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Abstract 

Traditionally latent class (LC) analysis is used by applied researchers as a tool for identifying 

substantively meaningful clusters. More recently, LC models have also been used as a density 

estimation tool for categorical variables. We introduce a hierarchical LC (HLC) model as a density 

estimation tool that may offer several advantages in comparison to a standard LC model. When using 

an LC model for density estimation, a common model-fit strategy is to estimate increasingly large LC 

models in terms of the number of latent classes. In practice this strategy may be very time consuming 

or even unfeasible, especially if a dataset with a large number of variables is analyzed. A considerable 

number of increasingly large LC models may have to be estimated before sufficient model-fit is 

achieved. An HLC model consists of a hierarchical sequence of small LC models. Therefore, an HLC 

model can be estimated much faster and is less demanding in terms of computer working-memory, 

meaning that this model is more widely applicable and practical. In this study we describe the 

algorithm of fitting an HLC model, and discuss the various settings that indirectly influence the 

precision of an HLC model as a density estimation tool. These settings are examined in a simulation 

study, and the best performing algorithm is applied to a real-data example in the context of missing 

data and multiple imputation. Results from a generated data example show that an HLC model is able 

to correctly model complex association among categorical variables. 

 

Keywords: Latent class analysis, categorical data, mixture model, density estimation, hierarchical 

latent class model, missing data. 
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1. Introduction 

Traditionally, latent class (LC) analysis (Lazarsfeld, 1950; also see, e.g., McCutcheon, 1987; 

Goodman, 1974; Hagenaars and McCutcheon, 2002; Collins and Lanza, 2010) is used as a statistical 

method to identify substantively meaningful groups from multivariate categorical data (e.g., Muthén, 

2004; Magidson and Vermunt, 2004). Some examples include the empirical definition of eating 

disorder subgroups (Keel et al., 2004), empirical identification of discrete subgroups with similar 

symptoms of posttraumatic stress disorder (Breslau, Reboussin, Anthony, and Storr, 2005), exploring 

whether certain subtypes of Antisocial Personality Disorder exist (Bucholz, Hesselbrock, Heath, 

Kramer, and Schuckit, 2000), and unsupervised learning of the meaning of words (Hofmann, 2001).  

Typically, a substantive interpretation is given to the LCs based on the estimated model parameters. 

To facilitate interpretation, it is desirable that the number of LCs is small, the LC model is identifiable 

(e.g., Goodman, 1974), and the global maximum of the likelihood has been found. 

More recently, LC models have been used in a different way: as estimators of the joint density 

of a set of categorical variables. The often complex multivariate density is approximated by a finite 

mixture of simpler multinomial densities; examples can be found in various fields. Vermunt, Van 

Ginkel, Van der Ark, and Sijtsma (2008; also, see Gebregziabher and DeSantis, 2010, and Van der 

Palm, Van der Ark, and Vermunt, 2012) used the estimated density for multiple imputation of 

incomplete categorical data. In the context of the analysis of voting behavior, Linzer (2011) proposed 

using an LC model for smoothing large contingency tables with many zero observed frequencies. He 

showed that analyzing the table with the estimated frequencies from an LC model instead of the 

observed frequencies may greatly improve the quality of the obtained results. In the context of 

psychological testing, Van der Ark, Van der Palm, and Sijtsma (2011) estimated the density of item-

score vectors obtained from psychological test data using LC analysis, and derived a coefficient for 

test-score reliability. In the context of pattern recognition, Bouguila and ElGuebaly (2009) showed 

that an LC model can be used to summarize an image database by estimating the density of image 

characteristics.  

The idea of approximating a complex density by a mixture of simpler densities is well-known 

in finite mixture modeling (e.g., McLachlan and Peel, 2000, pp. 11-14) but the majority of research 
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has focused on mixtures of continuous distributions (e.g., Everitt, Landau, and Leese, 2001, pp. 8-10). 

The most important issue when using LC models to estimate densities is the precision of the density 

estimate. Depending on the application of interest, the two-way, three-way, or higher-way interactions 

should be accurately described by the LC model. In this context, the LC model is solely used as a tool, 

and the interpretation of the latent classes is not important. Consequently, issues that play an important 

role in interpreting LCs—number of LCs and identifiability—are hardly important when LC models 

are used to estimate densities. Vermunt et al. (2008) argued that over-fitting the data has no impact on 

the precision of the density estimate. Therefore, the number of LCs is of less importance, as long as 

the model is able to yield a precise density estimate.  

