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Chapter 1

Introduction

Since many theories in the social sciences deal with processes of social
change, increasing attention is being given to the collection of longitudi-
nal data and to the development of methods for analyzing longitudinal
data. This book discusses techniques for analyzing a particular type of
longitudinal data: event history data. More precisely, it provides a gen-
eral framework for dealing with missing data problems in the analysis
of event history data. These missing data problems involve unobserved
heterogeneity, measurement error, and partial nonresponse. An impor-
tant characteristic of the approach that is presented is that it is based on
using models which were originally developed in the field of categorical
data analysis.

In this introductory chapter, attention is given to the difference be-
tween event history data and other types of longitudinal data, to meth-
ods for analyzing event history data and their relationship with log-linear
models, and to the three above-mentioned missing data problems. In
addition, an outline of the book is presented.

1.1 Types of longitudinal data

Longitudinal data can be classified according to the type of information
that it provides about change and, as a result, the type of research ques-
tions that can be answered using it. The term change refers to a change
that occurs in an individual’s scores on the variables of interest. Other
terms which can be used interchangeably with change are transition and



event.

The least informative type of longitudinal data is time-series or trend
data. Time series are obtained by collecting the same type of information
at different points in time. But unlike other types of longitudinal data,
there is a different sample of individuals at each point in time. As a result,
there is no information on individual changes, transitions, or events, but
only on net or aggregate changes in the population to be studied.

Panel data is obtained by investigating the same sample units at dif-
ferent points in time. Panel data, thus, provides information on the values
of the variables of interest at particular points in time. What is observed
is whether the value of a variable on one occasion equals its value on the
previous occasion. If these values are not equal, it is certain that the
individual concerned experienced at least one transition or event. On the
other hand, if the two values are equal, there may or there may not have
occurred events between the two points in time. As a result, panel data
not only provides information on net changes, but also partial information
on gross or individual changes.

Two types of longitudinal data which are more informative than panel
data but still less informative than event history data are event-count data
and event-sequence data (Tuma and Hannan, 1984:19-20). Event-count
data records the number of changes, transitions, or events that occur in a
particular time interval, while event-sequence data records the sequence
of values of the dependent variable of interest for each sample member.
Event-count data and event-sequence data can, for instance, be collected
by means of a panel design in which the number and sequence of events
between the previous and the current occasion is requested retrospec-
tively.

FEvent history data is even more informative since it contains infor-
mation on the timing of changes, transitions, or events. In other words,
event history data records the number of events, their sequence, and the
time at which they occur. In experimental settings, it is generally pos-
sible to observe the subjects involved in the study continuously, which
makes recording the timing of events a rather straightforward procedure.
In nonexperimental studies, it is more difficult to collect event history
data. Sometimes, event history data can be obtained from archives. An-
other possibility is to gather data on the timing of events retrospectively.
The best known method is the life-history calendar which is a one-shot
survey in which information on different types of life-course events are



collected simultaneously (Freedman et al., 1988). Another method for
collecting event history data retrospectively is by means of a panel de-
sign in which individuals are questioned about the timing of events which
occurred between subsequent occasions.

1.2 Methods for analyzing event history data

The general purpose of the analysis of event history data is to explain
why certain individuals are at a higher risk of experiencing the event(s)
of interest than others. This can be accomplished by using special types
of methods which, depending on the field in which they are applied, are
called failure-time models, life-time models, survival models, transition-
rate models, response-time models, event history models, duration mod-
els, or hazard models. Here, the terms event history model and hazard
model are used interchangeably.

In hazard models, the risk of experiencing an event within a short
time interval is regressed on a set of covariates. Two special features
distinguish hazard models or event history models from other types of
regression models: they make it possible to include censored observations
in the analysis and to use time-varying explanatory variables. An obser-
vation is called censored if the event of interest did not occur before the
end of the observation period. Censoring is, in fact, a form of partially
missing information: On the one hand, it is known that the event did not
occur during a given period of time, but, on the other hand, the time at
which the event occurred is unknown. Time-varying covariates are co-
variates that may change their value during the observation period. The
possibility of including covariates which may change their value in the
regression model makes it possible to perform a truly dynamic analysis.

Event history models can be classified according to different types
of dimensions. The first distinction that can be made is based on the
nature of the dependent variable which is being modelled. The dependent
variable may be either discrete or continuous. While most of the work
which has been done in the field of event history analysis involves models
for discrete dependent variables, there are also methods for analyzing
changes in continuous dependent variables (Tuma and Hannan, 1984:
Part 3; Allison, 1990). This book deals solely with models for discrete
dependent variables.



The category of event history models for discrete dependent variables
can be subdivided into two subgroups: continuous-time methods and
discrete-time methods. As the terms indicate, the time variable is as-
sumed to be continuous in continuous-time methods, while in discrete-
time methods it is assumed to be discrete. In other words, the former
type of methods assume that events may occur at any point in time, while
the latter type of methods assume that changes occur at certain discrete
time points. The category of continuous-time methods can be subdivided
on the basis of whether the time dependence of the process being studied
is parameterized. In parametric models, the time dependence is assumed
to have a particular functional form, while in the semi-parametric model
proposed by Cox (1972), the time dependence remains unspecified, which
means that it is not restricted at all. In discrete-time models, it is possi-
ble to restrict the time dependence as in parametric models or to leave it
unspecified as in Cox’s model. This does not, however, lead to fundamen-
tally different types of models. Therefore, it suffices to distinguish the
following three main types of hazard models: parametric continuous-time
models, the Cox semi-parametric continuous-time model, and discrete-
time models.

The simplest situation in the analysis of event history data is that in
which there is only one type of event and each individual can experience
only one event, in other words, if there is a single nonrepeatable event.
As is demonstrated in Chapter 4, methods for analyzing event history
data can easily be adapted to deal with more complex situations, that
is, situations in which there are different types of events and in which
individuals may experience more than one event.

An important feature in the context of this book is the fact that haz-
ard models are strongly related to log-linear models for frequency tables.
Both the piecewise exponential survival model, which is a parametric
continuous-time model in which the risk of experiencing an event is as-
sumed to be constant within time intervals, and the Cox semi-parametric
model can be shown to be equivalent to log-linear models for the anal-
ysis of rates, also known as log-rate models (Holford, 1980; Laird and
Oliver, 1981). In addition, it can be demonstrated that the discrete-time
logit model, which is the most frequently used discrete-time method, is
a log-linear model in the form of the modified path model proposed by
Goodman (1973).



1.3 Missing data problems

This book deals with three types of missing data problems that may occur
in event history analysis: unobserved heterogeneity, measurement error,
and partial nonresponse.

Unobserved heterogeneity means that particular variables which ex-
plain individual differences in the risk of experiencing the given event(s)
being studied cannot be included as covariates in the hazard model be-
cause they are not observed. As is demonstrated in sections 4.6-4.8,
unobserved heterogeneity can seriously distort the results of hazard mod-
els. It may lead to spurious time dependence, spurious time-covariate
interactions, spurious time-varying covariate effects, spurious dependence
between different types of events, and spurious dependence between the
events experienced by the same observational unit.

Measurement error is another problem that is often conceptualized as
a missing data problem. In latent structure models, an individual’s true
score on a variable which is measured erroneously is treated as a latent or
unobserved variable. Measurement error may distort the results obtained
from an event history model. Measurement error in the dependent vari-
able generally leads to an overestimation of the amount of change that has
occurred since not only true change but also measurement error is con-
tributing to the observed change. Measurement error in the covariates
used in an event history model leads to biased parameter estimates.

In the case of unobserved heterogeneity and in the case of measure-
ment error, there are one or more variables which are completely unob-
served, in other words, which are missing for all subjects involved in the
study. There are, however, also situations in which information on partic-
ular variables is partially missing, that is, observed for some persons and
not observed for others. As was mentioned above, censoring is a form of
partially missing data on the dependent variable. Although hazard mod-
els are well suited for dealing with censored observations, the results are
only valid if the censoring mechanism is independent of the process being
studied. There may also be partially missing data in the covariates used
in a hazard model. It is well known that excluding the observations with
partially missing covariate values from the analysis may lead to biased
parameter estimates if the missing data are not missing completely at
random.

The best solution to these three missing data problems is to prevent



them from occurring, that is, to observe all relevant explanatory vari-
ables, to measure all variables without error, and to prevent partially
missing variables. If, however, there is missing data, the models which
are used to analyze the data have to be adapted to minimize the distor-
tion caused by missing information. In the field of event history mod-
eling, a great deal of work has been done on methods for dealing with
unobserved heterogeneity (Vaupel, Manton, and Stallard, 1979; Manton,
Vaupel, and Stallard, 1981, 1986; Vaupel and Yashin, 1985; Heckman
and Singer, 1982, 1984; Flinn and Heckman, 1982; Trussell and Richards,
1985; Mare, 1994; Guo and Rodriguez, 1994; Yamaguchi, 1986; Clayton
and Cuzick, 1985; Heckman and Honore, 1989). In addition, some work
has been dedicated to covariates which are measured with error (Gong,
Whittemore, and Grosser, 1990) and to covariates which are subject to
partial nonresponse (Schluchter and Jackson, 1989; Baker, 1994).

This book presents a general approach to missing data problems in
event history analysis which is based on the similarities between log-
linear models and event history models. Log-linear models which have
been developed for dealing with unobserved heterogeneity, measurement
error, and partial nonresponse are used to deal with the same kinds of
missing data problems in event history analysis. The general approach
incorporates some of the existing approaches as special cases, extends
some existing approaches by making it possible to relax some of their
basic assumptions, and leads to some new applications, such as event
history models with latent or indirectly measured covariates and discrete-
time logit models with measurement error in the dependent variable of
interest.

The general model consists of two parts: a model for the covariates
included in the model and a hazard model for the dependent process
which is to be studied. The hazard model may be either a log-rate model
or a discrete-time logit model. The model for the covariates is a modified
path model proposed by Goodman (1973). It has been shown that it is
possible to incorporate latent variables (Hagenaars, 1990) and partially
observed variables (Fay, 1986; Baker and Laird, 1988) in a modified path
model. Although the approach presented in this book is quite general, it
has one important limitation, which results from it being based on the
use of log-linear models: the missing information must be in categorical
variables. This implies that a non-parametric approach to unobserved
heterogeneity is used, that measurement error is dealt with by means



of latent class models, and that partially missing information may only
occur in the dependent variable and in covariates which are categorical.

1.4 An outline of this book

In addition to this introductory chapter, this book consists of four chap-
ters. Chapter 2 discusses log-linear models. The main purpose of this
chapter is to explain log-rate models, modified path models, and meth-
ods for obtaining maximum likelihood estimates of the parameters of log-
linear models implemented in the EM program (Vermunt, 1993), which,
in turn, can be used to estimate the general class of models discussed
in this book. Chapter 3 shows how to incorporate variables with missing
information in log-linear models. It presents latent class models, modified
path models with latent variables, and log-linear models for nonresponse.

Chapter 4 deals with event history models. After the basic concepts
and the main types of hazard models are presented, some more advanced
topics are discussed, such as censoring, the use of time-varying covariates,
models for competing risks, and multivariate hazard models. Chapter 5
presents the general approach for dealing with missing data problems in
event history analysis. It shows how to combine the log-linear models
with latent variables and partially missing data discussed in Chapter 3
with the log-rate and discrete-time logit models discussed in Chapter 4. In
addition, it presents a number of applications of models with unobserved
heterogeneity, measurement error in the dependent variable, measurement
error in the covariates, partially missing information on the dependent
variable, and partially observed covariate values.






Chapter 2

Log-linear analysis

Log-linear analysis has become a widely used method for the analysis
of multivariate frequency tables. There are several excellent textbooks
which give extensive overviews of categorical data analysis by means of
log-linear models (Bishop, Fienberg, and Holland, 1975; Goodman, 1978;
Haberman, 1978, 1979; Fienberg, 1980; Agresti, 1990; Hagenaars, 1990).
The aim of this chapter is not to provide another overview of the field of
log-linear analysis, but to introduce those elements of log-linear modeling
that are necessary to understand the main chapters of this book.

