∀ t > 1, l;

• yitj |st = k,w = l ∼Multinomial(φjkl), with φjkl the probability vector (φ1jkl, ..., φrjkl, ..., φRjjkl)

∀ j, k, l.

We denote by θ the whole parameter vector, i.e. θ = (ω,λ11, ...,λPL,ν1, ...,νL,X1, ...,XL,φ111, ...,

φJKL). The conjugate of the Multinomial is the Dirichlet distribution. Hence we will set:

• ω ∼ Dirichlet(η), with η = (η1, ..., ηL), ηl > 0 ∀ l;

• λpl ∼ Dirichlet(ζpl), with ζpl = (ζ1pl, ..., ζUppl) and ζupl > 0 ∀ u, p, l.

• νl ∼ Dirichlet(α), with α = (α1, ..., αK), ακ > 0 ∀ κ, l;

• ξql ∼ Dirichlet(γ), with γ = (γ1, ..., γK), γk > 0 ∀ k, l;

• φjkl ∼ Dirichlet(δjk), with δjk = (δ1jk, ..., δRjjk), δrjk > 0 ∀r, j, k, l .

η, ζpl,α,γ and δjk are called hyperparameters of the model. Appendix A gives some guidelines about

how to set the priors for MI purposes.
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2.2 Model Selection

In MI the imputation model parameters need not be interpreted, and performing imputations with a

model that takes into account sample-specific aspects (i.e., a model that overfit the data) is of little

concern here (Vermunt et al., 2008). Much more problematic is performing imputations with models

that disregard important associations in the data (i.e., models that underfit the data).

Overfitting the data with the BMLM model, and with mixture models in general, means that a

number of LCs and LSs (L and K) has been selected for the imputations that is larger than what is

needed for the data. When this happens, the BMLM model can carefully capture all relevant associations

among the variables as well as sample-specific fluctuations, similar to log-linear imputation models that

include non-significant terms (Vermunt et al., 2008). Therefore, to perform imputations a large L and a

large K can be chosen. However, it is not always clear whether the selected number of LCs/LSs is large

enough; at the same time, too large values might unnecessarily slow down computations, specially with

large datasets.

Bayesian modeling offers a simple solution to detect the number of LSs to be used in the imputation

model. The method is described by Gelman, Carlin, Stern, and Rubin (2013), chapter 22 for standard

mixture models (i.e., for T = 1). Their method consists of preliminarily processing the data by estimating

a LC model (by means of the Gibbs sampler) with an arbitrarily large number of classes (K = K∗) and

prior distributions for the latent variable parameter that favor the occurrence of empty components (e.g.,

with αk = 1/K∗ ∀ k) during the iterations of the Gibbs sampler. Counting the number of latent clusters

(at each time point) occupied by the units during every iteration leads to a probability distribution

for K once the Gibbs sampler is terminated. Gelman et al. (2013), who developed the method for

substantive analysis, suggested to use the posterior mode of such distributions to perform inference and

obtain interpretable classes. For MI purposes, Vidotto, Vermunt, and van Deun (2018) proposed using

the posterior maximum of the resulting posterior distribution.4 Once K has been chosen, the mixture

model can be re-run (with prior distributions set as described in Appendix A) and the imputations can

then be performed.

For the BMLM model (case T > 1), Gelman et al. (2013)’s method (modified for this kind of model)

can be used to determine both L and K (as shown in the simulation study of Section 3 and in the

application of Section 4), by setting arbitrarily large values for the number of latent classes and states

(L = L∗ and K = K∗) when running the preliminary Gibbs sampler, and hyperparameters for the latent

classes proportions and transition probabilities equal to ηl = 1/L∗ ∀ l and αk = γk = 1/K∗ ∀ k. The

number of clusters to be used for the mixture components can then be chosen to be equal to the posterior

maximum of the resulting distribution for L. The number of latent states can be chosen to be the largest

4That is, the largest K̄ such that Pr(K = K̄) > 0.
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among the L posterior maxima observed across time points (chosen, for each l, to be the smallest across

t) . That is, we would first consider for each latent cluster l = 1, ..., L the smallest posterior maxima of

the number of latent states occupied across the various time points, and subsequently we would choose

K as the maximum of the resulting L-dimensional vector. We opt for the smallest posterior maxima

across time points, rather than for the largest ones, in order not to incur into the risk of leaving some of

the latent states empty during the imputation stage, which could make the Gibbs sampler unstable, as

explained in Appendix A.

2.3 Model Estimation and Imputation Step

In presence of the latent variable w and the dynamic states s1, ..., sT , model estimation occurs through

Gibbs sampling with Data Augmentation scheme5 (Geman & Geman, 1984; Tanner & Wong, 1987).

