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Factor analysis is a statistical method for describing the associations among

sets of observed variables in terms of a small number of underlying continuous

latent variables. Various authors have proposed multilevel extensions of the

factor model for the analysis of data sets with a hierarchical structure. These

Multilevel Factor Models (MFMs) have in common that – as in multilevel

regression analysis – variation at the higher level is modeled using continuous

random effects (or continuous latent variables). In this paper, we present an

alternative multilevel extension of factor analysis which we call the Multilevel

Mixture Factor Model (MFMM). It is based on the assumption that higher-

level units belong to latent classes that differ in terms of the parameters of the

factor model specified for the lower-level units. We demonstrate the added

value of MMFM compared to MFM, both from a theoretical and applied

perspective, and we illustrate the complementarity of the two approaches with

an empirical application.

1 Introduction

Factor analysis (FA) is a commonly used statistical method for investigating the dimen-

sionality of sets of observed responses, or, more technically, for describing the associations

among sets of manifest variables, referred to as indicators or items, in terms of a smaller

number of underlying continuous latent variables, referred to as factors (Bartholomew
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& Knott, 1999). Whereas the term “factor model” has been traditionally reserved for

models in which the indicators are continuous variables, in the more recent FA literature,

it is also used to refer to models for dichotomous or ordinal indicators. Here, we use this

broader definition, which means that we not only deal with classical FA but also with

models which are known as (multidimensional) item response theory (IRT) models.

As most statistical methods, standard FA is based on the assumption that the available

data set is a sample consisting of independent observations. However, this assumption is

inadequate with hierarchical or multilevel data; that is, when the indicators of the fac-

tor model are measured on individuals (lower-level or micro-level units) which are nested

within groups (higher-level or macro-level units) sharing common environments, experi-

ences, and interactions. Examples are data on students nested within schools, patients

nested within hospitals, employees nested within organizations, citizens nested within re-

gions, etc. In such situations, it is more appropriate to use multilevel techniques which

not only account for the dependencies between observations due to the hierarchical data

structure, but also make it possible to determine to what extent the phenomenon under

study can be explained by group- or macro-level factors (Goldstein, 2003; Hox, 2002;

Snijders & Bosker, 1999). Various authors proposed multilevel extensions of standard FA

and IRT (see, e.g., Fox & Glas, 2001; Goldstein & McDonald, 1988; Grilli & Rampichini,

2007; Longford & Muthén, 1992; Muthén, 1991; Muthén & Satorra, 1989). As in multi-

level regression models, the basic idea of these Multilevel Factor Models (MFMs) is that

some of the model parameters are allowed to randomly vary across groups. These ran-

dom effects are, in fact, continuous latent variables (or factors) at the group level. This

means that MFMs assume the presence of latent factors at both the lower and the higher

level of the analysis. As standard factor models, these models can be used in either an

exploratory or confirmatory manner.
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In this paper, we present an alternative and complementary approach for FA with

multilevel data. More specifically, we propose modeling between group heterogeneity us-

ing a mixture model which assumes that the higher-level units belong to latent classes

which differ in the parameter values of the factor model defined for the lower-level units.

This Multilevel Mixture Factor Model (MMFM) yields a clustering of groups based on the

factor model parameters, which in many applications is a more natural way to describe

group differences than the typical multilevel variance decomposition. Examples of appli-

cations include clustering of schools based on the performance of students, clustering of

organizations based on the satisfaction of their clients, and clustering of regions based on

the political opinions of their citizens. Another advantage compared to the MFM is that

the MMFM is more robust in the sense that it does not introduce possible inappropriate

and unverifiable assumptions about the distribution of the higher-level variation (Aitkin,

1999). A third advantage is that it is computational less demanding than the MFM,

especially when applied with discrete items.

The proposed MMFM is related to two other extensions of standard FA and IRT;

that is, to multi-group FA/IRT and mixture FA/IRT. Also in a multiple-group FA model

parameters are allowed to differ across groups (Bollen, 1989; Meredith, 1993; Muthén,

1989). More specifically, for parameters which vary across groups one obtains a separate

estimate for each group. In fact, such a model can be seen as a MMFM in which there

are as many latent classes as groups and where each group belongs to a different class. It

will be clear that such an approach becomes problematic when the number of groups is

large, in which case it is attractive to cluster the groups into a relatively small number

of latent classes. The MMFM can thus be seen as a tool for multiple-group FA that can

also be used when the number of groups is large.

In mixture FA and IRT (Maij-de Meij, Kelderman & van der Flier, 2008; McLachlan &
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Peel, 2000; Lubke & Muthén, 2005; Rost, 1990; Yung, 1997), individuals are assumed to

belong to latent classes which differ with respect to the parameters of the specified mea-

surement model. In fact, these are multiple-group FA/IRT models in which the grouping

is unobserved. The difference between mixture FA/IRT and the proposed MMFM is that

in the former the mixture is at the individual level whereas in the latter it is at the higher-

level of the analysis. Despite this important difference, there is an interesting connection

between the two: Stating that higher-level units belong to latent classes is equivalent to

stating that individuals belonging to the same higher-level unit belong to the same latent

class (Asparouhov & Muthén, 2008). In other words, the MMFM can be seen as a mix-

ture factor model with a specific structure for the individual latent class memberships, a

structure derived from the hierarchical data structure.

[INSERT TABLE 1 ABOUT HERE]

The idea of using a discrete mixture distribution at the higher level is similar to what

Vermunt (2003, 2008a) proposed in the context of latent class analysis. More specifically,

he presented two types of multilevel latent class models: one in which group-level het-

erogeneity is modeled using continuous random effects and one in which it is modeled by

assuming that not only individuals but also groups belong to latent classes. Table 1 pro-

vides Vermunt’s (2008a) four-fold classification of two-level latent variables models based

on the specification for the lower- and higher-level latent variables. As can be seen, the

MFM corresponds to the situation with continuous latent variables at both levels (IV),

and the MMFM proposed in this paper to the situation with continuous latent variables at

the lower level and discrete latent variables at the higher level (III). The other two types

with discrete latent variables at the lower level (I and II) are the two types of multilevel

latent class models introduced by Vermunt (2003). Another example of a type II model

is the two-level mixture regression model proposed by Muthén and Asparouhov (2009).
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The MMFM fits naturally into the generalized latent variable modeling framework

described among others by Skrondal and Rabe-Hesketh (2004), Muthén and Asparouhov

(2008), and Vermunt (2008b), and implemented in the GLLAMM (Rabe-Hesketh, Skron-

dal & Pickles, 2004), Mplus (Muthén & Muthén, 1998-2007), and Latent GOLD (Vermunt

& Magidson, 2005, 2008) software packages. Using this framework, related multilevel la-

tent variable models with a mixture at the higher level and one or more continuous latent

variables at the lower level have been proposed by among others Muthén & Asparouhov

(2008), Palardy & Vermunt (in press), and Vermunt (2008b).

The remainder of this paper is organized as follows. The next section describes the

standard factor model, as well as the MFM and the MMFM. Subsequently, we discuss

estimation using maximum likelihood and model selection issues. Then, we illustrate the

use of the MFM and MMFM by means of an empirical example on students’ satisfaction

with various aspects of the university. The last section presents the main conclusions.

2 Model specification

2.1 The factor model

Let yhi denote the observed response of individual i (i = 1, . . . , N) on indicator h (h =

1, . . . , H) , and ηmi the unobserved score of individual i on common factor m (m =

1, . . . ,M), where N , H, and M are the total number of individuals, items, and factors.

The vectors of responses and factor scores of individual i are denoted by yi = (y1i..., yHi)
′

and ηi = (η1i, . . . , ηMi)
′
, respectively. In FA, a series of H regression models are used

to define the relationships between the latent variables ηi and the indicators yhi. To

accommodate for the various possible scale types of the indicators, we use response models

from the generalized linear modeling family, which are specified via a linear predictor, a
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link function, and an error distribution from the exponential family (Skrondal & Rabe-

Hesketh, 2004).

We refer to the linear predictor of the response model for indicator h by vhi. In a factor

analytic model the linear predictor has the following form:

vhi = µh +
M∑

m=1

λmhηmi, (1)

where µh is an item intercept and λmh a factor loading. The linear predictor is connected

to yhi as follows:

g(E(yhi|ηi)) = vhi, (2)

This equation shows that after applying an appropriate transformation g(·), which is

referred to as the link function, the expected value of yhi conditional on the latent factors

equals the linear predictor. The choice of the link function depends on the scale type of the

indicators. For continuous responses, one usually uses an identity link – E(yhi|ηi) = vhi –

whereas for binary responses one may use among others a logit link – log E(yhi|ηi)/[1−

E(yhi|ηi)] = vhi, implying that E(yhi|ηi) = exp(vhi)/[1 + exp(vhi)].

The definition of the H response models is completed by the specification of the distri-

bution of the indicators’ residuals ehi = yhi−E(yhi|ηi) or, equivalently, of the conditional

density of yhi given the latent variables f(yhi|ηi). The typical choice in standard FA with

continuous responses is the normal distribution; that is, f(ehi) = f(yhi|ηi) ∼ N(0, σ2
h).

With dichotomous responses, f(yhi|ηi) is usually assumed be a Bernoulli distribution.

It should be noted that it is assumed that conditionally on the latent variables ηi, the

H observed responses are independent of each other, an assumption that is referred to

as the local independence assumption (Bartholomew & Knott, 1999). It implies that the

joint distribution of f(yi|ηi) can be written as a product of the marginal distributions

f(yhi|ηi); that is, f(yi|ηi) =
∏H

h=1 f(yhi|ηi).
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For FA with ordinal indicators several types of specifications of the response model

are available. One of the most used is the proportional odds model that uses a cumulative

logit link function. Let s be a particular category and S the total number categories of the

ordinal indicator yhi (s = 1, . . . , S), and let P (yhi ≤ s|ηi) be the probability of responding

in category s or lower conditional on the common factors. The proportional odds model

can now be expressed as follows:

log
P (yhi ≤ s|ηi)

1− P (yhi ≤ s|ηi)
= αhs − vhi s = 1, . . . , S − 1, (3)

where the αhs – with αh1 < . . . < αhS−1 – are threshold parameters to be estimated.

An important feature of this model is that the parameters involved in vhi are invariant

for how the ordinal categories of yhi are constructed. Other possible choices for the link

function include the probit and complementary log-log links.

The specification of the factor model is completed with the specification of the dis-

tribution of the common factors. In FA, it is usually assumed that the common factors

come from a multivariate normal distribution; that is,

ηi ∼MN(0,Ψ), (4)

where Ψ is an M ×M covariance matrix with elements ψmm′ .

2.2 The multilevel factor model

The standard factor model assumes that the indicators are measured on a set of indepen-

dently sampled units, an assumption that is violated when individuals are nested within

groups sharing common environments, experiences and interactions. But fortunately it

is possible to define factor models which can deal with hierachical data structures. As in

other types of models for multilevel data, a multilevel factor model (MFM) is obtained by
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allowing that higher-level units differ randomly with respect to particular model parame-

ters. In the factor model these are intercepts, thresholds, residual variances, factor load-

ings, factor means, and factor (co)variances. Whereas we limit ourselves to the situation

that there are two hierarchical levels, the extension to three and more levels is conceptu-

ally straightforward. Let yhij denote the observed response on indicator h (h = 1, . . . , H)

of individual i (i = 1, . . . , nj) within group j (j = 1, . . . , J). Note that J denotes the

number of groups and nj the number of individuals within group j, a number that may

vary across groups. The total number of individuals is N =
∑J

j=1 nj. A MFM can either

be seen as a two-level model for multivariate responses, with individuals i being the level-1

units and groups j the level-2 units, or as a three-level model for univariate responses,

with indicators h being the level-1 units, individuals i being the level-2 units, and groups

j the level-3 units. As Skrondal and Rabe-Hesketh (2004), we will formulate the MFM

as a three-level model where subscripts and superscripts 1, 2, and 3 are used to refer to

quantities relating to indicators, individuals, and groups, respectively.

The linear predictor in the response model for yhij is denoted by vhij; η
(2)
ij = (η

(2)
1ij , . . . , η

(2)
M2ij)

′

contains the M2 common factors varying at the individual level and η
(3)
j = (η

(3)
1j , . . . , η

(3)
M3j)

′

the M3 common factors varying at the group level. The MFM is expressed by following

three sets of regression equations:

vhij = µhj +
M2∑

m2=1

λ
(2)
m2hη

(2)
m2ij (5)

µhj = µh +
M3∑

m3=1

λ
(3)
m3hη

(3)
m3j + e

(3)
hj (6)

η
(2)
m2ij =

M3∑
m3=1

β(3)
m3m2

η
(3)
m3j + e

(2)
m2ij. (7)

The first of these equations is very similar to the standard factor model presented in

equation (1). The main modification compared to the standard FA equation is that

the linear predictor, the item intercept, and the factors have an additional subscript j
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indicating that their values depend on the group. The other changes are just notational to

be able to distinguish level-2 quantities from level-3 quantities: M and m have a subscript

2, and λ and η have a superscript (2).

Equations (6) and (7) show the two roles that the group-level factor η
(3)
m3j may play

in a MFM. Equation (6) shows that these may directly affect the indicators. In this

equation, µh is the mean intercept of item h, and λ
(3)
m3h and e

(3)
hj are, respectively, the

factor loadings and the item-specific errors (or unique factors) at the highest level of the

analysis. Equation (7) shows that the higher-level factors may also affect the factor at

the lower level. In this equation, β(3)
m3m2

is the coefficient (structural parameter) “linking”

the latent variable η
(3)
m3j to the latent variable η

(2)
m2ij and e

(2)
m2ij is a residual term.

As in a one-level factor model, the conditional expectation of the response yhij given

the latent variables at different levels is “linked” to the linear predictor vhij via a link

function:

g(E(yhij|η(2)
ij ,η

(3)
j )) = vhij, (8)

where the full model for vhij is obtained by substituting equations (6) and (7) into equation

(8). Again, different types of distributional forms can be used for the residuals of the

indicators (within higher-level units).

Similarly to standard factor models, it is assumed that

e
(2)
ij = η

(2)
ij |η

(3)
j ∼MN(0,Ψ(2)) (9)

η
(3)
j ∼ MN(0,Ψ(3)) (10)

e
(3)
j ∼ MN(0,Ω(3)), (11)

where Ψ(2) and Ψ(3) represent M2×M2 and M3×M3 covariance matrices with elements

ψ
(2)
mm′ and ψ

(3)
mm′ , respectively, and Ω(3) an H ×H covariance matrix with elements ω

(3)
hh′ .

Typically, because of the local independence assumption, Ω(3) is assumed to be diagonal.
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[INSERT FIGURE 1 ABOUT HERE]

Figure 1(a) depicts the MFM. Following the conventions, circles represent latent vari-

ables and rectangles observed variables, arrows connecting latent and/or observed vari-

ables represent direct effects, which do not need to be linear, and dotted lines represent

correlations among latent variables or among items. A nesting of frames is used to express

the hierarchical levels; that is, the outer frame contains variables varying between groups

and the inner frame variables varying between individuals within groups (Skrondal &

Rabe-Hesketh, 2004).

Whereas above we defined the MFM in its most general form, in most applications

one will use specific restricted versions of this model. One interesting special case is

obtained with M3 = M2 = M , λ
(3)
m3h = 0 for all m3 and h, β(3)

m3m2
= 0 for m3 6= m2, and

for identification purposes β(3)
m3m2

= 1 for m3 = m2; that is, by assuming the group-level

factor η
(3)
mj affects the response only indirectly via η

(2)
mij. Such a specification is most useful

if one wishes to model the latent structure at the individual level, while accounting for

the multilevel data structure by allowing for between-group variation in the means of the

individual-level latent factors. With the additional restriction ω
(3)
hh′ = 0 for h = 1, . . . , H,

indicating that there are no unique factors e
(3)
hj at the group level, one obtains the so-called

variance component factor model (Skrondal & Rabe-Hesketh, 2004). Also the multilevel

IRT model proposed by Fox and Glas (2001) is of this form, but expanded with covariates

in the model for η
(2)
mij. The variance component factor model, which is represented in

Figure 1(b) allows splitting the variance of each factor into level-specific components.

Note that this model assumes that the factor structure is the same at both levels, and it

can therefore also be obtained by setting λ
(3)
m3h = λ

(2)
m2h for m2 = m3 and β(3)

m3m2
= 0 for all

m3 and m2.

An example of an application in which the variance component factor model may be
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of interest is an educational study focusing on how pupils abilities vary across schools. In

such an application, the factor model is used to measure the students abilities affecting

the performance on a set of test items. Since students attending the same school are

taught by the same teachers, come from the same neighborhood, and so on, their abilities

may be more similar than those of students attending different schools. The variance

component factor model allows modeling these within-school dependencies by letting the

averages of the students’ abilities vary across schools. This yields an estimate of the

relative importance of school effects on the students’ abilities.

Another interesting special case of the MFM described above is obtained with the

restriction β(3)
m3m2

= 0, which means that the latent variables at the higher level η
(3)
m3j do

not affect the latent variables at the lower level η
(2)
m2ij. Instead, the indicators are directly

affected by both η
(2)
m2ij and η

(3)
m3j, where it is important to note that the number of factors

as well as the factor loadings may differ across levels. The latter implies that the model

allows for completely different factor structures at the lower and higher level of analysis.

This model is typically used in more exploratory manner, as proposed among others by

Goldstein and McDonald (1988), Grilli and Rampichini (2007), and Longford and Muthén

(1992).

Following the educational example, it may be that the way the responses on the test

items vary between schools is different from the way these vary within schools. More

specifically, it could be that at the student level the responses are affected by two factors

- say mathematical and reading ability – whereas at the school level they are affected a

single general ability factor. In such a case, the second special case of the MFM should

be used instead of the variance components model.
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2.3 The multilevel mixture factor model

We will now describe an alternative approach to FA with multilevel data sets. Rather than

modeling the between group heterogeneity using group-level continuous factors or random

effects, we propose modeling group differences by assuming that these belong to one of K

latent classes or mixture components. We call the resulting model a Multilevel Mixture

Factor Model (MMFM). Similar mixture model extensions have been proposed for FA

and IRT models for non-hierachical data (see, e.g. Maij-de Meij et al., 2008; McLachlan

& Peel, 2000; Lubke & Muthén, 2005; Rost, 1990; Yung, 1997). The motivation was

always that one wished to relax the assumption of the standard factor model that the

sample originated from a single homogeneous population. Finite mixture and latent class

models (Goodman, 1974; Lazarsfeld & Henry, 1968; McLachlan & Peel, 2000) are designed

to check this assumption and to examine whether there is evidence for the existence of

unobserved subpopulations (latent classes).

The main difference between our MMFM and existing mixture FA and IRT models is

that we postulate a discrete mixture distribution at the group instead of the individual

level; that is, we use a discrete latent variable to deal with the fact that groups do not

originate from a single homogeneous population of groups as far as the FA parameters

is concerned. The key difference with the MFMs discussed above is that these assume

that all groups are different – each group has its own factor scores – whereas the MMFM

assumes that groups can be classified into homogeneous classes. The latter is especially

useful if the final aim of the analysis is to classify groups. However, the discrete specifica-

tion can also be used as a way to approximate continuous higher-level variation without

making strong assumptions about the distribution of the group-level factors. Such a semi-

or non-parametric specification of the random effects is similar to what Aitkin (1999) and

Vermunt and Van Dijk (2001) described for multilevel regression analysis (see also Skro-
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ndal & Rabe-Hesket, 2004).

Let K be the number of latent classes and k a particular latent class (k = 1, ..., K).

The class membership of a group is represented using K indicator variables η
(3)
kj taking

on value 1 if group j belongs to latent class k and 0 otherwise. The vector of indicator

variables is η
(3)
j = (η

(3)
1j , . . . , η

(3)
Kj). The MMFM can be expressed by using the following

three regression equations:

vhij = µhj +
M2∑

m2=1

λ
(2)
m2hη

(2)
m2ij (12)

µhj = µh +
K∑

k=1

λ
(3)
kh η

(3)
kj + e

(3)
hj (13)

η
(2)
m2ij =

K∑
k=1

β
(3)
km2

η
(3)
kj + e

(2)
m2ij. (14)

Note that these equations are very much the same as equations (5)-(7) defining the MFM.

As before, the first equation is similar to the equation of a standard one-level factor model

and the other two equations show how one obtains the relevant multilevel extension. The

difference with the MFM is that the sums in the second and third equation are now over K

latent indicators instead of M3 higher-level continuous factors. As always with categorical

variables, for identification purposes, one constraint has to be imposed per parameter set;

that is, on λ
(3)
kh for each h and on β

(3)
km2

for each m2; for example,
∑K

k=1 λ
(3)
kh = 0 or λ

(3)
1h = 0

and
∑K

k=1 β
(3)
km2

= 0 or β
(3)
1m2

= 0. Figure 2 depicts the MMFM, where the categorical

latent variable is represented by a filled circle.

[INSERT FIGURE 2 ABOUT HERE]

The discrete latent variable η
(3)
j has a multinomial distribution, with:

πk = P (η
(3)
kj = 1) =

exp(γk)∑K
t=1 exp(γt)

, (15)

where
∑K

k=1 πk = 1. The term γk in equation (15) represents the intercept term in the

linear predictor of the logit model for the latent class probabilities (πk). Models with
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covariates affecting the class membership probability are obtained by adding the relevant

covariate effects to this linear term.

As for the MFM, two special cases of the MMFM are obtained by constraining either

the λ
(3)
kh in equation (13) or the β

(3)
km2

in equation (14) to 0. The model with λ
(3)
kh = 0

and β
(3)
km2

estimated freely assumes that group-level latent classes do not differ in their

responses given possible differences in mean abilities. Following the educational example

described before, such a specification is most useful if one wishes to classify schools based

on their students’ abilities. The specification with β
(3)
km2

= 0 and λ
(3)
kh estimated freely

implies that latent classes differ with respect to the items’ intercepts µhj but not with

respect to η
(2)
m2ij. In the educational example, such model would be useful if the researcher

wishes to classify schools based on the means of the separate indicators. The factor model

at the lower level would then be of less interest, and just a way to model dependencies

between responses within subjects.

3 Estimation and model selection issues

3.1 Likelihood, parameter estimation, and posterior analysis

The unknown parameters of the MFM and MMFM described in this paper can be esti-

mated by means of maximum likelihood. This involves maximizing the following marginal

likelihood function:

L =
J∏

j=1

f(yj), (16)

where yj = (y1j, ...ynjj) is the vector containing all observed responses of group j, and

f(yj) is the probability density of these observations. As can be seen the marginal likeli-

hood is obtained as a product of the likelihood contributions of the J higher level units,

which follows from the assumption that the higher-level units are mutually independent
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observations. With η
(2)
ij and η

(3)
j being continuous latent variables at the lower and higher

level of the analysis, f(yj) is given by:

f(yj) =
∫
η(3)

j

[ nj∏
i=1

f(yij|η(3)
j )

]
f(η

(3)
j )dη

(3)
j , (17)

where, as can be seen, the nj observations within group j are assumed to be independent

of one another given the group-level random coefficients η
(3)
j . For each first-level unit,

f(yij|η(3)
j ) is expressed by:

f(yij|η(3)
j ) =

∫
η(2)

ij

[
H∏

h=1

f(yhij|η(2)
ij ,η

(3)
j )

]
f(η

(2)
ij |η

(3)
j )dη

(2)
ij . (18)

where f(yhij|η(2)
ij ,η

(3)
j ) is the distribution of the response variable h conditional on the

lower and higher latent variables. The product over the H response variables follows from

the local independence assumption.

In the MMFM we have a discrete latent variable at the higher level instead of con-

tinuous factors, which implies that the integration over η
(3)
j should be replaced by a

summation over K classes. The relevant expression to construct the likelihood function

are then:

f(yj) =
K∑

k=1

[ nj∏
i=1

f(yij|η(3)
kj = 1)

]
πk

f(yij|η(3)
kj = 1) =

∫
η(2)

ij

[
H∏

h=1

f(yhij|η(2)
ij , η

(3)
kj = 1)

]
f(η

(2)
ij |η

(3)
kj = 1)dη

(2)
ij .

In order to find the ML estimates, we need to solve the integrals involved in the compu-

tation of the likelihood function, as well as to maximize the marginal likelihood function.

A closed form expression for the integrals is available only when both the indicators and

the factors are assumed to be normally distributed. In all other situations, approximation

methods should be used such as Laplace integration, numerical integration using (adap-

tive) quadrature, and Monte Carlo integration (Skrondal & Rabe-Hesketh, 2004). The
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most common algorithms for the maximization of likelihood function of models with la-

tent variables are the Expectation-Maximization (EM) algorithm, Newton-Raphson (NR),

Fisher scoring, and Quasi-Newton methods.

The three main software packages for latent variable modeling – GLLAMM (Rabe-

Hesketh et al., 2004), MPlus (Muthén & Muthén, 1998-2007) and Latent GOLD (Vermunt

& Magidson, 2005, 2008) – use slightly different combinations of the integration and

maximization methods. GLLAMM uses numerical integration with either adapative or

non-adaptive Gauss-Hermite quadrature and maximizes the marginal likelihood function

using NR. In Mplus, the numerical integration is carried out using rectangular, Gauss-

Hermite, or Monte Carlo integration, and the optimization is done using a combination of

EM and a quasi-Newton method. Latent GOLD solves the integrals using Gauss-Hermite

integration, and uses a combination of EM and NR to find the ML estimates.

After estimating the parameters of a MFM or MMFM, one will typically wish to obtain

estimates of factor scores or latent class memberships. The most used factor scoring and

class assignment methods make use of the posterior distribution of the latent variable(s)

conditional on the observed data. It can be obtained using the well-known Bayes rule. At

the higher level of the analysis, the conditional distribution of the latent variables given

the observed data for group j is expressed by:

f(η
(3)
j |yj) =

f(yj,η
(3)
j )

f(yj)
=

f(yj|η(3)
j )f(η

(3)
j )∫

η(3)
j
f(yj|η(3)

j )f(η
(3)
j )

(19)

where f(y|η(3)
j ) and f(η

(3)
j ) are quantities defined by the estimated model.

The most widely used method for factor scoring is empirical Bayes (EB) prediction.

It equals the mean of the posterior distribution of the latent variables defined in equation

(19); that is:

η
(3)EB
j = E(η

(3)
j |yj) =

∫
η(3)

j

η
(3)
j f(η

(3)
j |yj). (20)
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With normally distributed latent variables, the empirical Bayes predictor is the best linear

unbiased predictor BLUP (Skrondal & Rabe-Hesketh, 2004). In (multilevel) factor models

with normally distributed indicators, the posterior density is multivariate normal and the

posterior means can be obtained in closed form. For other response types, the posterior

density gets closer to multivariate normal as the number of higher-level units increases

(Skrondal & Rabe-Hesketh, 2004). As in the computation of the likelihood function, with

non normal responses, the posterior distribution and means can not be expressed in closed

form and numerical integration is thus required.

For the MMFM, which contains a discrete latent variable at the higher level, the

posterior distribution is defined as follows:

P (η
(3)
kj = 1|yj) =

f(yj, η
(3)
kj = 1)

f(yj)
=

f(yj|η(3)
kj = 1)πk∑K

k=1 f(yj|η(3)
kj = 1)πk

. (21)

The standard classification method in mixture models is the empirical Bayes modal (EBM)

or posterior mode prediction; that is,

η
(3)
kj

EBM = 1 if max
k
P (η

(3)
kj = 1|yj). (22)

3.2 Model evaluation

Model selection methods are needed to choose between MFMs and MMFMs with different

structures; that is, to decide about number of factors, factor loading constraints, number

of latent classes, etc. The common approach to compare nested models is by means of

likelihood-ratio tests (Agresti, 2002). However, because certain regularity conditions do

not hold, the underlying asymptotic theory does not apply when the null hypothesis of a

test lies on the boundary of the parameter space. Two relevant examples in our context

are tests comparing models with different numbers of factors and tests comparing models

with different numbers of classes.
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An alternative approach for comparing nested and non-nested models is via informa-

tion criteria, which are basically penalized log-likelihood functions. These information

criteria can be expressed as follows:

IC = −2 lnL+ C r (23)

where −2 lnL is the minus twice the log-likelihood value that measures the fit of the

model, r is the number of parameters and C is the penalty given for each additional

parameter. The lower the value of an IC-like measure, the better the model. The various

information criteria differ from one another in the choice of C. In the context of mixture

modeling, a variety of textbooks and articles suggest using the Bayesian Information

Criterion (BIC; Schwarz, 1978) for deciding about the number of latent classes (Nylund,

Muthén & Asparouhov, 2007). The BIC is expressed by:

BIC = −2 lnL+ ln(n) r, (24)

thus uses the logarithm of the sample size (lnn) as the penalty for each additional param-

eter. However, a complication factor in multilevel models is that the sample size could

either be the number of individuals or the number of groups. But as shown in a recent

simulation study by Lukočienė and Vermunt (2010), when comparing multilevel mixture

models differing only at the between-level of analysis, as is the case of the application

illustrated in the next paragraph, the number of groups is the better choice (see also

Palardy & Vermunt, in press).

4 An application

In this section we present an application illustrating the MMFM as well as comparing it

with the MFM. The analysis concerns a data set on students’ satisfaction with the Uni-

versity of Florence collected one month before graduation (AlmaLaurea, 2005). The 2004
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data set contains information on 1473 students attending 38 different study programs.

The nine questionnaire items included in the analysis are student’s satisfaction with 1)

relationship with professors, 2) relationship with professors’ assistants, 3) relationship

with technical and administrative staff, 4) lecture rooms, 5) computers, 6) laboratories

and facilities for the didactic activities, 7) libraries, 8) rooms for individual study and 9)

global experience. The original items (except for items 5 and 8) contained four ordinal

categories, but we collapsed the two lowest categories because the lowest category was sel-

dom selected, which yielded: 1. Not satisfied or more not satisfied than satisfied, 2. More

satisfied than not satisfied, 3. Definitively satisfied. Table 2 shows the item distributions.

[INSERT TABLE 2 ABOUT HERE]

The data set has a hierarchical structure (students are nested in study programs),

which is why multilevel techniques should be used. Actually, the University of Florence

is more interested in the comparison of programs than the comparison of students within

programs, but nevertheless the within program factor model should be correctly specified.

Below, we show that a the MFM yields interesting information on the dimensionality

of between program variation in the students’ satisfaction, whereas the MMFM yields

a meaningful classification of programs. Combining the results of these two types of

multilevel models yields a much better understanding of the phenomenon under study

than each of the separate analysis.

Before applying the more complex factor models, we carried out exploratory analyses

using a simple PCA and a set of univariate variance components models. The PCA

with oblique rotation indicated that two components were needed: the first component

concerns satisfaction with human aspects and global satisfaction (items 1, 2, 3, and 9) and

the second component concerns physical aspects (items 4 to 8), where items 3 (relationship
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with technical and administrative staff) and 9 (global satisfaction) also have small loadings

on the second factor.

Table 2 reports the value of the Intraclass Correlation Coefficient (ICC) obtained by

running a two-level ordinal logistic regression model (with only a random intercept) for

each of the nine items. Very strong program effects were found for the satisfaction with

lecture rooms, computers, and library, moderate program effects for laboratories and

relationship with technical staff, and weak program effects for the other four items. The

fact that some of the ICCs are large indicates that a multilevel analysis makes very much

sense. Moreover, the fact that the pattern of ICCs does not match the two-dimensional

structure found with the PCA indicates that the latent structure at the program level is

probably rather different from the latent structure at the student level.

Let us now turn to the analysis using the MFM. Because this concerns a model for

ordinal indicators we used a proportional odds specification for the response model (see

equation (3)). Moreover, we used the variant of the MFM with β(3)
m3m2

= 0, which as

explained earlier is the preferred specification when it cannot be assumed that the latent

structures are the same at the student and program level. In equation (6), for each item h

we constrained the cluster-level item-specific errors e
(3)
hj to 0 to reduce the computational

burden of the model (see also Grilli & Rampichini, 2007) and we fixed item intercepts

µh to 0 for identification purposes. The items with the largest loading in the exploratory

analysis (items 1 and 4) were used as the reference items (factor loading equal to 1) at

the lower level and the item with largest ICC (item 5) as the reference item at the higher

level.

First we estimated unrestricted factor models with 1, 2 and 3 factors at the student

level, ignoring the multilevel structure1. Based on the BIC, we selected the model with 2

1The models were estimated using the Syntax module the Latent GOLD program (Vermunt & Magid-

son, 2008). We used Gauss-Hermite numerical integration with 10 quadrature nodes per dimensions. The
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factors. Likelihood-ratio tests showed that various loadings could be set to 0, yielding a

structure similar to the one expected based on the exploratory analysis using PCA. As a

next step, we estimated variants of this restricted factor model with 1 and 2 higher-level

factors. The BIC showed that only 1 factor was needed at the program level. Also for

the higher-level factor various loadings could be equated to 0. The log-likelihood value of

the final model equals −10195.14, the number of parameters is 37, and the BIC value is

20660.67 or 20525.33 depending on whether one uses a sample size equal to the number of

individuals (1473) or groups (38). We also estimated the (2 factor) variance components

model, for which we found larger BIC values showing that the variant of the MFM we

used for our analysis fits better that the variance components factor model.

[INSERT TABLE 3 ABOUT HERE]

The parameters of the final model reported in Table 3 show that the two student-

level factors represent the satisfaction with the Human Environment and the Physical

Environment, respectively. Items 1, 2, 3, and 9 load on the first factor and items 3 to 9 on

the second factor. As can be seen, satisfaction with the relationship with technical staff

and global satisfaction load on both factors. Moreover, the Human Environment factor

has a stronger effect on the students’ global satisfaction that the Physical Environment

factor. At the program level, we found only one factor which turns out to be related to

the five Physical Environment items (items 4 to 8), to relationship with technical staff

(item 3), and, although weakly, also to global satisfaction.

Rather than with a MFM, the same data set could also be analyzed with a MMFM,

that is by using program-level latent classes instead of a factor. At the student level, we

used the same factor structure as in the MFM; that is, a model with two correlated factors

with some factor loadings constrained to 0. By using the constraint β
(3)
km2

= 0 in equation

number of starting sets was set to 50 with 50 EM iterations per set during the first stage.
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(14) for each k and m2, we assumed that the latent classes affect only the indicator means

and thus not the lower-level factor means. As in the MFM, for each item h, we fixed the

cluster-level item-specific errors e
(3)
hj to 0 to reduce the computational burden and µh to 0

for identification purposes. Another identifying restriction on the parameters of equation

(13) was
∑K

k=1 λ
(3)
kh = 0, which amounts to using effects coding for the classes. Table 4

shows BIC values for models with 1 to 7 latent classes. Based on the BIC using n equal

to the number of groups, we selected the model with 5 classes.

[INSERT TABLES 4 AND 5 HERE]

[INSERT FIGURE 3 ABOUT HERE]

The estimates for the student-level part of the 5-class MMFM reported in Table 5

are almost identical to those obtained with the final MFM. At the program-level, we

encountered 5 classes with class proportions equal to 0.084, 0.203, 0.427, 0.054, and 0.232.

The estimates of λ
(3)
kh parameters (see equation 13) are depicted in Figure 3. Because these

are effect coded logit coefficients, positive values indicate that the latent class concerned

is more satisfied than average and negative values that it is less satisfied than average.

Programs belonging to Class 5 have the highest overall satisfaction since all its coefficients

are positive and, moreover, largest for most of the items. On the contrary, in Class 1 all

coefficients are negative, except the parameters for satisfaction with the individual spaces.

Classes 2, 3 and 4 can be considered to be in between classes 1 and 5: while some of their

coefficients are near to 0, others are either negative or positive showing (dis)satisfaction

with specific issues. What can be observed is that the coefficients of Classes 2 and 3

have opposite signs, except for the items related to the library and individual spaces for

which both classes show satisfaction. Class 4 is the most dissatisfied with the library and

individual spaces. The larger variation of the λ
(3)
kh parameters for the indicators related
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to Physical Environment (except for the one on individual spaces) confirms the result

obtained with the MFM as well as with the exploratory analysis; i.e., programs differ

most strongly on these items. The λ
(3)
kh estimates also show how the MMFM results may

complement the MFM results, especially because the former model is able to pick up

specific differences between programs which are difficult to pick up with a factor analytic

structure.

[INSERT FIGURE 4 ABOUT HERE]

As next step, we obtained empirical Bayes predictions for the program level latent

factor using the MFM results and the empirical Bayes modal classifications using the

MMFM results. Figure 4 depicts the 38 programs’ class memberships on the x-axis and

the programs’ factor scores on the y-axis. A similar type of figure was used by Muthén

(2001) to show the connection between the results of a standard FA with those of a

standard mixture model. As can be seen, Classes 3 and 5 contain the programs with the

higher factor scores and Classes 1, 2, and 4 the ones with the lower scores. However, there

are also important differences between the programs that are captured by one approach

but not by the other. For example, the programs “sc. economia e gestione aziendale” and

“sc. economiche” (both from the Faculty of Economics), have very similar factor scores

(0.44 and 0.51), which indicates similar overall satisfaction levels, but according to the

MMFM results they belong to different classes: “sc. economia e gestione aziendale” is in

Class 3 and “sc. economiche” is in Class 5, classes with similar global satisfaction, but

with very different satisfaction with professors, lecture rooms, laboratories and computers.

Thus, even if the overall satisfaction levels are similar, specific critical aspects of the two

programs may differ. On the other hand, by looking only at the classification of the

programs, one neglects possible differences within classes. For example, “lettere” and

“scienze dei beni culturali” (both from the Faculty of Humanities) are both assigned
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to Class 2, but have rather different factor scores (-1.48 and -0.41), which shows that

programs belonging to the same latent class may have rather different overall satisfaction

levels.

5 Discussion

We proposed a factor analytic model for multilevel data sets containing a categorical latent

variable at the higher level and thus yielding a clustering of higher-level units based on

the parameters of the lower-level factor analytic model. We compared this new approach

with the standard multilevel factor model, as well as showed how the two approaches may

complement one another in empirical applications.

The proposed model can be extended in different manners. Whereas we used either a

set of continuous latent variables or one discrete latent variable at each of the two levels,

it is also possible to use combinations of continuous and discrete latent variables at both

levels. This would yield a multilevel extension of the factor mixture model described

among others by Lubke and Muthén (2005). A similar type of model was proposed by

Palardy and Vermunt (in press) in the context of growth modeling. It is clear that such

complex extensions should be handled with care because all kinds of practical problems

may occur in their application. Note that existing latent variable modeling software allows

estimating such more complex models.

Another important extensions of the models proposed in this article is the inclusion of

lower-level and higher-level explanatory variables. For example, our application could be

extended by including program-level explanatory variables explaining the class member-

ship. Also this extension is readily implemented using existing latent variable modeling

software.
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One issue that clearly deserves additional attention is the issue of goodness- of-fit

testing. The information criteria we used for model selection compare the overall fit of one

model with that of other models. An alternative is to use fit measures quantifying specific

goodness-of-fit aspects of a model. An example is a chi-squared statistic for the goodness-

of-fit in the two-way table cross-tabulating two items, which is sometimes referred to as

a bivariate residual statistic (Jöreskog & Moustaki, 2001; Vermunt & Magidson, 2005).

Whereas such measures have been proposed for one-level factor and mixture models, they

are not available yet for multilevel factor and mixture models.
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Table 1: Matrix of potential two-level models with underlying latent variables.

Lower level Higher level latent variables

latent variables Discrete Continuous

I. Multilevel mixture II. Multilevel

Discrete latent class model latent class model

III. Multilevel mixture IV. Multilevel

Continuous factor model (MFM) factor model (MMFM)
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Table 2: Item frequency distributions (percentages). Univariate ordinal logit random intercept

models, ICC. Students graduated at the University of Florence, year 2004.

Item Level of satisfaction # respondents ICC

1 2 3

Rel. professors 16.7 65.6 17.8 1463 6.5

Rel. prof. assistants 20.7 58.3 21.1 1433 6.0

Rel. technical staff 43.4 43.0 13.6 1460 11.0

Lecture rooms 44.6 39.2 16.3 1451 23.3

Computers 14.8 66.0 19.3 1360 24.0

Laboratories 54.0 35.6 10.4 1143 24.1

Library 18.1 61.5 20.4 1351 10.4

Ind. spaces 14.6 55.3 30.1 1262 6.4

Global satisfaction 15.3 57.2 27.5 1468 6.3
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Table 3: Two-level factor model: parameter estimates. Students graduated at the University

of Florence, year 2004.

Item

Loadings
Thresholds

Within Between

Human Physical Physical
α1 α2

environment environment environment

Rel. professors 1 6.00 -6.00

Rel. prof. assistants 0.30 2.19 -2.23

Rel. techn. staff 0.14 0.28 0.25 0.49 -2.36

Lecture rooms 1 1.39 1.14 -2.69

Library 0.48 0.55 2.18 -1.56

Laborat. 0.86 0.81 0.14 -3.31

Computers 0.48 1 2.94 -1.59

Ind. spaces 0.34 0.36 2.21 -0.81

Global satisfaction 0.16 0.17 0.13 2.27 -1.25

Factor variance 49.98 6.11 0.82

Factor correlation 0.48
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Table 4: Two-level mixture factor model: loglikelihood and BIC values. Students grad-

uated at the University of Florence, year 2004.

Class # Param. Loglikelihood
BIC BIC

(# students) (# programs)

1 30 -10348.51 20915.88 20806.15

2 40 -10209.20 20710.20 20563.90

3 50 -10117.52 20599.79 20416.91

4 60 -10082.69 20603.08 20383.63

5 70 -10061.37 20633.39 20377.37

6 80 -10045.48 20674.56 20381.97

7 90 -10028.40 20713.36 20384.19
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Table 5: Two-level mixture factor model: parameter estimates. Students graduated at the

University of Florence, year 2004.

Item

Loadings
Thresholds

Within

Human Physical
α1 α2

environment environment

Rel. professors 1 6.05 -5.68

Rel. prof. assistants 0.34 2.21 -2.25

Rel. techn. staff 0.16 0.28 0.23 -2.71

Lecture rooms 1 0.23 -3.57

Library 0.53 1.82 -2.07

Laborat. 0.90 -0.16 -3.84

Computers 0.51 2.31 -2.25

Ind. spaces 0.37 1.97 -1.14

Global satisfaction 1.01 0.18 2.28 -1.29

Factor variance 42.23 5.78

Factor correlation 0.47
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Figure 1: Two-level factor model (a) and variance component model (b)

Figure 2: Two-level mixture factor model.
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Figure 3: Two-level mixture factor model: latent classes features. Students graduated at

the University of Florence, year 2004.

Figure 4: Two-level factor model and two-level mixture factor model: study programs

factor scores and classes. Students graduated at the University of Florence, year 2004.