For datasets containing a large number of variables, a large number of LCs is usually required 

for precise density estimation. Let LC(k) denote an LC model with k classes. For example, Vermunt et 

al., (2008) used AIC (Akaike, 1974) as a criterion and selected an LC(50) model to model a survey 

dataset of 79 variables. They indicated that even more LCs may have been needed for precise density 

estimation. A typical model-fit strategy is to estimate an LC(5), LC(10), LC(15), LC(20) model, 

etcetera, until the model fit no longer improves. This can be a very time-consuming process: For 

example, we reanalyzed the survey data set used by Vermunt et al., containing 4292 cases and 79 

categorical variables (for details, see Mittelhaëuser, Van der Ark, and Richards, 2010), and estimated 

an LC(5), LC(10), LC(15),…, LC(60), and LC(65) model. The analysis took approximately 8 hours 

and 12 minutes (details in Table 1) on a, for current standards, very fast personal computer (i7 2600 

quadcore processor, 8GB of internal memory), as summarized in Table 1. As overfitting is not 

problematic, an LC(65) model may be taken as the final solution, as it yields the first considerable 

increase in AIC (Table 1). The long computation time and comparison of many LC models can be an 

obstacle for researchers, especially when a density has to be estimated multiple times (e.g. multiple 

imputation based on bootstrap replications). Hence, for larger data sets, density estimation using 

traditional LC models is problematic. 

-     Insert Table 1 about here    - 

In this paper we introduce the hierarchical LC (HLC) model as a fast alternative to the LC model for 

density estimation. The HLC model requires only a single run. An HLC model is obtained by fitting a 
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sequence of LC(1) and LC(2) models. A key characteristic of this sequence of models is that is has a 

hierarchical structure; every analysis builds on the results of the previous analyses. An exemplary 

HLC model is shown in Figure 1 to illustrate its structure. 

-    Insert Figure 1 about here     - 

At the top, the hierarchy starts with the full sample and, at the bottom, the hierarchy ends in a number 

of LCs, each containing a portion of the sample. We refer to these LCs as endpoints, and depict them 

as LCs printed in bold. In this example, a total of 11 classes were considered for splitting (numbered 

as nodes 1 through 11); in four instances an LC(2) model sufficiently improved model fit compared to 

an LC(1) model (classes at nodes 1, 2, 3, 5, and 8), resulting in a split. At the other nodes, an LC(2) 

model did not sufficiently improve model-fit, which yields the 6 endpoints (classes 4, 6, 7, 9, 10, and 

11). As can be seen, every split is a step down in a hierarchy consisting of 5 levels for this example. 

The notation used to denote the LCs at the different levels is explained in the HLC section.  

A key characteristic of a standard LC model is that each analysis starts from scratch. That is, 

when fitting a model with K + 1 classes, the information obtained with the K-class model is entirely 

neglected. The HLC model is able to reduce computation time because it is a stepwise procedure and 

each step takes into account the information obtained in the previous steps; the density estimate 

yielded by an HLC model consists of a sequence of hierarchically linked LC(2) models. Furthermore, 

in contrast to the standard LC model, the number of LCs is not specified a priori for an HLC model; 

the number of LCs is increased during the estimation process until a sufficiently precise density 

estimate is obtained. Therefore, it is also no longer necessary to estimate and compare several models.  

Due to its hierarchical nature and relative simplicity we expect the estimation of an HLC 

model to be faster than of a traditional LC model, controlling for computer hardware. In addition, it is 

much easier to utilize multiple processor cores in the estimation of an HLC model (to be explained in 

the HLC section). The remainder of this paper is organized as follows. First, we provide a full 

description of the HLC model and explain why estimating the HLC model is fast. Second, we discuss 

different choices that can be made in the construction of an estimation algorithm. Third, using a 
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generated data example, we compare the effect of these different choices on the precision of 

estimating complex densities. Fourth, the best performing estimation algorithm is applied to a dataset 

that was also analyzed by Vermunt et al. (2008) using a standard LC model and we compare the 

results. 

2. Hierarchical Latent Class Model 

An HLC model, which could also be referred to as a hierarchical mixture model, is fitted to the data in 

a stepwise manner. From the starting point towards the endpoints, a branching pattern is observed 

(Figure 1), which is established as follows: first (level 0), the whole sample is analyzed to assess 

whether an LC(2) model provides a better fit than an LC(1) model, according to specific decision rules 

(to be discussed shortly). If this is the case, two LCs are created, effectively splitting the whole sample 

into two subsamples (level 1). Next, the two subsamples in level 1 are analyzed separately, to assess 

whether an additional split further improves the overall model-fit. This procedure continues until a 

split does not improve the model-fit sufficiently; an endpoint has been reached in the hierarchy. 

During the analysis of each class, the proportion of the sample that was already assigned to other LCs 

is held constant; this is sometimes referred to as partial EM (Ueda and Nakano, 2000; Wang, Luo, 

Zhang, and Wei, 2004).  

