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Abstract 

We studied four methods for handling incomplete categorical data in statistical modeling: (1) 

maximum likelihood estimation of the statistical model with incomplete data, (2) multiple 

imputation using a loglinear model, (3) multiple imputation using a latent class model, (4) and 

multivariate imputation by chained equations. Each method has advantages and disadvantages, 

and it is unknown which method should be recommended to practitioners. We reviewed the 

merits of each method and investigated their effect on the bias and stability of parameter 

estimates and bias of the standard errors. We found that multiple imputation using a latent class 

model with many latent classes was the most promising method for handling incomplete 

categorical data, especially when the number of variables used in the imputation model is large.  
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1 Introduction 

 

This paper discusses methods to handle incomplete categorical data. Many medical studies deal 

solely with analyzing categorical data and, consequently, the statistical model that is used to 

analyze the data (from here on referred to as the substantive model) is also tailored to 

categorical data.  For example, predictors of reduced length of hospital stay were studied using 

logistic regression
1
, determinants of caregivers’ health were studied using loglinear modeling

2
, 

and the effectiveness of the World Health Organization Disability Assessment Schedule II was 

investigated using a nonparametric item response analysis
3
. A frequently encountered problem 

is that the data are incomplete, which prevents a straightforward statistical analysis; a researcher 

should handle this problem appropriately. Klebanoff and Cole
4
 found that the majority of 

applied researchers resort to ad-hoc methods such as complete-case analysis or pair-wise 

deletion, which may lead to biased statistical results
5
 and reduced power

5,6
. For handling 

incomplete continuous data, adequate alternatives have been proposed, extensively researched
7
, 

and implemented in major software packages such as SPSS
8
 and SAS

9
. Hence, there is no need 

for applied researchers to resort to ad-hoc methods in case of continuous data. 

Incomplete data methods for categorical data have not yet been crystallized out, and it is 

unknown which method should be recommended to practitioners. Ideally, an incomplete-data 

method should meet three criteria. For the substantive model, it should produce parameter 

estimates (i) that are unbiased, (ii) that are stable in order to avoid unnecessary loss of power in 

the statistical analysis, and (iii) that have standard errors correctly reflecting the uncertainty due 

to missing data. Ideally, these criteria should be met for data sets with both small and large 

numbers of variables, sample sizes, and percentages of incomplete data, and for both simple and 

complex associations in the data.  

With respect to these criteria, two incomplete-data methods for categorical data are 

especially promising:  Multiple imputation using latent class analysis (MILC
10,11

) and 

multivariate imputation using chained equations (MICE
12-14

). Both methods have the practical 
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advantage that they can easily handle data sets containing a large number of variables and 

respondents. However, researchers having incomplete categorical data cannot yet readily apply 

MILC and MICE because there are various unresolved issues (explained hereunder). The impact 

of these issues on the three criteria for substantive models is unknown. In this study, we discuss 

two reasonable options for the unresolved issues for both MILC and MICE, and investigate to 

which degree they meet the three criteria, so as to decide which incomplete-data method should 

be selected for categorical data. Multiple imputation using a loglinear model (MILL
6
) and 

maximum likelihood for incomplete data (MLID
15,5,16,17

, also known as full information 

maximum likelihood) are used as benchmarks. MILL is known to produce unbiased parameter 

estimates
18,19,6

 but can only handle a small number of variables; MLID is known to be 

asymptotically unbiased, but may run into difficulties as the number of variables becomes very 

large
10

. 

The remainder of this paper is organized as follows. First, we briefly discuss the four 

incomplete-data methods. For both MILC and MICE we discuss two variants, resulting in six 

incomplete-data methods in total. Second, we compare the advantages and disadvantages of the 

methods in a theoretical discussion. Third, we present the results of two simulation studies. In 

Study 1, for dichotomous data, we compared MILC, MICE, MILL, and MLID with respect to 

the three criteria. In Study 2, for trichotomous data, we compared MILC, MICE, and complete-

case analysis with respect to the three criteria.Fourth, we applied MLID, MILC, MICE, and 

complete-case analysis to a medical data set. Finally, we give recommendations based on the 

theoretical discussion and the two simulation studies. 

2 Incomplete-Data Methods 

 

2.1 Incomplete data  
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Let ( )JYYY ,,, 21 K  Y =  denote the scores on the J variables, and let θ  be the generic notation 

for the vector of unknown parameters of the joint distribution of Y , denoted );( θYP .To 

distinguish specific models Greek letters other than θ may also be used to denote parameter 

vectors.  Note that jY
 
may be either a predictor variable or an outcome variable depending on 

the substantive model. If confusion arises, we add the superscripts p and o to indicate that a 

variable serves as a predictor variable or outcome variable, respectively. Y may contain missing 

values, and the objective is to deal with them appropriately. 

 Most incomplete-data methods, including the ones considered in this paper, assume that 

the mechanism that caused the missing values is ignorable
16

, which means that two conditions 

should hold. First, the parameters that govern the missing data process must be unrelated to the 

parameters to be estimated, which is a rather unrestrictive assumption
5
. Second, the data must 

be missing at random (MAR), which means that whether or not a score is missing only depends 

on scores observed in the study. If, after conditioning on all observed data, the missingness 

depends on missing values of variables included in the study or on variables not included in the 

study, MAR is violated and, as a result, the missingness mechanism is non-ignorable. Non-

ignorable missingness may cause biased parameters in the substantive model (first criterion). 

Apart from special studies with planned missingness
6
, MAR is unlikely to hold in practice, and 

it is impossible to test whether the MAR assumption holds for a particular data set
7
. Therefore, 

the degree to which MAR is violated (i.e. the degree to which the observed scores cannot 

explain the missingness mechanism) becomes important:  If the violation of MAR becomes 

more severe, the parameter bias in the substantive model is likely to increase. If the number of 

variables in a data set increases, the degree to which the variables can explain the missingness 

mechanism is also likely to increase. Hence, if an incomplete-data method can handle a large 

number of variables, and if a large number of variables is available, the violation of MAR will 

most likely be less severe and the missingness mechanism is more likely to be ignorable. This 

notion
6
 plays an important role in our evaluation of incomplete-data methods, and will be 

referred to as Schafer's notion on the number of variables. 
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2.2 Description of Incomplete-Data Methods 

2.2.1 Maximum likelihood for incomplete data.  

MLID is a well known and documented method to obtain parameter estimates and standard 

errors in the presence of missing data
 5
.  MLID constitutes estimating the parameters of the 

substantive model and their standard errors, using all observed data. For example, when 

studying predictors of reduced length of hospital stay using logistic regression
1
, MLID can be 

used to estimate the logistic regression model using all observed data.  No further action is 

required; the obtained parameter estimates and standard errors can be directly interpreted. The 

substantive model can be an asymmetric model such as a logistic regression model or an item 

response theory model, which describe the conditional distribution of the outcome variables 

given the predictor variables );|( θYY poP , or a symmetric model, such as a loglinear model, 

latent class model, or canonical correlation model, which describe the joint distribution of all 

variables );( θYP . MLID assumes that the missingness mechanism is ignorable. For categorical 

data, specialized software is usually required to conduct MLID, such as LEM
20

 or Mplus
21

. 