Three topics deserve special attention: estimation by means of iter-
ative proportional fitting and uni-dimensional Newton, log-rate models,
and log-linear path models. Understanding iterative proportional fitting
and uni-dimensional Newton is important because these procedures for
obtaining maximum likelihood estimates are implemented in the {EM
program (Vermunt, 1993), which was used to estimate all models dis-
cussed in this book. Log-rate models are important because of their
equivalence to piecewise exponential survival models, which are exten-
sively discussed in Chapter 4. Lastly, it is important to thoroughly ex-
plain the less known log-linear path model for at least two reasons. First,
the discrete-time event history model is a special case of this model. Sec-
ond, most of the log-linear models with missing data discussed in the
following chapter are log-linear path models.

Some standard topics in log-linear modeling are introduced in the first
four sections of this chapter. In sections 2.1, 2.2, 2.3, and 2.4, attention is
paid to saturated and non-saturated hierarchical log-linear models, sam-



pling distributions, estimation procedures, and model selection, respec-
tively. Non-hierarchical log-linear models are discussed in section 2.5.
Log-rate models or models with a weight vector are presented in section
2.6. Section 2.7 demonstrates how to incorporate non-linear terms in a
log-linear model. ‘Regression-analytic’ variants of the standard log-linear
model, i.e., the logit model and the multinomial response model, are pre-
sented in section 2.8. The final section deals with a ‘path-analytic’ causal
model for categorical data, Goodman’s modified path model (Goodman,
1973).

2.1 Hierarchical log-linear models

2.1.1 Saturated log-linear models

Suppose we have a frequency table formed by three categorical variables
which are denoted by A, B, and C, with indices a, b, and ¢. The number
of categories of A, B, and C' is denoted by A*, B*, and C*, respectively.
Let mgp. be the expected frequency for the cell belonging to category a of
A, b of B, and ¢ of C. The saturated log-linear model for the three-way
table ABC' is given by

logmepe = u-+ uaA + uf + uf + ube + ufcc + u,ic + ug‘bfc .(2.1)

The consequence of specifying a linear model for the log of mgp. ' is that
a multiplicative model is obtained for mgg., i.e.,

mae = exp (u+ug +uf +ul +uff + s +ufC +uglo)
A_B_C_AB_AC_BC_ABC
= TTa Ty Tc Tab Tac Tbc Tabe - (2'2)
From Equations 2.1 and 2.2, it can be seen that the saturated model
contains all interactions terms among A, B, and C. That is, no a priori
restrictions are imposed on the data. However, Equations 2.1 and 2.2
contain too many parameters to be identifiable. Given the values for the

1t should be noted that the log transformation of mgp. is tractable because it
restricts the expected frequencies to remain within the admissible range. However,
there are also linear models for the analysis of categorical data (Grizzle, Starmer,
and Koch, 1969). In addition, models have been proposed which combine linear and
log-linear constraints on the expected frequencies (Haber and Brown, 1986; Lang and
Agresti, 1994).



expected frequencies myy., there is not a unique solution for the u and
7 parameters. Therefore, constraints must be imposed on the log-linear
parameters to make them identifiable. One option is to use ANOVA-like
constraints, namely,

Zuf:Zuf :Zugzﬂ,

a b c

Youg’ =D up =D uad =Y up’ = up’ =Y up’ =0,
a b a c b c

Youge =Y uget = uge© =0.

a b c

This parameterization in which every set of parameters sums to zero over
each of its subscripts is called effect coding.? It is the most often used pa-
rameterization in applications of log-linear modeling. In effect coding, the
u term denotes the grand mean of log mgp.. The one-variable parameters
uZ, uf, and u¢ indicate the relative number of cases at the various levels
of A, B, and C as deviations from the mean. More precisely, they de-
scribe the partial skewness of a variable, that is, the skewness within the
combined categories of the other variables. The two-variable interaction
terms ug‘bB , ufcc, and ubB;C indicate the strength of the partial association
between A and B, A and C, and B and C, respectively. The partial asso-
ciation can be interpreted as the mean association between two variables
within the levels of the third variable. And finally, the three-factor inter-
action parameters ufbfgc indicate how much the conditional two-variable
interactions differ from one another within the categories of the third vari-
able. In other words, they describe the size of the discrepancy between
the partial and the conditional associations.

Another method to identify the log-linear parameters involves fixing
the parameters to zero for one category of A, B, and C, respectively. This
parameterization, which is called dummy coding,? is often used in regres-
sion models with nominal regressors. Although the expected frequencies
under both parameterizations are equal, the interpretation of the param-
eters is rather different. When effect coding is used, the parameters must

be interpreted in terms of deviations from the mean, while under dummy

2Other terms which are sometimes used for this parameterization are marginal cod-
ing and deviation from means parameterization (Willekens, 1994:123).

3This parameterization is sometimes also referred to as the partial method or ref-
erence cell parameterization (Willekens, 1994:123).



coding, they must interpreted in terms of deviations from the reference
category (Alba, 1987; Long, 1984).

2.1.2 Non-saturated hierarchical log-linear models

As mentioned above, in a saturated log-linear model, all possible interac-
tion terms are present. In other words, no a priori restrictions are imposed
on the model parameters apart from the identifying restrictions. However,
in most applications, the aim is to specify and test more parsimonious
models, that is, models in which some a priori restrictions are imposed on
the parameters. Log-linear models in which the parameters are restricted
in some way are called non-saturated models. There are different kinds
of restrictions that can be imposed on the log-linear parameters. One
particular type of restriction leads to the family of hierarchical log-linear
models. Hierarchical log-linear models are models in which the log-linear
parameters are fixed to zero in such a way that when a particular inter-
action effect is included in the model, all lower-order effects containing a
subset of the indices of the effect concerned must also be included in the
model. For example, when a model contains the two-variable interaction
term ube , the one-variable terms u/' and uf must be included too. The
opposite applies as well. When a particular interaction term is fixed to
zero, all higher-order interaction terms containing all its indices must also
be fixed to zero. For example, if the partial association between A and B
is assumed not to be present, the three-variable interaction ufblgc must

be fixed to zero as well. Applying this latter restriction to Equation 2.1
results in the following hierarchical log-linear model:

logMape = u+us +uf +ul +ull +ufc.

Another example of a hierarchical log-linear model is the independence
model

logmape = u+us +uf +uf.

Hierarchical log-linear models are the most popular log-linear models be-
cause, in most applications, it is not meaningful to include higher-order
interaction terms without including the lower-order interaction terms con-
cerned (Agresti, 1990:144). Another reason is that it is relatively easy to
estimate the parameters of hierarchical log-linear models because of the



existence of simple sufficient statistics (Bishop, Fienberg, and Holland,
1975). The estimation of the parameters of hierarchical log-linear models
will be discussed in the next subsections.

2.2 Sampling distributions

The above-mentioned log-linear models for the three-way frequency table
ABC' are population models. However, since generally only a sample of
the population is observed, the parameters of a log-linear model that is
postulated for the population have to be estimated using the observed cell
counts ngpe.. The parameters of log-linear models are usually estimated
by means of the maximum likelihood method (ML). Some alternative
methods are weighted least squares (Grizzle, Starmer and Koch (1969),
minimum chi-square (Berkson, 1968), and minimum discrimination infor-
mation (Berkson, 1972; Darroch and Ratcliff, 1972). A common element
in these methods is that the unknown parameters are found by maxi-
mizing (or minimizing) some criterion or object function. The maximum
likelihood method estimates for the expected cell frequencies, m, and the
parameters of a log-linear model are obtained by maximization of the
likelihood function. To determine the likelihood function, it is necessary
to make assumptions about the sampling distribution of the observed cell
counts of a contingency table. In log-linear analysis, usually a Poisson
distribution, a multinomial, or a product-multinomial distribution is as-
sumed (Bishop, Fienberg and Holland, 1975:62-64; Agresti, 1990:36-39).

The Poisson sampling scheme assumes each observed cell count, ng.,
to be an independent Poisson random variable with one single param-
eter, the mean mygp.. This sampling scheme may be used for counting
events which occur independently of each other in time or in space. The
probability density function for the observed frequency in cell (a, b, ¢) is

eXp —Mygp Mep Tabe
f (nabc | mabc) = ( @ C) (' [ c) '
Nabe:

But, in most applications in social science, it may not be appropriate
to use a Poisson sampling scheme because under that sampling scheme,
the sample size N is assumed to be a Poisson random variable as well.
This is generally not a realistic assumption in social research since the
sample size is fixed by the sample design. However, given the total sample



size N, the ng. no longer have a Poisson distribution but a multinomial
distribution with parameters N and 7., where map. (mgp/N) denotes
the probability of belonging to cell (a, b, ¢) (Bishop, Fienberg and Holland,
1975:63; Agresti, 1990:37). The multinomial probability density for the
observed cells in table ABC is

N!

abe Ttabe

F el Nimase) = (7o) Tl rane) ™

abc

where the indices a, b, and c of ] indicate that the product is over all
cell entries.

The multinomial density function can be applied when a simple ran-
dom sample is taken from a population with fixed N. However, it is
also possible to condition on the observed marginal distribution of one
or more variables included in the model instead of on the total sam-
ple size N. This may be useful when the observed cell counts of table
ABC are obtained with a stratified sample. For example, when a simple
random sample is taken within levels of A, it may be assumed that the
observed frequencies in every stratum come from A* independent multi-
nomial distributions with parameters N, (= > 4. 7abe) and mylq. This
sampling scheme is called independent multinomial sampling or product-
multinomial sampling. In this case, the probability density function for
the observed frequencies in the cells with A = a is

) |CRRE
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Independent multinomial sampling is especially useful for models in which
a distinction is made between dependent and independent variables, such
as in logit models and multinomial response models. In such cases, in-
dependent binomial or multinomial sampling is assumed for each of the
joint categories of the independent variables.

The three sampling schemes discussed above are very strongly related:
multinomial sampling is equivalent to Poisson sampling with fixed IV, and
product-multinomial sampling is equivalent to Poisson sampling with a
marginal distribution which has been fixed by the sampling design or by
the nature of the model to be estimated. The implication of this equiv-
alence is that in maximum likelihood estimation, a likelihood function



based on Poisson sampling may also be used in cases in which multino-
mial or product-multinomial sampling is assumed. However, when a Pois-
son likelihood is used instead of a multinomial or a product-multinomial
likelihood, the log-linear effects belonging to the fixed margins have to
be included in the model. For multinomial sampling, this implies includ-
ing the u term, the grand mean, in the model. In the above example
of product-multinomial sampling with fixed margins A, u' has to be in-
cluded. Note that in such situations u and uZ are not random but fixed
quantities.

2.3 Maximum likelihood estimation

After defining a particular log-linear model, estimates for the model pa-
rameters have to be obtained by means of the observed data and the
assumptions implied by the model. Here, only maximum likelihood esti-
mation will be used. The likelihood function is the ‘probability’ function
of the data, i.e., the observed frequencies ngp., given the postulated sam-
pling scheme and the values of the (unknown) parameters. Maximum
likelihood estimates are those estimated parameter values that maximize
the likelihood function, or, in other words, that maximize the ‘probability’
or the likelihood of occurrence of the observed data.

2.3.1 Sufficient statistic and likelihood equations

In this subsection, it is demonstrated how to obtain maximum likelihood
estimates for the expected frequencies for a specific hierarchical log-linear
model assuming a Poisson sampling scheme, which is the simplest sam-
pling scheme. Moreover, it can easily be transformed into a multinomial
or product-multinomial sampling scheme by including particular effects
in the log-linear model. Assuming Poisson distributed data, the kernel of
the log-likelihood function is

loglL = Z (Nabe 10g Mape — Mape) (2.3)

abc

where the expected frequencies mgp. are a function of the unknown u
parameters. The kernel of the likelihood function is that part of the like-
lihood function that depends on the parameters to be estimated. There-
fore, it is the only part that has to be considered. Moreover, the log-



likelihood function is presented instead of the likelihood function, since
for most probability functions, including the Poisson and the multinomial,
it is simpler to maximize the log-likelihood function than the likelihood
function itself. Because the log of the likelihood function is a monotone
function of it, this does not make any difference for the estimated param-
eters values.