Appendix B reports the Gibbs sampler (Algorithm 1) used to estimate model (1)-(2). For MI,

model estimation is performed only on zobs,yobs, as in Vermunt et al. (2008). During one iteration,

units are first allocated to the time-constant classes according to the posterior membership probabilities

Pr(w|θ, zi,yi) and then, conditioned on the sampled w, units are assigned to the states of the LM chain

at each time point. For each subject, the sequence s1, ..., sT is drawn via multi-move sampling (Chib,

1996; Fruhwirth-Schnatter, 2006) through their posterior distribution Pr(s1, ..., sT |w = l,θ,yobs). Multi-

move sampling requires to store the filtered state probabilities Pr(st|yit,θ) for each time point. How to

perform multi-move sampling and compute the filtered-state probabilities is reported in Algorithms 2

and 3 of Appendix B. After units have been allocated to the LSs, the model parameters are updated

using subsequent steps of Algorithm 1.

For each subject with missing values, M values of the LCs w and the LSs st (for any t in which the

subject provided one or more missing values) should be drawn, along with the conditional distribution

probabilities and emission probabilities corresponding to the variables with missing information. These

draws must be performed during M of the (post-burn in) Gibbs sampler iterations and should be as

spaced from each other as to resemble i.i.d. samples. The sampled values can then be used to perform

the imputations: ∀ zip ∈ zmis and yitj ∈ ymis,

Pr(zmisip |w(m) = l) ∼Multinomial(λ
(m)
pl )

and

Pr(ymisitj |s
(m)
t = l, w(m) = l) ∼Multinomial(φ

(m)
jkl )

for m = 1, ...,M .

5In Data Augmentation units are assigned to the LCs in a first step, and -accordingly- model parameters are
updated in the subsequent step. These two main steps are then iterated.
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3 Simulation Study

Performance of the BMLM imputation model was assessed by means of a simulation study, and compared

with the complete case (CC) analysis and MICE techniques. In the study we used four time-varying

and four time-constant variables, and we included missing visits (typical of multilevel analysis) to make

the parameter retrieval more challenging for the missing data routines. In both studies, analyses were

carried out with R version 3.3.0.

3.1 Set-up

Population Model. Four time-constant binary predictors Z1, ..., Z4 were generated from

logPr(Z1, Z2, Z3, Z4) ∝ 0.5
∑
p

Zp −
3∑
p=1

4∑
p′=p+1

ZpZp′ + 2.8Z1Z2Z3 (3)

For the time-varying variables, we started by defining the predictors of a potential substantive model

at time point t = 1. Therefore, we generated J = 3 binary variables Y11, Y12, Y13 with the log-linear

model:

logPr(Y11, Y12, Y13) ∝ −0.5
∑
j

Y1j +

2∑
j=1

3∑
j′=j+1

Y1jY1j′ − 0.5Y11Y12Y13. (4)

For t > 1, the binary predictors Yt1, Yt2 and Yt3 were generated through auto-regressive (AR) logistic

models

logit Pr(Ytj) = 0.5Y(t−1)j − 0.15
∑
j′ 6=j

Y(t−1)j′ , (5)

for j = 1, ..., 3 and ∀ t > 1. In this way we created predictors that are auto-correlated with each

other in time. After generating the 3 predictors, we created at each time point the outcome variable Yt4

through the AR logistic model

logitPr(Yt4) =



β0 + β1Yt1 + β2Yt2 + β3Yt3 + β12Yt1Yt2 + µ1Z1 + µ2Z2

+µ3Z3 + µ4Z4 if t = 1

β0 + β1Yt1 + β2Yt2 + β3Yt3 + β12Yt1Yt2 + µ1Z1 + µ2Z2

+µ3Z3 + µ4Z4 + ρY(t−1)4 + τY(t−1)3 if t > 1.

(6)

Table 1 shows the parameter values chosen for β0,...,β12, ρ, τ , and µ1, ..., µ4. These parameters were

chosen in order to assess how the missing data techniques could capture different aspects of the data:

• β0, β1, β2, β3, β12 were used to assess how the techniques recovered relationships among variables

at the same time point;
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Table 1: Values of the parameters in model (6).

Parameter β0 β1 β2 β3 β12 µ1 µ2 µ3 µ4 ρ τ

Value -0.8 0.6 -0.9 0.8 -1 0.3 -0.2 0.75 0.6 0.75 0.2

• ρ was used to assess how the models could recover auto-correlations in Y4 at lag-1;

• τ served to determine whether the models could recover crossed-lagged associations (between Y3

and Y4) at lag-1;

• µ1, ..., µ4 served to monitor how the missing data models could retrieve the relationships between

the time-varying outcome and the time-constant variables.

From the population model (3)-(4)-(5)-(6), we generated N = 200 datasets with n = 200 units and

T = 10 time points.

Generating missingness. MAR missingness was generated in Z1, Z2, Y1 and Y3. Defining Rp equal

to 1 when Zp was missing and 0 otherwise for p ∈ {1, 2}, and Rtj equal to 1 when Ytj was missing

(j ∈ {1, 3}) and 0 when Ytj was observed, missingness was created as follows. For the subject-level

variable Z1,

Pr(R1 = 1) =

 0.1 if Z3 = 0

0.3 if Z3 = 1,

while for Z2

Pr(R2 = 1) =

 0.15 if Z4 = 0

0.35 if Z4 = 1.

As far as the time-varying variables are concerned, the mechanisms were specified as follows. For

Yt1,

Pr(Rt1 = 1) =


0.30 if t = 1

0.35 if Y(t−1)4 = 0 and t > 1

0.25 if Y(t−1)4 = 1 and t > 1,

and for Yt3

Pr(Rt3 = 1) =

 0.45 if Yt2 = 0

0.20 if Yt2 = 1.

While for Yt3 missingness was fully MAR and dependent on present values of Yt2, for Yt1 the miss-

ingness mechanism depended on the time indicator t. In particular, at t = 1 missing values were entered

according to a MCAR mechanism. For t > 1, missingness in Yt1 was MAR with a probability depending
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on the value of Y(t−1)4. In such a way, we allowed the missingness mechanism to depend also on past

values.

Furthermore, we entered missing visits at each time point by removing for some units simultaneous

values of Yt1, Yt2, Yt3 and Yt4 with probability equal to 0.05 ∀ t. These mechanisms yielded about 35%

missing observations in Y1 and Y3 (across the whole dataset and for each time point), about 20% in Z1

and Z2, and about 5% in Y2 and Y4.

Missing data methods. After missingness was generated, we implemented three missing data tech-

niques on the dataset. The first one was CC analysis. The second was the BMLM imputation technique

presented in this article. For the selection of L and K, we used Gelman et al. (2013)’s method described

in Section 2.2. Running a preliminary Gibbs sampler for each dataset led to select an average number

of LCs equal to L = 7.76 and average number number of LSs equal to K = 10.54 (starting with L∗ = 10

and K∗ = 15, with 3000 iterations for the Gibbs sampler, of which 1000 used for the burn-in). Appendix

A reports how the prior distributions for the BMLM model were set. B = 3000 iterations were run

for the imputation step, including I = 1000 of burn-in. For each dataset, M = 20 imputations were

performed.

The third missing data technique was the MICE imputation method via logistic regression. For

MICE, the datasets were transformed from long to wide format. Notice that, in this case, MICE used

an imputation model with JT = 40 time-varying variables (plus the 4 time-constant ones). MICE was

implemented with its default settings and run for 20 iterations per imputation, with which M = 20

imputations were obtained.

Outcomes. Bias, stability (in terms of standard deviation of the produced estimates) and coverage

rates of the 95% confidence intervals of the parameters in model (6) were used in order to evaluate the

performance of each method.

3.2 Results

Results of the simulation study are shown in Table 2. The BMLM imputation method could, overall,

retrieve approximately unbiased parameter estimates not only for the predictors of the time-varying

variables, but also for the parameters of the time-constant variables, µ1, ..., µ4. CC analysis retrieved

unbiased parameter estimates for the main effects parameters of the time-varying variables (as well as

the main effects of the subject-specific variables), but retrieved biased intercept and lagged-relationships.

The MICE imputation technique could not pick up the estimates of the main and interaction effects of

time-varying variables (specially β1 and β12), but could recover unbiased lagged relationships (ρ and τ)

and parameters of the time-constant effects.

CC analysis produced the most unstable estimates among the three methods. Estimates yielded by
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Table 2: Simulation Study: results observed for the estimates of the AR logistic regression coefficients in model
(6) for three missing data methods: CC (complete case analysis), BMLM (Bayesian Mixture Latent Markov
model) imputation, MICE imputation. Large bias (in absolute value) and too low coverage rates are marked in
boldface.

Missing data method

Parameter CC BMLM MICE

Bias β0 = −0.80 0.36 0.10 0.18
β1 = 0.60 0.01 0.00 -0.19
β2 = −0.90 -0.02 0.00 -0.14
β3 = 0.80 0.01 -0.02 -0.10
β12 = −1 -0.03 0.00 0.33
µ1 = 0.30 0.03 -0.04 -0.03
µ2 = −0.20 -0.05 0.00 0.01
µ3 = 0.75 0.09 -0.01 -0.01
µ4 = 0.60 0.08 -0.02 -0.01
ρ = 0.75 -0.22 -0.05 -0.04
τ = 0.20 -0.24 -0.05 -0.01

Stability β0 = −0.80 0.30 0.18 0.18
β1 = 0.60 0.32 0.19 0.18
β2 = −0.90 0.28 0.16 0.15
β3 = 0.80 0.19 0.13 0.12
β12 = −1 0.40 0.25 0.23
µ1 = 0.30 0.20 0.12 0.12
µ2 = −0.20 0.20 0.12 0.12
µ3 = 0.75 0.20 0.11 0.11
µ4 = 0.60 0.23 0.13 0.13
ρ = 0.75 0.27 0.11 0.11
τ = 0.20 0.27 0.12 0.12