2.2.2 Multiple Imputation 

Multiple imputation consists of creating m completed data sets by replacing the missing values 

in the data with plausible values m times. These plausible values replacing the missing values 

are called the imputed values. The statistical model that generates imputed values is referred to 

as the imputation model. After the multiple imputation, on each of the m completed data sets a 

substantive model is estimated, and the m sets of parameter estimates and standard errors are 

combined into a single set. Most researchers use m = 5, but this value is currently debated
22

. 

Using multiple imputation allows for separating the missing data handling and the substantive 

analysis; a researcher can estimate substantive models as if there had been no missing data, or 

distribute the completed data to other researchers for further analysis.  
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 Multiple imputation starts in the same way as MLID for symmetric models: A statistical 

model is estimated describing the joint distribution );( θYP . Rather than a substantive model, 

this model is an imputation model for obtaining imputed values from );( θYP . For example, 

when studying predictors of reduced length of hospital stay using logistic regression
1
, a 

loglinear model describing the joint distribution of both predictor variables and reduced length 

of hospital stay may be used as an imputation model to generate imputed values replacing the 

missing data m times. After the multiple imputation, logistic regression analysis can be 

conducted on the completed data sets. 

One must account for the fact that the imputed values are not observed and, therefore, 

uncertain. There are two sources of uncertainty
23

. Firstly, the estimated parameters of the 

imputation model are uncertain; this uncertainty is expressed by their standard errors. Secondly, 

there is uncertainty due to sampling variability when drawing imputed values from );( θYP . To 

account for parameter uncertainty, for each of the m data sets, a different set of parameters of 

the imputation model is used. In a Bayesian framework, the m sets of parameters of the 

imputation models are random draws from )( Yθ |P , the distribution of the parameters given 

the data
5
. In a frequentist framework, the m sets of parameters are estimated using m 

nonparametric bootstrap samples of the data
 10

. A nonparametric bootstrap sample consists of 

randomly drawing a new sample of N observations with replacement
 24

. To reflect uncertainty 

due to sampling variability, the replacement of missing values is done m times, yielding m 

completed data sets. The three multiple imputation methods for categorical data discussed in 

this paper differ in the way that they describe the joint distribution, );( θYP , and how they 

account for parameter uncertainty. MILL is discussed briefly because this method is ready for 

use; MILC and MICE are described in more detail so as to allow the discussion of the specific 

options these methods offer. 



6 
 

Multiple imputation using a loglinear model. MILL uses a loglinear model as the 

imputation model. Let the parameters of the loglinear model be denoted λ ; the saturated 

loglinear model for dichotomous responses can be written as 

    

.);( log
1

1

1 1

21,2,1∑ ∑ ∑
=

−

= +=

++++=
J

i

J

i

J

ij

JJjiijii YYYYYYP LK KλλλλλY
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The joint distribution is obtained by taking the exponential of the right-hand side of eq. (1). 

Typically, a saturated loglinear model is used to obtain imputation values because it captures all 

possible associations in the data; therefore, it is the gold standard for multiple imputation of 

categorical data.
10

 If higher-order interaction terms are omitted, the approximation of the joint 

distribution by the loglinear model may deteriorate. MILL can, for example, be conducted using 

software packages CAT
6
 or Latent GOLD 4.5

25
, which utilize a Bayesian and a nonparametric 

bootstrap approach, respectively, to account for parameter uncertainty. 

Multiple imputation using a latent class model. MILC uses a latent class model to 

estimate the joint distribution of the variables in the data. Let X denote a discrete latent variable 

with K  latent classes, indexed by k ),,1( Kk K= . Let π  denote the vector of parameters of 

the latent class model; π can be divided into xπ , the latent class proportions, and yπ the 

conditional response probabilities. Under a latent class model, joint distribution );( πYP , has 

the following form
26-29

: 

( ) ( )
y

K

k

x kXPkXPP πYππY ;|;);(
1

===∑
=

 

                      ( ) ( )∏∑
==
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j
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K

k

x j
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11

;|; ππ .                      

If the number of latent classes is sufficiently large, a latent class model correctly picks up the 

first, second, and higher order moments of the response variables, as is the case with all forms 

of mixture models.
 30

 It is unknown how many latent classes are sufficient for a good 
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approximation of the joint distribution. Vermunt et al.
 10

 argued that it is better to have too many 

than too few latent classes. Therefore, out of three selection criteria, Akaike’s information 

criterion (AIC
31

), Bayesian information criterion (BIC
32

), and AIC3
33

, they suggested using AIC 

to select the number of latent classes because it yields the largest number of latent classes. 

Hence, letting AIC determine the number of latent classes, abbreviated MILC (AIC), is the first 

option for MILC. However, it is expected that an even larger number of latent classes can 

further improve the approximation of the joint distribution.   Having a relatively large number 

of latent classes, abbreviated MILC (Large), is the second option for MILC. MILC can be 

applied using Latent GOLD
25

, which uses the nonparametric bootstrap to account for parameter 

uncertainty.  

Multivariate imputation using chained equations. MICE
12

 is a fully conditional 

specification method, which specifies the imputation model on a variable-by-variable basis 

using a separate conditional distribution for each incomplete variable. Let j−Y denote the scores 

on all variables except jY . MICE reduces the problem of finding one J-dimensional joint 

distribution );( θYP  to finding J univariate conditional distributions 

);|(,),;|( 11 θYθY JJYPYP −− K .
12-14

 Conditional distribution );|( θY jjYP −  is used for 

imputation of jY ( Jj ,,1 K= ). Under certain conditions, a draw from each of the J conditional 

distributions is equivalent to a single draw from the joint distribution
14

, but it is not guaranteed. 

Results from simulation studies
13,34

 suggest that the problem is unlikely to be serious in practice.  

MICE starts with replacing missing values of the variables by draws from their 

respective marginal distributions. Next, in an iterative process, the imputed values are updated 

variable by variable using the univariate conditional distributions. When jY is imputed, the other 

variables act as predictor. If the joint distribution that is defined by the J conditional 

distributions exists then this iterative process is a Gibbs sampler
14

 and converges to the joint 

distribution of the J variables. Often, as little as 10 to 20 iterations are required.  
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The imputation model describing the conditional probabilities 

);|(,),;|( 11 θYθY JJYPYP −− K
 can be any appropriate regression model depending on the 

nature of the outcome variable
35

: linear regression in combination with predictive mean 

matching, logistic regression, polytomous regression, and nonlinear regression. We focused on 

two imputation models; the first one being logistic regression (abbreviated MICE (LOG)) which 

is the default method in the R-package MICE
12

 for dichotomous outcome variables (for Study 2, 

polytomous regression is used, which is the extension of MICE (LOG) to variables with more 

than 2 categories; for details see, e.g. Van Buuren et al.
12

). Letβ denote the vector of parameters 

for the logistic regression model. MICE (LOG) models conditional distribution );|( βY jjYP −

as  

[ ] JJjjjjjj YYYYYP βββββ ++++++= ++−−− KK 1111110);|(logit βY  

We also considered linear regression in combination with predictive mean matching 

(abbreviated MICE (PMM)). The first step of MICE (PMM) is to obtain a predicted value by 

means of linear regression in which all other variables serve as predictors. In the second step, 

the respondent that has the most similar predicted value as well as an observed value on the 

variable that is being imputed is selected as the nearest neighbor. Subsequently, the observed 

value of this nearest neighbor is used as the imputation value for the respondent with a missing 

value. 

Parameter uncertainty is accounted for in a Bayesian framework; a new set of 

parameters is drawn from its posterior distribution for the construction of each imputed data set. 

More specifically, the MICE algorithm involves iteratively sampling parameter values β  from 

their posterior distribution and imputing the missing values jY  by drawing from the conditional 

distribution );|( βY jjYP −  . This corresponds with a Gibbs sampling scheme if the joint 

distribution of the variables can be constructed from their univariate conditional distributions 

and if the distribution from which parameters are drawn can be constructed from the joint 
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distribution of the variables and an appropriate prior distribution.
 12

 These two conditions are not 

fulfilled when using MICE with categorical data, which means that the algorithm is not an exact 

Gibbs sampler. MICE can be conducted using the R package MICE
12

 or the STATA
36

 package 

ICE
37, 22

. 

2.2.3. Other Incomplete-Data Methods 

We have three remarks on other incomplete-data methods. First, besides MLID and multiple 

imputation, there are two other categories of incomplete-data methods: the fully Bayesian 

method
38

, and weighted estimating equations
16

. We did not consider these two approaches to 

limit the scope of this paper. A full Bayesian analysis with for example WinBugs is in fact 

similar to both MLID and multiple imputation; that is, the parameters of the substantive model 

are estimated using the incomplete data using an algorithm containing a step in which the 

missing values are imputed
38

. Results can be expected to be similar to MLID. Weighting is 

typically used to deal with completely missing data and has limited practical use with partially 

missing data
39

. It may moreover yield instable estimates in the presence of influential weights 
40

. 

Second, a popular imputation model for multiple imputation is the multivariate normal 

distribution.
 7
  The method is robust against deviations from normality

41
, and may even perform 

well for categorical data
42

, although some studies reported serious bias
43,44

. We did not consider 

incomplete data-methods that were not designed for categorical data as these methods are not 

suitable for nominal variables (e.g., blood type, eye color, surgical outcome).  

Third, the best known ad hoc method is probably complete-case analysis, in which only 

the observations without any missing values are used to estimate the substantive model. In other 

words, subjects who have at least one missing value are discarded from the analysis. Hence, in 

contrast to MLID, complete-case analysis does not incorporate all available information. 

Complete-cases analysis reduces power and may yield biased parameter estimates for the 

substantive model if the data are not missing completely at random (MCAR)
5
; this MCAR 

assumption is considered to be unrealistic in most situations
7
. Complete-case analysis is 
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included in Study 2 and the real-data example. For Study 2, the number of variables was too 

large for more preferable benchmarks such as MILL and MLID.  

 

2.3 Advantages, Disadvantages, and Unresolved Issues of the Incomplete-Data Methods 

2.3.1 Practical issues 

For application of the incomplete-data methods, sample size, complexity of the association 

structure in the data, and percentage of missingness are not restrictive for any of the methods. A 

limitation of MILL is that it cannot handle large numbers of variables because the number of 

cells in the contingency table that has to be evaluated in the loglinear model becomes too large. 

For example, the number of cells that need be evaluated exceeds one million for 20 

dichotomous variables and one billion for 30 dichotomous variables, 19 trichotomous variables, 

or 13 variables with five categories. In cases where the substantive model contains fewer 

variables than available in the data set, a possible solution is to consider only those variables 

that are used in the substantive model. However, following Schafer's notion on the number of 

variables, using only a small number of variables for the imputation model may result in biased 

parameter estimates. For MILC and MICE, large numbers of variables do not pose a problem. A 

potential problem for MLID is that it usually requires specialized software, depending on the 

substantive model that one wants to estimate, whereas standard data-analysis techniques can be 

applied after the imputation phase of MILL, MILC and MICE. Moreover, MLID can only be 

used if the number of variables in substantive model is not too large. 

2.3.2 Bias 

 

We consider three possible causes of bias in the parameter estimates: First, non-ignorable 

missingness in the data. Following Schafer's notion on the number of variables, it is suggested 

that the inclusion of many variables in the imputation model makes it more likely that violations 

of ignorability are minor. The second possible cause of bias is misspecification of the 
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imputation model so that it is too parsimonious. The imputation model should be as general as 

possible; this ensures that the imputed values behave as neutral as possible in subsequent 

analyses
 6
. Hence, the main criterion of an adequate imputation model is whether it captures all 

the associations between categorical variables that exist on the population level
6
. The third 

possible cause of bias is misspecification of the substantive model. However, this is unrelated to 

the incomplete-data method being used and is not pursued further. 

For MLID, no imputation model needs to be specified but a violation of the ignorability 

assumption may result in biased parameter estimates. Statistical analyses that are based on 

MLID only include those variables in the data that are substantively relevant, possibly 

excluding many variables. When the number of variables in the substantive model is small, then, 

following Schafer's notion on the number of variables, the missingness mechanism in the 

reduced data is less likely to be ignorable. Simulation studies showed that under ignorable 

missingness, MLID yields unbiased parameter estimates.
 6
 

For MILL, the imputation model being too parsimonious is not an issue because the 

imputation model is typically the saturated model. However, MILL can handle only a limited 

number of categorical variables. As a result, following Schafer's notation on the number of 

variables, the missingness mechanism in the reduced data may not be treated as ignorable 

possibly resulting in biased parameter estimates. Simulation studies showed that under 

ignorable missingness, MILL yields unbiased parameter estimates.
 6
 

For MILC and MICE, the amount of non-ignorable missingness may be reduced if the 

data contain many variables relevant for predicting the missing values (Schafer's notion on the 

number of variables) because both methods can handle a very large number of (auxiliary) 

variables. For MICE, it is unknown which of the two variants yields the least bias, for MILC, it 

is expected that a large number of latent classes, MILC (Large), produces less bias than a 

smaller number of latent classes, MILC (AIC). 