Suppose we want to find maximum likelihood estimates for the pa-
rameters of the hierarchical log-linear model

logmape = u+us +uf +ul +ulff +ufC. (2.4)
Substitution of Equation 2.4 into Equation 2.3 gives

logl = Znabc (u-i-uf +uf +uf +ulP —i—u{?cc)

abe
—ZeXp (u+uf+uf+uf+ufb3+uﬁc).

abc

By collapsing the cells which contain the same u parameter, the log-
likelihood function simplifies to

A B C
0g L = Nyypu+ ) Narstl + D nypruy + Y Nyl
a b c

AB BC
+ Z Nab+Ugp + Z N4 bcUpe

ab bc
- Zexp (u +ul +uf +ul +ulf + uﬁc) , (2.5)
abc

where a + is used as a subscript to denote that the observed frequen-
cies have to be collapsed over the dimension concerned. It can now be
seen that the observed marginals niyi, Ngy+, Naypt, Note, Napt, and
N contain all the information needed to estimate the unknown param-
eters. Because knowledge of the bivariate marginals AB and BC implies
knowledge of ni; and of the univariate marginals A, B, and C, ngp+
and nyp. are the minimal sufficient statistics for the model given in Equa-
tion 2.4. These two marginals AB and BC contain all the information
necessary for estimating the log-linear parameters of the model described
in Equation 2.4.

In hierarchical log-linear models, the minimal sufficient statistics are
always the marginals corresponding to the interaction terms of the highest



order. For this reason, hierarchical log-linear models are mostly denoted
by their minimal sufficient statistics (Goodman, 1978; Agresti, 1990:166-
167; Hagenaars, 1990:50). The model given in Equation 2.4 may then
be denoted as {AB, BC}, the independence model as {A, B, C'}, and the
saturated model as {ABC'}.

To obtain maximum likelihood estimates for the model parameters of
Equation 2.4, it is necessary to find the parameter values that maximize
the log-likelihood function of Equation 2.5. This can be accomplished by
differentiating the log-likelihood function with respect to the unknown
parameters and setting the result equal to zero. Differentiating the log-
likelihood function concerned with respect to the u parameters gives

Odlog L
ou = Ni4q — Zmabc = Nt = Mgt
abc
Odlog L
4 = Nat++ — Z Mabe = Nat++ — Mat+,
ou;
be
Olog L
ol Nybt — Zmabc = Nt — Myby s
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Setting these derivatives to zero yields likelihood equations

Npgt = Mgy,

Nat+ = Matt,

Niby = Myby,

Ngge = Myye,

Nab+ = Maby (2.6)
Nibe = Mepe,

where the m’s denote estimates for the expected marginal cell count con-
cerned. It can easily be seen that if the last two conditions are fulfilled,



the other four are fulfilled as well. Therefore, Equations 2.6 and 2.7 de-
termine the maximum likelihood estimates for the expected frequencies
mgpe and the corresponding log-linear parameters. In other words, in the
maximum likelihood solution, the table containing the estimated expected
frequencies has the same marginals AB and BC as the table with the ob-
served frequencies. The same holds for any other hierarchical log-linear
model. In hierarchical log-linear models, the minimal sufficient statistics
are equal to the marginals which have to be reproduced according to the
specified model.

The other two sampling schemes mentioned above lead to the same
likelihood equations because the additional conditions are automatically
fulfilled. In the case of multinomial sampling, >° ;. 7abc has to be equal
to the total sample size N, or ny .. Moreover, when multinomial sam-
pling is assumed within the categories of A, Y. M4, has to be equal to
Ng++. Thus, the inclusion of mean effect u in a log-linear model makes
the estimates under a Poisson sampling scheme identical to the ones ob-
tained under a multinomial sampling scheme. Furthermore, the inclusion
of effect u} causes Poisson sampling to be identical to independent multi-
nomial sampling within categories of A (Bishop, Fienberg and Holland,
1975; Agresti, 1990).

2.3.2 The iterative proportional fitting algorithm

For some models, there are closed form solutions for the estimated ex-
pected frequencies Mg, that is, the conditions given in the likelihood
function can be fulfilled without using an iterative method. Actually, all
log-linear model which are decomposable graphical models have closed
form solutions for the estimated expected frequencies (Whittaker, 1990:
section 10.4; Wermuth and Lauritzen, 1983, 1990). Model {AB, BC} is
such a model because it implies the conditional independence of A and C
given B. The estimated expected frequencies for this model are found by

N . mab+m+bc _ NapNtbe
Mabe = ~ - .
Mypy T4b4
In the tradition of graphical modeling, where models have to be formu-
lated in terms of conditional independence, it is sometimes also written

as

Mabe = Nab+Pelp = Npab—l—pc\ba



where pgp1 denotes the observed probability that A = ¢ and B = b, and
Pcjp the observed probability that C' = c given B = b. The independence
model and the saturated model are other examples of models which have
closed solutions. In the saturated model, M. = Ngpe-

When no closed form expression exists for M., maximum likelihood
estimates for the expected cell counts can be found by means of the it-
erative proportional fitting algorithm (IPF) (Deming and Stephan, 1940;
Fienberg 1970; Darroch and Ratcliff (1972). This a conceptually and com-
putationally simple procedure. Its basic principle is that the marginal
constraints from the likelihood equations are satisfied by adjusting the
estimated expected frequencies. Often, this has to be done iteratively
because there is no guarantee that after fulfilling one set of conditions,
the previous restrictions are still satisfied. The iterations continue until
convergence is reached, in other words, until the estimated expected fre-
quencies do not change more than an arbitrary small constant. The IPF
algorithm can also be applied to models for which closed formed expres-
sions exist. In such cases, the algorithm converges after two iterations
when the table which is being analyzed does not consist of more than six
variables (Haberman, 1974:197).

Let mf;}c denote the estimated expected frequencies after the vth IPF
iteration. Before starting the first iteration, arbitrary starting values
are needed for the log-linear parameters that are in the model. In most
computer programs based on the IPF algorithm, the iterations are started
with all the u parameters equal to zero, in other words, with all estimated

(0)

abc

expected frequencies m ,° equal to 1. It is important to note that the

mfj})c may not implicitly contain parameters that are not included in the
model. For the model in Equation 2.4, every IPF iteration consists of the

following two steps:

~ () L (v—1) Nab+
Mope = Mape A (v—1)7
mab+
~(v) () Nbe
Mabe = Mape A (V)
mype
where the mgg)c and mﬁ;’c denote the improved estimated expected fre-

quencies after imposing the restrictions of Equations 2.6 and 2.7, respec-
tively.



Obtaining the log-linear parameters If there are no zero-estimated
expected frequencies, the log-linear parameters can easily be computed by
means of the estimated expected frequencies.* When ANOVA-like con-
straints are imposed on the parameters, that is, when effect coding is used
to identify the parameters, the log-linear parameters can be computed in
two different ways. One method consists of calculating the average of the
log of the estimated expected frequencies given the values of the variables
appearing in the u parameters concerned and, subsequently, subtracting
the lower other effects (Bishop, Fienberg and Holland, 1975:16-17; Hage-
naars, 1990:38). In the other method, the parameters are calculated by
means of mean removal on the logs of the estimated expected frequencies
(Laird and Olivier, 1981). The latter method is explained in more detail
in Appendix A.1. The difference between the two methods is that in the
former, the lower-order effects are removed after calculating the mean of
the log Mgpe’s, while in the latter, an effect is directly removed from the
estimated expected frequencies, or, in other words, before calculating the
next set of parameters. Of course, both methods give identical values for
the parameter estimates.’

Although the IPF algorithm is very attractive because of its simplicity
and its computational efficiency, it has two serious disadvantages. In its
simplest form, it can handle only hierarchical log-linear models and it
does not supply standard errors for the parameter estimates.

Tt should be noted that if the observed table contains zero cell counts, maximum
likelihood estimates for the log-linear parameters may not exist (Haberman, 1974;
Agresti, 1990:245). Maximum likelihood estimates do not exist if there are zero counts
in the sufficient marginal cells. However, even if all sufficient statistics are positive,
maximum likelihood estimates may not exist. A well-known example occurs in the case
of the no-three-variable interaction model for a 2-by-2-by-2 table. The parameters of
this model cannot be estimated if there is more than one zero observed frequency
(Santner and Duffy, 1989).

% Another method, which is explained in more detail in section 2.6 and in Appendix
A.2, is based on using the cumulated multipliers of the IPF iterations rather than the
estimated expected frequencies.



2.4 Model selection

2.4.1 Testing goodness of fit

The goodness of fit of a postulated log-linear model can be assessed by
comparing the observed frequencies, n, with the estimated expected fre-
quencies, m. For this purpose, usually two chi-square statistics are used:
the likelihood-ratio statistic and the Pearson statistic. For a three-way
table, the Pearson chi-square statistic equals

X2 _ Z (nabc A_ mabc)Q :
abe Mabc

and the likelihood-ratio chi-square statistic is

L? = 2 Znabc log (?abc> . (2.8)

abe Mabe

The number of degrees of freedom for a particular model is
df = number of cells — number of independent u parameters.

When structural zeros occur in the estimated expected frequencies or
when some parameters cannot be estimated as a result of zeros in the
sufficient statistics, the calculation of the number of degrees of freedom is
a bit more complicated (Clogg and Eliason, 1987). In such cases, df can
be obtained by

df = number of non-zero fitted cells

— number of estimable u parameters.

Both chi-square statistics have asymptotic, or large sample, chi-square
distributions when the postulated model is true. In the case of small
sample sizes and sparse tables, the chi-square approximation will gener-
ally be poor (Read and Cressie, 1988; Agresti, 1990:246). Koehler and
Larntz (1980) and Koehler (1986) showed that X? is valid with smaller
sample sizes and sparser tables than L?. They showed that the distribu-
tion of L? is usually poor when the sample size divided by the number of
cells is less than 5 (Agresti, 1990:246). Therefore, when sparse tables are
analyzed, it is best to use both chi-square statistics together. When X?



and L? have almost the same value, it is more likely that both chi-square
approximations are good. Otherwise, at least one of the two approxima-
tions is poor. Haberman (1978: section 5.3) showed that when tables are
sparse, both chi-square approximations are not only poor, but they also
have different distributions.

Recently, Read and Cressie (1988) introduced a family of statistics,

A
(tLabc > —1],
Mabe
called power divergence statistics. This is equal to X2 for A = 1 and L?
as A = 0. Read and Cressie recommended the statistic with A = 2/3,

which they found less susceptible to effects of sparseness than X? and L?
(Agresti, 1990:249).

2
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2.4.2 Comparison of models

The likelihood-ratio chi-square statistic is actually a conditional test for
the significance of the difference in the value of the log-likelihood function
for two nested models. Two models are nested when the restricted model
has to be obtained by only linearly restricting some parameters of the
unrestricted model. Thus, the likelihood-ratio statistic can be used to
test the significance of the additional free parameters in the unrestricted
model, given that the unrestricted model is true in the population. As-
suming multinomial sampling, L? can be written more generally as

L%r\u) = (—2 log L(r)) - (—2 log E(u))

= 2ngplog 7Arabc(u) — 2ngpe log 'frabc(r)

= 2nabclog <W> >

Mape(r)

where the subscript (u) refers to the unrestricted model and the subscript
(r) to the restricted model. Note that in Equation 2.8, a particular model
is tested against the completely unrestricted model, the saturated model.
Therefore, in Equation 2.8, the estimated expected frequency in the nu-
merator is the observed frequency ngp.. The Lgr‘u statistic has a large
sample chi-square distribution if the restricted model is approximately
true. The approximation of the chi-square distribution may be good for



conditional L? tests between non-saturated models even if the test against
the saturated model is problematic, as in sparse tables (Haberman, 1977,
1978:325). The number of degrees of freedom in conditional tests equals
the number of parameters which are fixed in the restricted model com-
pared to the unrestricted model. The L%r‘ u) statistic can also be computed

from the unconditional L? values of two nested models,

2
L

rlu)

with
df iy = dfry = df ) -

Another approach to model selection is based on information theory. The
aim is not to detect the true model but the model that provides the most
information about the real world. The best known information criteria are
the Akaike information criterion (AIC) (Akaike, 1987) and the Bayesian
information criterion (BIC) (Schwarz, 1978; Raftery, 1986, 1993). These
two measures, which can be used to compare both nested and non-nested
models, are defined as

AIC = —2logL + 2npar, (2.9)
BIC = —2logL+ (log N)npar, (2.10)

where npar denotes the number of unknown parameters. The lower the
AIC or BIC, the better a particular model, or the more information it
contains. It can be seen that the two information criteria give a different
weight to the parsimony of a model. In the context of log-linear modeling,
they are most often calculated as

AIC* = L?—2df.
BIC* = L?—logNdf.

