
Chapter 4
Longitudinal Research Using Mixture Models

Jeroen K. Vermunt

Abstract This chapter provides a state-of-the-art overview of the use of mixture
and latent class models for the analysis of longitudinal data. It first describes the
three basic types mixture models for longitudinal data: the mixture growth, mixture
Markov, and latent Markov model. Subsequently, it presents an integrating frame-
work merging various recent developments in software and algorithms, yielding
mixture models for longitudinal data that can (1) not only be used with categorical,
but also with continuous response variables (as well as combinations of these), (2)
be used with very long time series, (3) include covariates (which can be numeric or
categorical, as well as time-constant or time-varying), (4) include parameter restric-
tions yielding interesting measurement models, and (5) deal with missing values
(which is very important in longitudinal research). Moreover, it discusses other ad-
vanced models, such as latent Markov models with dependent classification errors
across time points, mixture growth and latent Markov models with random effects,
and latent Markov models for multilevel data and multiple processes. The appendix
shows how the presented models can be defined using the Latent GOLD syntax
system (Vermunt and Magidson, 2005, 2008).

4.1 Introduction

The aim of this chapter is to provide a state-of-the-art overview of the use of mixture
and latent class models for the analysis of longitudinal data. While in the more for-
mal statistical literature the term “latent class model” is typically reserved for a spe-
cific type of mixture model (Everitt and Hand, 1981; McLachlan and Peel, 2000),
namely for the mixture model for categorical responses described by Lazarsfeld
and Henry (1968) and Goodman (1974), in applied fields these terms are used in-
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terchangeably. This is also what I will do in this chapter; that is, I will use the terms
mixture model and latent class model to denote latent variable models containing
one or more discrete latent variables.

In the context of longitudinal research, a mixture model is a latent variable
model containing a single or multiple time-constant or time-varying discrete latent
variables. The best-known examples are the latent class or mixture growth model
(Muthén 2004; Nagin, 1999; Vermunt, 2007), the mixture Markov model (Good-
man, 1961; Poulsen, 1990; van de Pol and Langeheine, 1990; Vermunt, 1997a), and
the latent or hidden Markov model (Baum, Petrie, Soules, and Weiss, 1970; Bar-
tolucci, Pennoni, and Francis, 2007; Collins and Wugalter, 1992; Mooijaart and van
Montfort, 2007; Poulsen, 1990; van de Pol and de Leeuw, 1986; Vermunt, Lange-
heine, and B̈ockenholt, 1999; Wiggins, 1973).

Diggle, Liang, and Zeger (1994) distinguished three main approaches for ana-
lyzing longitudinal data: (1) marginal or population-average models, (2) random-
effects, subject-specific, or growth models, and (3) conditional or transitional mod-
els. Marginal models focus on the change in univariate distributions, growth models
study individual-level change over time, and transitional models describe changes
between consecutive time points. These three approaches do not only differ with
regard to the questions they address, but also in how they deal with the dependen-
cies between the repeated measures. Because of their structure, transitional models
take the bivariate dependencies between observations at consecutive occasions into
account. Growth models capture the dependencies using latent variables (random
effects). In marginal models, dependencies are not explicitly modeled, but dealt
with as found in the data and in general are taken into account in a more ad hoc way
in the estimation procedure. Variants of transitional, growth, and marginal models
have been developed for both continuous and categorical response variables.

Discrete latent variables may be introduced in longitudinal data models for vari-
ous purposes, the most important of which are dealing with unobserved heterogene-
ity, dealing with measurement error, and clustering. Or more specific, in context of
the three approaches described above, latent classes can be introduced in growth
models for clustering and dealing with unobserved heterogeneity (yielding mixture
growth models), and in transitional models for dealing with measurement error,
static or dynamic clustering, and dealing with unobserved heterogeneity (yielding
mixture and latent Markov models). Hagenaars (1990) and Bergsma, Croon, and
Hagenaars (2009) used a latent class marginal model for dealing with measurement
error in categorical responses.

Starting point of this chapter are the simplest variants of the three basic mix-
ture models for longitudinal data: the mixture growth, mixture Markov, and latent
Markov model. Recent developments in software and algorithms have resulted in
many extensions of these basic models; that is, mixture models for longitudinal
data can nowadays (1) not only be used with categorical, but also continuous re-
sponse variables (as well as combinations of these), (2) be used with very long
time series, (3) include covariates (which can be numeric or categorical, as well as
time-constant or time-varying), (4) include parameter restrictions yielding interest-
ing measurement models, and (5) deal with missing values (which is very important
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in longitudinal research). I will present an integrating framework including all these
extended features. Moreover, I will discuss other more advanced features, such as la-
tent Markov models with dependent classification errors across time points, mixture
growth and latent Markov models with random effects, and latent Markov models
for multilevel data and multiple processes.

There is some overlap between the current chapter and Hagenaars’ chapter in
this volume, which deals with longitudinal categorical data analysis using the log-
linear SEM approach implemented in the LEM software (Vermunt 1997b). On the
one hand, this SEM framework is more general than the framework discussed here
because it allows defining any type of categorical data model. On the other hand, it is
more restricted since it deals with categorical data (responses and covariates) only,
and, because it is not tailored for longitudinal data analysis, it can, for example, not
be used with long time series.

In the remaining of this chapter, I will first describe the three basic mixture mod-
els for longitudinal data analysis, including some of their extensions. Then a general
framework is presented containing each of these as special cases, and allowing var-
ious interesting combinations. Though several other recent developments could be
fit into an even more general framework, these will be discussed as separate exten-
sions in a next section. The last section presents two applications, and the Appendix
illustrates how the models concerned can be defined using the Latent GOLD syntax
system (Vermunt and Magidson, 2005, 2008).

4.2 The three basic models

Before describing the three basic types of mixture models for longitudinal data, I
will introduce the relevant notation. Longitudinal data sets analyzed with the models
described in this chapter will typically contain information on multiple response
variables from multiple subjects at multiple time points. Letyit j denote the response
of subjecti on response variablej at occasiont, where 1≤ i ≤ N, 1≤ j ≤ J, and
0 ≤ t ≤ Ti . Here,N is the number subjects,J the number of response variables,
andTi +1 is the number of measurement occasions for subjecti. Note that we use
the indexi in Ti to be able to deal with the rather common situation in which the
number of measurement occasions differ across individuals. The vector collecting
the responses of subjecti at occasiont is denoted asyit and the vector collecting all
responses of subjecti asyi .

Three remarks have to made about the response variables. First, response vari-
ables may also be referred to as output variables, dependent variables, indicators,
items, manifest variables, etc. Second, response variables cannot only be categor-
ical variables – in which case 1≤ yit j = mj ≤ M j , with M j being the number of
categories andmj a particular category of response variablej – but also continuous
variables or counts. As we will see below, the scale type ofyit j affects its conditional
distribution, as well as the type of regression model one may specify to restrict its
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expected value. Third, often only one response variable is available, in which case
the indexj can be dropped, yielding the simpler notationyit .

Longitudinal data models may not only contain response variables, but also pre-
dictors, also referred to as input variables, independent variables, covariates, con-
comitant variables, etc. The vectors of time-constant predictors and time-varying
predictors at occasiont are denoted byzi andzit , respectively. Note that predictors
cannot only be numeric but also categorical variables, which will typically be in-
cluded in the model using a series of dummies or effects. Note also that time and
functions of time can be included in the vector of time-varying predictors.

What makes a statistical model a latent class or mixture model is that it contains
either a time-constant or a time-varying (or dynamic) discrete latent variable. These
two types of latent variables are denoted bywi andxit , respectively, their number of
categories byL andK, and one of their categories by` andkt . That is, 1≤wi = `≤ L
and 1≤ xit = kt ≤ K. To clearly distinguish the two types of latent variables, I will
refer towi as a latent class and toxit as a latent state.

4.2.1 Mixture growth model

A latent class or mixture growth model is a model for a single response variableyit

measured atTi +1 occasions (Nagin, 1999; Muthén, 2004; Vermunt 2007). In fact,
a regression model is specified foryit in which time serves as the only explanatory
variable. The aim of growth models is to determine whether individuals differ with
respect to the parameters of the growth model, where differences are usually mod-
eled using random effects under the assumption that these come from a multivariate
normal distribution.

There are two possible reasons for introducing latent classes in a growth model.
First, one may wish to identify (interpretable) clusters of individuals with similar
growth parameters. This is similar to the aim of a standard latent class model, with
the difference that the observed variables used to find the clusters are repeated mea-
surements of a single response variable rather than multiple items or indicators.
A second reason for using a mixture growth model is more technical; that is, one
may wish to specify a model with random effects without making strong distribu-
tional assumptions about the random effects. This yields what is referred to as a
non-parametric maximum likelihood (NPML) approach to random effects model-
ing, which cannot only be used in the context of longitudinal data analysis but in
any type of two-level regression model (Aitkin, 1999; Skrondal and Rabe-Hesketh,
2004; Vermunt 2004; Vermunt and van Dijk, 2001).