2.3.3 Stability  
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We consider three possible causes that influence the stability of parameter estimates in the 

presence of incomplete data. A first possible cause is a too small effective sample. It is well 

known sample size has a positive effect on stability.
 45

 None of the incomplete-data methods 

under investigation unduly reduce the effective sample size, in the way some ad hoc methods do 

(e.g., complete-case analysis, pair-wise deletion). However, it is unknown whether the 

incomplete-data methods under investigation yield the same stability of parameter estimates 

given a fixed sample size. A second possible cause is misspecification of the imputation model 

so that it is too complex. This is the well known tradeoff between bias and stability: If the 

imputation model is too parsimonious it may result in biased outcomes, if it is too complex, it 

may result in less stable outcomes. For most researchers unbiased parameter estimates are more 

important than stable parameter estimates. The third possible cause of instability is 

misspecification of the substantive model so that it is too complex. However, this is unrelated to 

the incomplete-data method being used and is not pursued further. 

Only for the second possible cause of instability, an overly complex imputation model, 

we have expectations for the incomplete-data methods under investigation. MLID does not 

require an imputation model, so no loss of stability can ensue from an overly complex 

imputation model. For MILL, the imputation model is saturated meaning that it is expected to 

be overly complex in most cases. Therefore, a certain loss of stability is expected for MILL in 

comparison to MLID. 

For MILC, the two variants are expected to differ in stability because their respective 

imputation models differ in complexity. MILC (Large) uses a relatively large number of latent 

classes which means that its imputation model is expected to be able to capture every possible 

association. As is the case with MILL, results produced by MILC (Large) are expected to lose a 

certain degree of stability because its imputation model is expected to be overly complex. MILC 

(AIC) estimates the required number of latent classes using AIC, which results in a relatively 

small number of latent classes. Therefore, its imputation model is more parsimonious and its 

results are expected to be more stable than MILC (Large). 
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For MICE, the two variants differ in the conditional imputation model that is used. The 

stability of MICE depends on the degree to which higher order associations are included in the 

conditional imputation model. The default setting of MICE (PMM) only includes main effects. 

However, because predictive mean matching is used, all associations can be picked up for data 

sets with a small number of variables. Therefore, we expect that the stability of the parameter 

estimates produced by MICE (PMM) is similar to MILL and MILC (Large). The default setting 

of MICE (LOG) also only includes main effects. Therefore, MICE (LOG) is expected to have 

relatively stable results. 

2.3.4 Bias of the Standard Errors 

It is unknown whether the six incomplete-data methods overestimate or underestimate the 

standard errors of parameter estimates. Hence, we have no specific expectations with regard to 

the bias of the standard errors. 

3. Study 1: Bias, Stability, and Bias in Standard Errors Produced by MILC, MICE, MILL, 

and MLID for a Small Number of Dichotomous Variables. 

 

In Study 1, we compared incomplete-data methods MILC (AIC), MILC (Large), MICE (PMM), 

and MICE (LOG) to MLID and MILL, on bias of the parameter estimates, stability of the 

parameter estimates, and bias of the standard errors. Because MLID and MILL can handle only 

a limited number of variables, the number of variables was kept small.  The design of Study 1 

was motivated by the study of Kurian et al., who studied several predictors of a single outcome 

variable reduced “length of hospital stay” using logistic regression. 

3.1 Method 

 

3.1.1 General set up 
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The set up of the simulation study was as follows. First, we sampled complete data sets from a 

population model. Second, we created incomplete data sets by deleting variable scores 

according to an MAR missingness mechanism. Third, for each incomplete data set we 

constructed five completed data sets using a missing-data method.  Fourth, we used the 

completed data sets to estimate the parameters of the regression part of the population model 

and we reported the bias and stability of the parameter estimates. 

The population model was defined for five dichotomous predictor variables 51 ,, YY K , 

and one dichotomous outcome variable 6Y . The categories were coded 0 and 1 (dummy coding). 

Dummy coding was used because it is the most commonly used coding scheme for logistic 

regression models. The associations among the predictor variables 51 ,, YY K were described by 

loglinear model  

∑ ∑∑
= = +=

⋅+⋅−+−=
5

1

4

1

5

1

54321 1247.1),,,,(log
j j jk

kjj YYYYYYYYP .        (2) 

Outcome variable 6Y  was related to the predictor variables by logit model  

          

3223543322106 )(logit YYYYYYYY ⋅⋅−++⋅+⋅++= ββββ ,       (3) 

which contains main effects of the predictor variables as well as the interaction effect of 2Y  and 

3Y . The strength of the interaction term, 23β , was manipulated in the study. The coefficients

0β , 2β and 3β are changed together with 23β so that the average logit and the average effects 

of 2Y  and 3Y remain constant across conditions. Complete data sets were created by sampling 

from ),,,,( 54321 YYYYYP  (Eq. 2), and ),,,,|( 543216 YYYYYYP  (Eq. 3).  

Variables 1Y and 2Y had missing values that were MAR. Variables 1R  and 2R  indicated 

whether a score was missing, 0=iR , or observed, 1=iR , for 1Y and 2Y , respectively. Missing 

values in 1Y were created using logistic regression model 
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434311 79.01.209.1)(logit YYYYR ⋅−⋅+⋅+= γ ,  (4) 

and missing values in 2Y were created using logistic regression model 

656522 74.94.104.1)(logit YYYYR ⋅−⋅+⋅+= γ .  (5) 

The total percentage of missingness (one of the predictor variables in Study 1, to be discussed 

later) was manipulated by changing the intercepts ( 1γ and 2γ ) in eq. (4) and (5). This approach 

allows for varying the total percentage of missingness without altering the strength of 

associations between the predictor variables and the missingness indicator variable in eq. (4) 

and (5). 

For each incomplete data set, five completed data sets were created using a multiple 

imputation method and for each completed data set logistic regression model 

3223554433221106 )(logit YYYYYYYY βββββββ ++++++=            (6) 

was estimated. Rubin’s
23

 rules were used to combine the five sets of regression parameter 

estimates. It should be noted that 5=m  completed data sets is usually considered to be 

sufficient to obtain stable results
6
. However, other researchers have argued that m should be 

based on the total percentage of missingness; for example, m should equal the total percentage 

of missing data to obtain a sufficient degree of stability in the results
22

. In many cases, this 

would render m larger than five. We note that this is especially important for a single analysis; 

in a simulation study the size of m has much less influence because of the large number of 

replications.  

Three software packages were used for multiple imputation and parameter estimation. 

Data were generated using software package LEM
20

, methods MILC and MILL were conducted 

using the software program LatentGOLD 4.5
29

, and for MICE we used the R package MICE
12

. 

After multiple imputation, the substantive model, defined in Equation 6, was estimated using 

LatentGOLD 4.5. For MLID, the substantive model was estimated using LEM. 
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3.1.2 Predictor variables 

Incomplete-data method was a within factor with six levels: MILC (AIC), MILC 

(Large), MICE (PMM), MICE (LOG), MLID, and MILL. The incomplete-data methods 

determine the imputation model and may thus affect both bias and stability. 