These are, in fact, conditional information indices which compare the
model of interest with the saturated model. For example, AIC* can also
be obtained by subtracting the value of AIC for the saturated model,
—2ngpe log(ngpe/N) + 2(number of cells), from the value of AIC for the
model concerned.

For more extended overviews on model testing and model selection in
log-linear analysis, see Read and Cressie (1988), Agresti (1990: Chapter
7), and Hagenaars (1990:56-68).



2.5 Non-hierarchical log-linear models

So far, attention has been paid to only one special type of log-linear
models, the hierarchical log-linear models. As demonstrated, hierarchical
log-linear models are based on one particular type of restriction on the
log-linear parameters. But, when the goal is to construct models which
are as parsimonious as possible, the use of hierarchical log-linear models
is not always appropriate. To be able to impose other kinds of linear
restrictions on the parameters, it is necessary to use more general kinds
of log-linear models.

As demonstrated in Appendix B, log-linear models can also be defined
in a much more general way by viewing them as a special case of the gen-
eralized linear models (GLM) (Nelder and Wedderburn, 1972; McCullagh
and Nelder, 1983: Chapter 6, 1989). In its most general form, a log-linear
model can be defined as

logm; = Zﬂj%’j, (2.11)
J

where 4 denotes a cell entry, 3; is a particular u term, and z;; is an
element of the design matrix.

The design matrix provides us with a very flexible tool for specifying
log-linear models with various restrictions on the parameters. Detailed
discussions on the use of design matrices in log-linear analysis can be
found in, for instance, Evers and Namboodiri (1977), Haberman (1978,
1979), and Rindskopf (1990).

2.5.1 Possible specifications of the design matrix

Suppose we want to specify the design matrix for an hierarchical log-
linear model of the form {AB, BC'}. Assume that A*, B*, and C*, the
number of categories of A, B, and C, are equal to 3, 3, and 4, respectively.
Because in that case model {AB, BC} has 18 independent parameters to
be estimated, the design matrix will consist of 18 columns: 1 column for
the mean effect u, 7 ([A* — 1] 4+ [B* — 1] 4+ [C* — 1]) columns for the one-
variable terms vz, uf, and u¢, and 10 ([A* —1]+[B*—1]+[B*—1]*[C*—1])
columns for the two-variable interaction terms ube and ubB;C. The exact
values of the cells of the design matrix, the z;;, depend on the restrictions

which are imposed to identify the parameters. Suppose, for instance, that



column j refers to the one-variable term u and that the highest level of
A, A*| is used as the (arbitrary) reference category. In effect coding,
the element of the design matrix corresponding to the ith cell, z;;, will
equal 1 if A = a, -1 if A = A*, and otherwise 0. On the other hand, in
dummy coding, z;; would be 1 if A = a, and otherwise 0. The columns of
the design matrix referring to the two-variable interaction terms can be
obtained by multiplying the columns for the one-variable terms for the
variables concerned (Evers and Namboodiri, 1977; Haberman, 1978).

The design matrix can also be used to specify all kinds of non-hier-
archical models. Actually, by means of the design matrix, three kinds
of linear restrictions can be imposed on the log-linear parameters: a pa-
rameter can be fixed to zero, a parameter can be specified to be equal
to another parameter, and a parameter can be specified to be in a fixed
ratio to another parameter.

The first kind of restriction, fizing a parameter to zero, can be ac-
complished by simply deleting the column of the design matrix referring
to the effect concerned. Note that, in contrast to hierarchical log-linear
models, parameters can be fixed to be equal to zero without the necessity
of deleting the higher-order effects containing the same indices.

Imposing equality restrictions among parameters is likewise very sim-
ple. Equality restrictions can be imposed by adding up the columns of
the design matrix which belong to the effects which are assumed to be
equal. Suppose, for instance, that we want to specify a model with a
symmetric association between the variables A and B, each having three
categories. This implies that

AB  _ AB
Ugh = Upg -

When using effect coding, the design matrix for the unrestricted effect
u’tP contains four columns, one for each of the parameters ufi?, ufi?,
ud?, usP. In terms of these four parameters, the symmetric associa-
tion between A and B implies that u{}? is assumed to be equal to us;®.
This can be accomplished by summing the columns of the design matrix

referring to these two effects.’

Log-linear models with symmetric interaction terms may be used for various pur-
poses. In longitudinal research, they may be applied to test the assumption of marginal
homogeneity (Agresti, 1990:387-388; Hagenaars, 1990:156-162). Other application of
log-linear models with symmetric association parameters are Rasch models for dichoto-



As already mentioned above, parameters can also be restricted to be
in a fized ratio to each other. This is especially useful when the variables
concerned can be assumed to be measured on a interval level scale, with
known scores for the different categories. Suppose, for instance, that we
want to restrict the one-variable effect of variable A to be linear. Assume
that the categories scores of A, denoted by a, are equidistant, that is,
that they take values 1, 2, and 3. Retaining the effect coding scheme, a
linear effect of A is obtained by

Here, a denotes the mean of the category scores of A, which in this case is
2. Moreover, u” denotes the single parameter describing the one-variable
term for A. Tt can be seen that the distance between the u2 parameters
of adjacent categories of A is u. In terms of the design matrix, such
a specification implies that instead of including A* — 1 columns for the
one-variable term for A, one column with scores (a—a) has to be included.

These kinds of linear constraints can also be imposed on the bivariate
interaction parameters of a log-linear model. The best known examples
are linear-by-linear interaction terms (Haberman, 1979: Chapter 6) and
row- or column-effect models (Goodman, 1979, 1984; Clogg, 1982; Clogg
and Shihadeh, 1994). When specifying a linear-by-linear interaction term,
it is assumed that the scores of the categories of both variables are known.
Assuming equidistant scores for the categories of the variables A and B
and retaining the effect coding scheme, the linear-by-linear interaction
between A and B is given by

ulf = (a—a)(b—but?.

Using this specification, which is sometimes also called uniform associa-
tion, the (partial) association between A and B is described by a single
parameter instead of using (A* — 1)(B* — 1) independent uAP param-
eters. As a result, the design matrix contains only one column for the
interaction between A and B consisting of the scores (a — a)(b — b).

A row association structure is obtained by assuming the column vari-
able to be linear. When A is the row variable, a row association is defined

mous and polytomous items (Agresti, 1993) and for repeated categorical measurements
(Conaway, 1989).



as

uB = (b—bull.
Note that for every value of A, there is a u2? parameter. Actually, there
are (A* — 1) independent row parameters. Therefore, the design matrix
will contain (A* — 1) columns which are based on the scores (b — b).
The column association model is, in fact, identical to the row association
model, only the roles of the column and row variable change.

2.5.2 Estimation

Finding maximum likelihood estimates for the parameters of non-hier-
archical log-linear models is a bit more complicated than for the hierar-
chical log-linear model because the sufficient statistics are no longer equal
to particular observed marginals. For GLMs, ML estimates for the model
parameters may be obtained with Fisher’s scoring algorithm (McCullagh
and Nelder, 1983:31-34, 1989). If, as in the application used here, a
canonical link is used, the scoring algorithm is equivalent to the Newton-
Raphson algorithm (Agresti, 1990:114). The Newton-Raphson algorithm
for obtaining maximum likelihood estimates for the parameters of the
general log-linear model given in Equation 2.11 is explained in Appendix
C.1.

The Newton-Raphson algorithm, which is implemented in, among oth-
ers, the GLIM program and Haberman’s FREQ program, has two strong
points: it converges in a few iterations and it supplies standard deviations
of the parameters as a by-product. However, when a model contains many
parameters, the necessary computation and inversion of the Hessian ma-
trix, the matrix of second-order derivatives to all parameters, is very
time consuming. Another weak point of the Newton-Raphson algorithm
is that it may become unstable when some estimated expected cell counts
come in the neighborhood of zero as a result of the fact that a particular
log-linear parameter goes to minus infinity.

An alternative to the Newton-Raphson algorithm is the uni-dimen-
stonal Newton algorithm. 1t differs from the multi-dimensional Newton
algorithm in that it adjusts only one parameter at a time instead of ad-
justing them all simultaneously. In that sense, it resembles IPF. Instead
of using the complete Hessian matrix, the uni-dimensional Newton algo-



rithm uses only the diagonal element belonging to the parameter to be
updated (Andersen, 1990; Jensen, Johansen and Lauritzen, 1991).

Goodman (1979) presented a slightly different version of the uni-
dimensional Newton algorithm, which he used to estimate the uniform
association models and the row and column association models discussed
above (see also Clogg 1982). Goodman’s algorithm, which is discussed in
more detail in Appendix D.1, is also implemented in the {EM program
(Vermunt, 1993). There it is used to estimate any log-linear model of the
general form of Equation 2.11. Experience with the (EM program shows
that Goodman’s algorithm is very stable, even when ‘bad’ starting values
are used, such as starting values of zero for all # parameters.

Generally, the uni-dimensional Newton algorithm needs more itera-
tions to converge than the Newton-Raphson algorithm. But the difference
in number of iterations depends greatly on the magnitude of the corre-
lations among the parameters because that is the information which is
disregarded by the uni-dimensional Newton algorithm. Experience with
{EM shows that when the parameters are not too highly correlated, ap-
proximately two or three times as many iterations are needed by the
uni-dimensional Newton algorithm. But, when the correlations within
a particular set of parameters are high, many more iterations may be
needed. Because the uni-dimensional Newton algorithm does not require
computation and inversion of the complete Hessian matrix, each iteration
costs very little computer time, even with many parameters.

In Appendix D.1, it is demonstrated that IPF is a special case of
Goodman’s version of the uni-dimensional Newton algorithm. Good-
man’s uni-dimensional Newton algorithm can be seen as a generalization
of the IPF algorithm discussed in the context of hierarchical log-linear
models. There is also another generalization of IPF, namely, the well
known generalized iterative scaling algorithm developed by Darroch and
Ratcliff (1972). However, the uni-dimensional Newton algorithm is much
more flexible in that it does not force the values of the design matrix
to be greater than or equal to zero. Moreover, for most problems, the
uni-dimensional Newton algorithm converges in far fewer iterations than
the generalized iterative scaling algorithm (Goodman, 1979).



2.6 Log-rate models or log-linear models with a
weight vector

The general log-linear model discussed in the previous section can be
extended to include an additional component, viz., a weight for each m;
denoted by z; (Haberman, 1978:43-61; Laird and Olivier, 1981). These
weights can be used to specify log-rate models, to perform a weighted
analysis, to fix log-linear parameters to a particular value, and to analyze
incomplete tables.

The log-linear model with a weight vector is given by

m
oe (™) = Yo

Zi F
which can also written as

logm; = logz; + Zﬁjmij ,
J

where the z; are fixed a priori. Sometimes the vector with elements log z;
is also called the offset matrix.

The specification of a z; for every cell of the contingency table can
be used for many different purposes. One possible use of a weight vector
is for specifying Poisson regression models for the number of events m;
in which one takes into account the population sizes or the length of
the observation period. This leads to what is called a log-rate model, a
model for rates instead of frequency counts (Haberman, 1978; Willekens
and Shah, 1983; Clogg and Eliason, 1987). A rate is a count divided by
some quantity, generally the size of the population exposed to some risk
(Fleiss, 1981). As will be demonstrated in Chapter 4, log-rate models are
equivalent to piecewise exponential survival models (Holford, 1976, 1980;
Laird and Olivier, 1981).

The weight vector can also be used to correct for the sample design
or for selection resulting from nonresponse (Clogg and Eliason, 1987,
Agresti, 1990:198). In that case, the z; must be set equal to the inverse of
the sampling weights. The offset matrix may also be used to incorporate
fized effects in a log-linear model. This can be accomplished by adding the
values of the 8 parameters which attain fixed values to the corresponding
log z;’s. Lastly, the vector with weights may be used to analyze tables



with structural zeros, sometimes also called incomplete tables (Fienberg,
1972; Haberman, 1979: Chapter 7). This can be accomplished by setting
the z;’s for the cells which are structurally zero equal to zero.