We will now give a technical description of the HLC model and the steps that need to be taken 

to obtain a density estimate. Let { }2,1
1| ∈

−rrx x denote a binary latent variable at level r (see Figure 1) 

in the hierarchy. Each outcome of 
1| −rrx x (i.e., 1

1| =
−rrx x  and 2

1| =
−rrx x ) is an LC. Vector 1−rx is 

called the lineage vector and gives the sequence of ‘parent’ LCs at levels 1,,1 −rK . In general, 
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For example, let 11 =x be the parent LC for the binary latent variable 1|2x  at the second level; hence, 

r=2, and the lineage vector 11 =−rx . The two LCs of this variable are denoted 11|2 =x and 21|2 =x , 

respectively. Then, let 11|2 =x
 
be the parent LC for the binary latent variable 11|3x at the third level; 
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hence, r=3, and the lineage vector ( )1,11 =−rx . The two LCs of this variable are denoted 111|3 =x and

211|3 =x . This procedure continues until splitting an LC no longer improves the overall model-fit. 

Figure 1 shows the LC names for the example HLC model. 

To be able to discuss all the possible steps of fitting an HLC model we must define a general 

notation for an LC in the hierarchy at an arbitrary level and with an arbitrary lineage of parent LCs. 

Such a class is simply denoted as
1| −rrx x , hence, the level and lineage vector are unspecified. To 

illustrate the use of this notation we give an example: if we split LC 1
1-r | =xrx , LCs 1

r |1 =+ xrx and

2
r |1 =+ xrx are created, both with an unspecified lineage vector rx . Figure 2 depicts the three possible 

situations that can occur when fitting an HLC model: the first split of the data, a second split, and the 

rth split.  

-     Insert Figure 2 about here    - 

2.1 The first split 

Let ( )1,..., , ,i i ij iJy y y=y   K  denote the vector of scores on the J variables for respondent i. The first 

split consists of fitting an LC(1) and LC(2) model on the total sample of size n. The LC(1) model is 

simply the independence model, with log-likelihood, 

                                                 

∑ ∏
= =

=
n

i

J

j

ijyPL

1 1

1 )(loglog .                                 (1) 

Let { }, 2,1  ),( 11 ∈xxP  denote the LC proportions, and let { }, 2,1 ),|( 11 ∈xxyP ij denote the 

conditional response probability for variable j.  The LC proportions and the conditional response 

probabilities are the parameters of the LC model. In the LC(2) model, the probability of observing 

score vector iy  is defined as 

                                         

∑ ∏
= =

=
2

1 1

11

1

)|()()(

x

J

j

iji xyPxPP y .                                         (2) 
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Responses within each LC are assumed to be independent; this is generally referred to as the local 

independence assumption (Lazarsfeld, 1950).  Equation 2 yields the following log-likelihood for the 

LC(2) model:  

                        ∑ ∑ ∏
= = =

=
n

i x

J

j

ij xyPxPL

1

2

1 1

112

1

)|()(loglog .                                (3) 

We obtain maximum-likelihood estimates of )( 1xP
 
and )|( 1xyP ij in the same way as for standard LC 

analysis, using an EM algorithm (Dempster, Laird, and Rubin, 1977), a Newton-Raphson procedure, 

or a combination of the two. If 
2log L is sufficiently larger than

1log L , the total sample is split.  

2.2 A second split 

After the first split, all respondents are divided between LCs 11 =x  and 21 =x , effectively creating 

two subsamples. For each of these two subsamples we estimate an LC(1) and LC(2) model, and decide 

whether these LCs should be split up again. However, to analyze a subsample, it must be known which 

respondents belong to it. To this end, we use the posterior membership probabilities )|( 1 ixP y , which 

are defined as follows, 

.
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Full LC membership of one of the two LCs could be forced for each person by modal assignment or a 

random assignment using the posterior membership probabilities defined in Equation 4. However, to 

stay as close to the estimated model as possible, and to reflect the uncertainty about LC membership, 

each respondent is included in both subsamples with a weight equal to the posterior membership 

probability. Hence, respondent i receives weight )|1( 1 ixP y=
 
for the analysis of the first LC and 

weight )|1(1)|2( 11 ii xPxP yy =−==  for the analysis of the second LC.  

 We now consider LC 11 =x (Figure 2, 2
nd

 split). If splitting this LC sufficiently improves 

model fit, latent variable 1| 2x  is created with LCs 11| 2 =x and 21| 2 =x . To decide whether LC 11 =x
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should be split, we estimate an LC(1) and LC(2) model for the subsample in 11 =x . The contribution 

of each person to the likelihood of the LC(1) and LC(2) model must be weighted by the probability of 

belonging to the subsample under consideration. Therefore, a weighted log-likelihood equation is 

defined, with the posterior membership probabilities as weights. For the LC(1) model it is defined as 

                                                   

∑ ∏
= =

===
n

i

J

j

iji yPxPxL

1 1

111 )(log)|1()1(log y ,

                              

(5) 

 

and for the LC(2) model it is defined as 

                                  
∑ ∑ ∏
= = =

===
n

i x

J

j

iji xyPxPxPxL

1

2

1 1

1|21|2112

1| 2

)|()(log)|1()1(log y .              (6) 

Once again, the maximum (weighted) likelihood estimates of )( 1|2xP  and )|( 1|2xyP ij  are obtained, 

and if )1(log 12 =xL is sufficiently larger than )1(log 11 =xL , LC 11 =x is split.  