A mixture growth model is a statistical model forf (yi |zi), the probability density
of theTi +1 responses of subjecti collected in the vectoryi conditional on a set of
time variables collected in the vectorzi . It can be formulated using the following
three equations:
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f (yi |zi) =
L

∑̀
=1

P(wi = `) f (yi |wi = `,zi) (4.1)

f (yi |wi = `,zi) =
Ti

∏
t=0

f (yit |wi = `,zit ), (4.2)

g[E(yit |wi = `,zit )] = β0` +
P

∑
p=1

βp` zit p, (4.3)

The first of these three equations indicates that the densityf (yi |zi) is a weighted
average of class-specific densitiesf (yi |wi = `,zi), where the class proportions
P(wi = `) serve as weights. More intuitively, the likelihood of the set of responses
yi depends on the class membership of personi (onwi). But because the class mem-
bership is unknown, the likelihood is obtained by averaging over theL classes. Note
that this kind of reasoning applies to any type of mixture or latent class model.

The second equation states that the joint distribution ofyi given wi andzi (ap-
pearing in the equation 4.1) can be obtained as a product of theTi + 1 univariate
marginal distributionsf (yit |wi = `,zit ). This expresses that the responses are as-
sumed to be independent across time points given a person’s class membership,
which in the latent class analysis literature is usually referred to as the local inde-
pendence assumption. The specific form chosen forf (yit |wi = `,zit ) depends on
the scale type ofyit . For example, with binary responses on will often use a bino-
mial distribution, with continuous responses a normal distribution, and with counts
a Poisson distribution.

The third equation shows that the responses are related to the time variables using
a regression model from the generalized linear modeling (GLM) family (Agresti,
2002). After applying an appropriate transformationg(·), which in GLM termi-
nology is referred to as a link function, the expected value ofyit is modeled as a
linear function of a set ofP time variables. For example, withP = 2, zit1 = t, and
zit2 = t2, the expected value ofyit would be a quadratic function of time. A key
feature is that the regression parameters capturing the time dependence of the re-
sponses are assumed to differ across latent classes; that is, each class has its own
pattern of change. Note that by defining a regression model foryit one restricts the
density f (yit |wi = `,zit ) which appears in equation 4.2. In fact, we have a latent
class model with restrictions on the class-specific response probabilities/densities
which are specified by assuming that the class-specific means are functions of time.

The basic model described in equations (4.1)–(4.3) can be extended in various
ways. One important extension is the inclusion of covariates in the model forwi .
Similarly to the model proposed by Dayton and Macready (1988) and van der Heij-
den, Dessens, and Böckenholt (1996) in the context of standard latent class analysis,
this involves replacingP(wi = `) in equation (4.2) byP(wi = `|zi) and defining a
multinomial logit model forwi ; that is,

P(wi = `|zi) =
exp(γ0` +∑Q

q=1 γq` ziq)

∑L
`′=1exp(γ0`′ +∑Q

q=1 γq`′ ziq)
, (4.4)
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where for identification we may for example setγ0L = γqL = 0, yielding what is
usually referred to as a baseline category logit model (Agresti, 2002).

Another extension is the inclusion of other predictors than time in the model for
yit (in equation 4.3). These could serve as control variables when one is interested
determining class-specific change patterns after accounting for the fact that other
variables may partially explain the observed change. But other predictors may also
be the ones of main interest, in which case the aim of the analysis changes somewhat
and the mixture variable will mainly be used to capture unobserved heterogeneity
using the NPML approach mentioned above.

4.2.2 Mixture Markov model

As mentioned in the introduction, rather than using a growth model, longitudinal
data may also be modeled using a transitional or conditional model. The best-known
model from this family is the (first-order) Markov model, which assumes thatyit de-
pends onyit−1 but not on values at earlier occasions. Similarly to mixture growth
models, in mixture Markov models, one will typically have a single response vari-
able. The main reason for using a mixture variant of a Markov model is to deal
with unobserved heterogeneity; that is, to account for the fact that transition proba-
bilities/densities are not homogeneous, but instead may differ across (unobserved)
subgroups. A more substantive reason may be to find meaningful clusters of indi-
viduals with different change patterns. An example of the latter is the application
by Dias and Vermunt (2007) in which market segments were identified based on
website users’ search patterns.

The mixture Markov can be formulated as follows:

f (yi) =
L

∑̀
=1

P(wi = `) f (yi0|wi = `)
Ti

∏
t=1

f (yit |yit−1,wi = `). (4.5)

As can be seen, theL latent classes are assumed to differ with respect to the initial-
state and transition densities. Variants of this model for continuous response vari-
ables – referred to as mixture dynamic regression and mixture autoregressive mod-
els – were proposed by Kaplan (2005) and Wong and Li (2000). However, most
applications of the mixture Markov model concern categorical response variables
(Dias and Vermunt, 2007; Poulsen, 1990), in which case the model may also be
written as

P(yi) =
L

∑̀
=1

P(wi = `)P(yi0 = m0|wi = `)[
Ti

∏
t=1

P(yit = mt |yit−1 = mt−1,wi = `)

]
; (4.6)
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that is, in terms of initial-state and transition probabilities.
Various special cases of the mixture Markov model can be obtained by restrict-

ing the transition probabilities. A well-documented special case is the mover-stayer
model (Goodman, 1961), which is a two-class model (L = 2) where one class (say
the second) contains respondents who have a zero probability of making a transi-
tion: P(yit = mt |yit−1 = mt−1,wi = 2) = 0 for mt = mt−1. Another special case is a
Markov model with a random responder class for which the measurements are inde-
pendent across time points:P(yit = mt |yit−1 = mt−1,wi = 2) = P(yit = mt |wi = 2).

Various extensions of the simple models described in equations (4.5) and (4.6)
are possible, the most important of which is the introduction of predictors affect-
ing the class membership, the initial state, and the transitions. The first extension
was discussed above in the context of mixture growth models (see equation 4.4).
Covariates can be allowed to affect the initial state and the transitions by defining
regression models foryi0 andyit , which in the case of a categorical response will
be logistic regression models. WithQ predictors in the model foryi0 andP time-
varying predictors in the model foryit conditional onyit−1, we get

P(yi0 = m|wi = `,zi0) =
exp(β 0

`m+∑Q
q=1 β 0

q+L,mzi0q)

∑M
m′=1exp(β 0

`m′ +∑Q
q=1 β 0

q+L,m′ zi0q)
, (4.7)

P(yit = m|yit−1 = n,wi = `,zit ) =
exp(β`nm+∑P

p=1 βp+L,nmzit p)

∑M
m′=1exp(β`nm′ +∑P

p=1 βp+L,nm′ zit p)
. (4.8)

As in a standard multinomial logit model, identifying restrictions onβ 0
`m andβ 0

q+L,m
are required, for example, they may be fixed to 0 form= M. The same applies to
theβ`nm andβp+L,nm parameters for which one constraint is needed for each origin
staten. A coding referred to as transition coding by Vermunt and Magidson (2008)
involves settingβ`nn = βp+L,nn = 0; that is, the coefficients are fixed to 0 form= n,
which implies that the free coefficients can be interpreted as effects on the logit of
a transition fromn to m.

4.2.3 Latent Markov model

Whereas mixture growth and mixture Markov models contain a static categorical
latent variable (wi), a latent Markov model is a mixture model with a dynamic cate-
gorical latent variable – denoted byxit . One of the key elements of this model is that
latent-state transitions occurring over time are modeled using a first-order Markov
structure. The second key element is that the latent states are connected to one or
more observed response variables via a latent class structure with conditional den-
sities f (yit j |xit = kt). The latent Markov model – which is also referred to as hidden
Markov model (Baum et al., 1970; McDonald and Zucchini, 1997), Markov switch-
ing or regime switching model (Goldfeld and Quandt, 1973), and latent transition
model (Collins and Wugalter, 1992) – can be defined as follows (Poulsen, 1990; van
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de Pol and de Leeuw, 1986, Wiggins, 1973):

f (yi) =
K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(xi0 = k0)

[
Ti

∏
t=1

P(xit = kt |xit−1 = kt−1)

]
[

Ti

∏
t=0

J

∏
j=1

f (yit j |xit = kt)

]
. (4.9)

Besides the Markov assumption for the latent states and the local independence
assumption for the responses within occasions, the latent Markov model assumes
that responses are independent across occasions conditional on the latent states.
The latter implies that the observed associations across time points are assumed to
be explained by the autocorrelation structure for the latent states.