Estimation Log-linear models with a weight vector can be estimated
with the same estimation procedures used for the other log-linear models
discussed so far. The GLIM program and Haberman’s FREQ program,
which are both based on the Newton-Raphson algorithm, allow the user
to specify an offset matrix, or a weight vector. When using the IPF
algorithm or the uni-dimensional Newton algorithm, the only necessary
modification is that z; must be used as the starting value for the esti-
mated expected frequencies instead of starting with all ml(»o) equal to one.
It should be noted that when using IPF, the log-linear parameters can
no longer be calculated by means of the estimated expected frequencies,
but rather they must be calculated by means of m;/z;. However, when
particular z; are equal to zero, an alternative procedure implemented in,
for instance, the LOGLIN program (Olivier and Neff, 1976) and the /EM
program (Vermunt, 1993) has to be used. This procedure which is based
on using cumulated multipliers rather than estimated expected cell fre-
quencies is discussed in Appendix A.2.

2.7 Models with log-multiplicative effects

Goodman’s row-column associations II The log-linear model is one
of the GLMs, that is, it is a linear model for the logs of the cell counts in
a frequency table. However, extensions of the standard log-linear model
have been proposed which imply the inclusion of non-linear terms, the
best known example being the log-multiplicative row-column association
models, also denoted as RC association models type II, developed by
Goodman (1979, 1984) and Clogg (1982) (see also Clogg and Shihadeh,
1994). These row-column association models differ from the association
models discussed in section 2.5 in that the row and column scores are
not a priori fixed, but are treated as unknown parameters which have
to be estimated as well. More precisely, a linear-by-linear interaction
is assumed between two variables, given the unknown column and row
scores.

Suppose we have a model for a three-way frequency table ABC' con-



taining log-multiplicative terms for the relationships between A and B
and B and C. This gives the following log-multiplicative model:

log mape = u +uy +up +ul +pg ¢ PP+ p"ule . (2.12)

The ¢ parameters describe the strength of the association between the
variables concerned. The p’s are the unknown scores for the categories
of the variables concerned. As in standard log-linear models, identifying
restrictions have to be imposed on the parameters u. One possible set
of identifying restrictions on the log-multiplicative parameters which was
also used by Goodman (1979) is:

St = m = 3w = e =0
S (") = 2 ") = () = X () = 1.

This gives row and column scores with a mean of zero and a sum of
squares of one. More recently, alternative identifying restrictions have
been proposed in which the p’s are weighted, for instance, by the observed
margins (Becker and Clogg, 1989; Goodman, 1991).

On the basis of the model described in Equation 2.12, both more
restricted models and less restricted models can be obtained. One possible
restriction is to assume the row and column scores within a particular
partial association to be equal, for instance, u2? equal u;;‘B for all a equal
to b (Goodman, 1979). Of course, this presupposes that the number of
rows equals the number of columns. Such a restriction is often used in the
analysis of mobility tables (Luijkx, 1994). It is also possible to assume
that the scores for a particular variable are equal for different partial
associations (Clogg, 1982), for example, ui'? = uPC. Less restricted
models may allow for different p and/or ¢ parameters within the levels
of some other variable (Clogg, 1982), for example, different values of
pAB ug‘B , or ¢AP within levels of C. To test whether the strength
of the association between the variables father’s occupation and son’s
occupation changes linearly with time, Luijkx (1994) specified models in
which the ¢ parameters are a linear function of time (see also Wong,
1995).

A general class of log-multiplicative effects As mentioned above,
the RC association models assume a linear-by-linear interaction in which



the row and column scores are unknown. Xie (1992) demonstrated that
the basic principle behind Goodman’s RC association models, i.e., linearly
restricting log-linear parameters with unknown scores for the linear terms,
can be applied to any kind of log-linear parameter. He proposed a general
class of log-multiplicative models in which higher-order interaction terms
can be specified in a parsimonious way.” An example of such a model is

logmape = u+ug +uy’ +ug +ug’o7" +upl +ugC

This model contains, apart from the one and two-variable interaction
parameters for A, B, and C, a three-variable interaction term defined
by the multiplicative factor quB . As can be seen, this three-variable
interaction term has a very specific form. Actually, the interaction term
ug‘bB is assumed to be equal among levels of C', except for a multiplicative
scaling factor. In other words, the structure of the partial association AB
is equal among levels of C, but the strength of the partial association AB
differs among levels of C'. This leads, of course, to a very parsimonious
specification of higher-order interaction terms. In this case, only C* — 1
instead of (A* — 1)(B* — 1)(C* — 1) additional parameters are used for
the three-variable interaction term.

For the sake of simplicity, the interaction term ug‘bB was not restricted.
However, using Xie’s approach, it is possible to restrict ube as well.
Xie (1992) gave examples of a symmetric association, a linear-by-linear
association, and different kinds of row and column associations. In its
most general form, the log-multiplicative model proposed by Xie can be
written as

logm; = YD BiTij, | PkTik

k| Jk
where k is the index for the multiplicative terms and j is the index for
an effect belonging to the kth multiplicative term. Of course, by setting

"Another type of generalization of the log-multiplicative models discussed above
involves describing the (partial) association between two categorical variables by means
of several sets of row and column scores (Goodman, 1986; Becker, 1989; Becker and
Clogg, 1989; Clogg and Shihadeh, 1994: Chapter 5). These models are called RC(M)
models, where the M refers to the dimensionality of the model, that is, to the number
of sets of row and column scores that is used. RC(M) modeling is strongly related to
correspondence analysis (Goodman, 1986, 1991; Gilula and Haberman, 1988; Van der
Heijden, De Falguerolles, and De Leeuw, 1989).



¢ equal to one and also all z;; equal to one, one can specify standard
log-linear terms.

Estimation Both the log-multiplicative association models proposed
by Goodman (1979) and Clogg (1982) and the log-multiplicative mod-
els proposed by Xie can be estimated by means of the lEM program
(Vermunt, 1993), in which the version of the uni-dimensional Newton al-
gorithm proposed by Goodman (1979) for estimating log-multiplicative
models is implemented (see Appendix D.2). As explained in section 2.5,
in this procedure, only one parameter is adjusted at a time, treating the
other parameters as fixed.

Of course, log-multiplicative models can also be estimated by means
of the Newton-Raphson algorithm. In that case, the complete matrix
of second partial derivatives has to be computed and inverted every it-
eration. However, because of the strong dependencies among the pa-
rameters appearing in the same interaction term, the Newton-Raphson
algorithm may have difficulties converging. This is a well known phe-
nomenon when applying Newton-Raphson to solve non-linear equations.
Recently, Haberman (1995) proposed a stabilized Newton-Raphson algo-
rithm for obtaining maximum likelihood estimates in association models
which overcomes these convergence problems.

It must be noted that, in contrast to standard log-linear models, the
likelihood function for log-multiplicative models often contains local max-
ima. It is therefore advisable to estimate each model using different sets
of starting values. When different sets of starting values yield the same
parameter estimates, one can be more certain that the global maximum
likelihood solution has been found.

2.8 Logit models and multinomial response
models

In the log-linear models discussed so far, the relationships between the
categorical variables are modelled without making a priori assumptions
about their ‘causal’ ordering: no distinction is made between dependent
and independent variables. However, one is often interested in predict-
ing the value of a categorical response variable by means of explanatory
variables. The logit model is such a ‘regression analytic’ model for a



categorical dependent variable. In the standard logit model, a binary
dependent variable is related to a set of categorical regressor variables
(Goodman, 1972). When the response variable has more than 2 cat-
egories, the model is called a multinomial logit model or multinomial
response model (Haberman, 1979: Chapter 6; Agresti, 1990: Chapter 9).

Suppose we have a response variable denoted by C and two categorical
explanatory variables denoted by A and B. Moreover, assume that both A
and B influence C, but that their effect is equal within levels of the other
variable. In other words, it is assumed that there is no interaction between
A and B with respect to their effect on C'. This gives the following logistic
model for the conditional probability of C given A and B, m¢q:

exp (u? + ufcc + uﬁc)

2eexp (uf +upd +ugC)

(2.13)

Te|ab

When the response variable C' is dichotomous, the logit can also be writ-
ten as

log T1|ab — log T1|ab
1- T1|ab T2|ab
C C AC AC) + ( BC BC)

= (u] —uy) + (ug” — ugy Uy — Upg
= w—i—wf%—wa”.

It should be noted that the logistic form of the model guarantees that
the probabilities remain in the admissible interval between 0 and 1. Al-
ternative transformations of 7y, which also fulfill this requisite lead to
the probit model and the complementary log-log model (McCullagh and
Nelder, 1983:75-77, 1989; Willekens, 1994:25-32).8

The logit model written as a log-linear model It has been shown
that the logit model given in Equation 2.13 is equivalent to a log-linear
model which includes the same u terms as the logit model concerned
but also an effect that fixes the marginal distribution of the independent
variables (Goodman, 1972, Haberman, 1978, Fienberg, 1980, Agresti,

8In the probit model, the conditional probabilities are transformed using the cumula-
tive normal distribution, while in the complementary log-log model, the transformation
of 714, would be log(—log(1 — my43))-



1990:152-153). More precisely, it can be shown that the likelihood equa-
tions based on independent multinomial sampling are equivalent to the
likelihood equations based on a Poisson model, given that condition

Zmabc = Znabc (214)
c c

is fulfilled. The proof that the product-multinomial likelihood is equiva-
lent to the Poisson likelihood can be found in Appendix E.1.

Including the same parameters as those in the logit model given in
Equation 2.13 and ensuring that the condition given in Equation 2.14 is
fulfilled leads to the following log-linear model

AB C AC BC
log Mape = Qgp T U + Uy + Upe s (215)
where
ozjbe = u-l-ug1 +ubB -I—ug‘bB.

In other words, the logit model of Equation 2.13 is equivalent to log-linear
model {AB, AC, BC'} for the frequency table with observed counts ngp.
Note that when using this formulation of a logit model, it does not matter
whether the response variables is dichotomous or not. If the response
variables are polytomous, a log-linear or logit model of the form given
in Equation 2.15 is sometimes also called a multinomial response model
(Haberman, 1979: Chapter 6; Agresti, 1990: Chapter 7). According to
Haberman (1979), in its most general form, the multinomial response
model may be written as

logmig, = ak+ Y BT, (2.16)
J

where k is used as the index for the joint distribution of the independent
variables and 4 as an index for the response variable.

Estimation The parameters of the multinomial response model can
be estimated using the same algorithms used for the log-linear mod-
els discussed in the previous sections, i.e., IPF, Newton-Raphson, and
uni-dimensional Newton. However, Haberman (1979) proposed a more
efficient version of the Newton-Raphson algorithm for estimating multi-
nomial response models. This is necessary because the number of ay



can become very large. In fact, Haberman’s procedure uses a Newton-
Raphson cycle to update the 3; parameters, followed by an IPF-like cycle
to update the oy parameters. The Newton-Raphson algorithm for multi-
nomial response models which is implemented in, among others, Haber-
man’s FREQ program and in SPSS can be found in Appendix C.2.

Logistic regression Up to now, the independent variables used in the
logit model were assumed to be categorical. However, it is not a prob-
lem to generalize the logit model to also allow for continuous regres-
sors. A model of the form given in Equation 2.13 containing continu-
ous regressors gives the well known logistic regression model. But also
Haberman’s multinomial response model given in Equation 2.16 is equiva-
lent to a multinomial logistic regression model (McFadden, 1974; Agresti,
1990:313), i.e.,

exp (Zj ﬁjflfz'jk)
2. €xp (Zj 5j$ijlc) '

(2.17)

Tk

The index k£ now denotes a particular observation instead of a cell in
the marginal distribution of the independent variables. So, a particular
z;j contains the value of observation & on the independent variable j
for response category i. Note that when k is an individual observation,
the expected frequency m;, appearing in Equation 2.16 is actually the
probability that observation k gives response i, where the a; parameters
guarantee that the estimated response probabilities add up to one for
every observation.

The equivalence between logistic regression analysis and logit analysis
implies that programs for log-linear analysis which allow specification of
a design matrix can also be used to estimate logistic regression models.
It must, however, be noted that in that case the statistics L? and X?
are not appropriate for testing fit of models. But, conditional likelihood
ratio tests to compare models can still be performed (Haberman, 1974;
Agresti, 1990).
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Figure 2.1: Modified path model

2.9 Causal log-linear models

2.9.1 Goodman’s modified path models

In the previous section, a ‘regression analytic’ extension of log-linear anal-
ysis, i.e., the logit model, was discussed. This section presents a ‘path-
analytic’ extension of the logit model which was proposed by Goodman
(1973). He proposed a log-linear model which takes a priori information
on the causal ordering of the variables into account. The model, which he
called a modified path analysis approach, consists of specifying a series
of logit models for different marginal tables. As will be demonstrated be-
low, this model has some similarities with chain independence graphical
models for categorical data (Wermuth and Lauritzen, 1983, 1990).