2.3 The rth split 

We now describe the most general situation, the rth split, and consider 1
1-r | =xrx (See Figure 2). To 

do so, the posterior class membership probabilities )|1(
1-r | irxP yx =  must be calculated as these are 

the weights defining the subsample at this node. It should be noted that the LC(2) model estimated at 

the previous node yielded ),|1(
2-r1-r  |1 | xx y −= rir xxP , the posterior probability of belonging to LC 

1
1-r | =xrx given iy and its ‘parent’ LC

2-r |1 x−rx ; we refer to this probability as a local posterior 

membership probability, as it only holds for the members of
2-r |1 x−rx . Figure 3 is an elaboration of 

Figure 2, and shows for each LC how the posterior membership probabilities can be obtained from the 

local posterior membership probabilities.  

-    Insert Figure 3 about here     - 

Note that for level 1, the first level in which weights are used, the local posterior membership 

probabilities and posterior membership probabilities are identical. For the next levels, the posterior 
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membership probabilities are computed by taking the product of all the local posterior membership 

probabilities that are associated with the lineage of parent LCs. Hence, 

.),|()|()|1(

2

|1|1 | 2-q1-q1-r ∏
=

−==
r

q

qiqiir xxPxPxP xxx yyy  

Once the posterior membership probabilities are defined, the calculations for the rth split are very 

similar to those performed for a second split. The weighted log-likelihood equation of the LC(1) 

model for the rth split is defined as 

                                                            

)(log)|1()1(log

1 1

 | |1 1-r1-r ∑ ∏
= =

===
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ijirr yPxPxL yxx

                           

(7) 

 and the weighted log-likelihood of the LC(2) model as 
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 If )1(log
1-r |2 =xrxL is sufficiently larger than )1(log

1-r |1 =xrxL , LC 1
1-r | =xrx is split.  

To investigate the next (r+1
th
) split, the estimates of )(

r|1 x+rxP  and )|(
r|1 x+rij xyP are used  

to calculate the local posterior membership probabilities for the two newly created LCs,
 

1
r |1 =+ xrx

and 2
r |1 =+ xrx , as follows: 
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The posterior membership probabilities defining the partial membership weights of the two new LCs,
 

1
r |1 =+ xrx and 2

r |1 =+ xrx , are obtained as 

)1,|()|1()|(
1-rr1-rr  | |1 | |1 === ++ xxxx yyy riririr xxPxPxP . 

2.4 Decision Rules 
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At every step in the hierarchy it must be decided whether the targeted class should be split 

further; that is whether splitting the class concerned sufficiently improves model-fit. For the initial 

split we base this decision on the difference between the log-likelihood functions defined in Equations 

1 and 3. For a second and the rth split we compare the weighted log-likelihood function of Equation 5 

with Equation 6 and of Equation 7 with Equation 8, respectively. However, the question remains what 

constitutes a sufficient increase in log-likelihood. This is the most important setting of an HLC model 

as it is expected to greatly affect the precision of the density estimate.  

A commonly used approach to assess model-fit for LC models is to use a relative fit statistic 

such as the Bayesian information criterion (BIC; Schwarz, 1978), AIC, or a variant of AIC called 

AIC3 (Bozdogan, 1993). These relative fit statistics combine model fit (log-likelihood, LL) and 

parsimony (number of parameters). Several simulation studies have shown that BIC tends to select too 

few LCs and AIC tends to selects too many LCs (Lin and Dayton, 1998; Andrews and Currim, 2003); 

AIC3 was found to be a good compromise between BIC and AIC in terms of the selected number of 

LCs (Andrews and Currim, 2003; Dias, 2006). However, because model under-fit can lead to serious 

bias and model over-fit does not, AIC is preferred over BIC and AIC3 in the context of density 

estimation (e.g. Vermunt et al., 2008). Moreover, it could be argued that parsimony should not be 

taken into account at all when using an LC model as a density estimator. Therefore, we also consider a 

decision rule that is only based on the difference in the log-likelihoods of an LC(1) model and LC(2) 

model.  

If the size of a class is too small in relation to the number of parameters of the LC models, it is 

not known whether the density estimate will still improve if we continue splitting LCs, or whether the 

density estimate may even deteriorate. Therefore, we also included several rules with regard to 

minimal class size. 

A program was written in C++ which performs all the necessary steps in the estimation of a 

HLC model, and it is available on request. For the estimation of the LC(1) and LC(2) models at a 

specific split, it runs LatentGold 4.5 (Vermunt and Magidson, 2008) in batch mode using an 

appropriately weighted data set. 
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3. Generated data example 

To investigate the precision of an HLC model as a density estimator, we applied the model at 

population level. By doing so, we can focus on the precision of an HLC model without considering the 

influence of sampling error. We defined a complex population model (depicted in Figure 4) for 11 

dichotomous variables and obtained the population probabilities for each response pattern. By 

multiplying these population proportions by 1000 we obtained frequencies for all the response patterns, 

amounting to a sample (of size N=1000) that is exactly in accordance with the population. The 

precision of an HLC model is defined as the difference between the predicted frequencies for each 

response pattern and the population frequencies.  

- insert Figure 4 about here - 

The population model is a path-model for categorical data (Goodman, 1973) consisting of two 

sets of independent variables ( 1y , 2y , 3y  and 4y , 5y , 6y , 7y , 8y ), and 3 dependent variables 9y , 10y , 

and 11y . By using this population model it can be assessed whether an HLC model is able to estimate 

the density of the data from a complex population (i.e. containing three-way associations) and having 

no LC structure. Let jβ  denote a log-linear parameter value for the jth variable. The density of 1y , 2y , 

and 3y  is defined as, 

321
3
123
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'
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1

1
321     ),,(log iii

j jj

ijijjj

j

ijjiii yyyyyyyyyP βββ ∑ ∑∑
= +==
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Hence, the joint density of 1y , 2y , and 3y  is in agreement with a saturated log-linear model 

containing all one- two- and three-variable associations. The density of 4y , 5y , 6y , 7y  and 8y is 

defined as 

∑ ∑∑
= +==
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87654     ),,,,(log

j jj
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j
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and only contains one- and two-way associations. The log-linear parameter values for the two models 

are given in Appendix A.  
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The conditional probabilities of the three dependent variables are defined to be in agreement 

with logit models, using effects coding for the parameters. Let 
q
jβ denote a logit regression parameter 

for the regression of dependent variable q on the jth independent variable. For dependent variable 9y , 

32112332233113211233221109
99999999)(logit yyyyyyyyyyyyy

yyyyyyyy ββββββββ +++++++= ,  

for dependent variable 10y , 

99766777665544010
10101010101010)(logit yyyyyyyy

yyyyyyy βββββββ ++++++= , 

and for dependent variable 11y , 

10108877011
11111111)(logit yyyy

yyyy ββββ +++= . 

These relationships yield a complex density including three-way associations. Values of the logistic 

regression parameters for the three dependent variables are given in Appendix B. 

We compared the true proportions and the estimated proportions by the HLC model for three 

combinations of variables: ( )109 yy , ( )118 yy , and ( )1076 yyy . Variables 6y , 7y  and 10y have a 

three-way association, and it is important to determine whether an HLC model is able to correctly pick 

up this complex association. The estimated proportions can easily be calculated from the estimated 

HLC parameters. For example, the estimated proportions of variables 6y , 7y , and 10y , can be 

obtained as follows, 

∑=
x

xyPxyPxyPxPyyyP )|(ˆ)|(ˆ)|(ˆ)(ˆ)(ˆ
10761076 . 

3.1 Implementation of decision rules 

We considered the following implementations of the decision rules discussed in the method section: a 

minimum of 1 point increase in the LL (HLC-1), a minimum of a 5 point increase in the LL (HLC-5), 

and a decrease of AIC (HLC-AIC), which amounts to a minimum improvement equal to the number of 

additional parameters. We included the following rules with regard to minimal class size: (1) no 

restriction, (2) at least 3% of the total sample, and (3) at least 6% of the total sample. 

3.2 Precision of density estimation 
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The precision of density estimation is defined as the difference between the true proportions 

and the estimated proportions. To quantify this difference we computed Pearson’s chi-square statistic:  

( )
∑

−
⋅=

p

pp
2

2 ˆ
1000χ . 

Hence, the chi-square statistic indicates how well an HLC model approximates the true density of the 

data. We also included the chi-square statistic for the independence model as a reference point.  

 

4. Results 

Table 2 shows that a minimal improvement of 1 point in the log-likelihood leads to the most precise 

results, for all three marginal tables. HLC-5 and HLC-AIC yielded relatively large chi-square statistics 

for the marginal tables 118 yy and 1076 yyy , regardless of the minimum class size. A minimum class 

size of 30 only has a very small effect on the precision for the HLC-1 model, but a minimum class size 

of 60 did deteriorate the results. For HLC-5 only the minimum class size of 60 affected the results, but 

for HLC-AIC, minimum class size did not have any effect. The minimum class sizes of 30 for HLC-5 

and 30 or 60 for HLC-AIC did not affect the results because the minimal required improvement in the 

log-likelihood was always encountered before the classes became too small. 

-    Insert Table 2 about here   - 

From the last row of Table 2 it can be seen that the chi-square statistic for the entire data 

produced by the HLC-1 (and no minimum class size) is only 0.063% of the chi-square distance for the 

independence model, in other words, the imprecision in the density estimate is reduced by 99.937%. 

HLC-5 also seems to perform rather well with a reduction in chi-square of 99.78% compared to the 

independence model. 

5. Real-data Example 

In this example we demonstrate one of the possible applications of an HLC model as a density 

estimation tool. A frequently encountered problem for applied researchers is that data are incomplete. 