Coverage β0 = −0.80 0.76 0.92 0.84
Rate β1 = 0.60 0.96 0.94 0.84

β2 = −0.90 0.95 0.96 0.91
β3 = 0.80 0.94 0.94 0.90
β12 = −1 0.98 0.97 0.72
µ1 = 0.30 0.93 0.97 0.96
µ2 = −0.20 0.98 0.97 0.95
µ3 = 0.75 0.94 0.95 0.97
µ4 = 0.60 0.92 0.94 0.96
ρ = 0.75 0.88 0.94 0.92
τ = 0.20 0.82 0.96 0.94
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the BMLM technique and MICE had, overall, similar stability for all types of regression coefficients,

although the main and interaction effects of time-varying predictors produced by the BMLM model

tended to vary more. The BMLM method yielded confidence intervals that were mostly close to their

nominal level. MICE produced confidence intervals for the time-constant and lagged effects with coverage

rates rather close to their nominal level, but intervals with too low coverage for main and interaction

effects of the time-varying items. The confidence intervals computed after CC analysis were close to their

nominal coverage level, excluding the intervals of β0, ρ and τ , which resulted in a too low coverage.

4 Empirical Study

While in the previous section the parameters of the BMLM MI method was evaluated using simulated

datasets from constructed populations, in this section we focus on a real dataset. More specifically,

we make use of the associations as present in a real longitudinal dataset rather than specifying these

ourselves, and investigate whether these associations are retained when introducing missing values (in-

cluding missing visits) and imputing these using the BMLM model. For this application we create the

missing values in the dataset ourselves, in such a way to have a benchmark (the results obtained with

the complete data) for the estimates retrieved by the missing-data methods.

We used data collected by CentERData through their LISS panel, which consists of a (representative)

sample of Dutch individuals, who participate in monthly Internet surveys. Key topics surveyed once per

year include work, education, income, housing, time use, political views, values, and personality.6 For

our experiment, we selected the first 4 yearly waves (T = 4, from June 2008 until June 2011) of the

Housing questionnaire.

4.1 Study set-up

The data and the analysis model. The original datasets consisted of about a hundred variables (which

included survey-specific and background variables) and sample sizes that varied from wave to wave,

ranging from 4411 (Wave 3) to 5018 (Wave 4) cases. We merged the datasets coming from the four

surveys, retained only those units with complete information for all four waves, and selected only those

cases who were owners of the dwellings where they had residence (this was functional to the analysis

model we decided to estimate). This resulted in a dataset with sample size of n = 257 (and 1028 rows

in total for the four time points).

Next, using this dataset, we estimated a panel regression model with random intercept and auto-

regressive errors for the outcome variable ‘House Satisfaction’7; this variable is denoted by Yt0 in Table

6More information about the LISS panel can be found at www.lissdata.nl.
7The name of the variable was cd08a001 in the original dataset.
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Table 3: Real-data experiment: variables used in the panel regression model (7) (top part) and to generate
missingness (bottom part). Type of variables: TV = time-varying; TC = time-constant. R = respondent.

Variables for the analysis model

Variable ID Description Values (range)

Yt0 (TV) R.’s house satisfaction 1 Very unsatisfied; 4 Very satisfied
Yt1 (TV) R.’s vicinity satisfaction 1 Very unsatisfied; 4 Very satisfied
Yt2 (TV) R.’s opinion about the value of the dwelling 1 Low; 5 High
Yt3 (TV) Type of R.’s dwelling 1 Single family; 7 With shop or workplace
Yt4 (TV) The dwelling has damp walls or floors 0 No; 1 Yes
Yt5 (TV) Number of living-at-home children 0 = 0; 3 ≥ 3
Yt6 (TV) Personal net income 0 No income; 7 ≥ 3000 euros
Yt7 (TV) Paid service costs to associations of owners 1 Yes; 2 No
t (TV) Wave indicator 1 = 1st wave; 4 = 4th wave

Extra variables used to generate missingness

Variable ID Description Values (range)

Z1 (TC) R.’s gender 0 Female; 1 Male

3. Among the remaining variables, we detected 7 (time-varying) predictors (Yt1, ..., Yt7 in Table 3) that

were significant at the 5% level, yielding a total of J = 8 variables in the analysis model. Descriptions

of these variables, including the time indicator t, are given in Table 3 (top part). Some of these were

re-coded (transformed from continuous to categorical) and for others we collapsed some categories (so

that their frequencies were not too small).

The panel regression model we estimated was

Yit0 = β0 +

6∑
j=1

βjYitj + β16Yit1Yit6 + τ1Yi(t−1)1 + τ7Yi(t−1)7 + ui0 + εit (7)

where the random effects ui0 were assumed to be normally distributed:

ui0 ∼ N(0, σ2
1).

The errors εit were assumed to be the components of a Multivariate Normal, with auto-regressive (AR(1))

covariance structure:

εi ∼MVN




0

0

0

0


, σ2

2


1 ρ ρ2 ρ2

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1




.

The values of the model parameters β0, ...β6, β16, τ1, τ7, σ
2
1 , σ

2
2 , ρ estimated on the complete data are

reported in the first columns of Table 4 below, along with their standard errors. All predictor effects

were significant at 5% level as highlighted, except for Yt6, one of the variables yielding the significant
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interaction term β16.