Specifying a causal order Suppose we want to investigate the causal
relationships between six categorical variables denoted by A, B, C, D, E,
and F'. Figure 2.1 shows the assumed causal ordering of these variables,
and the assumed relationships between these variables, where a pointed
arrow indicates that variables are directly related to each other, and a
‘knot’ that there is a higher order interaction. The variables A, B, and
C are exogenous variables. This means that neither their mutual causal
order nor their mutual relationships are specified. The other variables are
endogenous variables, where D is assumed to be posterior to £, and F is



assumed to be posterior to E. From Figure 2.1, it can be seen that D is
assumed to depend on A and on the interaction of B and C'. Moreover,
FE is assumed to depend on A, B, and D, and F on B, C, D, and E.

Let mgpeqes denote the probability that A =a, B =0, C' =¢, D = d,
E =e,and F = f. the information on the causal ordering of the variables
is used to decompose this joint probability into a product of marginal
and conditional probabilities (Goodman, 1973, Wermuth and Lauritzen,
1983). In this case, Tabedef Can also be written as

Tabedef = Tabe Td|abe Te|abed T flabedef - (218)

This is a straightforward way to indicate that the value on a particular
variable can only depend on the preceding variables and not on the pos-
terior ones. For instance, F is assumed to depend only on the preceding
variables A, B, C, and D, but not on the posterior variable F'. Therefore,
the probability that £ = e depends only on the values of A, B, C, and
D, and not on the value of F. Note that this representation can only be
used to specify recursive models. Recently, Mare and Winship (1991) pre-
sented a possible approach to non-recursive models for categorical data
which requires the use of the latent variables techniques discussed in the
next chapter.

Decomposing the joint probability m,4c4e; into a set of marginal and
conditional probabilities is only the first step in describing the causal
relationships between the variables under study. Generally, the aim of
an analysis is to reduce the number of parameters in some way, while
the right-hand side of Equation (2.18) contains as many unknown (con-
ditional) probabilities as observed cell frequencies. In other words, the
model given in Equation 2.18 is a saturated model in which it is assumed
that a particular dependent variable depends on all its posterior variables,
including all the higher-order interaction terms. Generally, one is inter-
ested in more parsimonious specifications of the conditional probabilities
in which it is possible to specify which variables influence each other and
which do not.

Simple restrictions on probabilities The simplest way to specify
more parsimonious models is to restrict directly the conditional proba-
bilities appearing in Equation 2.18. Suppose that, as depicted in Figure
2.1, E depends on A, B, and D, but not on C'. Because in that case



Telabed = Telabds 10 Equation 2.18, m,|qpq can be replaced by m,jqpq. These
kinds of restrictions are also applied in, for instance, discrete-time Markov
models (Bishop, Fienberg and Holland, 1975: Chapter 7; Van de Pol and
Langeheine, 1990). On the basis of the relationships depicted in Figure
2.1, a more restricted version of the general Equation 2.18 would be

Tabedef =  Tabc Td|abe Te|abd T f|bede - (2.19)

However, as is shown below, this model is still not completely in agree-
ment with Figure 2.1.

The above-mentioned method of restricting the general model given
in Equation 2.18 is similar to the formulation of so-called chain indepen-
dence graphical models or block recursive graphical models (Whittaker,
1990: section 3.6; Wermuth and Lauritzen, 1983, 1990). In a chain inde-
pendence graph, the variables are grouped in blocks which can be com-
pletely ordered. The relationships between variables within one block
are assumed to be symmetric, while the relationships between variables
belonging to different blocks are assumed to be asymmetric. This is de-
picted graphically by undirected and direct edges (arrows), respectively.
Like any other graphical model, a chain independence graphical model
must be completely formulated in terms of conditional independence.

The restrictions which are imposed on conditional probabilities in
Equation 2.19 are in agreement with the conditional independence rules
of chain independence graphical models. For instance, E is assumed to
be independent of C' given A, B, and D, whereas the effects of A, B, and
D on FE are not restricted.

Specifying more restricted models by means of the procedure applied
in Equation 2.19 has, however, one important disadvantage. The depen-
dent variable must always be related to the joint independent variable.
The variable F, for instance, depends on the joint variable ABD, that
is, the variable which is obtained by combining the levels of A of B and
D. Therefore, for every combination of A, B, and D, a separate param-
eter is included to describe the probability that £ = e. Thus, when a
particular variable is thought to influence the dependent variable con-
cerned, all higher-order interactions with the other independent variables
are automatically included in the model as well.

Logit parameterization Goodman’s modified path analysis approach
consists of using a log-linear or logit parameterization of the marginal and



conditional probabilities appearing in Equation 2.18 rather than using
the simple restrictions described above (Goodman, 1973). Since in these
logit models it possible to exclude certain higher-order interactions, such
an approach leads to more parsimonious causal models for categorical
data. While only simple hierarchical log-linear models will be here used,
the results presented apply to other kinds of log-linear models as well,
including the log-multiplicative models discussed in section 2.7.

A system of logit models consistent with the path model depicted
in Figure 2.1 leads to the following parameterization of the conditional
probabilities appearing in Equation 2.18:

exp (u,’l4 + ubB + ucc + ube + ufcc + uﬁc + uABC)

abc
T Taeexp (ud +uff +uf +ulf +ull T ufC +ulfo)

exp (u(]iJ + ude + uﬁD + ung + ubB;gD)

Mdjabe = Sgexp (uf +ultP +uBP + P + uBCP)
exp (ul + u +uf? +ubk)

Melabed = g exp (uf +ugf +uflP +ulF)’
exp (u? + uffF + uCCF + uch + ueEfF)

T flabede —

Zf exp (u? —i—uffF —l—ugF —i—uch —i—ueEfF) '

It can be seen that the model for the marginal distribution of the exoge-
nous variables A, B, and C is a saturated model since it contains all the
interaction terms among A, B, and C. It would also have been possible
to specify a non-saturated model for relationships between the exogenous
variables. In the next three equations, D, E, and F' appear as dependent
variables, respectively. Variable D depends on A, B, and C, and there is
a three-variable interaction between B, C', and D. Moreover, E£ depends
on A, B, and D, but there are no higher-order interactions between F
and the independent variables. And finally, F' depends on B, C, D, and
E. Tt is clear that this recursive system of logit equations contains far
fewer parameters than the restricted model given in Equation 2.19.
Since specifying a logit model for conditional probabilities is equiva-
lent to specifying a log-linear model for a frequency table in which the
marginal distribution of the independent variables is treated as fixed, the
logit equations given above can also be written as log-linear models. For



instance, the logit model for m, 44 18 equivalent to the log-linear logit
model {ABCD, AE, BE, DE} for (marginal) frequency table ABCDE,
or

ABCD E AE BE DE
log Mabede = Qppeg~ + Up +Upe + Upe + Uge s

where mgpeqe denotes an expected frequency in marginal table ABCDE.
Moreover, afbljf D denotes the effect which fixes the marginal distribution
of the dependent variables.

Thus, specifying a causal log-linear model for a set of categorical vari-
ables can be simply accomplished by specifying separate log-linear models
for different marginal tables or subtables. The marginal tables are formed
by the variables used in the previous marginal table and the variable which
appears as the dependent variable. In this case, log-linear or logit models
have to be specified for tables ABC, ABCD, ABCDE, and ABCDEF.
Goodman (1973) showed how to specify separate log-linear models for dif-
ferent marginal tables (see also Hagenaars, 1990:75-82). He subsequently
showed how to obtain the overall expected frequencies with an equation
similar to Equation 2.18. Note that the probabilities in Equation 2.18 can
easily be obtained by means of the expected frequencies. For instance,

Mabcde

P e 2.20
Ze Mabede ( )

Te|abed

A remark has to be made with respect to marginal tables for which
the logit models or the equivalent log-linear models have to be speci-
fied given the assumed causal order among the variables. Suppose that,
contrary to what is depicted in Figure 2.1, the variables F and F' are
assumed to be independent of one another given a person’s scores on the
posterior variables A, B, C, and D. In other words, it is assumed that
there is no direct effect of £ on F'. In that case, the modified path model
described above may also be specified in a slightly different manner, that
is, it is possible to combine the logit models for D and E into a single
modified path step with two dependent variables. This follows from the
collapsibility theorem (Bishop, Fienberg, and Holland, 1975:47, Agresti,
1990:151-152) which states that if two variables are assumed to be condi-
tionally independent, the sizes of their relationships with the remaining
variables may be estimated in the table in which the other conditionally
independent variable is included or not. Thus, if two variables are con-
ditionally independent of one another, their relationships with the other



variables may be estimated either in the same table or in separate tables.
The possibility of specifying the same model in alternative ways as a re-
sult of collapsibility is a feature that will be encountered several times in
the next chapter which presents models with latent variables.

Combining the two kinds of restrictions Above, two different ways
of restricting the conditional probabilities of a modified path model were
presented, viz., assuming that a variable does not depend on one or more
of the preceding variables and assuming that particular higher-order in-
teraction terms are zero. But actually, it is simpler and computationally
more efficient to combine the two ways of restricting the conditional prob-
abilities because it often reduces the dimensionality of the tables one has
to work with. More precisely, the model can be restricted as in Equation
2.19, and then the conditional probabilities appearing in this equation
can be restricted via a logit parameterization. This leads to a (small)
modification of the procedure proposed by Goodman.

Let us look at the model for dependent variable E. Because E does not
depend on C, T, gpeq can be replaced by mejqpq. Therefore, the log-linear
restrictions which were imposed on |44 can now be imposed directly on
Te|abes OF equivalently, the log-linear model that was specified for marginal
table ABCDE can now be specified for marginal table ABDE. It should
be noted that this result also follows from the collapsibility theorem. Since
C and F are conditionally independent, the effects of A, B, and D on E
may be estimated after collapsing the table over C. Specifying log-linear
model {ABD, AE, BE, DE} for marginal table ABDE gives

logmabde = agpg +ul +uge +up” +ul,

where mgp4. denotes an expected frequency in the marginal table ABDE.
Thus, by imposing restrictions in two steps, the parameters can be esti-
mated in the marginal table which includes only the independent vari-
ables which are really used. This two-step procedure may not only reduce
the size of a problem, but it also has another important advantage: It
prevents fitted zeros when the observed table contains zeros in the fixed
margin ABCD, but not in the margin ABD.

Continuous exogenous variables So far, all variables included in
the modified path model were assumed to be categorical, which is in



agreement with the way Goodman presented his modified path model.
However, it is also possible to include continuous exogenous variables in
modified path models. In fact, this extension is analogous to what was
discussed in the context of the logit model. When the variables A, B,
and C are continuous rather than categorical, and when, as in Figure 2.1,
D, E, and F are mutually ordered endogenous variables, a modified path
model is obtained:

Tdef|zaginTejnr e —  Tdlzajx Te|wejrd Tf|wsjnde s

where x4k, Tejr, and zp;p denote the observed value of person k on
exogenous variable j for D = d, F = e, and F' = f, respectively. In
this case, the marginal distribution of the exogenous variables cannot be
restricted by means of a log-linear model. The conditional probabilities
can, of course, be restricted via a general logit model or logistic regression
model of the form given in Equation 2.17.

2.9.2 Estimation and testing

Goodman (1973) demonstrated that the maximum likelihood estimates
for the log-linear parameters and the expected frequencies in the vari-
ous submodels of a modified path model can be estimated separately for
each submodel. This results from the fact that when the parameters of
the various submodels are distinct, the likelihood can be factorized into
submodel specific parts which may be maximized separately:

logl = Z Nabede f log ('/Tabcdef) )
abede f

= Z Nabet++ 108 (Tape) + Z Nabed++ 108 (7r0|abc)
abc abed

+ Z Nabede+ 108 (7re|abcd) + Z Nabede f log (Wf\abcde) .

abcde abcde

In Appendix E.2 it is shown that the likelihood equation for a parameter
of a modified path model is identical to the likelihood equation for a
parameter of a logit model which has the same structure as the modified
path step concerned.