A commonly used strategy to deal with this problem is to analyze only those cases that are complete. 

However, such a complete case analysis may lead to biased statistical results (Little and Rubin, 2002) 

and reduced power (Little and Rubin, 2002; Schafer, 1997). An advanced alternative method to deal 
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with incomplete data is multiple imputation (Rubin, 1987). Multiple imputation consists of creating m 

completed data sets by replacing the missing values in the data with plausible values m times. For 

more information on multiple imputation and the comparison to complete-case analysis, see e.g. 

Schafer and Graham (2002). Vermunt et al. (2008) showed by means of a simulation study that 

multiple imputation using an LC model yields unbiased parameter estimates and standard errors. In 

addition,  the method can handle a large number of variables, but, as mentioned before it can be very 

time consuming for large data sets. 

We investigated the performance of multiple imputation based on an HLC model, a standard 

LC model and complete-case analysis, in terms of model-fit and computation time. We now return to 

the analysis of the ATLAS data (Mittelhaëuser, Van der Ark, and Richards, 2010), as discussed in the 

introduction. In table Table 1 we reported computation time and model-fit of various LC models for 

this large dataset. The ATLAS study addressed topics such as motivations, activities, and impressions 

of visitors of cultural sites and events. The dataset consisted of 4292 observations and 79 categorical 

variables: 52 with 2 categories, 1 with 3, 19 with 5, 2 with 6, and 1 with 7, 8, 9, 10 and 17 categories, 

respectively. Complete information is only available for 794 respondents.  

For proper imputation, the incomplete data must be imputed multiple times to account for 

parameter uncertainty that is due to the missing data (Rubin, 1987); we chose to impute the data 10 

times. For every individual dataset a different set of parameter values of the HLC model should be 

used to reflect parameter uncertainty. We obtained 10 nonparametric bootstrap samples (for details see, 

eg. Efron and Tibshirani, 1993) and estimated the HLC model (1 point minimal improvement 

combined with minimal class size of 1%) 10 times, yielding 10 different sets of parameters. These sets 

of parameters were then used to impute the original data 10 times.  

After performing multiple imputation we selected 6 variables for a substantive analysis. One 

important question in the dataset concerning respondents’ motivations for visiting cultural attractions 

is “I want to find out more about the local culture”, answered on a five-point scale ranging from 1 

(totally disagree) to 5 (totally agree). We used this variable as the dependent variable in an (adjacent-

category) ordinal regression model (Agresti, 2002, pp. 286-288). Table 3 provides detailed 
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information on the variables used included in the substantive analysis such as the number of cases with 

a missing value. 

-    Insert Table 3 about here    - 

In order to illustrate the effect of using complete-case analysis on the parameter estimates, we 

estimated two regression models that are identical except the second model includes one additional 

variable, “Admissing Expenditure” that reduces the number of complete cases from 3950 to 1424. 

Tables 4 and 5 present the coefficients of the two ordinal regression models, estimated using 

complete-case analysis, multiple imputation using a standard LC model, and multiple imputation using 

an HLC model. For the first analysis (Table 4) it can be seen that the parameter estimates using the 

three models are rather similar, except for some differences in the parameter estimates for education. 

Because there is only a small proportion of missing values in this analysis, it not surprising that 

complete-case analysis and the HLC model gave similar results. It is reassuring that for most 

regression coefficients, the LC and HLC approach gave similar estimates. There are however some 

small differences in the parameter estimates for education. 

-    Insert Table 4 about here    - 

For the second analysis (Table 5) much greater differences in the parameter estimates are 

observed between complete-case analysis and the LC or HLC approach. The estimates based on an LC 

and HLC model appear to be relatively stable over the two analyses whereas the results produced with 

complete-case analysis changed: the estimated coefficients of age, gender, and education nearly 

doubled and all standard errors became larger. Although we cannot compare the estimates of the three 

methods to the population values, as we did in the generated data example, the LC and HLC approach 

appear to perform well in this application. It is reassuring that the results of the HLC and LC approach 

largely concur with those of complete-case analysis when the proportion of missingness is small and 

that the estimates are stable across the two analyses. Furthermore, no large differences were found in 

the results of the two regression models between the LC and HLC approach. 

-    Insert Table 5 about here    - 

We end the real-data example with some information on the log-likelihood of the data that was 

produced by an individual LC and HLC model, and the required computation time (this includes the 
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required computation time for each method to establish which model fits best). It can be seen from 

Table 6 that the HLC-1 (min N of 2%) and HLC-1 (min N of 1%) models yield a better fit, in much 

less time.  

-    Insert Table 6 about here    - 

6. Discussion 

Within this study we introduced the HLC model as a density estimation tool for categorical data. We 

described the details of the estimation algorithm, and performed an initial investigation of its statistical 

properties. More specifically, we have shown in the generated data example that an HLC model is able 

to pick up two-way and three-way associations from a complex population model. Within our 

generated data example it was found that a minimum required class size of 0% or 3% yields the most 

precise density estimate. Furthermore, we should be liberal about the minimum required improvement 

of the log-likelihood, as the condition in which the smallest improvement was demanded after each 

split yielded the most precise density estimate.  

It is important to note that we have not taken sampling error into account. This means that 

additional research is required to investigate the relationship between sample size, the minimum 

improvement in the log-likelihood, and precision of density estimation. However, it has been found in 

previous research that over-fitting does not pose a big problem when using an LC model for density 

estimation (e.g. Vermunt, et al., 2008), therefore, the impact of over-fitting is expected to be limited 

for an HLC model as well. It should also be ascertained whether certain restrictions are required, such 

as a minimum class size, to prevent over-fitting the data when dealing with a real sample. In addition 

to over-fitting the data, it is important to investigate the estimated standard errors in relation to sample 

size, minimal class size, and minimal required improvement in the log-likelihood in an extended 

simulation study. 

The real-data example showed that an HLC model can easily be applied to a dataset with a 

large number of cases and polytomous variables. For a traditional LC model with 65 LCs it took more 

than 8 hours to establish the best fitting model for this dataset, whereas an HLC (min N of 1%) model 

only required 1 hour and 6 minutes. In addition to being faster it yielded a better fit to the data. In a 

practical sense this makes a substantial difference for researchers that use an LC model as a density 
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estimation tool. Our exemplary application underlines the benefits of an HLC model. If a researcher 

wants to use multiple imputation, the density of the data has to be estimated several times (10 times in 

this case). Hence, using an HLC model for multiple imputation instead of an LC model reduced the 

runtime for this dataset from 20h12m (8h12m + 10*1h12m) to 11h0m. In this calculation of the 

computation time for the LC approach, the number of LCs that is used for each bootstrap sample is 

held constant, whereas for the HLC model the optimal number of LCs is determined for each bootstrap 

sample. The same approach using an LC model would require more than 82 hours of computation time. 

Furthermore, as noted in the introduction, it is much easier to make use of multiple processing cores 

for the estimation of an HLC model than for an LC model. This is due to the fact that every processing 

core can investigate one possible split; with a quad-core processor, this constitutes running 4 

independent partial EM algorithms, whereas for an LC model the processing load would have to be 

divided within one EM algorithm, which is much more difficult to implement, and less efficient. 
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Appendix A 

 

Log-linear parameters for the density of 1y , 2y , and 3y . 

Parameter Value 
1

1β  .2 

1

2β  -.6 

1

3β  .4 

2

12β  .2 

2

13β  .6 

2

23β  -.1 

3

123β  .2 

 

Log-linear parameters for the density of 4y , 5y , 6y , 7y  and 8y . 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Parameter Value Parameter Value Parameter Value 
1

4β  .2 2

45β  .4 2

57β  .6 

1

5β  -.6 2

46β  -.2 2

58β  -.2 

1

6β  .4 2

47β  .6 2

67β  .1 

1

7β  .2 2

48β  -.3 2

68β  -.2 

1

8β  .6 2

56β  .8 2

78β  .6 
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Appendix B 

 

Logistic regression parameters for the conditional densities of 9y , 10y and 11y . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dependent Variable 

9y  10y  11y  

Parameter Value Parameter Value Parameter Value 

9
0
y

β  
.0 10

0
y

β  
.0 11

0
yβ  

.0 

9
1
y

β  
.3 10

9
y

β  
.5 11

7
yβ  

-.6 

9
2
y

β  
.6 10

4
y

β  
.6 11

8
yβ  

.2 

9
3
y

β  
-.9 10

5
y

β  
.1 11

10
yβ  

.4 

9
12
y

β  
.3 10

6
y

β  
-.4   

9
13
y

β
 

.5 10
7
y

β
 

-.8   

9
23
y

β
 

-.7 10
67
y

β
 

-.5   

9
123
y

β
 

-.2     
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Table 1: AIC and computation time for 13 LC models fitted on the ATLAS survey data 

Number of LCs AIC Computation time 

5 469,422.728 0:04h 

10 461,707.592 0:09h 

15 458,369.833 0:14h 

20 455,712.563 0:19h 

25 453,578.838 0:25h 

30 452,359.392 0:33h 

35 451,258.196 0:39h 

40 451,400.102 0:42h 

45 449,592.844 0:54h 

50 450,231.146 0:56h 

55 449,465.083 1:04h 

60 448,905.116 1:07h 

65 456,395.814 1:12h 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

Table 2: Pearson’s chi-square statistic to quantify the difference between the true frequencies and the estimated frequencies yielded by an HLC model for the 

marginal tables, 109 yy , 118 yy , and 1076 yyy , and the whole data. Three variants of an HLC model (minimum of 0 point increase, 5 point increase, or a 

decrease in AIC) were crossed with 3 levels of minimum class size (0% , 3%, and 6%). The last column includes the chi-square statistics for the independence 

model, which can be used as a reference point. 

 
        

2χ  

 HLC-1                       HLC-5                                  HLC-AIC               Indep. Model 

Min. N 0 30 60 0 30 60 0 30 60  

109 yy  .012 .012 .085 .022 .022 .112 .107 .107 .107 88.220 

118 yy  .087 .92 7.293 5.804 5.804 8.983 40.624 40.624 40.624 107.243 

1076 yyy  .021 .023 .22 .502 .502 .886 0.918 0.918 0.918 488.052 

y
 480.57 615.20 1674.71 1692.46 1692.46 1916.30 2813.20 2813.20 2813.20 765088 
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Table 3: Information on the Variables Used in the Ordinal Regression for the ATLAS Cultural 

Tourism Research Project 2003 Data (ATLAS, 2004). 

 

 

Variable 

 

 

 

 

Categories 

Number of 

Missing Values 

(N = 4292) 

I want to find out more about the local   

culture 

1 Totally disagree 154 

2 Disagree  

 3 Neutral  

 4 Agree  

 5 Totally agree  

Gender 1 Male 41 

 2 Female  

Age 1 15 or younger 28 

 2 16-19  

 3 20-29  

 4 30-39  

 5 40-49  

 6 50-59  

 7 60 or older  

Highest level of educational qualification 1 Primary school 62 

 2 Secondary school  

     3 Vocational education  

 4 Bachelor’s degree  

 5 Master’s or doctoral degree  

Is your current occupation (or former) 1 Yes 149 

 2 No  

Admission expenditure 1 0 - < 25 euro 2801 

 2 25 - < 50 euro  

 3 50 - < 75 euro  

 4 75 - < 100 euro  

 5 ≥ 100 euro  

 

 



28 
 

Table 4: Parameter Estimates and Standard Errors of the First Ordinal Regression for the ATLAS 

Cultural Tourism Research Project 2003 Data Using Complete Case Analysis, LC Analysis, and HLC 

Analysis. 

 
Complete Cases 

(N = 3950) 
LC (K=65) HLC-1 (min N 1%) 

Predictor Coef. S.E. Coef. S.E. Coef. S.E. 

Gender -.049 .026 -.052 .026 -.050 .025 

Age -.058 .010 -.062 .009 -.061 .009 

Primary School   .000    .000   .000  

  Secondary School -.008 .098 -.039 .092 -.053 .093 

  Vocational Education -.080 .098 -.098 .092 -.110 .094 

  Bachelor’s Degree -.067 .096 -.094 .089 -.105 .091 

  Master’s or doctoral degree -.091 .097 -.109 .091 -.123 .093 

Occupation and culture -.015 .030 -.017 .030 -.022 .029 

 

 

Table 5: Parameter Estimates and Standard Errors of the Second Ordinal Regression for the ATLAS 

Cultural Tourism Research Project 2003 Data Using Complete Case Analysis, LC Analysis, and HLC 

Analysis. 

 Complete Cases 

(N = 1424) 
LC (K=65) HLC-1 (min N 1%) 

Predictor Coef. S.E. Coef. S.E. Coef. S.E. 

Gender -.077 .044 -.052 .026 -.050 .025 

Age -.082 .017 -.063 .009 -.061 .009 

Primary School   .000    .000   .000  

  Secondary School -.110 .180 -.042 .092 -.058 .093 

  Vocational -.152 .181 -.101 .092 -.114 .093 

  Bachelor’s Degree -.106 .176 -.097 .089 -.109 .091 

  Master’s or doctoral -.244 .179 -.113 .091 -.127 .093 

Occupation and -.041 .049 -.017 .030 -.020 .029 

Admission   .013 .014 .007 .012 .010 .012 
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Table 6: Data log-likelihood yielded by an LC, HLC (min LL=1, min N of 3%), HLC (min LL=1, min 

N of 2%), and HLC (min LL=1, min N of 1%) model for the ATLAS data.  

Method Log-likelihood Computation time 

LC (K=65) -216,043.09 8h12m 

HLC(min N of 3%, K=62) -217,990.25 0h47m 

HLC(min N of 2%, K=95) -213,337.94 0h58m 

HLC(min N of 1%, K=149) -205,340.37 1h06m 
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Figure 1: An exemplary HLC model with 10 LCs, 6 are end-points (indicated by LCs printed in bold-

face) and constitute the density estimate. The explanation of the notation within the LCs is deferred to 

the HLC section. 
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Figure 2: The three possible situations that can occur when fitting an HLC model; the first split of the 

data, a second split, and the rth split. Each LC has two subscripts: the level at which the LC is located, 

and a vector of its parent LCs, respectively.  
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Figure 3: An exemplary HLC analysis to illustrate how the posterior membership probability can be 

obtained for the rth split using the local posterior membership probabilities.  
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Figure 4: Population model of the generated data example, containing 8 independent ( 81 ,, xx K ) and 

3 dependent ( 321 ,, yyy ) dichotomous variables. 

 

 

 

 

 

 

 