Generating missingness. Apart from the variables Yt0, ..., Yt7, we used the time-constant variable

gender denoted with Z1 in Table 3, to generate MAR missingness in the variable Yt1 (Z1 was thus

also included in the imputation models as a time-constant variable). In particular, by denoting the

missingness of Yt1 with Rt1, we created missing values for Yt1 with the logistic model

logit Pr(Rt1 = 1) = −3 + 1.9Z1.

Furthermore, we entered MAR missingness in Yt2 - conditioned on Yt3 - with the logistic model

logit Pr(Rt2 = 1) = 2.5− 1.6Yt3,

where Rt2 is defined in a way similar to Rt1. The parameters of both logistic models were chosen in such

a way to obtain marginal missingness rates of about 20% for each of these two variabes.

Furthermore, we generated missing visits in the dataset; thus, for some units, we removed the

observations for all the time-varying variables Yt0, ..., Yt7 with increasing probability at each time point.

If RMV (t) is the indicator equal to 1 for those units with missing visits at time t and equal to 0 otherwise,

the mechanism we used was

logit Pr(RMV (t) = 1) = −4.5 + 0.55t,

which generated missing visits for about 1% of the cases at the first wave, and for about 9% of the cases

at the fourth wave.

Overall, all the time-varying variables had a marginal (i.e., across all time points) rate of missingness

equal to about 5%, except for Yt1 and Yt2, which had a marginal rate of missingness roughly equal to

25%.

Missing data methods. As done for Section 3, we compared the performance of three missing data

methods to retrieve the parameters of model 7: CC analysis, BMLM MI and MICE.

With CC analysis we estimated model 7 on the dataset with only complete observations, i.e., ex-

cluding all cases with missing data. This left a dataset with 591 rows, with sample sizes ranging from

n = 129 at wave four to n = 171 at wave one.

For the BMLM model, we performed model selection with Gelman et al. (2013) ’s method reported

in Section 2.2. We ran the preliminary Gibbs sampler with L∗ = 20 and K∗ = 20, and the same number

of iterations as the previous case. This led us to choose L = 18 and K = 9. In the subsequent step,

M = 50 imputations were performed during 50000 iterations (plus 10000 iterations for the burn-in).

Lastly, MICE was implemented with its default settings, and its algorithm was run for 50 iterations

for each of the M = 50 produced imputations.
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Table 4: Real-data experiment: results for the parameters in model 7. Est. = point estimate. S.E. = standard
error. 5% significant predictors are denoted with a ‘∗’ next to the point estimates obtained with each method.

Missing Data Method
Parameter Complete Data CC analysis BMLM MICE

Est. S.E. Est. S.E. Est. S.E. Est. S.E.
β0 0.86∗ 0.23 1.03∗ 0.30 0.99∗ 0.29 1.04∗ 0.27
β1 0.73∗ 0.08 0.67∗ 0.11 0.66∗ 0.10 0.65∗ 0.11
β2 0.12∗ 0.02 0.12∗ 0.03 0.09∗ 0.03 0.10∗ 0.03
β3 -0.05∗ 0.02 -0.06 0.03 -0.06∗ 0.03 -0.06∗ 0.03
β4 -0.52∗ 0.16 -0.49∗ 0.22 -0.48∗ 0.20 -0.40∗ 0.19
β5 -0.09∗ 0.03 -0.12∗ 0.04 -0.08∗ 0.04 -0.08 0.04
β6 0.07 0.04 0.03 0.06 0.11 0.05 0.07 0.05
β16 -0.05∗ 0.02 -0.03 0.02 -0.05∗ 0.02 -0.05∗ 0.02
τ1 0.11∗ 0.02 0.12∗ 0.03 0.11∗ 0.03 0.12∗ 0.03
τ7 -0.10∗ 0.03 -0.11∗ 0.05 -0.09∗ 0.04 -0.12∗ 0.04

σ21 0.19 - 0.20 - 0.21 - 0.21 -
σ22 0.25 - 0.26 - 0.28 - 0.30 -
ρ 0.13 - 0.07 - 0.11 - 0.10 -

Outcomes. We compared the results provided by each missing data method with the results observed

for the complete-data case. In particular, we focused on the point estimates of all parameters in model

7 as well as the standard errors for the fixed effects (β0, ..., τ7). We also examined which fixed effect

estimates were significant at a 5% level.

4.2 Results

The results are reported in Table 4. Both CC analysis and the two versions of the BMLM imputation

model retrieved point estimates of the fixed effects rather close to those of the complete-data analysis.

Exceptions for the CC analysis were the main effects β1 and β6 and the interaction term β16, which were

slightly different from the corresponding values obtained with the complete data. Some of the standard

errors yielded by CC analysis were inflated because of the limited sample size exploited by this method,

which made some parameter estimates no longer significant at the 5% level (in Table 4, some fixed effects

are no longer marked with a ‘*’). Conversely, despite a couple of values being slightly off (the intercept

β0 and the main effect β1), BMLM could exploit the original sample size, causing the standard errors to

be only slightly larger than those of complete-data analysis (reflecting in this way the imputation step

uncertainty). As a result, all parameters that were significant with the full data were also significant after

imputing the missing values with the BMLM model. The MICE method did not manage to recover well

all parameter estimates; for instance, the intercept β0 and the main effects β1 and β4 were (in a more

or less pronounced manner) far from the estimates of the complete-data condition, while the standard
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errors observed after imputing the data with MICE were close to the BMLM MI estimates. Nevertheless,

the parameter β5 which was significant with the complete data and the BMLM imputation method, was

no longer significant with the MICE.

Concerning the parameters of the random part of the models, all missing data techniques could

retrieve good estimates for the variances of the random effect σ2
1 , as well as the variance for residuals σ2

2 ,

although the latter was slightly overestimated by all imputation methods. The auto-regressive coefficient

ρ, on the other hand, was well retrieved by all MI techniques, and considerably underestimated by CC

analysis.

5 Discussion

We introduced the use of the BMLM model for the MI of missing categorical longitudinal data. With a

limited amount of model specification (only the number of time-constant clusters L and the number of

dynamic states K), the model is flexible enough to automatically recover relationships arising between

time-varying and time-constant variables, as well as lagged relationships and auto-correlations. Lastly,

the model reflects the correct (categorical) scale with which the variables are measured.

The performance of BMLM-based MI approach was evaluated and compared with other two missing

data methods, CC analysis and MICE, by means of a simulations studies and an empirical experiment.

In the simulation study, the analysis model used was a logistic model including an auto-regression term

and a crossed-lagged relationship coefficient, as well as main effects of time-constant predictors. Results

showed a good (overall) performance of the BMLM imputation model compared with the competing

methods, since it could retrieve (approximately) unbiased estimates for all types of parameters specified

in the substantive models, with coverage rates of the confidence intervals that were never too small

compared to their 95% nominal level. The good performance of the BMLM model showed that the

model can also cope with missing visits when these are present at any time point. Conversely, CC

analysis could not recover well the lagged relationships in terms of both bias and confidence intervals,

with coverage rates that were too low for their nominal level, while MICE provided biased time-varying

main and interaction effects, with corresponding confidence intervals that tended to be too narrow.

In the empirical experiment we estimated a panel regression model using data from the LISS panel.

The model included main and interaction fixed effects, along with crossed-lagged relationships and ran-

dom intercept. Furthermore, the distribution of the residuals was described by a variance and an auto-

correlation coefficient. We also included cases with missing visits in the LISS dataset as a further

challenge for the missing data methods. Results demonstrated the superiority of the BMLM model when

compared to competing methods; in particular, the same conclusions (i.e., the same terms were statisti-

cally significant) were drawn for the complete-data case and the BMLM imputation method. This did
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not happen with the CC and the MICE techniques, for which some terms were not significant anymore.

In addition, the BMLM method retrieved variance and error components close to the complete-data

analysis.

In the light of the results of the studies carried out in this article, we recommend the applied

researcher that needs to deal with missing longitudinal categorical data to consider the BMLM model

as a possible MI tool. However, some issues still need to be better analyzed in future research. For

instance, whereas in this article we aimed to introduce the use of the BMLM model for MI purposes,

some more extensive simulation experiments (in which the model is tested with different sample size and

missingness conditions, such as systematic drop-out) should be performed in future studies. In addition,

while we showed that our model can deal with MAR missing data, a version of the BMLM model for

missing not at random data (MNAR; i.e., the distribution of the missingness depends on the unobserved

data), which are likely to occur in longitudinal analysis, should be developed in future research.

Furthermore, the proposed imputation model itself can be extended in various useful ways. Firstly,

while we dealt with categorical (both ordinal and nominal) variables, the BMLM model can be extended

to accommodate mixed types of data, i.e., it can be implemented on datasets containing both categorical

and continuous variables. This can be achieved, for instance, by specifying mixtures of univariate Normal

and Multinomial distributions. Second, although we assumed the BMLM model to have a Markov chain

of order 1, it is possible to consider lags of higher orders by conditioning the distribution of the dynamic

LSs at time t on the configuration of the states at earlier time points, e.g. t−2, t−3, etc., if these kinds

of lags are needed in the substantive analysis. Third, when the measurement may occur at different

continuous time points rather than at fixed discrete occasions, imputations of the missing data can be

provided by assuming a continuous-time latent Markov chain for the distribution of the LSs. Last, for

applications in which the subjects observed across time are coming from different groups (e.g., patients

coming from different hospitals), the model can be moved towards a multilevel framework, for instance,

by adding a further LC variable at the group-level.
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Appendix A Setting the prior distribution

As outlined in Section 2.1, independent Dirichlet distributions can be specified for each Multinomial in

model (1)-(2). In a MI context, in which the imputation model does not necessarily match the analysis

model, it is common to have no previous knowledge about the imputation model parameters. In such a

case, symmetric Dirichlet priors can be chosen: Dirichlet(c1, c2, ..., cD) where c1 = c2 = ... = cD. This

is the approach we used in all the experiments of the paper, and implied in the remaining of the current

section.

Rousseau and Mergensen (2011) found out that when a Bayesian mixture model is overfitting the

data (as our model selection approach of Section 2.2 implies), units are allocated by the Gibbs sampler

to some of the extra LCs if each component of the latent probabilities hyperparameter is at least as large

as half times the number of free parameters within each components. For the BMLM model, this means

that each pseudo-count of the LSs αk ∀ k should be set at least equal to
∑
j(Rj − 1)/2. Following the

guidelines given in Vidotto et al. (2018), who examined the behavior of the prior distribution in standard

Bayesian LC models (for the MI of cross-sectional missing data), we suggest increasing αk and γk ∀ k in

such a way that as many states s1, ..., sT as possible are occupied during the imputation stage, which can

be assessed with the MCMC output. By manipulating with trial-and-error (before the imputation step)

the hyperparameters in the priors of the latent states probabilities, we decided to set αk = γk = 5 in the

study of Section 3, while in the empirical experiment of Section 4 - in which the number of within-state

free parameters was equal to 27 - we arbitrarily set αk = γk = 100. As reported in Vidotto et al. (2018),

full allocation of the latent classes/states helps to capture all relevant associations in the data, preventing

the sampler from becoming unstable; in fact, in this way the states are identified by the data, rather

than by the prior distribution of the emission probabilities.

In the empirical study we found out by means of pre-imputation inspections that reinforcing the

prior persistence probabilities caused the Gibbs sampler to produce higher likelihood values (on average)

during its iterations. In turn, this could help the BMLM model to better recover the lagged relationships

specified for that study. Persistence probabilities are represented by the diagonal elements of the matrix

Xl. These probabilities can be reinforced by manipulating the hyperparameter vector of the q-th row of

Xl, by setting it equal to γ = (γ1, ..., γ
∗
q , ..., γK) with γ∗q > γk ∀ k 6= q. In the empirical study this was

achieved by setting γ∗q >
∑
k 6=q γk, with γk = 100 and γ∗q = Kγk = 100K (in which K = 9). Reinforcing

the persistence probabilities in the simulation study of Section 3 was not necessary, since increasing it did
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not entail any increase in the (averaged) likelihood values produced during the Gibbs sampler iterations.

Concerning the hyperparameters for the weights of the time-constant LCs, we decided to perform

the imputations of both the study in Section 3 and the experiment in Section 4 by setting ηl equal to

the number of free parameters within each time-constant component, i.e., we set ηl = {(K− 1)(K+ 1) +

K(
∑
j Rj − 1) +

∑
p Up − 1} ∀ l.

Lastly, for the time-constant conditional and the time-varying emission probabilities we follow the

guidelines of Vidotto et al. (2018) and set ζupl = δrjkl = 0.01 or 0.05 ∀ u, p, r, j, k, l (final results are

usually similar for these two values). This setting helps to make the prior pseudo-counts of the parameters

ruling the conditional distribution of the observed data less influential in the imputation step.

Appendix B BMLM model estimation

In this section, the Gibbs sampler for the BMLM model estimation is described. It is assumed that L, K,

and the model hyperparameters have been established already according to the guidelines of Section 2.2

and Appendix A. Furthermore, also the total number of Gibbs sampler iterations B should be chosen.

I of these B iterations will be used as burn-in (such that model estimation is performed on the last

B − I iterations). I should be large enough to make the sampler attain the equilibrium distribution of

the model parameter, which can be assessed by typical MCMC output inspection, e.g., by considering

the traceplot of the log-likelihood functions generated at each iterations (as suggested by Vidotto et

al. (2018)). Additionally, θ(0) is initialized by sampling all model parameters from uniform Dirichlet

distributions, in such a way to increase the likelihood of initializing the sampler in the interior of the

parameter space, speeding up convergence.

Algorithm 1 reports the steps for the Gibbs sampler. In order to sample the states of the Markov

chain for each subject, multi-move sampling is used. The steps necessary to perform multi-move sampling

are shown in Algorithm 2. Multi-move sampling, in turn, requires the calculation of the filtered state

probabilities Pr(st = k|θ, w = l,yit), the computation of which is described in Algorithm 3.

B.1 The Gibbs sampler

Algorithm 1

For b=1,...,B:

1. for i = 1, ..., n sample a LS w(b) from a Multinomial distribution with probabilities

Pr(w(b) = l|θ(b−1), zi,yi) =
ω
(b−1)
l Λ

(b−1)
ul π

(b−1)
r∗l∑

c ω
(b−1)
c Λ

(b−1)
uc π

(b−1)
r∗c
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for each l = 1, ..., L, and where πr∗l = Pr(yi = r∗|w = l)(b−1) (equation 2);

2. for each i = 1, ..., n and for all time points t = 1, ..., T , conditioned on the LC w(b), sample a

LS st from

Pr(s
(b)
t |θ(b−1), w(b) = l,yit).

This can be achieved with multi-move sampling (see Algorithm 2 below);

3. for l = 1, ..., L, update the mixture weights ω with

ω(b)|w(b) = l,η ∼

Dirichlet

(
η1 +

n∑
i=1

Ii(w(b) = 1), ..., ηL +

n∑
i=1

Ii(w(b) = L)

)

where Ii(w(b) = l) = 1 if for unit i w(b) = l and 0 otherwise;

4. for l = 1, ..., L, p = 1, ..., P update the conditional probabilities

λ
(b)
pl |w(b) = l, zobs, ζpl ∼

Dirichlet

(
ζ1pl +

∑
i:w(b)=l

I(zip = 1), ..., ζUppl +
∑

i:w(b)=l

I(zip = Up)

)

where I(zip = u) = 1 if zip = u and zip ∈ zobs and 0 otherwise;

5. for l = 1, ..., L compute π
(b)
r∗l conditioned on w(b) = l after updating the parameter

values of each within-class LM model:

• for t = 1, update the initial state probabilities

ν(b)|s(b)1 , w(b) = l,α ∼

Dirichlet
(
α1 +

∑
i:w(b)=l Ii1(s

(b)
1 = 1), ..., αK +

∑
i:w(b)=l Ii1(s

(b)
1 = K,w(b) = l)

)
where Iit(s(b)t = k) = 1 if for unit i s

(b)
t = k and 0 otherwise;

• for q = 1, ...,K and ∀ t ≥ 2 update the transition probabilities

ξ
(b)
q |s(b)t−1, s

(b)
t , w(b) = l,γ ∼

Dirichlet
(
γ1 +

∑
i,t:w(b)=l,s

(b)
t−1=q

Iit(s(b)t = 1), ..., γK +
∑
i,t:w(b)=l,s

(b)
t−1=q

Iit(s(b)t = K)
)

;
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• for k = 1, ...,K, j = 1, ..., J and ∀ t update the conditional response probabilities

φ
(b)
jk |s

(b)
t , w(b) = l,yobs, δjk ∼

Dirichlet
(
δ1jk +

∑
i,t:w(b)=l,s

(b)
t =k

I(yitj = 1), ..., δRjjk +
∑

i,t:w(b)=l,s
(b)
t =k

I(yitj = Rj)
)

where I(yitj = r) = 1 if yitj = r and yitj ∈ yobs and 0 otherwise.

B.2 Multi-move sampling

Algorithm 2:

1. For i=1,...,n calculate and store the filtered state probabilities Pr(s
(b)
t |θ(b−1), w(b) = l,yit) for

t = 1, ..., T (see Algorithm 3);

2. for i = 1, ..., n sample s
(b)
T from Pr(s

(b)
T |θ(b−1), w(b) = l,yiT );

3. for t = T − 1, ..., 1 and i = 1, ..., n, given the known state s
(b)
t+1 = k sample s

(b)
t from

Pr(s
(b)
t = q|s(b)t+1 = k,θ(b−1), w(b) = l,yit) =

ξ
(b−1)
q,kl Pr(s

(b)
t = q|θ(b−1), w(b) = l,yit)∑

q ξ
(b−1)
q,kl Pr(s

(b)
t = q|θ(b−1), w(b) = l,yit)

.

B.3 Filtered State Probabilities

Algorithm 3:

1. At t=1, for i = 1, ..., n, κ = 1, ...,K compute

Pr(s
(b)
1 = κ|θ(b−1), w(b) = l,yi1 = r) =

ν
(b−1)
κl Φ

∗(b−1)
rκl∑

c ν
(b−1)
cl Φ

∗(b−1)
rcl

.
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Since we are estimating the model only on yobs, we define Φ
∗(b−1)
rkl =

∏
j φ
∗(b−1)
rjkl where

φ
∗(b−1)
rjkl =

 φ
(b−1)
rjkl if yitj = r and yitj ∈ yobs

1 otherwise

∀ t, i, j, r.

2. for t = 2, ..., T :

• for i = 1, ..., n, k = 1, ...,K compute

Pr(s
(b)
t = k|θ(b−1),yi(t−1)) =

∑
q ξ

(b−1)
q,kl Pr(s

(b)
t−1 = q|θ(b−1), w(b) = l,yi(t−1));

• for i = 1, ..., n, k = 1, ...,K compute the filtered state probabilities through

Pr(s
(b)
t = k|θ(b−1), w(b) = l,yit = rt) =

Φ
∗(b−1)
rkl Pr(s

(b)
t = k|θ(b−1), w(b) = l,yi(t−1))

Pr(yit = rt|θ, w(b) = l,yi(t−1))

where

Pr(yit = rt|θ(b−1), w(b) = l,yi(t−1)) =

∑
c

Φ
∗(b−1)
rcl Pr(s

(b)
t = c|θ(b−1), w(b) = l,yi(t−1)).
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