The typical applications of this model concern either a single continuous re-
sponse variable (Schmittmann, Dolan, van der Maas, and Neale, 2005; Dias, Ver-
munt, and Ramos, 2009), a single categorical response variable (Magidson, Ver-
munt, and Tran, 2009; Poulsen, 1990; van de Pol and de Leeuw, 1986; Wiggins,
1973), or multiple categorical responses (Bartolucci, Pennoni, and Francis, 2007;
Collins and Wugalter, 1992; Paas, Vermunt, and Bijmolt, 2007). With a single con-
tinuous response, the model may either be used for clustering or for dealing with
unobserved heterogeneity, where contrary to the mixture models described above
respondents may switch across clusters or mixture components over time. When
applied with a single categorical response variable, one will typically assume that
the number of latent states equals the number or categories of the response variable:
K = M. Moreover, model restrictions are required to obtain an identified model,
the most common of which are time-homogeneous transition probabilities or time-
homogeneous misclassification probabilities. The aim is to split observed changes
in the response into a true change component and a measurement error component.
When used with multiple indicators, the model is a longitudinal data extension of
the standard latent class model (Hagenaars, 1990). The time-specific latent states
can be seen as clusters or types which differ in their responses on theJ indicators,
and the Markovian transition structure is used to describe and predict changes that
may occur across adjacent measurement occasions.

The most straightforward extension of the latent Markov model presented in
equation (4.9) involves the inclusion of explanatory variables affecting the initial
state and the transition probabilities. Special cases are the multiple-group latent
Markov model proposed by van de Pol and Langeheine (1990), the latent Markov
model with covariates proposed by Vermunt, Langeheine and Böckenholt (1999),
and the input-output model described by Mooijaart and van Montfort (2007). Mod-
els with predictors can be defined using similar logistic equations as we used for the
mixture Markov model (see equations 4.7 and 4.8), but now forxi0 andxit instead
of yi0 andyit and without conditioning onwi ; that is,



4 Mixture Models 9

P(xi0 = k|zi0) =
exp(α0

0k +∑Q
q=1 α0

qkzi0q)

∑K
k′=1exp(α0

0k′ +∑Q
q=1 α0

qk′ zi0q)
,

P(xit = k|xit−1 = n,zit ) =
exp(α0nk+∑P

p=1 αpnkzit p)

∑K
k′=1exp(α0nk′ +∑P

p=1 αpnk′ zit p)
.

Again, identifying restrictions are needed on theα0
0k, α0

qk, α0nk, andαpnk parame-
ters, where for the latter two one may again use transition coding.

Other extensions include models with predictors affecting the responses, mixture
variants with a time-constant latent variablewi , models with restrictions on the tran-
sition probabilitiesP(xit = kt |xit−1 = kt−1) or the response densitiesf (yit |xit = kt),
models that relax the assumption that measurement errors are independent across
occasions, and models with multiple dynamic latent variables. These and other ex-
tensions will be discussed below.

4.3 The mixture latent Markov model

4.3.1 The general model

In the previous section, we described three types of mixture models for longitudinal
data analysis. These models contained either a time-constant (wi) or time-varying
(xit ) discrete latent variables. In this section, I present the mixture latent Markov
with covariates, which can be seen as the encompassing model which contains the
three models discussed above as special cases, as well as which allows various inter-
esting extensions and combinations of these. The presented mixture latent Markov
model is an expanded version of the mixed Markov latent class model proposed
by van de Pol and Langeheine (1990) in the sense that it cannot only be used with
categorical but also with continuous responses, it may contain time-constant and
time-varying covariates, and it can be used when the number of time points is large.
For simplicity of exposition, here, I will restrict myself to models with a single
time-constant and a single time-varying latent variable, but in the next section I
will present extensions for multiple time-constant and multiple time-varying latent
variables.

The general model of interest is the following mixture latent Markov model:
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f (yi |zi) =
L

∑̀
=1

K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(wi = `,xi = k|zi) f (yi |wi = `,xi = k,zi) (4.10)

=
L

∑̀
=1

K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(wi = `|zi)P(xi0 = k0|wi = `,zi0)[
Ti

∏
t=1

P(xit = kt |xit−1 = kt−1,wi = `,zit )

]
[

Ti

∏
t=0

J

∏
j=1

f (yit j |xit = kt ,wi = `,zit )

]
. (4.11)

As many statistical models, the model in equations (4.10) and (4.11) is a model
for f (yi |zi), the (probability) density associated with the responses of subjecti con-
ditional on his/her observed covariate values. The right-hand side of equation (4.10)
shows that we are dealing with a mixture model containing a time constant latent
variable (wi) andT + 1 realizations of a time-varying latent variable (collected in
the vectorxi). The total number of mixture components (or latent classes) for in-
dividual i equalsL ·KTi+1, which is the product of the number of categories ofwi

andxit for t = 0,1,2, ...,Ti . Equation (4.10) shows that, as in any mixture model,
f (yi |zi) is obtained as a weighted average of class-specific probability densities –
here f (yi |wi = `,xi = k,zi) – where the (prior) class membership probabilities or
mixture proportions – hereP(wi = `,xi = k|zi) – serve as weights (Everitt and
Hand, 1981; McLachlan and Peel, 2000).

Equation (4.11) shows the specific structure assumed for the mixture proportions
and the class-specific densities. The assumption forP(wi = `,xi = k|zi) is that con-
ditional onwi andzi , xit is associated only withxi,t−1 andxi,t+1 and thus not with
the states occupied at the other time points – the well-know first-order Markov as-
sumption. Forf (yi |wi = `,xi = k,zi) two assumptions are made: (1) conditionally
on wi , xit , andzit , theJ responses at occasiont are independent of the latent states
and the responses at other time points, and (2) conditionally onwi , xit , andzit , the
J responses at occasiont are mutually independent, which is referred to as the local
independence assumption in latent class analysis (Goodman, 1974).

As can be seen from equation (4.11), the models of interest contain four different
kinds of model probabilities/densities:

• P(wi = `|zi) is the probability of belonging to a particular latent class conditional
on a person’s covariate values,

• P(xi0 = k0|wi = `,zi0) is an initial-state probability; that is, the probability of
having a particular latent initial state conditional on an individual’s class mem-
bership and covariate values att = 0,

• P(xit = kt |xit−1 = kt−1,wi = `,zit ) is a latent transition probability; that is, the
probability of being in a particular latent state at time pointt conditional on the
latent state state at time pointt−1, class membership, and time-varying covariate
values,
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• f (yit j |xit = kt ,wi = `,zit ) is a response density, that is, the density corresponding
to the observed value for personi of response variablej at time pointt con-
ditional on the latent state occupied at time pointt, class membershipwi , and
time-varying covariate values.

Typically, these four sets of probabilities/densities will be parameterized and re-
stricted by means of regression models from the generalized linear modeling family.
As shown in various examples in the previous section, this is especially useful when
a model contains covariates, where time itself may be one of the time-varying co-
variates of main interest.

The three key elements of the mixture latent Markov model described in equa-
tion (4.11) are that it can take into account (1) unobserved heterogeneity, (2) au-
tocorrelation, and (3) measurement error. Unobserved heterogeneity is captured by
the time-constant latent variablewi , autocorrelations are captured by the first-order
Markov transition process in which the state at time pointt may depend on the state
at time pointt −1, and measurement error or misclassification is accounted for by
allowing an imperfect relationship between the time-specific latent statesxit and the
observed responsesyit j . Note that these are three of the main elements that should be
taken into account in the analysis of longitudinal data; that is, the inter-individual
variability in patterns of change, the tendency to stay in the same state between
consecutive occasions, and the spurious change resulting from measurement error
in observed responses.

4.3.2 Estimation, missing data, and time-unit setting

Parameters of the mixture latent Markov model can be estimated by means of max-
imum likelihood (ML). For that purpose, it advisable to use a special variant of the
expectation maximization (EM) algorithm that is usually referred to as the forward-
backward or Baum-Welch algorithm (Baum et al., 1970; McDonald and Zucchini,
1997). This is an EM algorithm in which the E step, which involves computing the
relevant set posterior distributions given the current parameter estimates and the ob-
served data, is implemented in a way that is tailored to the models we are dealing
with. More specifically, this special algorithm is needed because our model con-
tains a potentially huge number of entries in the joint posterior latent distribution
P(wi = `,xi = k|yi ,zi), except for cases whereT, L andK are all small. For example,
in a fairly moderate sized situation whereTi = 10,L = 2 andK = 3, the number of
entries in the joint posterior distribution already equals 2·311 = 354294, a number
which is impossible to process and store for allN subjects as has to be done within
standard EM. The Baum-Welch algorithm circumvents the computation of this joint
posterior distribution making use of the conditional independencies implied by the
model; that is, rather than computing the joint distribution and subsequently obtain-
ing the relevant marginals, it computes the relevant marginals directly. For more
details, we refer to Vermunt, Tran, and Magidson (2008) who also provided the
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generalized version of the Baum-Welch algorithm which is required for the estima-
tion of the mixture latent Markov model presented in equation (4.11) and which
is implemented in the Latent GOLD 4.5 program (Vermunt and Magidson, 2008).
Rather than using ML estimation, it is also possible to estimate these models us-
ing Bayesian estimation procedures, an excellent overview of which is provided by
Frühwirth-Schnatter (2006).