The factorization of the likelihood makes it possible to estimate the
parameters of a modified path model by means of standard programs for



log-linear or logit analysis. The /EM program (Vermunt, 1993) has extra
facilities for defining submodels without actually having to ‘input’ them.
In {EM, the model specification consists of defining the subtables and
the subtable-specific log-linear models. The log-linear models can be of
the form of the general multinomial response model given in Equation
2.16. In addition, log-multiplicative interaction terms can be used in the
modified path model. So, in fact, any kind of log-linear model can be
specified for each subtable.

Restrictions across modified path steps As previously mentioned,
the parameters of the different submodels can be estimated separately
as long as they are distinct, but, when equality restrictions are imposed
on parameters coming from different submodels, the parameters of the
modified path model must be estimated simultaneously. In lEM, two
types of equality restrictions can be imposed on parameters appearing
in different modified path steps: Log-linear or logit parameters can be
assumed to be equal, and (conditional) probabilities can be assumed to
be equal. As demonstrated in Appendix E.3, the likelihood equation for
a log-linear parameter appearing in different submodels is simply the sum
of the contributions of the submodels concerned.

Equality restrictions on the (conditional) probabilities can be imposed
by means of a rather simple procedure proposed by Goodman in the con-
text of latent class analysis (Goodman, 1974b). Van de Pol and Lange-
heine (1990) demonstrated that Goodman’s procedure can also be applied
to restrict any type of conditional probability appearing in (mixed and
latent) Markov models. They implemented the algorithm in their PAN-
MARK program (Van de Pol, Langeheine, and De Jong, 1989). In {EM,
a generalized version of Goodman’s algorithm is implemented to make
it possible to restrict conditional probabilities appearing in the same or
in different modified path steps to be equal. The procedure proposed by
Goodman, which is described in Appendix F, consists of replacing the
unrestricted estimated conditional probabilities assumed to be equal by
their weighted mean. However, this procedure has one drawback: It does
not guarantee that in all situations the sum of the probabilities equals
one. Recently, Mooijaart and Van der Heijden (1992) demonstrated under
which conditions Goodman’s algorithm works properly, and, moreover,
they proposed a modification of Goodman’s procedure for situations in



which it does not work properly. Their modification consists of adding
Lagrange multipliers to the log-likelihood function to be maximized. Tt
must, nonetheless, be noted that Goodman’s algorithm works in most
common situations. Examples of situations in which Goodman’s algo-
rithm may not work are given in Appendix F.

Testing The factorization of the contribution of the submodels to the
log-likelihood function can also be used for testing. Goodman (1973)
proposed testing the models separately by means of the likelihood-ratio
chi-square statistic. The overall test for the complete model can be ob-
tained by adding up the L? values and the degrees of freedom of the
separate submodels. This is an important feature if the modified path
model is estimated with standard programs for log-linear analysis.

This testing procedure can, however, only be applied when the model
is specified in the way Goodman did, that is, when every subtable contains
all the variables of the previous subtable and when no restrictions are
imposed on the parameters across modified path steps. In other cases,
the L? for the complete model has to be computed by means of the
estimated probabilities 7gpcde.

2.9.3 Discrete-time Markov models

The modified path model is strongly related to the discrete-time Markov
model. Actually, the discrete-time Markov model, which can be used
for the analysis of multi-wave panel data, is a special case of the modi-
fied path model presented above (Vermunt, Langeheine, and Béckenholt,
1995). This can be demonstrated by means of an example. Suppose that
S; denotes the state occupied at time point [ and that s; denotes a cat-
egory of S;. For the sake of simplicity, it will be assumed that there are
observations for only four points in time, that is, 1 <[ < 4. In a first-
order Markov model, the state occupied at a L = [ is assumed to depend
only on the state occupied at L =1 — 1 (Anderson and Goodman, 1957;
Bishop, Fienberg and Holland, 1975:261-267; Markus, 1979), or, in terms
of our modified path model,

Ts1s083s4 =  Tsy Tsy|sy Tsg|sy Tsy|ss -

Especially in Markov models, it is important to be able to restrict the
parameters to be equal across modified path steps. The most common



set of restrictions,

Tsals1 = Tsglsa = Tsy|szs

gives rise to a stationary or time-homogeneous Markov model. These
equality restrictions can also be imposed indirectly by restricting the log-
linear parameters of different modified path steps to be equal, that is, by
parameterizing

S1-15
exp (ufl’ + us;_is,

Tsy|s = )
1lsi—1 S Si-151
Esl exp (uSt + Us;y s
and restricting
Sa Sz _ Sy
uSZ = u$3 = Us4 ,
515 S2S3 S35,
Us, sy = Usysy T Usgsy -

Equivalently, higher-order Markov chain models can be specified. The
only difference is that in such models, the value of S; depends not only
on S;_1, but also on the state occupied on earlier occasions (Bishop,
Fienberg and Holland, 1975:267-270; Van de Pol and Langeheine, 1990).

Covariates In most cases, Markov models are used only for descriptive
purposes. However, with the modified path analysis approach, it is easy
to incorporate explanatory variables into a Markov model. Suppose, for
instance, that one has three explanatory variables denoted by A, B, and
C. Given a first-order Markov chain, the following modified path model
is obtained:

Tabcsysasgsa  —  Tabe Tsy|abe Tsalabest Ts3|abesa Tsa|abess -

This is also the way covariates can be incorporated into a Markov model
using the PANMARK program (Van der Pol, Langeheine and De Jong,
1989). However, as demonstrated above, when using a modified path
model, it is possible to use a logit parameterization for the conditional
probabilities appearing in the Markov model with exogenous variables.
Together with the possibility to restrict parameters across points in time,



this results in rather flexible and parsimonious regression models for the
states occupied at different points in time.?

Suppose that the variables A and B influence the state occupied at the
first point in time, but that there is no three-variable interaction between
A, B, and S;. Furthermore, suppose that B influences the value of .S
and that C influences the size of the association between S;_; and 5.
In other words, S;_1, B, and C have direct effects of on §;, and there
is a three-variable interaction between C, S; i, and S;. This yields the
following logit models for 7, |45 and 7y, |gpes,, TESPECtively:

S AS BS
exp (usll + ugs! + ubsll)

S 45, . _BS\’
Zsl €xp (Usll + ugs,” + Ups, )

BS Si—18 CS;_15
exp (uflz + ubsll + UCCL;}% + s, s+ Ucs s l)

S BS CS Si—15 CS—151\ "’
Zsl exp (Usll + ubsll + chl[ + Us;_js; T+ Ucs;_q1s

Tgy |abe

Ts;|abes)_

where 7, |45 may be replaced by 7 jqs and 7y 140cs,_, DY Tsjpes,_, - This
modified path model can be simplified by assuming the log-linear param-
eters for the transition probabilities to be time independent or, equiva-
lently, by assuming 7, s, , does not depend on [. As will be demon-
strated in section 4.8, parameterizing the discrete-time Markov model as
a modified path model yields a model which is equivalent to a specific
type of discrete-time event history model.

“Recently, Gilula and Haberman (1994) proposed a similar approach for analyzing
categorical panel data, which they called conditional log-linear models.






Chapter 3

Log-linear analysis with
latent variables and missing
data

In the discussion of the various types of log-linear models in the previous
chapter, it was implicitly assumed that the values of all variables used
in the analysis were observed for all subjects being studied. In social
research, however, it is often the case that some variables are completely
or partially unobserved. This chapter extends the log-linear models dis-
cussed in the previous chapter so that they can be applied even if there
are missing data.

Completely unobserved variables occur in latent structure models.
These are models which can be used to correct for measurement error
in observed variables (Bartholomew, 1987; Heinen, 1993). The categor-
ical variant of the latent structure models, which was first proposed by
Lazarsfeld (1950a, 1950b), is called latent class analysis. Latent struc-
ture models for data of different measurement levels have in common that
they are all based on the assumption of local independence. The manifest
variables which are used as indirect measures for the latent variable(s) are
assumed to be mutually independent given the score on the latent variable
concerned. In a latent class model, the existence of a categorical latent
variable is postulated, which accounts for the relationships between a set
of categorical manifest, or observed, variables.

The latent class model is a member of the family of finite mizture



models (Everitt and Hand, 1981; Titterington, Smith, and Makov, 1985).
In finite mixtures models, it is assumed that the population being studied
is composed of a number of subpopulations which are not observed. In
other words, the observed data is a mixture of the data of a finite number
of subgroups, but it is not observed which subgroup a particular person
belongs to. Furthermore, the parameters of the postulated model within
these subpopulations are assumed to differ in some respect. The latent
class model is a finite mixture model in which the observed variables are
assumed to be mutually independent within subpopulations and to have
different marginal distributions among subpopulations. Although only
applications in the field of log-linear modeling are presented here, it must
be noted that the finite mixture approach is applicable to any type of
statistical method.

Several important extensions of Lazarsfeld’s latent class model have
been proposed, such as models for more than one latent variable (Good-
man, 1974a, 1974b; Haberman, 1979:558-560), models with external or
explanatory variables (Goodman, 1974a, 1974b; Haberman, 1979:542-
544), models for multiple-group analysis (Clogg and Goodman, 1984,
1985, 1986), and models with direct effects among indicators (Hagenaars,
1988). The most extended model is, however, Hagenaars’s modified Lis-
rel model (Hagenaars, 1985, 1990, 1993), in which all of the other latent
class models are viewed as special cases. The modified Lisrel model is a
log-linear path model in which some of the variables are unobserved. It
resembles the well-known LISREL model for continuous data (Joreskog
and Sorbom, 1988) in that a measurement model for the latent variables
is specified simultaneously with a structural model for the relationships
among the latent variables and the manifest variables used as structural
variables (Vermunt, 1994, 1996).

Correcting for measurement error in observed variables is not, how-
ever, the only application of log-linear models with latent categorical
variables. Another well-known application of such finite mixture mod-
els is correction for unobserved heterogeneity (DeSarbo and Wedel, 1993).
The term unobserved heterogeneity refers to a ‘regression’ model in which
specific explanatory variables are not observed. By introducing an un-
observed regressor, an attempt can be made to eliminate or decrease the
bias caused by not observing important regressors given certain appropri-
ate assumptions. Formann (1992) presented a logit model with a latent
regressor which was assumed to be independent of the other explanatory



variables. He called the model a mixed logistic regression model. Also,
a mixed variant of the discrete-time Markov discussed in the previous
chapter has been proposed (Poulsen, 1982; Van de Pol and Langeheine,
1990). These 'mixed’ models are, likewise, special cases of the modified
Lisrel model (Vermunt, 1996).

Apart from measurement error and unobserved heterogeneity, one is
often confronted with another kind of missing data problem in social
research, the problem of partially observed variables. The term partially
observed or partially unobserved variable denotes that a variable is not
observed for all persons. In survey research, partially observed variables
are generally the result of item nonresponse. However, this kind of missing
data can also be caused by the data collection design itself: it could be
too expensive or impossible to gather all information for all persons.

Fuchs (1982) proposed a method which makes it possible to estimate
the parameters of a log-linear model using incomplete data. However, this
method is based on the assumption that the mechanism causing the miss-
ing data can be ignored when estimating the parameters of interest (Little
and Rubin, 1987). More recently, a variant of the log-linear path model
has been developed which makes it possible to simultaneously model the
mechanism causing the nonresponse and the relationships among the vari-
ables of interest (Fay, 1986, 1989; Baker and Laird, 1988; Vermunt, 1988,
1996). Using this approach, it is also possible to estimate parameters
within the context of nonignorable response mechanisms.

From a statistical point of view, partially unobserved variables can be
handled in the same fashion as completely unobserved covariates. In fact,
a partially observed variable is manifest for some individuals and latent
for others (Winship and Mare, 1989). Therefore, the same estimation
procedures can be used to estimate the parameters of log-linear models
with unobserved or with partially observed variables. As will be shown
in this chapter, there is no difficulty in dealing with both kinds of missing
data simultaneously (Hagenaars, 1985, 1990; Vermunt, 1988, 1994).

The remainder of this chapter consists of two sections, the first of
which focusses on log-linear models with latent variables. It deals with the
classical and log-linear latent class model, the most important extensions
of the standard latent class model, modified Lisrel models, and mixture
models for dealing with unobserved heterogeneity. Log-linear models with
variables subject to nonresponse are described in section 3.2. Attention
is given to the different kinds of response mechanisms and to Fuchs’s and



Fay’s methods for dealing with partially observed variables.