Strength of the interaction term was a between factor with three levels that was 

manipulated by varying parameter 23β in eq. (3). The levels were: no three-way association 

( 00.23 =β ), medium ( 80.23 −=β ), and strong ( 00.223 −=β ). Strength of the three-way 

association sets requirements for the complexity of the imputation model. If this effect increases, 

a more complex imputation model is required to pick up the associations in the data. It is 

expected that strength of the three-variable association affects both bias and stability. 

Percentage of missingness was a between factor with three levels: moderate (10% 

missingness), high (20% missingness), and extreme (40% missingness). The percentage of 

missingness was manipulated by varying parameters 1γ and 2γ in eq. (4) and (5), respectively. 

For 10% missingness, 46.21 −=γ and 53.22 −=γ ,
 
for 20% missingness, 41.11 −=γ and 

44.12 −=γ ,
 
and for 40% missingness, 39.1 −=γ and 41.2 −=γ . As the percentage of 

missingness increases, the imputation model becomes more important. The condition with 40% 

of missingness is included because the consequences of an inadequate imputation model are 

magnified by an increase in the percentage of missingness. 

Sample size was a between factor with two levels: Small (N = 200) and large (N = 1000). 

Sample size is expected to predominantly affect stability. In particular, the aim was to examine 

how sample size is related to the stability of the statistical results in the analysis of interest for 

each missing-data method. 

The four predictor variables were fully crossed producing a 2335 ×××  design, with 

1,000 replications for each of the 18 combinations of the between-subjects variables.  
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3.1.3 Outcome variables 

The outcome variables were bias of parameter estimates, standard deviation of 

parameter estimates across replications, and bias of the reported standard errors
45,7

. Let bjβ̂

denote a parameter estimate of the jth variable (Eq. 6) in replication b (b = 1, …, 1,000), then 

the bias over 1,000 replications was computed as  

 ( ).ˆ
1000

1
bias

1000

1

∑
=

−=
b

jbj ββ   

Stability, denoted by )ˆ( jsd β , was measured by the standard deviation of parameter 

estimates across replications and was computed as 

∑
=−

=
1000

1

2ˆ
1

1
)ˆ(sd

b

bjj
B

ββ . 

Let )ˆ(se bjβ denote the estimated standard error of parameter estimate .ˆ
bjβ Bias of the 

reported standard errors (BSE) was computed as 

                                                

( ) ( )[ ],ˆsdˆse
1000

1
BSE

1000

1

∑
=

−=
b

jbj ββ                      

 

The bias and stability of parameter estimates, and bias of the standard errors were only 

considered for parameters 
2β (a main effect that is influenced by the interaction effect 23β ), 

4β

(a main effect that is not influenced by the interaction effect 23β ), and the interaction effect 23β . 

3.2 Results  

 

3.2.1 Bias 
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Table 1 shows the most important results for bias for 40% missingness. For lower percentages 

of missingness, the pattern of the bias was similar but the absolute values were smaller. This 

confirms that for larger percentages of missingness, the imputation model becomes more 

important. The most important result is that incomplete-data methods MLID, MILC (AIC) and 

MICE (LOG) produced large bias in the estimates of
2β and 23β  when there was an interaction 

effect in the data ( 023 ≠β ), whereas estimates of 
4β , a parameter not influenced by an 

interaction effect, showed much less bias. These results suggest that MILC (AIC) and MICE 

(LOG) have imputation models that are too parsimonious to pick up the three-way association 

in the data. Furthermore, the results suggest that MLID cannot handle very well the combination 

of a small sample size and a complex association. Seemingly, the asymptotic property of 

unbiased parameter estimates is not fully established under these circumstances. A second result 

is that MILL, which we used as a gold standard, produced similar bias or sometimes more bias 

(e.g., for
2β in condition 223 −=β , 200=N ) than MILC (Large) and MICE (PMM). A third 

result is that the bias was slightly larger for 200=N  than for 1000=N , which indicates that 

increased sampling variability may somewhat increase bias. 

-     insert Table 1 about here - 

3.2.2 Stability 

Table 2 shows the most important results for stability for 40% missingness. The most important 

result is that stability does not change dramatically across incomplete-data methods. MILC 

(AIC) was slightly more stable than MILC (Large), and MICE (LOG) is slightly more stable 

than MICE (PMM). This was expected because MILC (AIC) and MICE (LOG) are more 

parsimonious than MILC (Large) and MICE (PMM), respectively. The expected result that 

MILL would be less stable than MLID was not demonstrated. As expected, sample size had a 

positive effect on stability. For small samples (N=200) the stability could be considered low, 

resulting in low power. For example, the population value of 
4β  was equal to 1, but in case 
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=)ˆ(sd 4β  .501 (MILL, medium three-variable association), which is even one of the smaller 

standard deviations we found, one may expect to find estimates of 
4β between .02 and 1.98 (95% 

confidence interval). For large samples (N=1,000), the stability is much better. Percentage of 

missingness also had a negative effect on the stability. This can be expected because a larger 

percentage of missingness in fact means a reduction of the sample size. 

-     insert Table 2 about here - 

3.2.3 Bias of the standard errors 

Table 3 shows the most important results for bias of the standard errors for 20% missingness. 

Bias of the standard errors was smaller for N=1,000 than for N=200. Bias of the standard errors 

was largest for the parameters associated with the three-variable association (
2β and 

23β ) For 

N=200, MILL and MILC (Large) had the smallest bias, whereas MILC (AIC) and MICE (LOG) 

overestimated the standard errors and MLID and MICE (PMM) underestimated the standard 

errors. For N=1000, MILL, MILC (AIC), MILC (Large), and MICE (PMM) had the smallest 

bias, whereas MLID underestimated and MICE (LOG) overestimated the standard errors. This 

renders MILC (Large) as the most favorable incomplete-data method with respect to bias in 

standard errors. 

-     insert Table 3 about here - 

4. Study 2: Bias, Stability, and Bias in Standard Errors Produced by MILC, MICE and 

Complete-Case Analysis for a Larger Number of Trichotomous Variables. 

 

In Study 2, we compared incomplete-data methods MILC (AIC), MILC (Large, K=33), MICE 

(PMM), and MICE (LOG) to complete-case analysis, on bias of the parameter estimates, 

stability of the parameter estimates, and bias of the standard errors. Benchmarks MLID and 

MILL could no longer be used because the number of variables (11) was too large. The main 

question for Study 2 was whether MILC and MICE would also work for polytomous categorical 
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data and for large numbers of possible response patterns. In Study 1, the number of possible 

response patterns was 2
6
 = 64, whereas in Study 2, the number of possible response patterns was 

increased to 3
11

 = 177,147.   The main objective for the design of Study 2 is that the associations 

among the variables need to be complex, to test whether the incomplete-data methods can pick 

up the associations correctly. 

4.1 Method 

 

4.1.1 General set up 

In Study 2, the population model from which the complete data sets were sampled contained eight 

trichotomous predictor variables ( 81 ,, YY K  ) and three trichotomous outcome variables ( 109 ,YY , 

and 11Y ). The categories were coded -1, 0, and 1. The associations among the 11 are described by a 

path model for categorical data
46

 containing one-, two-, and three-way associations (see Figure 1 

for a graphical representation and Appendix A for the chosen parameter values).  

- insert Figure 1 about here - 

Variables ,,, 431 YYY and 11Y  had missing values; the other variables were completely 

observed. The missingness mechanism was MAR, and rather complex. For 1Y
 
and 3Y , the 

missingness depended on 2Y and 9Y . Let R  indicate whether (score 1) or not (score 0) a score is 

observed. Both for 1Y
 
and 3Y , the logit of R was 29 3206.5)(logit YYR ⋅+⋅−+−= , resulting 

in approximately 20% missing values for each variable. Similarly, for 4Y
 
and 11Y , the 

missingness depended on 7Y and 9Y . Both for 4Y and 11Y , 79 5.1350.5)(logit YYR ⋅−⋅+−= , 

also resulting in approximately 20% missing values for each variable. This procedure kept the 

total percentage of missingness constant at %27.7%011/7%20114 =⋅+⋅ . 
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 For each incomplete data set, the multiple imputation methods created m=5 completed 

data sets. For complete-case analysis, a complete data set was obtained by simply deleting every 

row that contained at least one missing value.  

 The substantive model was an adjacent category ordinal logit model
35

 for outcome 

variable 9Y containing ,,, 431 YYY and 11Y  as predictors. The logit equation has the form 

2112443322110999 )or  1|(logit YYYYYYjYjYjY j ββββββ +++++==−== , 

for j = 1, 2. Note that the substantive model is part of the population model (Figure 1) and 

includes the main effects of the predictors of 9Y , and the interaction effect of 1Y and 2Y . The 

latter implies a three-variable association among 1Y , 2Y , and 9Y .  

 Three software packages were used for data generation, incomplete-data handling, and 

estimating the substantive model. Complete and incomplete data were generated by LEM
20

. The 

imputation phase of MILC (Large) and MICE (PMM) was performed using LatentGOLD and 

the R package MICE, respectively. LatentGOLD was used to estimate the substantive model for 

by MILC (Large) and MICE (PMM), using the completed datasets, and for MLID and 

complete-case analysis. 

4.1.2 Design  

We only varied sample size and incomplete-data method. Sample size had two levels: 

medium (N = 500) and large (N = 1000); incomplete-data method had five levels: MILC (AIC), 

MILC (Large), MICE (LOG), MICE (PMM), and complete-case analysis. This yields a 25×  

design. The outcome variables were equivalent to those in Study 1 (bias, stability, and bias of 

standard errors). 

4.2 Results  
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4.2.1 Bias 

Table 4 shows the bias for 2β , the main effect of a predictor that is also involved in the 

interaction effect; 3β , the main effect of a predictor not involved in the interaction effect; and 

12β , the interaction effect itself. The most important result is that MICE (PMM) and MICE 

(LOG) produced relatively large bias in the estimates of 3β and 12β , suggesting that the 

imputation models of MICE (LOG) and MICE (PMM) do not correctly pick up the three-way 

association in the data. Furthermore, complete-case analysis produced very large bias in the 

estimates of 2β  and 12β , confirming that complete-case analysis leads to biased results when 

the data are MAR. MILC (AIC) and MILC (Large) had a similar performance in terms of bias.  

-     insert Table 4 about here - 

4.2.2 Stability 

Table 5 shows the stability of 2β , 3β , and 12β . The most important result is that (almost) 

unbiased parameter estimates (see Table 4) showed similar stability across methods, whereas 

biased parameter estimates tended to be either more stable or more unstable. This effect for was 

clearer for N=500 than for N=1000. For example, for the estimate of 2β , MILC (Large), MILC 

(AIC), MICE (PMM), and MICE (LOG) show similar bias and similar stability of parameter 

estimates. However, complete-case analysis overestimated 2β  and this estimate was too stable, 

whereas MICE (PMM) and MICE (LOG) overestimated 3β  and this estimate was too unstable. 

-     insert Table 5 about here - 

4.2.3 Bias of the standard errors 

Table 6 shows the bias of the standard errors of 2β , 3β , and 12β . Bias of the standard errors 

was smaller for N=1,000 than for N=500. The multiple imputation methods yielded similar 

upward bias in their standard errors, whereas complete-cases analysis tended to yield a larger 
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overestimation of the standard errors. Bias was largest for the standard error of the interaction 

effect ( 12β ).  

-     insert Table 6 about here - 

5 Real-data Example  

 

We applied the most promising variants of MILC and MICE (i.e., MILC (Large, K=12) and 

MICE (PMM)), complete-case analysis, and MLID to data from the Investigators of Projective 

Services Project for Older Persons
47

, which have been discussed and analyzed earlier by Fuchs
48

 

to illustrate the MLID approach. The data set contains the scores of 164 patients on six 

dichotomous variables (Table 7). One patient had a missing value on the physical status, 33 had 

a missing value for mental status, and 29 respondents had a missing value on both physical and 

mental status. The question of interest is whether the unexpected negative association between 

treatment and survival disappears when controlling for age, gender, physical status, and mental 

status. 

-     Insert Table 7 about here     -  

The substantive model predicts survival by the main effects of all variables, plus the interaction 

effect of mental status, 1Y , and physical status, 2Y . We defined the following regression model, 

                      2112554433221106 )(logit YYYYYYYY βββββββ ++++++= .                (7) 

Contrary to Fuchs, we chose to include the interaction between mental status and physical status 

because we were interested in whether the imputation methods yielded similar results to MLID 

in a model containing a higher-order association. Once the data had been imputed using MILC 

(Large) and MICE (PMM), the substantive model defined in equation 7 was estimated. We also 

estimated the logistic regression model using MLID (as a benchmark) and complete-case 

analysis. Schafer’s notion on the number of variables is of no concern in this analysis because 
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the substantive model and the imputation model are identical; both models include all available 

variables. Therefore, the performance of MILC (Large), MICE (PMM), and complete-case 

analysis was assessed by comparing them to MLID (Table 8).  

-      Insert Table 8 about here     - 

For all incomplete-data methods, only age ( 3β , negative effect) had a significant effect on 

survival status. The fact that all other effects were not statistically significant may be due to the 

small sample size. Nevertheless, it remains interesting to compare the parameter estimates 

across incomplete-data methods. Table 8 shows that the estimates yielded by MILC (Large) 

were very similar to MLID, for all parameters. MICE (PMM) produced estimates of

543  and, βββ that were very similar to MLID, but yielded relatively large differences for 

parameters
1221  and,, βββ . Complete-case analysis produced rather large differences for the 

estimates of 12542  and ,, ββββ . MLID, MILC (Large), and MICE (PMM) did not have large 

differences in the estimated standard errors. However, complete-case analysis yielded relatively 

large standard errors for parameters 543  and,, βββ , compared to MLID. 

6 Discussion 

 

The aim of this paper was to investigate which incomplete-data method for categorical data 

should be recommended to practitioners. We assessed the performance of MILC and MICE 

with regard to three criteria, relative to MLID, MILL, and complete-case analysis. Based on the 

theoretical discussion, Study 1, and Study 2, MILC (Large) appears to be the incomplete-data 

method that meets the three criteria to the greatest extent. The other incomplete-data methods 

have one or more features that make them suboptimal. MILL cannot handle more than a few 

variables, MLID does not allow for the use of small substantive model as it can affect the MAR 

assumption, and may yield biased parameter estimates for a complex association in case of a 

small sample size. While in Study 1 MICE (PMM) performed rather well, Study 2 showed that 
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MICE (PMM) may yield biased parameter estimates when the number of possible data pattern 

is large, especially when the sample size is small. MILC (AIC) and MICE (LOG) may fail to 

capture higher-order associations in the data, which yields parameter estimates with an 

unacceptably high bias. In Study 2 it was demonstrated that complete-case analysis yields very 

large bias in the parameter estimates, and a loss of power due to inflated standard errors. The 

findings in the real-data example were consistent with these results. 

A remaining issue with MILC is that there is not yet a guideline indicating the minimum 

number of required latent classes. The simulation study showed that overfit does not seem to be 

a problem, which was also argued by Vermunt et al.
 10

, so one can always resort to estimating a 

latent class model with many classes. However, having a minimum of required latent classes 

would greatly facilitate the use of MILC because estimating latent class models with 40, 50, or 

60 latent classes can be very time consuming. We showed that in case of a small table AIC is 

not a good criterion because the number of classes is too low; for a large table MILC (AIC) 

yielded good results. A heuristic rule may be to use as many classes as there are categories in 

the data. For example, for a data set consisting of 10 variables with three response categories 

and 5 dichotomous variables, the number of latent classes would be 4025310 =×+× latent 

classes. Whether this heuristic rule is reasonable should be investigated in future research. 

An additional comment should be made for MICE (LOG), as it may have been 

presented too negatively. The problem of MICE (LOG) is that in the default setting, interaction 

effects are not included in the conditional models. As a result the imputation model may be too 

parsimonious yielding biased parameter estimates. Further research would be required to 

investigate whether this method is able to produce unbiased results if the conditional model 

included higher-order interactions.  

Lastly, we note that each incomplete-data method had to be applied using a different 

software package, as there is no package available that applies all of the methods. Further 
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research is warranted to investigate the potential differences between implementations of MILC 

and MICE across software packages.    
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Appendix A 

Tables A1, A2, and A3 show the parameter values describing the population model in Study 2 

(Figure 1). All variables had three nominal response categories. Because dummy coding was 

used, the effect of the first category was zero (not displayed). For all two-way and three-way 

interactions only a single value is shown because the associations were defined to be ordinal 

(linear-by-linear). Table A1 shows the loglinear parameters describing ),,,,( 54321 YYYYYP , 

Table A2 shows the loglinear parameters describing ),,( 876 YYYP , and Table A3 shows the 

logistic regression parameters relating predictor variables 
1Y ,

2Y , 3Y ,
4Y , 5Y , 6Y , 7Y , and 8Y to 

outcome variables 9Y , 10Y , and 
11Y  

Table A1. Loglinear parameters describing
 

),,,,( 54321 YYYYYP  

( )0,.15.1 =Y  3.21 =YY  55.42 =YY  35.541 −=YYY  

( )05,.25.2 =Y  4.31 −=YY  36.52 −=YY  25.542 −=YYY  

( )15.,15.3 −−=Y  2.41 −=YY  15.43 −=YY  55.321 =YYY  

( )25,.05.4 =Y  5.51 =YY  05.53 −=YY   

( )05.,25.5 −−=Y  3.32 −=YY  3.54 =YY   

 

Table A2. Loglinear parameters describing ),,( 876 YYYP , 

( )75,.15.6 =Y  32.76 =YY    

( )25.1,25.7 =Y  4.86 −=YY    

( )5,.1.8 =Y  24.87 =YY    

 4.876 =YYY    
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Table A3. Logistic regression parameters, 

3.| 19 −=YY  22.| 410 =YY  15.| 1011 −=YY   

45.| 29 −=YY  32.| 510 =YY  3.| 611 −=YY   

5.| 39 =YY  42.| 610 =YY  35.| 711 =YY   

45.| 219 =YYY  38.| 710 −=YY  1.| 811 =YY   

35.| 119 =YY  34.| 810 =YY  4.| 7611 =YYY   

 14.| 7610 −=YYY    
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Table 1. Bias in the estimates of three logistic regression coefficients for six incomplete-data 

methods, three different levels of strength of three-variable associations ( 023 =β ,
 

8.23 −=β ,

223 −=β ), two sample sizes (200, 1000), and 40% missingness. Remarkable bias is printed in 

boldface. 

 Incomplete-data method 

N RC MLID MILL MILC 

(large) 

MILC 

(AIC) 

MICE 

(PMM) 

MICE 

(LOG) 

200 12 =β  .040 .076 .082 .025 .051 .073 

 14 =β  .065 .067 .061 .041 .068 .061 

 023 =β  .046 -.014 -.008 .031 .014 .009 

 4.12 =β .050 .094 .086 .040 .058 .058 

 14 =β  .071 .057 .058 .042 .062 .057 

 8.23 −=β -.036 .010 .022 .258 .036 .310 

 22 =β  .091 .103 .057 -.241 .057 -.357 

 14 =β  .058 .040 .036 .002 .055 .021 

 223 −=β -.144 -.074 -.006 .541 -.025 .733 

1000 12 =β  -.005 .010 .009 -.003 .011 .008 

 14 =β  .015 .013 .015 .012 .016 .014 

 023 =β  -.019 -.004 -.006 -.001 -.006 -.004 

 4.12 =β .026 .036 .036 -.088 .036 -.136 

 14 =β  .005 .003 .004 -.004 .003 -.002 

 8.23 −=β -.010 -.016 -.015 .205 -.014 .302 

 22 =β  .006 .033 .028 -.216 .031 -.410 

 14 =β  .014 .011 .011 -.015 .012 -.013 

 223 −=β -.036 -.046 -.041 .457 -.056 .765 

Note: N = sample size; 23β = strength of three-variable association; RC= regression coefficient. 

For MILC (AIC) the average number of classes indicated by AIC ranged from 2.8 (N=200, 

223 −=β ) to 3.8 (N=1000, 223 −=β ), for MILC (Large) a constant number of 12 classes was 

used.  
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Table 2. Stability of the estimates of three logistic regression coefficients for six incomplete-

data methods, three different levels of strength of three-variable associations ( 023 =β ,
 

8.23 −=β , 223 −=β ), two sample sizes (200, 1000), and 40% missingness . 

 Incomplete-data method 

N RC MLID MILL MILC 

(large) 

MILC 

(AIC) 

MICE 

(PMM) 

MICE 

(LOG) 

200 12 =β  .862 .845 .858 .600 .951 .738 

 14 =β  .500 .496 .502 .445 .518 .501 

 023 =β  1.19 1.17 1.17 .840 1.23 .729 

 4.12 =β .938 .931 .924 .679 1.01 .780 

 14 =β  .505 .506 .510 .448 .533 .508 

 8.23 −=β 1.21 1.22 1.20 .862 1.26 .737 

 22 =β  .916 .956 .948 .748 1.02 .806 

 14 =β  .494 .510 .515 .449 .537 .501 

 223 −=β 1.24 1.25 1.25 .917 1.29 .771 

1000 12 =β  .344 .373 .370 .264 .380 .301 

 14 =β  .203 .206 .206 .188 .206 .205 

 023 =β  .479 .515 .509 .362 .522 .306 

 4.12 =β .365 .389 .384 .291 .392 .313 

 14 =β  .205 .207 .208 .188 .207 .204 

 8.23 −=β .470 .507 .494 .376 .501 .310 

 22 =β  .377 .407 .404 .342 .402 .306 

 14 =β  .200 .205 .205 .185 .205 .197 

 223 −=β .482 .526 .517 .451 .514 .298 

Note: N = sample size; 23β = strength of three-variable association; RC= regression coefficient.  
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Table 3. Bias in the standard errors of the estimates of three logistic regression coefficients for 

six incomplete-data methods, three different levels of strength of three-variable associations 

( 023 =β ,
 

8.23 −=β , 223 −=β ), two sample sizes (200, 1000), and 40% missingness. 

Remarkable bias is printed in boldface. 

 Incomplete-data method 

N RC MLID MILL MILC 

(large) 

MILC 

(AIC) 

MICE 

(PMM) 

MICE 

(LOG) 

200 12 =β  -.040 -.044 -.044 .151 -.202 .072 

 14 =β  -.025 -.021 -.022 .015 -.052 -.021 

 023 =β  -.092 -.108 -.077 .174 -.219 .296 

 4.12 =β -.086 -.077 -.064 .116 -.214 .073 

 14 =β  -.027 -.017 -.018 .022 -.054 -.018 

 8.23 −=β -.092 -.077 -.062 .194 -.209 .315 

 22 =β  -.032 -.065 -.045 .080 -.199 .065 

 14 =β  -.010 -.015 -.017 .024 -.052 -.012 

 223 −=β -.074 -.064 -.054 .164 -.193 .292 

1000 12 =β  -.001 -.015 -.011 .065 -.060 .038 

 14 =β  -.006 -.005 -.005 .008 -.010 -.005 

 023 =β  -.015 -.030 -.025 .088 -.086 .130 

 4.12 =β -.017 -.023 -.021 .041 -.067 .029 

 14 =β  -.007 -.006 -.007 .009 -.011 -.004 

 8.23 −=β -.005 -.015 -.005 .070 -.059 .126 

 22 =β  -.012 .040 -.036 .080 -.074 .032 

 14 =β  .002 -.002 -.000 .024 -.006 .001 

 223 −=β .002 .028 -.028 .164 -.068 .133 

Note: N = sample size; 23β = strength of three-variable association; RC= regression coefficient. 
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Table 4. Bias in the estimates of three logistic regression coefficients for five incomplete-data 

methods, two sample sizes (500, 1000), and 20% missingness on four variables. Remarkable 

bias is printed in boldface. 

 Incomplete-data method 

N RC  CC MILC 

(large) 

MILC 

(AIC) 

MICE 

(PMM) 

MICE 

(LOG) 

500 45.2 −=β  .504 -.033 -.028 -.035 -.036 

 5.3 =β  .017 .001 -.002 .054 .051 

 45.12 =β  -.110 -.068 -.066 -.114 -.113 

1000 45.2 −=β  .501 -.027 -.025 -.033 -.035 

 5.3 =β  .019 .001 -.003 .053 .046 

 45.12 =β  -.113 -.061 -.061 -.116 -.114 

    Note: N = sample size; RC = regression coefficient. 
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Table 5. Stability of the estimates of three logistic regression coefficients for five incomplete-

data methods, two sample sizes (500, 1000), and 20% missingness on four variables.  

 Incomplete-data method 

N RC  CC MILC 

(large) 

MILC 

(AIC) 

MICE 

(PMM) 

MICE 

(LOG) 

500 45.2 −=β  .101 .290 .288 .293 .292 

 5.3 =β  .215 .218 .215 .240 .240 

 45.12 =β  .146 .159 .157 .127 .130 

1000 45.2 −=β  .069 .272 .271 .275 .275 

 5.3 =β  .224 .222 .220 .247 .246 

 45.12 =β  .134 .162 .161 .134 .137 

    Note: N = sample size; RC = regression coefficient. 
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Table 6. Bias in the standard errors of the estimates of three logistic regression coefficients for 

five incomplete-data methods, two sample sizes (500, 1000), and 20% missingness on four 

variables.  

 Incomplete-data method 

N RC CC MILC 

(large) 

MILC 

(AIC) 

MICE 

(PMM) 

MICE 

(LOG) 

500 45.2 −=β  .126 .080 .080 .082 .081 

 5.3 =β  .120 .081 .083 .088 .084 

 45.12 =β  .156 .100 .102 .106 .102 

1000 45.2 −=β  .089 .058 .058 .058 .057 

 5.3 =β  .086 .061 .062 .062 .059 

 45.12 =β  .111 .076 .077 .075 .072 

    Note: N = sample size; RC = regression coefficient. 
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Table 7: Information on the variables of the Projective Services Project for Older Persons
47

. 

Variable Levels Code 

Mental status poor, good 1Y  

Physical status  poor, good  2Y  

Age less than 75, over 75 
3Y  

Group membership  experiment, control  4Y  

Sex male, female 
5Y  

Survival status deceased, survived  
6Y  
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Table 8: Estimated logistic regression coefficients using MLID, MILC (Large), and MICE 

(PMM). 

   Incomplete-data method 

RC                MLID               Complete-case            MILC (Large)             MICE (PMM) 

 Est. SE Est. SE Est. SE Est. SE 

1β  3.175 2.188 2.844 2.070 3.777 1.984 2.271 1.815 

2β  2.614 2.240 1.816 2.180 3.162 2.102 1.439 1.979 

3β  -1.417 .431 -1.568 .526 -1.380 .422 -1.426 .434 

4β  .459 .394 .176 .481 .496 .392 .475 .384 

5β  -.506 .417 -.281 .525 -.420 .437 -.583 .410 

12β  -1.017 1.269 -.629 1.217 -1.283 1.168 -.382 1.090 
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Figure 1. Population model of the second simulation study. The model contains 11 trichotomous 

variables: Y1 through Y8 are predictor variables, and Y9 through Y11 are outcome variables.  

 

 