A common phenomenon in the analysis of longitudinal data is the occurrence
of missing data. Subjects may have missing values either because they refused to
participate at some occasions or because it is part of the research design. A nice
feature of the approach described here is that it can easily accommodate missing
data in the ML estimation of the unknown model parameter. Letδit be an indicator
variable taking on the value 1 if subjecti provides information for occasiont and
0 if this information is missing. The only required change with missing data is the
following modification of the model for the response densityf (yi |wi = `,xi = k,zi):

f (yi |wi = `,xi = k,zi) =
Ti

∏
t=0

[P(yit |xit = kt ,wi = `,zit )]
δit .

Forδit = 1, nothing changes compared to what we had before. However, forδit = 0,
the time-specific conditional density becomes 1, which means that the responses of
a time point with missing values are skipped. Actually, for each pattern of missing
data, we have a mixture latent Markov for a different set of occasions. Two limi-
tations of the ML estimation procedure with missing values should be mentioned:
(1) it can deal with missing values on response variables, but not with missing val-
ues on covariates, and (2) it assumes that the missing data are missing at random
(MAR). The first limitation may be problematic when there are time-varying co-
variates for which the values are also missing. However, in various special cases
discussed below – the ones that do not use a transition structure – it is not a problem
if time-varying covariates are missing for the time points in which the responses
are missing. The second limitation concerns the assumed missing data mechanism:
MAR is the least restrictive mechanism under which ML estimation can be used
without the need of specifying the exact mechanism causing the missing data; that
is, under which the missing data mechanism is ignorable for likelihood-based in-
ference (Little and Rubin, 1987; Schafer, 1997). It is possible to relax the MAR
assumption by explicitly defining a not missing at random (NMAR) mechanism as
a part of the model to be estimated (Fay, 1986; Vermunt 1997a).

An issue strongly related to missing data is the one of unequally spaced measure-
ment occasions. As long as the model parameters defining the transition probabili-
ties are assumed to be occasion specific, no special arrangements are needed. If this
is not the case, unequally spaced measurements can be handled by defining a grid of
equally spaced time points containing all measurement occasions. Using this tech-
nique, the information on the extraneous occasions can be treated as missing data
for all subjects. An alternative is to use a continuous-time rather than a discrete-time
framework (B̈ockenholt, 2005), which can be seen as the limiting case in which the
elapsed time between consecutive time points in the grid approaches zero.
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Transition Unobserved Measurement
Model name structure heterogeneity error

I. Mixture latent Markov yes yes yes
II. Mixture Markov yes yes no
III. Latent Markov yes no yes
IV. Standard Markov∗ yes no no
V. Mixture latent growth no yes yes
VI. Mixture growth no yes no
VII. Standard latent class no no yes
VIII. Independence∗ no no no

*: This model is not a latent class model.

Another issue related to missing data is the choice of the time variable and the
corresponding starting point of the process. The most common approach is to use
calender time as the time variable and to define the first measurement occasion to
bet = 0. However, one may, for example, also use age as the relevant time variable,
as I do in the second empirical example. Although children’s ages at the first mea-
surement vary between 11 and 17, I use age 11 ast = 0. This implies that for a child
that is 12 years of age information att = 0 is treated as missing, for a child that is
13 years of age information at = 0 andt = 1 is treated as missing, etc.

4.3.3 The most important special cases

Table 4.3.3 lists the various special cases that can be derived from the mixture la-
tent Markov model defined in equation in (4.11) by assuming that one or more of
its three elements – transition structure, measurement error, and unobserved hetero-
geneity – is not present or needs to be ignored because the data is not informative
enough to deal with it. Models I-III and V-VII are latent class models, but IV and
VIII are not. Model VII differs from models I-VI in that it is a model for repeated
cross-sectional data rather than a model for panel data. Below we describe the vari-
ous special cases in more detail.

4.3.3.1 Mixture latent Markov

First of all, it is possible to define simpler versions of the mixture latent Markov
model itself. Actually, the mixed Markov latent class model proposed by van de Pol
and Langeheine (1990) which served as an inspiration for our model is the special
case in which responses are categorical and in which no covariates are present.
van de Pol and Langeheine (1990) proposed a variant in which the four types of
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model probabilities could differ across categories of a grouping variable (see also
Langeheine and van de Pol, 2002). A similar model is obtained by replacing thezi

andzit by a single categorical covariate coded using a set of dummy predictors.

4.3.3.2 Mixture Markov

The mixture Markov model for a categorical response variable (Poulsen, 1990; Dias
and Vermunt, 2007) is the special case of the model presented in equation (4.11)
when there is a single response variable (J = 1) that is assumed to be measured
without error, which is specified byK = M andP(yit = mt |xit = kt) = 1 if mt = kt and
0 otherwise. Note thatyit is assumed not to depend onw andzit but only onxt . The
mover-stayer model (Goodman, 1961) can be obtained by settingL = 2 and fixing
the transition probabilities to 0 for the second class:P(xit = kt |xtt−1 = kt−1,wi =
2,zit ) = 0 if kt = kt−1 and 0 otherwise. Note that the mover-stayer constraint cannot
only be imposed in the mixture Markov but also in the mixture latent Markov, in
which case transitions across imperfectly measured stated are assumed not to occur
in the stayer class.

4.3.3.3 Latent Markov model

The latent Markov, latent transition, or hidden Markov model (Baum et al., 1970;
Collins and Wugalter, 1992; Mooijaart and van Montfort, 2007; van de Pol and de
Leeuw, 1996; Vermunt, Langeheine, and Böckenholt, 1999, Wiggins, 1973) is the
special case of the mixture latent Markov that is obtained by eliminating the time-
constant latent variablewi from the model; that is, by assuming that there is no
unobserved heterogeneity or that it can be ignored. The latent Markov model can be
obtained without modifying the formulae, but by simply assuming thatL = 1; that
is, that all subject belong to the same latent class.

4.3.3.4 Markov model

By assuming both perfect measurement as in the mixture Markov model and ab-
sence of unobserved heterogeneity as in the latent Markov model, one obtains a
standard Markov model, which is no longer a mixture model. This model can further
serve as a simple starting point for longitudinal applications with a single response
variable, where one wishes to assume a Markov structure. It provides a baseline for
comparison to the three more extended models discussed above. Use of these more
extended models makes sense only if they provide a significantly better description
of the data than the simple Markov model.
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4.3.3.5 Mixture latent growth model

Now we turn to latent class models for longitudinal research that are not transition or
Markov models. These mixture growth models assume that dependencies between
measurement occasions can be captured by the time-constant latent variablewi .
The most extended variant is the mixture latent growth model, which is obtained
from the mixture latent Markov model by imposing the constraintP(xit = kt |xi,t−1 =
kt−1,wi = `,zit ) = P(xit = kt |wi = `,zit ). This model is a variant for longitudinal
data of the multilevel latent class model proposed by Vermunt (2003): subjects are
the higher-level units and time points the lower-level units. It should be noted that
application of this very interesting model with categorical responses requires that
there be at least two response variables (J ≥ 2).

In mixture growth models one will typically pay a lot of attention to the model-
ing of the time dependence of the state occupied at the different time points. The
latent class or mixture approach allows identifying subgroups (categories of the
time-constant latent variablewi) with different change patterns (Nagin, 1999). The
extension provided by the mixture latent growth model is that the dynamic depen-
dent variable is itself a (discrete) latent variable which is measured by multiple
indicators.

4.3.3.6 Mixture growth model

The mixture or latent class growth model (Nagin, 1999, Muthén, 2004; Vermunt,
2007) for a categorical response variable can be seen as a restricted variant of the
mixture latent growth model; i.e., as a model for a single indicator measured without
error. The extra constraint is the same as the one used in the mixture Markov model:
K = M andP(yit = mt |xit = kt) = 1 if mt = kt and 0 otherwise. A more natural way
to define the mixture growth model is by omitting the time-varying latent variable
xit from the model specification as was done in equations (4.1) and (4.2).

4.3.3.7 Standard latent class model

When we eliminate bothwi and the transition structure, we obtain a latent class
model that assumes observations are independent across occasions. This is a realis-
tic model only for the analysis of data from repeated cross-sections; that is, to deal
with the situation in which observations from different occasions are independent
because each subject provides information for only one time point.
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4.4 Other extensions

The previous section presented a general mixture model for longitudinal analysis,
which contained the three basic models and various of their extensions as special
cases. This section describes several other interesting extensions, which could be fit
into an even more general mixture model for the longitudinal analysis.

4.4.1 Ordered states

The first extension concerns a latent Markov model for dichotomous or ordered
polytomous responses in which the latent states can be interpreted as ordered cat-
egories. Examples are developmental stages of children, disease stages of patients,
and states representing degrees of agreement in attitude measurement. It may of
course turn out that the estimation of an unrestricted latent Markov model yields
the hypothesized ordering of the latent states. However, it is also possible to force
the latent states to be ordered by imposing constraints on the model parameters.