3.1 Latent variables

3.1.1 Latent class analysis

As many concepts in the social sciences are difficult or impossible to
measure directly, several directly observable variables, or indicators, are
often used as indirect measures of the concept to be measured. The values
of the indicators are assumed to be determined only by the unobservable
value of the underlying variable of interest and by measurement error.
In latent structure models, this principle is implemented statistically by
assuming probabilistic relationships between latent and manifest variables
and by the assumption of local independence. Local independence means
that the indicators are assumed to be independent of each other given a
particular value of the unobserved or latent variable; in other words, they
are only correlated because of their common cause.

Latent structure models can be classified according to the measure-
ment level of the latent variable(s) and the measurement level of the
manifest variables (Bartholomew, 1987; Heinen, 1993:3-10). In factor
analysis, continuous manifest variables are used as indicators of one or
more continuous latent variables. In latent trait models, a continuous
latent variable is assumed to underlie a set of categorical indicators. Fi-
nally, when both the manifest and the latent variables are categorical, a
latent class model is obtained. Note that a categorical variable does not
need to be a nominal variable; it can also be an ordinal or a discrete inter-
val variable. The latent class model was originally proposed by Lazarsfeld
(1950a, 1950b), while its practical applicability is to a large extent the
result of the work by Goodman (1974a, 1974b) and Haberman (1979:
Chapter 10). Although all variables are treated as nominal variables in
the unrestricted latent class model, restricted latent class models have
been proposed which make it possible to make a priori assumptions on
the order and the distances among the categories of the latent and man-
ifest variables (Rost, 1988; Croon, 1990; Formann, 1992; Heinen, 1992;
Vermunt and Georg 1995).

Unrestricted latent class model The latent class model can be pa-
rameterized in two different ways. It is possible to use either the classical
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Figure 3.1: Latent class model

parameterization in terms of (conditional) probabilities introduced by
Lazarsfeld (Lazarsfeld, 1950a, 1950b; Lazarsfeld and Henry, 1968: Chap-
ter 3), which is also used by Goodman (1974a, 1974b), or the log-linear
parameterization introduced mainly by Haberman (1979: Chapter 10).
Suppose there is, as depicted in Figure 3.1, a latent class model with one
latent variable W with index w and 4 indicators A, B, C, and D with
indices a, b, ¢, and d. Moreover, let W* denote the number of latent
classes. The basic equations of the latent class model are

W*
Tabed — Z Twabced (31)
w=1
in which
Twabed = TwTabedw — TwTalw Tolw Te|w Tdjw - (3.2)

Here, myabeq denotes the probability of being in cell (w,a, b, c,d) of the
joint distribution W ABCD. Furthermore, 7, is the probability of belong-
ing to latent class w and 7gpeqp 18 the probability of having a particular
observed respounse pattern given W = w. The other 7w parameters are
conditional response probabilities. For instance, m,),, is the probability of
being in category a of variable A, given that one belongs to latent class
w.

As can be seen from Equation 3.1, the latent class model assumes that
the population can be divided into W* exhaustive and mutually exclusive



classes. Therefore, the joint probability of the observed variables can be
obtained by summation over the latent dimension. The classical parame-
terization of the latent class model proposed by Lazarsfeld (1950a, 1950b)
is given in Equation 3.2. It can be seen that the observed variables A, B,
C, and D are postulated to be mutually independent given a particular
score on the latent variable W.

Note that Equation 3.2 is very similar to the modified path models
discussed in the previous chapter. Actually, it is a modified path model in
which one variable is unobserved. Because the latent class model is com-
pletely defined in terms of conditional independence, it is also a graphical
model (Wermuth and Lauritzen, 1990).

Haberman (1979: Chapter 10) demonstrated that the unrestricted
latent class model given in Equation 3.2 is formally identical to the hier-
archical log-linear model {WA, W B, WC, W D}, written as

log Muyabed = u-i—uwW -I-ugl +uf +u§ +udD +umA +uwaB +uwWCC
+ udeD ’ (3.3)

in which myeped = N Twaped- Equation 3.3 contains, in addition to the
overall mean and the one-variable terms, only the two-variable interaction
terms between the latent variable W and the manifest variables. As none
of the interactions between the manifest variables are included, it can be
seen that they are assumed to be conditionally independent of each other.

The relation between the parameters of the two different parameteri-
zations of the latent class model, that is, between the conditional proba-
bilities appearing in Equation 3.2 and the log-linear parameters appearing
in Equations 3.3, is (Haberman, 1979:551; Heinen 1993:13-22)

_ exp (u,‘l4 + uuvf;A) (3.4)
Tl T S exp (g + ull ) '

It should be noted that this is the same type of logit parameterization of
a conditional probability that is used in modified path models. Moreover,
since the indicators are assumed to independent of one another given W, it
does not matter whether the relationships between W and the indicators
are estimated by specifying a separate logit model for each indicator or
by specifying a log-linear model for the full table mqpeq- This follows
from the collapsibility theorem (see section 2.9).



Restricted latent class models If it is not necessary to impose fur-
ther restrictions on the parameters, the two formulations of the latent
class model are completely equivalent. However, if the model is restricted
in some way, the parameterization choice depends on the type of restric-
tions that have to be imposed. Because of the possibility of applying
a reparameterization, particular kinds of restrictions can be used under
both parameterizations though others are specific to one of the two pa-
rameterizations.

It should be noted that in writing the latent class model in terms
of conditional probabilities in combination with logit models for these
conditional probabilities, a combined parameterization is obtained which
is similar to the modified path model discussed in the previous chap-
ter. Actually, Formann’s linear logistic latent class model combines the
two parameterizations discussed above (Formann, 1982, 1992). Formann
specified the latent class model in terms of latent and conditional prob-
abilities, for which the probabilities are parameterized as in Equation
3.4. This type of formulation makes it possible to combine restrictions
on the probabilities with restrictions on the log-linear, or linear logistic,
parameters.

Restrictions which are typical of the classical latent class model are
fixed-value and equality restrictions on the latent and conditional re-
sponse probabilities (Goodman, 1974a, 1974b; Mooijaart and Van der
Heijden, 1992). On the other hand, in the log-linear latent class model,
it is common to impose linear restrictions on the log-linear parameters,
such as equal effects of the latent variable among indicators, linear-by-
linear interactions, and row and/or column effects. Besides these more
standard restrictions, there are many other types of linear and non-linear
restrictions which can be imposed on the probabilities. Croon (1990),
for instance, demonstrated the implementation of particular kinds of in-
equality restrictions on the conditional response probabilities leading to
an ordinal latent class model. Moreover, although not yet implemented in
the context of latent class analysis, the general model developed by Lang
and Agresti (1994) would make it possible to combine a large variety of
linear and log-linear restrictions on (sums of) probabilities in latent class
models.

Sometimes, it is possible to translate equality restrictions on prob-
abilities into equality restrictions on log-linear parameters. As can be
seen from Equation 3.4, for instance, equal conditional response prob-



abilities among indicators can also be obtained by specifying both the
one-variable terms for the indicators concerned and their two-variable in-
teraction terms with the latent variable as equal. Equal conditional prob-
abilities are, however, a rather restrictive assumption. Using the log-linear
parameterization, it is also possible to impose a weaker type of restriction
on the conditional response probabilities, that is, equal strength of asso-
ciation between the latent variable and the various indicators. This can
be accomplished by constraining the two-variable interactions appearing
in Equation 3.3 to be equal among indicators. Although there is no exact
correspondence, the imposition of equality restrictions of this type on the
item parameters is similar to the work by Joreskog (1971) on parallel and
tau-equivalent items in the context of factor analysis (see also Mellen-
bergh, 1994). If the conditional response probabilities are equal among
items, the items may be called parallel, while they may be called tau
equivalent if only their two-variable interactions with the latent variable
are equal.

Another restriction that is often used in classical latent class analysis
is the fixing of particular conditional response probabilities to zero. Such a
restriction can, among other things, be used to construct latent Guttman
scales (Clogg and Sawyer, 1981; Clogg and Goodman, 1986) and to define
quasi-latent variables (Hagenaars, 1990:117-119). Fixing a probability to
zero is equivalent to setting the log-linear parameters associated with it
to minus infinity. This can be accomplished by incorporating structural
zero-expected frequencies in the log-linear model (Haberman, 1979:554-
556).

Restrictions specific to the log-linear parameterization are linear-by-
linear effects and row and/or column effects. These restrictions are useful
if either the latent variable or the manifest variables or both can be as-
sumed to be interval-level variables (Heinen, 1993; Rost, 1988). Heinen
(1993) demonstrated that when the latent variable is discretized, most
latent trait models can be written as latent class models with restric-
tions on the log-linear parameters. For instance, a discrete variant of
the well-known Rasch model for item analysis is obtained by specifying
a latent class model with a certain number of latent classes in which the
two-variable interaction parameters between the latent variable and the
indicators are specified as linear-by-linear and equal among indicators.
Within the log-linear modeling framework, it is even possible to spec-
ify models with log-multiplicative interaction terms. This option can be



used, for instance, to specify a discrete Rasch model with random scores
for the categories of the latent variable. Lindsay, Clogg, and Grego (1991)
called this model a semi-parametric Rasch model.

3.1.2 Extensions of the standard latent class model

Several important extensions of the standard latent class model have
been developed. Some of these are specific for either the classical or
the log-linear formulation of the latent class model, while others can be
implemented under both parameterizations. Below, the most important
extensions developed within the framework of either the classical or the
log-linear latent class model are discussed. Moreover, it is demonstrated
that these extended latent class models can also be formulated as modi-
fied path models, that is, in terms of conditional probabilities which are
possibly subjected to logit restrictions.

Models with several latent variables Goodman (1974a, 1974b) and
Haberman (1979:558-560) showed how to specify latent class models with
more than one latent variable. This led to a model which is analogous to
a factor analytic model with more than one factor. Latent class models
with several latent variables can be specified either by imposing equality
restrictions on the conditional probabilities or by formulating a log-linear
model.

Suppose there is a model with four indicators and two latent vari-
ables, in which A and B are indicators of the latent variable W, and
C and D of the latent variable Y. Moreover, assume W and Y are
related to each other. This results in the log-linear latent class model
{WY, WA, WB,YC,Y D} which is displayed in Figure 3.2, or

108 Mupyabed = U+ Uy —i—u?; +ul +uf +ul +ul —i—umy +ul¥A
wB_, ,YC _ YD
Uy F Uy Uy (3.5)

Just as in the standard latent class model, additional restrictions can be
imposed on the log-linear parameters in this model. Note that it is not
only possible to restrict the item parameters but also the relationships
between the latent variables. In a model with three latent variables,
for instance, a no-three-variable interaction model can be specified for
the latent variables. Hagenaars (1986) proposed symmetry and quasi-
symmetry models for the associations between the latent variables.
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Figure 3.2: Latent class model with 2 latent variables

In terms of conditional probabilities, the latent class model of Equa-
tion 3.5 can be written as

Twyabed =  Twy Tajw Tbhlw Tely Td|y -

Models with external variables Another extension of the ordinary
latent class model is the incorporation of external variables in the model
(Hagenaars, 1985, 1990:113-119, 1993). Since external variables are man-
ifest variables which are not indicators, the assumption of conditional
independence does not need to hold for these variables. Clogg (1981), for
example, applied latent class models with external variables to specify
multiple-indicator multiple-cause models (MIMIC) for categorical data.
These models resemble the well-known MIMIC models for continuous
data presented by Joreskog and Goldberger (1975).

Clogg (1981) specified the MIMIC model for categorical data using
the classical parameterization of the latent class model. However, this
parameterization is limited with respect to the models that can be pos-
tulated for the relationships among the external variables and the latent
variables: Ounly a saturated model and particular kinds of independence
models can be specified for these variables. When using the log-linear pa-
rameterization, it is possible to specify any kind of non-saturated model
for the relationships among the external and the latent variables.

Suppose there is a MIMIC model with two external variables I and J
and one latent variable W with three indicators A, B, and C. Moreover,
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Figure 3.3: Latent class model with external variables

assume that the external variables influence W and that there is no three-
variable interaction among I, J, and W. The MIMIC model concerned,
which is depicted in Figure 3.3, is equivalent to log-linear latent class
model {IJ, IW, JW,WA,WB,WCY}, or

log Mupabei; = u+uz-1+u}]+uz,v—i—uf—i—uf—i—ug—i-ufj]-i-ufqzv%—uