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Latent Class Models in Longitudinal Research

1 Introduction

This article presents a general framework for the analysis of discrete-time
longitudinal data using latent class models. The encompassing model is the
mixture latent Markov model, a latent class model with time-constant and
time-varying discrete latent variables. The time-constant latent variables are
used to deal with unobserved heterogeneity in the change process, whereas
the time-varying discrete latent variables are used to correct for measurement
error in the observed responses. By allowing for direct relationships between
the latent states at consecutive time points, one obtains the typical Marko-
vian transition or first-order autoregressive correlation structure. Moreover,
each of three distinct submodels can include covariates, thus addressing sepa-
rate important issues in longitudinal data analysis: observed and unobserved
individual differences, autocorrelation, and spurious observed change result-
ing from measurement error.

It is shown that most of the existing latent class models for longitudi-
nal data are restricted special cases of the mixture latent Markov model
presented, which itself is an expanded version with covariates of the mixed
Markov latent class model by Van de Pol and Langeheine (1990). The most
relevant restricted special cases are mover-stayer models (Goodman, 1961),
mixture Markov models (Poulsen, 1982), latent (or hidden) Markov models
(Baum et al., 1970; Collins and Wugalter, 1992; Van de Pol and De Leeuw,
1996; Vermunt, Langeheine, and Böckenholt, 1999; Wiggins, 1973), mixture
growth models (Nagin, 1999; Muthén, 2004; Vermunt 2006) and mixture
latent growth models (Vermunt 2003, 2006) for repeated measures, as well
as the standard multiple-group latent class model for analyzing data from
repeated cross-sections (Hagenaars, 1990).

The next section presents the mixture latent Markov model. Then we
discuss its most important special cases and illustrate these with an empirical
example. We end with a short discussion of various possible extensions of our
approach. The first appendix provides details on parameter estimation using
the Baum-Welch algorithm. The second appendix contains model setups for
the syntax version of the Latent GOLD program (Vermunt and Magidson,
2008) that was used for estimating the example models.

2 The mixture latent Markov model

Assume that we have a longitudinal data set containing measurements for N
subjects at T +1 occasions. The mixture latent Markov model is a model con-
taining five types of variables: response variables, time-constant explanatory
variables, time-varying explanatory variables, time-constant discrete latent
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variables, and time-varying discrete latent variables. For simplicity of expo-
sition, we will assume that response variables are categorical, and that there
is at most one time-constant and one time-varying latent variable. These are,
however, not limitations of the framework we present which can be used with
continuous response variables, multiple time-constant latent variables, and
multiple time-varying latent variables. Our mixture latent Markov model is
an expanded version of the mixed Markov latent class model proposed by Van
de Pol and Langeheine (1990): it contains time-constant and time-varying
covariates and it can be used when the number of time points is large.

Let yitj denote the response of subject i at occasion t on response variable
j, where 1 ≤ i ≤ N , 0 ≤ t ≤ T , 1 ≤ j ≤ J , and 1 ≤ yitk ≤ Mj. Note that
J is the total number of response variables and Mj the number of categories
for response variable j. The vector of responses for subject i at occasion t is
denoted as yit and the vector of responses at all occasions as yi. The vector
of time-constant and time-varying predictors at occasion t is denoted by zi

and zit, respectively. The time-constant and time-varying discrete latent
variables are denoted by w and xt, where 1 ≤ w ≤ L and 1 ≤ xt ≤ K.
The latter implies that the number of categories of the two types of latent
variables equal L and K, respectively. To make the distinction between the
two types of latent variables clear, we will refer to w as a latent class and to
xt as a latent state.

The general model that we use as the starting point is the following
mixture latent Markov model:

P (yi|zi) =
L∑

w=1

K∑
x0=1

K∑
x1=1

...
K∑

xT =1

P (w, x0, x1, ..., xT |zi) P (yi|w, x0, x1, ..., xT , zi),

(1)
with

P (w, x0, x1, ..., xT |zi) = P (w|zi) P (x0|w, zi0)
T∏

t=1

P (xt|xt−1, w, zit), (2)

P (yi|w, x0, x1, ..., xT , zi) =
T∏

t=0

P (yit|xt, w, zit) =
T∏

t=0

J∏
j=1

P (yitj|xt, w, zit).(3)

As many statistical models, the model in Equation (1) describes P (yi|zi),
the (probability) density associated with responses of subject i conditional
on his/her observed covariate values. The right-hand side of this equation
shows that we are dealing with a mixture model containing 1 time constant
latent variable and T + 1 time-varying latent variables. The total number of
mixture components (or latent classes) equals L ·KT+1, which is the product
of the number of categories of w and xt for t = 0, 1, 2, ..., T . As in any mixture
model, P (yi|zi) is obtained as a weighted average of class-specific probability
densities – here P (yi|w, x0, x1, ..., xT , zi) – where the (prior) class membership
probabilities or mixture proportions – here P (w, x0, x1, ..., xT |zi) – serve as
weights (Everitt and Hand, 1981; McLachlan and Peel, 2000).
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Equations (2) and (3) show the specific structure assumed for the mixture
proportion P (w, x0, x1, ..., xT |zi) and the class-specific densities P (yi|w, x0, x1, ..., xT , zi).
The equation for P (w, x0, x1, ..., xT |zi) assumes that conditional on w and zi,
xt is associated only with xt−1 and xt+1 and thus not with the states occupied
at the other time points – the well-know first-order Markov assumption. The
equation for P (yi|w, x0, x1, ..., xt, zi) makes two assumptions: 1) condition-
ally on w, xt, and zit, the J responses at occasion t are independent of the
latent states and the responses at other time points, and 2) conditionally on
w, xt, and zit, the J responses at occasion time point t are mutually inde-
pendent, which is referred to as the local independence assumption in latent
class analysis (Goodman, 1974).

As can be seen from Equations (2) and (3), the models of interest contain
four different kinds of model probabilities:

• P (w|zi) is the probability of belonging to a particular latent class con-
ditional on a person’s covariate values,

• P (x0|w, zi0) is an initial-state probability; that is, the probability of
having a particular latent initial state conditional on an individual’s
class membership and covariate values at t = 0,

• P (xt|xt−1, w, zit) is a latent transition probability; that is, the proba-
bility of being in a particular latent state at time point t conditional
on the latent state state at time point t − 1, class membership, and
time-varying covariate values,

• P (yitj|xt, w, zit) is a response probability, which is the probability of
having a particular observed value on response variable j at time point
t conditional on the latent state occupied at time point t, class mem-
bership w, and time-varying covariate values.

Typically, these four sets of probabilities will be parameterized and re-
stricted by means of (logistic) regression models. This is especially useful
when a model contains covariates, where time itself may be one of the time-
varying covariates of main interest. In the empirical application presented
below we will use such regression models. For extended discussions on logis-
tic regression analysis, we refer to introductory texts on this topic (see, for
example, Agresti, 2002; Menard, 1995; Vermunt, 1997).

The three key elements of the mixture latent Markov model described in
Equations (1), (2), and (3) are that it can take into account 1) unobserved
heterogeneity, 2) autocorrelation, and 3) measurement error. Unobserved
heterogeneity is captured by the time-constant latent variable w, autocor-
relations are captured by the first-order Markov transition process in which
the state at time point t may depend on the state at time point t − 1, and
measurement error or misclassification is accounted for allowing an imper-
fect relationship between the time-specific latent states xt and the observed
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responses yitj. Note that these are three of the main elements that should
be taken into account in the analysis of longitudinal data; that is, the inter-
individual variability in patterns of change, the tendency to stay in the same
state between consecutive occasions, and spurious change resulting from mea-
surement error in observed responses.

Parameters of the mixture latent Markov model can be estimated by
means of maximum likelihood (ML). For that purpose, it advisable to use a
special variant of the expectation maximization (EM) algorithm that is usu-
ally referred to as the forward-backward or Baum-Welch algorithm (Baum et
al., 1970; McDonald and Zucchini, 1997) which is described in detail in the
first appendix. This special algorithm is needed because our model contains
a potentially huge number of entries in the joint posterior latent distribution
P (w, x0, x1, ..., xT |yi, zi), except in cases where T , L and K are all small.
For example, in a fairly moderate sized situation where T = 10, L = 2 and
K = 3, the number of entries in the joint posterior distribution already equals
2 · 311 = 354294, a number which is impossible to process and store for all N
subjects as has to be done within standard EM. The Baum-Welch algorithm
circumvents the computating of this joint posterior distribution making use
of the conditional independencies implied by the model. Vermunt (2003)
proposed a slightly simplified version of the Baum-Welch algorithm for deal-
ing with the multilevel latent class model, which when used for longitudinal
data analysis is one of the special cases of the mixture latent Markov model
described in the next section.

A common phenomenon in the analysis of longitudinal data is the occur-
rence of missing data. Subjects may have missing values either because they
refused to participate at some occasions or because it is elected by the study
design. A nice feature of the approach described here is that it can easily
accommodate missing data in the ML estimation of the unknown model pa-
rameter. Let δit be an indicator variable taking on the value 1 if subject
i provides information for occasion t and 0 if this information is missing.
The only required change with missing data is the following modification of
Equation (3):

P (yi|w, x0, x1, ..., xT , zi) =
T∏

t=0

[P (yit|xt, w, zit)]
δit .

For δit = 1, nothing changes compared to what we had before. However, for
δit = 0, the time-specific conditional density becomes 1, which means that the
responses of a time point with missing values are skipped. Actually, for each
pattern of missing data, we have a mixture latent Markov for a different set
of occasions. Two limitations of the ML estimation procedure with missing
values should be mentioned: 1) it can deal with missing values on response
variables, but not with missing values on covariates, and 2) it assumes that
the missing data are missing at random (MAR). The first limitation may be
problematic when there are time-varying covariates for which the values are
also missing. However, in various special cases discussed below – the ones
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that do not use a transition structure – it is not a problem if time-varying
covariates are missing for the time points in which the responses are missing.
The second limitation concerns the assumed missing data mechanism: MAR
is the least restrictive mechanism under which ML estimation can be used
without the need of specifying the exact mechanism causing the missing data;
that is, under which the missing data mechanism is ignorable for likelihood-
based inference (Little and Rubin, 1987; Schafer, 1997). It is possible to
relax the MAR assumption by explicitly defining a not missing at random
(NMAR) mechanism as a part of the model to be estimated (Fay, 1986;
Vermunt 1997).

An issue strongly related to missing data is the one of unequally spaced
measurement occasions. As long as the model parameters defining the transi-
tion probability are assumed to be occasion specific, no special arrangements
are needed. If this is not the case, unequally spaced measurements can be
handled by defining a grid of equally spaced time points containing all mea-
surement occasions. Using this technique, the information on the extraneous
occasions can be treated as missing data for all subjects. An alternative is
to use a continuous-time rather than a discrete time framework (Böckenholt,
2006), which can be seen as the limiting case in which the elapsed time
between consecutive time points in the grid approaches zero.

Another issue related to missing data is the choice of the time variable and
the corresponding starting point of the process. The most common approach
is to use calender time as the time variable and the first measurement occasion
as t = 0, but one may, for example, also use age as the relevant time variable,
as we do in the empirical example. Although children’s ages at the first
measurement vary between 11 and 17, we use age 11 as t = 0. This implies
that for a child that is 12 years of age information at t = 0 is treated as
missing, for a child that is 13 years of age information a t = 0 and t = 1 is
treated as missing, etc..

3 The most important special cases

[INSERT TABLE 1 ABOUT HERE]

Table 1 lists the various special cases that can be derived from the mixture
latent Markov model defined in Equations (1)-(3) by assuming that one or
more of its three elements – transition structure, measurement error, and
unobserved heterogeneity – is not present or needs to be ignored because the
data is not informative enough to deal with it. Model I-III and V-VII are
latent class models, but IV and VIII are not. Model VII differs from models
I-VI in that it is model for repeated cross-sectional data rather than a model
for panel data. Below we describe the various special cases in more detail.

Mixture latent Markov First of all, it is possible to define simpler ver-
sions of the mixture latent Markov model itself. Actually, the mixed Markov
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latent class model proposed by Van de Pol and Langeheine (1990) which
served as an inspiration for our model is the special case of our model when
neither time-constant nor time-varying covariates are present. Van de Pol
and Langeheine (1990) also proposed a variant in which the four types of
model probabilities could differ across categories of a grouping variable (see
also Langeheine and Van de Pol, 2002). A similar model is obtained by re-
placing the zi and zit in Equations (1)-(3) by a single categorical covariate
zi.

Mixture Markov The mixture Markov model (Poulsen, 1982) is the spe-
cial case of the model presented in Equations (1)-(3) when there is a single
response variable that is assumed to be measured without error. The model
is obtained by replacing the more general definition in Equation (3) with

P (yi|w, x0, x1, ..., xT , zi) =
T∏

t=0

P (yit|xt),

where K = M and P (yit|xt) = 1 if xt = yit and 0 otherwise. The product
over the multiple response variables and the index j can be omitted because
J = 1 and yit is assumed not to depend on w and zit but only on xt. For
this special case the number of latent states (K) is equal to the number of
observed states (M) and the relationship between xt and yit is perfect, which
indicates that xt is measured without error.

A special case of this mixture Markov model is the mover-stayer model
(Goodman, 1961). This model assumes that L = 2 and that the transition
probabilities are fixed to 0 for one class, say for w = 2. Members of this class,
for which P (xt|xt−1, w = 2, zit) = 1 if xt = xt−1 and 0 otherwise, are called
stayers. Note that the mover-stayer constraint can not only be imposed in
the mixture Markov but also in the mixture latent Markov, in which case
transitions across imperfectly measured stated are assumed not to occur in
the stayer class.

Because of the perfect match between xt and yit, the mixture Markov
model can also be defined without latent states xt; that is, as:

P (yi|zi) =
L∑

w=1

P (w|zi) P (yi0|w, zi)
T∏

t=1

P (yit|yit−1, w, zit).

Latent Markov model The latent Markov, latent transition, or hidden
Markov model (Baum et al., 1970; Collins and Wugalter, 1992; Van de Pol
and De Leeuw, 1996; Vermunt, Langeheine, and Böckenholt, 1999, Wiggins,
1973) is the special case of the mixture latent Markov that is obtained by
eliminating the time-constant latent variable w from the model, that is, by
assuming that there is no unobserved heterogeneity or that it can be ignored.
The latent Markov model can be obtained without modifying the formulae,
but by simply assuming that L = 1; that is, that all subject belong to the
same latent class.

6



The latent Markov model yields estimates for the initial-state and tran-
sition probabilities, as well as for how these are affected by covariate values,
while correcting for measurement error in the observed states. The model can
be applied with a single or with multiple response variables. When applied
with a single categorical response variable, one will typically assume that
the number of latent states equals the number or categories of the response
variable: K = M . Moreover, model restrictions are required to obtain an
identified model, the most common of which are time-homogeneous transition
probabilities or time-homogeneous misclassification probabilities.

When used with multiple indicators, the model is a longitudinal data
extension of the standard latent class model (Hagenaars, 1990). The time-
specific latent states can be seen as clusters or types which differ in their
responses on the J indicators, and the Markovian transition structure is used
to describe and predict changes that may occur across adjacent measurement
occasions.

Markov model By assuming both perfect measurement as in the mix-
ture Markov model and absence of unobserved heterogeneity as in the latent
Markov model, one obtains a standard Markov model, which is no longer a
latent class model. This model can further serve as a simple starting point for
longitudinal applications with a single response variable, where one wishes
to assume a Markov structure. It provides a baseline for comparison to the
three more extended models discussed above. Use of these more extended
models makes sense only if they provide a significantly better description of
the data than the simple Markov model.

Mixture latent growth model Now we turn to latent class models for
longitudinal research that are not transition or Markov models. These mix-
ture growth models are non-parametric random-effects models (Aitkin, 1999,
Skrondal and Rabe-Hesketh, 2004; Vermunt and Van Dijk, 2002) for longi-
tudinal data that assume that dependencies between measurement occasions
can be captured by the time-constant latent variable w. The most extended
variant is the mixture latent growth model, which is obtained from the mix-
ture latent Markov model by imposing the constraint P (xt|xt−1, w, zit) =
P (xt|w, zit). This is achieved by replacing Equation (2) with

P (w, x0, x1, ..., xT |zi) = P (w|zi)
T∏

t=0

P (xt|w, zit).

This model is a variant for longitudinal data of the multilevel latent class
model proposed by Vermunt (2003): subjects are the higher-level units and
time points the lower-level units. It should be noted that application of this
very interesting model requires that there be at least two response variables
(J ≥ 2).

In mixture growth models one will typically pay a lot of attention to the
modeling of the time dependence of the state occupied at the different time
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points. The latent class or mixture approach allows identifying subgroups
(categories of the time-constant latent variable w) with different change pat-
terns (Nagin, 1999). The extension provided by the mixture latent growth
model is that the dynamic dependent variable is itself a (discrete) latent
variable which is measured by multiple indicators.

Mixture growth model The mixture or latent class growth model (Nagin,
1999, Muthén, 2004; Vermunt, 2006) can be seen as a restricted variant of the
mixture latent growth model; i.e., as a model for a single indicator measured
without error. The extra constraint is the same as the one used in the mixture
Markov model: K = M and P (yit|xt) = 1 if xt = yit and 0 otherwise.

A more natural way to define the mixture growth model is by omitting
the time-varying latent variable xt from the model specification, as we did
for the mixture Markov model. This yields

P (yi|zi) =
L∑

w=1

P (w|zi)
T∏

t=0

P (yit|w, zit),

Note that this model is equivalent to a standard latent class model for T + 1
response variables and with predictors affecting these responses.

Standard latent class model When we eliminate both w and the transi-
tion structure, we obtain a latent class model that assumes observations are
independent across occasions. This is a realistic model only for the analy-
sis of data from repeated cross-sections; that is, to deal with the situation
in which observations from different occasions are independent because each
subject provides information for only one time point. One possible way to
define this model is

P (yi|ziti) =
K∑

x=1

P (x|ziti)
J∏

j=1

P (yitj|x, ziti),

where ti is used to denote the time point for which subject i provides infor-
mation. This is a standard latent class model with covariates.

4 Application to NYS data

To illustrate the latent class models described above we use data from the
nine-wave National Youth Survey (Elliott, Huizinga, and Menard, 1989) for
which data were collected annually from 1976 to 1980 and at three year
intervals after 1980. At the first measurement occasion, the ages of the 1725
children varied between 11 and 17. To account for the unequal spacing across
panel waves and to use age as the time scale, we define a model for 23 time
points (T +1 = 23), where t = 0 corresponds to age 11 and the last time point
to age 33. For each subject, we have observed data for at most 9 time points
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(the average is 7.93) which means that the other time points are treated as
missing values.

We study the change in a dichotomous response variable “drugs” indi-
cating whether young persons used hard drugs during the past year (1=no;
2=yes). It should be noted that among the 11 year olds in the sample nobody
reported to have used hard drugs, which is something that needs to be taken
into account in our model specification. Time-varying predictors are age and
age squared, and time-constant predictors are gender and ethnicity.

A preliminary analysis showed that there is a clear age-dependence in the
reported hard-drugs use which can well be described by a quadratic function:
usage first increases with age and subsequently decreases. That is why we
used this type of time dependence in all reported models. To give an idea
how the time dependence enters in the models, the specific regression model
for the latent transition probabilities in the estimated Markov models was:

log
P (xt = k′|xt−1 = k, w, ageit)

P (xt = k|xt−1 = k, w, ageit)
= β0k′k+β1k′k·dw=2+β2k′k·ageit+β3k′k·(ageit)

2,

where the β coefficients are fixed to 0 for k′ = k. The variable dw=2 is a
dummy variable for the second mixture component. For the initial-state, we
do not have a model with free parameters but we simply assume that all
children start in the no-drugs state at age 11.

In the mixture growth models, we use the following binary logistic regres-
sion model for yit:

log
P (yit = 2|w, ageit)

P (yit = 1|w, ageit)
= β0w + β1w · ageit + β2w · (ageit)

2,

where we fix β01 = −100 and β11 = β21 = 0 to obtain a model in which w = 1
represents a non-user class, a class with a zero probability of using drugs at
all time points.

Table 2 reports the fit measures for the estimated models, where the first
set of models do not contain time-constant covariates gender and ethnic-
ity. As can be seen from log-likelihood and BIC values, the various types of
Markov models perform much better than the mixture growth models, which
indicates that there is a clear autocorrelation structure that is difficult to cap-
ture using a growth model. Even with 7 latent classes one does not obtain a
fit that is as good as the Markov-type models. Among the Markov models,
the most general model – the mixture latent Markov model – performs best.
By removing measurement error, simplifying the mixture into a mover-stayer
structure, and/or eliminating the mixture structure, the fit deteriorates sig-
nificantly. The last two models are mixture latent markov models in which
we introduced covariates in the model for the mixture proportions. Both
sex and ethnicity seem to be significantly related to the mixture component
someone belongs to.

The parameters of the final model consist of the logit coefficients of the
model for w, the logit coefficients in the model for the latent transition prob-
abilities, and the probabilities of the measurement model. The latter show
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that the two latent states are rather strongly connected to the two observed
states: P (yit = 1|xt = 1) = 0.99 and P (yit = 2|xt = 2) = 0.87.

The most relevant coefficients in the model for the transition probabilities
are the parameters for w. These show that class 2 is the low-risk class
having a much lower probability than class 1 of entering into the use state
(β = −2.37; S.E = 0.26) and a much higher probability of leaving the non-use
state (β = 3.72; S.E. = 0.68). Combining these estimates with the quadratic
time dependence of the transitions yields a probability of moving from the
non-use to the use state equal to 2.8% at age 12, 23.4% at age 21, and 0.6%
at age 33 for w = 1, and equal to 0.3% at age 12, 2.8% at age 21, and 0.1% at
age 33 for w = 2. The probability of a transition from the use to the non-use
state equals 0.1% at age 12, 20.5% at age 26, and 6.2% for w = 1, and 4.1%
at age 12, 91.4% at age 26, and 73.1% at age 33 for w = 2.

The parameters in the logistic regression model for w shows that males
are less likely to be in the low-risk class than females (γ = −0.58; S.E. =
0.14) and that blacks are more likely to be in the low-risk class than whites
(γ = 0.79; S.E = 0.22). Hispanics are less likely (γ = −0.46; S.E. = 0.33)
and other ethnic groups more likely (γ = 0.25; S.E = 0.52) to be in class 2
than white, but these effect are non significant.

5 Discussion

We presented a general framework for the analysis of discrete-time longitudi-
nal data and illustrated it with an empirical example in which the Markov-like
models turned out to perform better than the growth models.

The approach presented here can be expanded in various ways. First,
while we focused on models for categorical response variables, it is straight-
forward to apply most of these models to variables of other scale types, such
as continuous dependent variables or counts. Other extensions include the
definition of multiple processes with multiple xt or of higher-order Markov
processes. Models that are getting increased attention are those that com-
bine discrete and continuous latent variables. Finally, the approach can be
expanded to deal with multilevel longitudinal data, as well as with data ob-
tained from complex survey samples. Each of these extensions is implemented
in the Latent GOLD software that we used for parameter estimation.

Appendix A: Baum-Welch algorithm for the

mixture latent Markov model

Maximum likelihood (ML) estimation of the parameters of the mixture latent
Markov model involves maximizing the log-likelihood function:

L =
N∑

i=1

log P (yi|zi),
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a problem that can be solved by means of the EM algorithm (Dempster,
Laird and Rubin, 1977). In the E step, we compute

P (w, x0, x1, ..., xT |yi, zi) =
P (w, x0, x1, ..., xT ,yi|zi)

P (yi|zi)
,

which is the joint conditional distribution of the T + 2 latent variables given
the data and the model parameters. In the M step, one updates the model
parameters using standard ML methods for logistic regression analysis and
using an expanded data matrix with P (w, x0, x1, ..., xT |yi, zi) as weights.

It should be noted that in a standard EM algorithm, at each iteration, one
needs to compute and store the L · KT+1 entries of P (w, x0, x1, ..., xT |yi, zi)
for each subject or, with grouped data, for each unique data pattern. This
implies that computation time and computer storage increases exponentially
with the number of time points, which makes this algorithm impractical or
even impossible to apply with more than a few time points (Vermunt, Lange-
heine and Böckenholt, 1999). However, because of the collapsibility of the
mixture latent Markov model, it turns out that in the M step of the EM algo-
rithm one needs only the marginal distributions P (w|yi, zi), P (w, xt|yi, zi),
and P (w, xt−1, xt|yi, zi). The Baum-Welch or forward-backward algorithm
obtains these quantities directly rather than first computing P (w, x0, x1, ..., xT |yi, zi)
and subsequently collapsing over the remaining dimensions as would be done
in a standard EM algorithm (Baum et al, 1970; McDonald and Zucchini,
1997). This yields an algorithm that makes the mixture latent Markov model
applicable with any number of time points. Whereas the original forward-
backward algorithm was for latent (hidden) Markov models without covari-
ates and a single response variable, here we provide a generalization to the
more general case with a mixture w, covariates zi, and multiple responses.

The two key components of the Baum-Welch algorithm are the forward
probabilities αiwxt and the backward probabilities βiwxt . Because of our gen-
eralization to the mixture case, we need an additional quantity γiw. These
three quantities are defined as follows:

αiwxt = P (xt,yi0...yit|w, zi),

βiwxt = P (yi(t+1)...yiT |xt, w, zi),

γiw = P (w,yi|zi).

Using αiwxt , βiwxt , and γiw, one can obtain the relevant marginal posteriors
as follows:

P (w|yi, zi) =
γiw

P (yi|zi)
, (4)

P (w, xt|yi, zi) =
αiwxtβiwxt

P (yi|zi)
, (5)

P (w, xt−1, xt, w|yi, zi) =
γiwαiwxt−1P (xt|xt−1, w, zit) P (yit|xt, w, zit) βiwxt

P (yi|zi)
,(6)
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where P (yi|zi) =
∑L

w=1 γiw, and P (xt|xt−1, w, zit) and P (yit|xt, w, zit) are
model probabilities.

The key element of the forward-backward algorithm is that T + 1 sets of
αiwxt and βiwxt terms are computed using recursive schemes. The forward
recursion scheme for αiwxt is:

αiwx0 = P (x0|w, zi0)P (yi0|x0, w, zi0),

αiwxt =


K∑

xt−1=1

αiwxt−1P (xt|xt−1, w, zit)

 P (yit|xt, w, zit) ,

for t = 1 up to t = T . The backward recursion scheme for βiwxt is:

βiwxT
= 1,

βiwxt =
K∑

xt+1=1

βiwxt+1P (xt+1|xt, w, zit) P (yit+1|xt+1, w, zit) ,

for T − 1 down to t = 0. The quantity γiw is obtained as:

γiw =
K∑

xt=1

P (w|zi) αiwxt βiwxt ,

for any t. So, first we obtain αiwxt and βiwxt for each time point and subse-
quently we obtain γiw. Next, we compute P (w|yi, zi), P (w, xt|yi, zi), and
P (w, xt−1, xt|yi, zi) using Equations (4), (5), and (6). In the M step, these
quantities are used to obtain new estimates for the mixture latent Markov
model probabilities appearing in Equations (2) and (3) using standard meth-
ods for logistic regression analysis.

The only change required in the above formulas when there is missing
data is that P (yit|xt, w, zit) is replaced by P (yit|xt, w, zit)

δit in each of the
above equations, where δit = 1 if yit is observed and 0 if yit is missing. This
implies that P (yit|xt, w, zit) is “skipped” when yit is missing. In the M step,
cases with missing responses at occasion t do not contribute to the estimation
of the response probabilities for that occasion, but they do contribute to the
estimation of the other model probabilities.

Appendix B: examples of Latent GOLD syntax

files

The Latent GOLD 4.5 software package (Vermunt and Magidson, 2008) im-
plements the framework described in this article. In this appendix, we pro-
vide examples of input files for estimation of mixture latent Markov models,
mixture Markov, latent Markov, and mixture growth models.

The data should be in the format of a person-period file, where for the
Markov type models periods with missing values should also be included in
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the file since each next record for the same subject is assumed to be the
next time point. The definition of a model contains three main sections:
“options”, “variables” and “equations”.

An example of the most extended model, the mixture latent Markov
model is the following:

options
missing includeall;
output parameters=first standarderrors;

variables
caseid id;
dependent drugs nominal;
independent gender nominal, ethnicity nominal, age numeric, age2 numeric;
latent W nominal 2, X nominal markov 2;

equations
W <- 1 + gender + ethnicity;
X[=0] <- (-100) 1;
X <- (a~tra) 1 | X[-1] + (b~tra) W | X[-1] + (c~tra) age | X[-1] + (d~tra) age2 | X[-1];
drugs <- (e~err) 1 | X;

In the options section, only the two commands for which we changed the
default setting is shown. The statement “missing=includeall” indicates
that all records with missing values should be retained in the analysis. The
output option “parameters=first” request dummy coding for the nominal
variables using the first category as the reference category.

In the variables section we define the caseid variable connecting the
multiple records of one person, the latent, dependent (or response) and inde-
pendent variables to be used in the analysis, as well as various attributes of
these variables, such as their scale type and, for categorical latent variables,
their number of categories and whether they vary over time (indicated with
the statement markov).

The equation section contains 4 equations: one for the mixture variable
(W), one for the initial state (X[=0]), one for the state at time point t (X)
conditional on the state at t− 1 (X[-1]), and one for the response variable.
With more response variables, one would have a separate equation for each
response variable. The logit model for W contains an intercept (the term “1”)
and effects of gender and ethnicity. The parameter labels, a, b, c, d, and e

are given in parentheses. The model for X[=0] contains an intercept that is
fixed to -100, which means that everyone starts in latent state 1. The model
for X is parameterized in such a way that the intercept and the effects of W,
age, and age2 can be interpreted as effects on the logit of a transition (as in
the equation provided in the text). This is achieved by the conditioning “|
X[-1]” combined with “˜tra” in the parameter label, which yields a special
transition coding of logit coefficients in which the no change category serves
as the reference category. The model for the response variable drugs contains
an intercept which varies across latent states, with the same type of coding
as used for the transition (for the dependent variable called error coding).

A mixture Markov is obtained with the extra line “e = -100;”. This fixes
the logit parameters in the model for the response variable to -100, which
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because of the special error coding (induced with “˜err”) yields a perfect
relationship between X and drugs. The 2-class mixture can be changed into
a mover-stayer structure with the additional line “b = -100;” which fixes
the transition probabilities to 0 for the second class. This restriction can be
used in the mixture Markov and in the mixture latent Markov model. A
latent Markov model is obtained either by removing W from the variables

and equations sections or by setting its number of categories to 1.
A mixture growth model is obtained by removing X from the variables

section and replacing the equations section with the following:

equations
W <- 1 + gender + ethnicity;
drugs <- (a) 1 | W + (b) age | W + (c) age2 | W;
a[1] = -100;
b[1] = 0;
c[1] = 0;

The constraint on the intercept indicates that the first mixture component
does not use drugs with probability 1. The other two constraints fix the
redundant age and age2 effects for class one equal to 0.
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Table 1: Classification of latent class models for longitudinal research

Transition Unobserved Measurement
Model name structure heterogeneity error
I. Mixture latent Markov yes yes yes
II. Mixture Markov yes yes no
III. Latent Markov yes no yes
IV. Standard Markov∗ yes no no
V. Mixture latent growth no yes yes
VI. Mixture growth no yes no
VII. Standard latent class no no yes
VIII. Independence∗ no no no
*: This model is not a latent class model.

Table 2: Fit measures for the estimated models with the nine-wave National
Youth Survey data set

Model Log-likelihood BIC # Parameters
A. Independence -5089 10200 3
B. Markov -4143 8330 6
C. Mixture Markov with L=2 -4020 8108 9
D. Mover-stayer Markov -4056 8165 7
E. Latent Markov with K=2 -4009 8078 8
F. Mixture latent Markov with L=2 and K=2 -3992 8066 11
G. Mover-stayer latent Markov with K=2 -4000 8068 9
H1. Mixture growth with L=2 (w = 1 non-users) -4381 8792 4
H2. Mixture growth with L=3 (w = 1 non-users) -4199 8457 8
H3. Mixture growth with L=4 (w = 1 non-users) -4113 8315 12
H4. Mixture growth with L=5 (w = 1 non-users) -4077 8273 16
H5. Mixture growth with L=6 (w = 1 non-users) -4037 8223 20
H6. Mixture growth with L=7 (w = 1 non-users) -4024 8227 24
I. F + Gender effect on W -3992 8066 12
J. F + Gender and Ethnicity effect on W -3975 8061 15
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