One class of restrictions concerns the relationship between latent states and re-
sponses. Bartolucci, Pennoni, and Francis (2007) and Vermunt and Georg (2002)
presented various of such models, which can be seen as longitudinal data variants
of the discretized item response theory models described by Heinen (1996) and
Vermunt (2001). Two possible restrictions for multicategory items are

log
P(yit j = m|xit = k)

P(yit j = m−1|xit = k)
= β0 jm +β1 j νk,

and

log
P(yit j ≥ m|xit = k)
P(yit j < m|xit = k)

= β0 jm +β1 j νk,

where the former defines an adjacent category ordinal logit model foryit j and the
latter a cumulative logit model (Agresti, 2002). Note thatνk represents the location
of latent statek, which can either be fixed a priori or treated as a free parameter to
be estimated. Vermunt and Hagenaars (2004) gave an extended overview of longi-
tudinal models for ordinal responses, which also included various types of mixture
models.

Another way to obtain latent states that can be interpreted as ordered cate-
gories is via restrictions on the transition probabilities. An example in which la-
tent states represent (ordered) developmental stages was provided by Collins and
Wugalter (1992). According to the underlying developmental psychology theory,
children may make a transition to a next stage but will never return to a pre-
vious stage. In terms of the latent Markov model parameters, this means that
P(xit = kt |xit−1 = kt−1) = 0 for kt < kt−1.
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4.4.2 Continuous latent variables

The mixture models discussed so far contained only discrete latent variables. How-
ever, in many applications, it may be useful to include also continuous latent vari-
ables in the model, which can play the role of latent factors in a measurement model
or the role of random effects in a regression model. Below, I describe several sit-
uations in which time-constant or time-varying continuous latent variables may be
used in the model for the transitions or in the model for the responses. I will denote
continuous latent variables byF .

4.4.2.1 Time-constant affecting transitions

As a way to account for unobserved heterogeneity, it may be useful to expand the
latent Markov model with random effects in the regression models for the initial
state and transition probabilities. An example was provided by Pavlopoulos, Muf-
fels, and Vermunt (2009) in an application of wage mobility. Their model contains
two continuous latent variables, one affecting the initial state and the other the tran-
sitions.

Note that not only continuous random effects can be used to model unobserved
heterogeneity, but also the mixture variablewi can be used for this purpose. The
choice between the two approaches depends on the assumptions one wishes to make
about the nature of the unobserved heterogeneity; that is, whether it can be assumed
to be continuous and normally distributed or whether a discrete specification – for
example, using a mover-stayer structure – is more appropriate.

4.4.2.2 Time-constant affecting responses

Not only the transitions, but also the responses can be affected by time-constant
continuous latent variables. In latent Markov models this would be a way to model
dependencies between responses across occasions using an approach which is sim-
ilar to the random-effects latent class models proposed in the biomedical field
(Hadgu and Qu, 1998). Such a model is obtained by replacingf (yit j |xit = kt) with
f (yit j |xit = kt ,Fi) and defining a regression model foryit j whereFi enters as one of
the predictors.

In mixture growth modeling, it is very common to use a combination of dis-
crete and continuous latent variables, where the continuous latent variables capture
the unobserved heterogeneity within latent classes (Muthén, 2004; Vermunt, 2007).
This involves replacingf (yit |wi = `,zit ) by f (yit |wi = `,zit ,Fi) or, equivalently, by
allowing β0` andβp` (see equation 4.3) to be random effects.
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4.4.2.3 Time-varying affecting responses

Rather than using time-constant continuous latent variables, it is also possible to
work with time-varying continuous latent variables. One possible application is in
a latent Markov model for multiple responses which cannot be assumed to be lo-
cally independent within time points. The time-varying continuous latent variables
would capture unobserved time-specific factors which vary across individuals and
which are independent across occasions. Such a model can be obtained by replacing
f (yit j |xit = kt) by f (yit j |xit = kt ,Fit ) and defining a regression model foryit j where
Fit enters as a predictor.

Another, very different, type of use of time-varying continuous variables in la-
tent Markov models is as common factors in a factor analytic model for the re-
sponse variables. In other words, the continuous latent variables define a factor ana-
lytic measurement model for the responses. Changes in the factor mean(s) could be
modeled using either a mixture growth or a latent Markov model, which defines two
longitudinal data variants of the mixture factor analysis model proposed by Yung
(1997).

For the situation that there is one common factor, the variant using a latent
Markov structure to model the change in the factor means may have the follow-
ing form:

f (yi) =
K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(xi0 = k0)

[
Ti

∏
t=1

P(xit = kt |xit−1 = kt−1)

]
{

Ti

∏
t=0

∫ [
f (Fit |xit = kt)

J

∏
j=1

f (yit j |Fit )

]
dFit

}
,

where the last part shows that the distribution of the latent factorFit depends onxit

and thatFit affects the responses. Regression models forFit andyit j complete the
model specification.

4.4.3 Multiple, multilevel, and higher-order processes

This subsection presents extensions of latent Markov models for multiple, multi-
level, and higher-order processes. These have in common that they require including
an additional time-constant or time-varying discrete latent variable in the model. I
will use a number as a subscript to denote the latent variable number (e.g.,x1

it and
x2

it ), and an asterisk to refer to a latent variable at a higher level of a nested structure
(e.g.,x∗it ).
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4.4.3.1 Parallel processes

The latent Markov models described so far assume that there is a single Markov
process of interest, which is possibly affected by time-constant and time-varying
predictors. Suppose one has a categorical time-varying predictor which cannot be
assumed to be measured without error. As suggested by Vermunt, Langeheine, and
Böckenholt (1999) as a possible extension of their model, a latent Markov structure
could also be defined for such a time-varying predictor. This yields a latent Markov
model with two latent variablesx1

it andx2
it , wherex1

it is related to the first set ofJ1

response variables andx2
it to the other set ofJ2 responses. Assuming that there are

no (other) covariates, such a model has the following form:

f (yi) =
K1

∑
k1
0=1

K1

∑
k1
1=1

...
K1

∑
k1
Ti

=1

K2

∑
k2
0=1

K2

∑
k2
1=1

...
K2

∑
k2
Ti

=1

P(x1
i0 = k1

0,x
2
i0 = k2

0)

[
Ti

∏
t=1

P(x1
it = k1

t ,x
2
it = k2

t |x1
it−1 = k1

t−1,x
2
it−1 = k2

t−1)

]
{

Ti

∏
t=0

[
J1

∏
j=1

f (yit j |x1
it = k1

t )

][
J1+J2

∏
j=J1+1

f (yit j |x2
it = k2

t )

]}
.

Additional attention is required with respect to the joint probability ofx1
it andx2

it
givenx1

it−1 andx2
it−1, which may be decomposed in a specific way and/or modeled

using a logistic regression equation. A meaningful specification is, for example, a
model in whichx1

it andx2
it are both affected byx1

it−1 andx2
it−1 but are not associated

with one another, yielding what is sometimes referred to as a cross-lagged panel
model. This involve decomposing the joint transition probability ofx1

it andx2
it by

P(x1
it = k1

t |x1
it−1 = k1

t−1,x
2
it−1 = k2

t−1)P(x2
it = k2

t |x1
it−1 = k1

t−1,x
2
it−1 = k2

t−1).

Another possibility is that the causal effect goes in one direction; that is,x2
it affects

x1
it butx1

it is not affected byx2
it or x2

it−1. This can be specified as follows:

P(x1
it = k1

t |x1
it−1 = k1

t−1,x
2
it = k2

t )P(x2
it = k2

t |x2
it−1 = k2

t−1). (4.12)

A specification for correlated processes that are not causally related is obtained by
allowing xit1 andxit2 to be associated and omitting the cross-lagged direct effects
from the logistic model forxit1 andxit2.

4.4.3.2 State-trait models

Eid and Langeheine (1999) proposed a discrete latent variable variant of the state-
trait model. This model is obtained by expanding the latent Markov model with aJ
time-constant discrete latent variables, each of which affects one of theJ responses.
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The time-varying latent variable (representing the state) is assumed to be indepen-
dent of theJ time-constant latent variables (representing the traits). A state-trait
model can be defined as follows:

f (yi) =
L1

∑
`1=1

L2

∑
`2=1

...
LJ

∑
`J=1

K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(w1
i = `1,w2

i = `2, ...,wJ
i = `J)

P(xi0 = k0)

[
Ti

∏
t=1

P(xit = kt |xit−1 = kt−1)

]
[

Ti

∏
t=0

J

∏
j=1

f (yit j |xit = kt ,w
j
i = ` j)

]
.

A more restricted variant of this model is obtained by assuming that the states are
independent across occasions:P(xit = kt |xit−1 = kt−1) = P(xit = kt).

Eid and Langeheine (1999) worked with categoricalyit j variables for which they
defined logistic models. These contained main effects of the state at time pointt and
the trait for responsej but no interaction term; that is,

log
P(yit j = m|xit = k,w j

i = `)

P(yit j = M|xit = k,w j
i = `)

= β0 jm +β1 jkm+β2 j`m.

4.4.3.3 Second-order model

As indicated earlier, one of the key assumptions of the latent Markov model is that
the latent state transitions can be described with a first-order Markov structure. This
assumption can be relaxed, for example, by allowingxit to be affected not only
by xit−1, but also byxit−2, which involves replacingP(xit = kt |xit−1 = kt−1) by
P(xit = kt |xit−1 = kt−1,xit−2 = kt−2) for t ≥ 2. Though most software for latent
Markov modeling does not allow defining such a second-order process, it can be
defined with a trick which involves using a second time-varying latent variablex2

it .
The cross-lagged effect ofx1

it (the variable of interest) onx2
it is restricted in such a

way thatP(x2
it = kt |x1

it−1 = kt−1) = 0 for kt 6= kt−1, which implies that the lag one
of the second latent variable (x2

it−1) is in fact the lag two of the first latent variable
(x1

it−2). The second-order latent Markov model can now be obtained by allowing
the transition probability forx1

it to depend on the lag of the second latent variable,
which yields a model of the form
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f (yi) =
K1

∑
k1
0=1

K1

∑
k1
1=1

...
K1

∑
k1
Ti

=1

K2

∑
k2
0=1

K2

∑
k2
1=1

...
K2

∑
k2
Ti

=1

P(x1
i0 = k1

0)P(x2
i0 = k2

0)

P(x1
i1 = k1

1|x1
i0 = k1

0)

[
Ti

∏
t=2

P(x1
it = k1

t |x1
it−1 = k1

t−1,x
2
it−1 = k2

t−1)

]
[

Ti

∏
t=1

P(x2
it = k2

t |x1
it−1 = k1

t−1)

]
[

Ti

∏
t=0

J

∏
j=1

f (yit j |x1
it = k1

t )

]
.

4.4.3.4 Processes for nested time units

Another interesting extension of the simple latent Markov model was recently pre-
sented by Rijmen et. al (2008). In their application there were two nested time
units: the higher-level concerned changes occurring between days and the lower-
level changes occurring between (non-sleeping) hours within days. The proposed
model consists of two nested latent Markov models, one for between-day transitions
and one for within-day transitions. A slight expansion of our notation is needed to
write down the relevant model formulae. Leth, i, andt be the indices for a person,
a day, and an hour, respectively. For the rest, notation is kept as much as possible
as above, with the exception that quantities referring to the higher-level process get
an asterisk as a superscript. The higher-level (between-day) model for personh can
now be defined as

f (yh) =
K∗

∑
k∗0=1

K∗

∑
k∗1=1

...
K∗

∑
k∗
T∗h

=1

P(x∗h0 = k∗0)

[
T∗

h

∏
i=1

P(x∗hi = k∗i |x∗hi−1 = k∗i−1)

]
[

T∗
h

∏
i=0

f (yhi|x∗hi = k∗i )

]
,

which has the structure of a standard latent Markov model. The lower-level (within-
day) model describing the hourly changes specifies a latent Markov model for
f (yhi|x∗hi = k∗i ),
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f (yhi|x∗hi = k∗i ) =
K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(xhi0 = k0|x∗hi = k∗i )[
Thi

∏
t=1

P(xhit = kt |xhit−1 = kt−1,x
∗
hi = k∗i )

]
[

Thi

∏
t=0

J

∏
j=1

f (yhit j |xhit = kt ,x
∗
hi = k∗i )

]
.

Note that this is, in fact, a mixture latent Markov model in which the initial-state
and transition probabilities and possibly also the response densities depend on the
higher-level latent state occupied by personh at dayi (x∗hi).

4.4.3.5 Multilevel data

Vermunt (2003, 2004) proposed multilevel extensions of various types of mixture
models that may also be useful in longitudinal data analysis. That is, when the
observations for which we have longitudinal data are nested within higher-level
units. Examples are longitudinal data on children which are nested within school,
repeated measures data on patients nested within hospitals, and panel data from
respondents nested within regions.

Palardy and Vermunt (in press) presented a multilevel mixture growth model for
such data sets and illustrated the model with an application in which higher-level
units (schools) are clustered based on the learning rates of children. Vermunt (2004)
presented an application using a similar, but slightly simpler, multilevel mixture
growth model. Denoting a higher-level unit byh, the higher-level part of this model
is

f (yh|zh) =
L∗

∑
`∗=1

P(w∗
h = `∗)

I∗h

∏
h=0

f (yhi|w∗
h = `∗,zhi),

whereIh is the number of persons belonging to higher-level unit or grouph. The
lower-level part is

f (yhi|w∗
h = `∗,zhi) =

L

∑̀
=1

P(whi = `)
Thi

∏
t=0

f (yhit |whi = `,w∗
h = `∗,zhit).

As in the mixture growth model described in equations (4.1) and (4.3), the regres-
sion model foryhit specifies how the higher- and lower-level latent classes differ in
term of the growth parameters.

Yu and Vermunt (in progress) developed a multilevel extension of the latent
Markov model. The structure of this model is similar to that of a mixture latent
Markov model, with the important difference that the mixture is at the group level
and thus not at the individual level. The model can be formulated as follows:
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f (yi) =
L∗

∑
`∗=1

P(w∗
h = `∗)

I∗h

∏
i=1

f (yhi|w∗
h = `∗).

The lower-level part defines the structure forf (yhi|w∗
h = `∗) which is the same as

the lower-level part of the multilevel process model described above, except for that
the conditioning is onw∗

h = `∗ instead ofx∗hi = k∗i ; that is,

f (yhi|w∗
h = `∗) =

K

∑
k0=1

K

∑
k1=1

...
K

∑
kTi =1

P(xhi0 = k0|w∗
h = `∗)

[
Thi

∏
t=1

P(xhit = kt |xhit−1 = kt−1,w
∗
h = `∗)

]
[

Thi

∏
t=0

J

∏
j=1

f (yhit j |xhit = kt ,w
∗
h = `∗)

]
.

4.4.3.6 Dependent classification errors

One of the assumptions of the latent Markov model is that responses are indepen-
dent across time points conditional on the latent states, an assumption that may be
unrealistic in certain applications. However, it is sometimes possible to relax this
assumption, which is sometimes referred to as ICE (independent classification er-
rors).

Above, we already discussed a non-ICE model; that is, a latent Markov model
with a time-constant continuous latent variable affecting the responses at the differ-
ent time points. In this model, it is assumed that an unobserved individual factor is
causing correlations between measurement errors. This is a good non-ICE model
when these correlations are (almost) equally strong between each pair of occasions.

However, typically, correlations between errors are much stronger between ad-
jacent time points. Possible mechanisms leading to such correlated errors are that
making an error at one occasion increases the likelihood of making an error at the
next occasion (Manzoni et al., in progress), or that experiencing a transition in-
creases the likelihood of making an error (see also Hagenaars, 1988). Bassi et al.
(2000) proposed a non-ICE latent Markov model for employment status measure-
ments obtained using a very specific retrospective data collection design (see also
Hagenaars’ chapter in this volume).

Here, I would like to discuss the non-ICE specification proposed by Manzoni
et al. (in progress). Their application concerned a latent Markov model with two
measures of a person’s monthly employment status (employed, self employed, un-
employed, and not employed) for a period of about a year. The first measure is a ret-
rospective report of the last year and the second is a retrospective report on the same
period collected ten years later. The aim of the analysis was to determine the quality
latter report. Because respondents are likely to misplace or forget unemployment
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spells when these occurred a long time ago, it is clearly incorrect to assume that
errors in the second measure are uncorrelated across occasions. Manzoni et al. pro-
posed a correlated measurement error model which involves replacing the response
probability P(yit2 = mt2|xit = kt) by P(yit2 = mt2|xit = kt ,yit−1,2 = mt−1,2,xit−1 =
kt−1); that is, a model in whichyit ,2 is not only affected byxit , but also byyit−1,2

andxit−1. Moreover, restrictions were imposed on the way the lagged observed and
latent states affect the measurement error. One restriction yielded a specification in
which respondents making an error att −1 have a different (higher) probability of
making an error att. So, in fact, two sets of error probabilities were estimated, one
for respondents reporting correctly att −1 (mt−1,2 = kt−1) and another for respon-
dents reporting incorrectly (mt−1,2 6= kt−1). Various alternative specifications were
also investigated.

4.5 Applications

This section presents two applications of the mixture models for longitudinal data
described in this chapter. The first application concerns a repeated measures experi-
mental study and is used to illustrate the mixture growth model, including the more
advanced model with continuous random effects. The second application concerns
a longitudinal survey and is used to illustrate the latent Markov and mixture latent
Markov model, as well as the latent Markov model for parallel processes. For pa-
rameter estimation, I used version 4.5 of the Latent GOLD program (Vermunt and
Magidson, 2005, 2008). Examples of syntax files can be found in the Appendix.

4.5.1 A mixture growth model

The empirical example I will use to illustrate mixture growth modeling is taken
from Hedeker and Gibbon’s (1996) MIXOR program. It concerns a dichotomous
outcome variable “severity of schizophrenia” measured at 7 occasions (consecutive
weeks). This binary outcome was obtained by collapsing a severity score ranging
from 1 to 7 into two categories, where a 1 indicates that the severity score was at
least 3.5 (severe), and 0 that is was smaller than 3.5 (non severe). In total, there is
information on 437 cases. However, for none of the cases there is complete infor-
mation. For 42 cases, we have observations at 2, for 66 at 3, for 324 at 4, and for 5 at
5 time points. There are 434, 426, 14, 374, 11, 9, and 335 observations at the 7 time
points. Besides the repeated measures for the response variable, there is one time-
constant predictor, treatment (0=control group; 1=treatment group). The treatment
is a new drug that is expected to decrease the symptoms related to schizophrenia.
The main research question to be answered with this data set is whether the treat-
ment reduces the symptoms related to schizophrenia.
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Table 4.1 Test results for the mixture growth models estimated with the schizophrenia data

Model Log-likelihood BIC # Parameters

A1: 1-class growth -704 1421 2
A2: 2-class growth -625 1286 6
A3: 3-class growth -608 1277 10
A4: 4-class growth -601 1287 14
B2: 2-class growth with squared time for class 2 -620 1282 7
B3: 3-class growth with squared time for class 3 -597 1261 11
C2: B2 with random intercept -601 1250 8
C3: B3 with random intercept -595 1263 12

Whereas Vermunt (2007) used the same data set for a more extended comparison
of various types of growth models, here the focus will be on the mixture growth
models described in this chapter. More specifically, it will be shown that two growth
classes can be identified – one class with decreasing severity and one class without
– and that patients receiving the treatment are much more likely to be belong to the
decreasing severity class than the control group. Moreover, it will be shown that
using random effects may yield a simpler solution with a smaller number of latent
classes.

In the analysis of this data set, I followed Hedeker and Gibbon’s (1996) sug-
gestion to setP = 1, with zit1 =

√
t, and to use a binary logit model. This yields a

model in which the logit of severity is a function of the square root of time. Though
there is no strong theoretical motivation for using this functional form for the time
dependence, there is a good empirical motivation: in a simple model without latent
classes nor random effects, this model fits the time-specific response probabilities
much better than a linear or a quadratic model, and almost as well as a model with
an unrestricted time dependence.

Table 4.1 reports the log-likelihood value, the number of parameters, and the BIC
value obtained by applying various of the models described in the previous two sec-
tions to the schizophrenia data set. Models A1-A4 are 1 to 4-class mixture growth
models using the

√
t time dependence and containing treatment as a covariate af-

fecting the class membership. Based on the BIC value, one would select the 3-class
model as the best one. Models B2 and B3 modify models A2 and A3 in the sense
that one latent class (the last one) has a different (quadratic) time dependence. This
is specified by definingzit2 = t andzit3 = t2, and setting the parameters correspond-
ing to these two terms to 0 in all but classK and the parameter corresponding tozit1

to 0 in classK. As can be seen from the BIC values, Models B2 and B3 fit better
than Models A2 and A3, which indicates that it makes sense to assume another type
of time dependence for one of the classes. It can also be seen that the 3-class model
is still preferred to the 2-class model. Models C2 and C3 are variants of Models B2
and B3 containing a random intercept to allow for within class heterogeneity. As
can be seen, these models have lower BIC values than Models B2 and B3. More-
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Table 4.2Parameter estimates obtained with Model C2

Model for Responses Class 1 Class 2

β or λ s.e. z-valueβ or λ s.e. z-value

Intercept 9.16 1.22 7.49 6.95 0.92 7.56
StdDev Random Intercept 3.50 0.55 6.42 3.50 0.55 6.42
TIME - 3.82 1.01 -3.77
SQ-TIME 1.13 0.30 3.77
SQRT-TIME -4.98 0.65 -7.66

Model for Latent Classes Class 1
γ s.e. z-value

Intercept -0.64 0.31 -2.08
Treatment 1.80 0.36 4.99

over, under this specification, the simpler 2-class model (C2) performs better than
the 3-class model (C3).

Table 4.2 reports the parameter estimates obtained with Model C2. For each
latent class, we have a set of parameters describing the time dependence of the
logit of the probability of being in the severely schizophrenic state – Intercept and
SQRT-TIME in class 1 and Intercept, TIME, and SQ-TIME in class 2 – as well the
standard deviation of the random effect indicating how much the intercept varies
within classes. The size of latter parameter, which is assumed to be equal across la-
tent classes, indicates that there is quite some variation within classes. Figure 4.5.1
depicts the estimated growth curves for the two latent classes, which are obtained
by marginalizing over (integration out) the continuous random effects. Class 1 con-
tains the patients for which the probability of severe symptoms of schizophrenia
decreases during the study. It can now also be seen why the quadratic curve was
needed for class 2: after a small drop in weeks 1 and 2, the probability of a se-
vere form of schizophrenia increased again, a pattern that cannot be described by a
monotonic function.

Out of the total sample, 66% is estimated to belong to latent class 1 and 34% to
latent class 2. These numbers are 76% and 24% for the treatment group and 35% and
65% for the control group. The treatment effect on class member is given in terms
of a logistic regression coefficient and its asymptotic standard error in the lower
part of Table 4.2 – the odds of begin in class 1 instead of 2 is exp(1.80) higher for
the treatment than for the control group. The encountered treatment effect shows,
on the one hand, that there is a rather strong relation between treatment and class
membership, but, on the other hand, that this relationship is far from perfect.



4 Mixture Models 27

Fig. 4.1 Class-specific trajectories obtained with Model C2.

4.5.2 A mixture Latent Markov model

The latent Markov models described above will be illustrated with the nine-wave
National Youth Survey (Elliott, Huizinga, and Menard, 1989) for which data were
collected annually from 1976 to 1980 and at three year intervals after 1980. At the
first measurement occasion, the ages of the 1725 children varied between 11 and 17.
To account for the unequal spacing across panel waves and to use age as the time
scale, we define a model for 23 time points (T +1= 23), wheret = 0 corresponds to
age 11 and the last time point to age 33. For each subject, we have observed data for
at most 9 time points (the average is 7.93) which means that the other time points
are treated as missing values.

We study the change in a dichotomous response variable “drugs” indicating
whether young persons used hard drugs during the past year (1=no; 2=yes). It should
be noted that among the 11 years of age nobody in the sample reported to have used
hard drugs, which is something that will be taken into account in our model spec-
ification. Time-varying predictors are age and age squared, and time-constant pre-
dictors are gender and ethnicity. In the second step of the analysis, I will introduce
alcohol use during the past year as a time-varying covariate containing measurement
error.

A preliminary analysis showed that there is a clear age-dependence in the re-
ported hard-drugs use which can well be described by a quadratic function: usage
first increases with age and subsequently decreases. That is why we used this type
of time dependence in all reported models. Age and age-squared are used as time-
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Table 4.3Test results for the Markov models estimated with the drugs use data

Model Log-likelihood BIC # Parameters

A1. Markov -4143 8330 6
A2. Latent Markov withK=2 -4009 8078 8
A3. Mover-stayer latent Markov withK=2 -4000 8068 9
A4. Mixture latent Markov withL=2 andK=2 -3992 8066 11
A5. A4 with Gender & Ethnicity effects onWi -3975 8061 15
B1. A5 with Markov model for Alcohol -9328 18789 18
B2. B1 with Alcohol affectingXit -9185 18520 20
B3. B2 with Alcohol measured with error -8912 17989 22

dependent covariates in the regression model for the latent transition probabilities
(see also equation 4.8); that is,

log
P(xit = k′|xit−1 = k,wi = `,ageit )
P(xit = k|xit−1 = k,wi = `,ageit )

= α0kk′ +α`kk′ +αL+1,kk′ ·ageit

+αL+2,kk′ · (ageit )
2,

where theα coefficients are fixed to 0 fork′ = k and for` = 1. For the initial-state,
we do not have a model with free parameters but we simply assume that all children
start in the no-drugs state at age 11.

Table 4.3 reports the fit measures for the estimated models, where Models A1 to
A4 do not contain covariates gender and ethnicity. Among these models, the most
general model – the mixture latent Markov model – performs best. By removing
measurement error, simplifying the mixture into a mover-stayer structure, or elimi-
nating the mixture structure, the fit deteriorates significantly. Model A5 is a mixture
latent markov model in which we introduced covariates in the model for the mix-
ture proportions: sex and/or ethnicity seem to be significantly related to the mixture
component someone belongs to.

As a final step, we investigated whether alcohol use affects hard drugs use. We
specified three additional models: Model B1 in which alcohol does not affect drugs
use, Model B2 in which alcohol use at aget affects the transitions in the model for
drugs, and Model B3 in which alcohol use is treated as a time-varying covariate
measured with error. The latter model is a latent Markov model for two parallel
processes. We used a specification in which alcohol use affects the drugs-use tran-
sitions but in which the reversed effect is absent (see equation 4.12). In Models B1
and B2, we specified a Markov model without measurement error for alcohol use
in order to be able to compare the BIC values across these three models. Note that
as far as the modeling of drugs use is concerned, Model B1 is, in fact, equivalent to
Model A5, but their log-likelihood values cannot be compared because alcohol is
introduced as an additional response variable in Model B1. Comparison of the fits
measures for Models B1 and B2 shows that alcohol use has a significant effect on
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the drugs use transitions, and comparison of the fit measures for Models B2 and B3
shows that there is evidence that alcohol use is measured with error.

One set of parameters of the final model (B3) are the probabilities of the mea-
surement models for drugs and alcohol. These show that the latent states are rather
strongly connected to the two observed states:P(yit1 = 1|x1

it = 1) = 0.99 and
P(yit1 = 2|x1

it = 2) = 0.83 for drugs use;P(yit2 = 1|x2
it = 1) = 0.87 andP(yit1 =

2|x2
it = 2) = 0.99 for alcohol use.
The most relevant coefficients in the model for the drugs use transitions are

the effects of alcohol (x2
it ) and of wi . The former show that being in the latent

alcohol use state increases the probability of moving into the drugs use state
(α = 4.61;S.E = 1.33) and decreases the probability of exciting the drugs use
state (α = −1.86;S.E = 0.52). The parameters forwi show that class 1 is the
low-risk class having a lower probability than class 2 of entering into the use state
(α =−1.19;S.E = 0.36) and a much higher probability of leaving the non-use state
(α = 4.16;S.E. = 0.63). This means that class 1 contains young people that quit the
drug-use state quickly when they get into this state.

The parameters in the logistic regression model forwi shows that males are less
likely to be in the low-risk class than females (γ = −0.67;S.E. = 0.20). More-
over, blacks are more likely (γ = 0.41;S.E = 0.26), hispanics less likely (γ =
−0.75;S.E. = 0.52), and other ethnic groups less likely (γ = −0.09;S.E = 0.70)
to be in the low-risk class than whites, but these ethnicity effects are non signifi-
cant.

Appendix: Examples of Latent GOLD syntax files

The Latent GOLD 4.5 software package (Vermunt and Magidson, 2008) imple-
ments the mixture models described in this article. In this appendix, I provide ex-
amples of syntax files used for the empirical applications.

The data should be in the format of a person-period file, where for Markov type
models it is important to include also periods with missing values in the file since
each next record for the same subject is assumed to be the next time point. The
definition of a model contains three main sections: “options ”, “ variables ”
and “equations ”.

The mixture growth models A1 to A4 from Table 4.1 can be defined as follows:

options
output parameters standarderrors estimatedvalues;

variables
caseid id;
dependent severity binomial;
independent sqrttime, treatment;
latent W nominal 2;

equations
W <- 1 + treatment;
severity <- 1 | W + sqrttime | W;
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In the aboveoptions section, only the commands related to the output options
are shown. It is indicated that we wish to output parameters and standard errors of
the parameters, as well as the estimates for the model probabilities.

In thevariables section we define thecaseid variable connecting the mul-
tiple records of a person, thelatent , dependent , and independent vari-
ables to be used in the analysis, as well as various attributes of these variables, such
as their scale types and, for categorical latent variables, also their number of cate-
gories. Note that the model above is a two-class mixture model since we specified
“ latent W nominal 2; ”.

The equation section contains 2 equations: one for the mixture variable (W)
and another for the response variable. The logit model forWcontains an intercept
(the term “1”) and the effect of treatment. The model for the response variable
severity contains an intercept and an effect of square root time. Both parameters
are assumed to vary across latent classes, which is achieved by the conditioning “|
W”.

The more complex final two-class model C2 – containing a continuous random
effect and a different time dependence for classes 1 and 2 – is defined as follows:

options
output parameters standarderrors estimatedvalues;

variables
caseid id;
dependent severity binomial;
independent sqrttime, time, sqtime, treatment;
latent W nominal 2, F continuous;

equations
W <- 1 + treatment;
severity <- 1 | W + (b1) sqrttime | W + (b2) time | W

+ (b3) sqtime | W + F;
b1[2]=0; b2[1]=0; b3[1]=0;

As can be seen, the model contains two additional predictors (time andsq-
time ) and a continuous latent variable (F). These are all used as predictors in the
regression model for the response variable. It can also be seen that three of the
regression coefficient get labels, which is needed to be able to define the three con-
straints at the bottom. These restrictions indicate thatsqrttime has no effect in
class 2, and thattime andsqtime have no effect in class 1.

The syntax for Markov models is somewhat more complicated than for growth
models. As an example, this is the setup for model A5 appearing in Table 4.3, a
mixture latent Markov model with two covariates affecting the mixture distribution
and with a quadratic time dependence of the transition logits:

options
missing includeall;
output parameters=first standarderrors estimatedvalues;

variables
caseid id;
dependent drugs nominal;
independent gender nominal, ethnicity nominal, age, age2;
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latent W nominal 2, X nominal dynamic 2;
equations

W <- 1 + gender + ethnicity;
X[=0] <- (-100) 1;
X <- (˜tra) 1 | X[-1] + (a˜tra) W | X[-1]

+ (˜tra) age | X[-1] + (˜tra) age2 | X[-1];
drugs <- (b˜err) 1 | X;

Compared to the specification above, theoptions section contains the state-
ment “missing=includeall ” indicating that records with missing values should
be retained in the analysis and the output option “parameters=first ” request-
ing dummy coding with the first category as the reference category for nominal
variables. A new element in thevariables section is the keyword “dynamic ”
which indicates that the nominal latent variableX may change its value over time
(in this case, it is a two-state time-varying latent variable).

Theequations section contains 4 equations: one for the mixture variable (W),
one for the initial state (X[=0] ), one for the state at time pointt (X) conditional on
the state att−1 (X[-1] ), and one for the response variable at time pointt (drugs ).
The logit model forWcontains an intercept as well as effects of gender and ethnicity.
The model forX[=0] contains an intercept that is fixed to -100, which indicates
that everyone starts in latent state 1. The model forX is parameterized in such a way
that the intercept and the effects ofW, age , andage2 can be interpreted as effects
on the logit of a transition (as in the equation provided in the text). This is achieved
by the conditioning “| X[-1] ” combined with “˜tra” in the parameter label, which
yields a coding for the logit coefficients in which the no transition category serves
as the reference category. The model for the response variabledrugs contains an
intercept which varies across latent states, with the same type of coding as used for
the transition (for the dependent variable called error coding). Note that removing
“˜tra” and “˜err” does not change the model but only the identifying constraints that
are imposed in the parameter set concerned. As can be seen, two parameter sets
get labels (a andb), which will be used below to define models with parameter
restrictions.

The 2-class mixture can be changed into a mover-stayer structure with the ad-
ditional line “a = -100; ” which fixes the transition probabilities to 0 for the
second class. A latent Markov model is obtained either by removingWfrom the
variables andequations sections or by setting its number of categories to
1. A standard Markov is obtained with the extra line “b = -100; ”. This fixes the
logit parameters in the model for the response variable to -100, which because of
the special error coding (induced with “˜err”) yields a perfect relationship between
X anddrugs .

The model in which alcohol is used as a time-varying covariate measured with
error (Model B3 of Table Table 4.3 is obtained by includingalcohol as a second
dependent variable and defining a second dynamic latent variableX2. Theequa-
tions section of this more advanced model contains also equations for the initial
state and the transitions ofX2, includesX2 in the equation forX, and defines a
measurement equation foralcohol ; that is,
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equations
W <- 1 + gender + ethnicity;
X[=0] <- (-100) 1;
X2[=0] <- 1;
X <- (˜tra) 1 | X[-1] + (˜tra) W | X[-1]

+ (˜tra) age | X[-1] + (˜tra) age2 | X[-1]
+ (˜tra) X2 | X[-1];

X2 <- (˜tra) 1 | X2[-1];
drugs <- 1 | X;
alcohol <- 1 | X2;
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van der Heijden, P. G. M., Dessens, J., & Böckenholt, U. (1996). Estimating the concomitant
variable latent class model with the EM algorithm.Journal of Educational and Behavioral
Statistics, 21,215-229.

Vermunt, J. K. (1997a).Log-linear models for event histories.Thousand Oakes, CA: Sage.
Vermunt, J. K. (1997b).LEM: A general program for the analysis of categorical data: User’s

manual. Tilburg, The Netherlands: Tilburg University.
Vermunt, J. K. (2001). The use of latent class models for defining and testing non-parametric and

parametric item response theory models.Applied Psychological Measurement, 25,283-294.
Vermunt, J. K. (2003). Multilevel latent class models.Sociological Methodology, 33,213-239.
Vermunt, J. K. (2004) An EM algorithm for the estimation of parametric and nonparametric hier-

archical nonlinear models.Statistica Neerlandica, 58,220- 233.
Vermunt, J. K. (2007). Growth models for categorical response variables: Standard, latent-class,

and hybrid approaches. In K. van Montfort, J. Oud, & A. Satorra (Eds.),Longitudinal models
in the behavioral and related sciences(pp. 139-158). Mahwah, NJ: Lawrence Erlbaum.

Vermunt, J. K., & Georg, W. (2002). Longitudinal data analysis using log-linear path models with
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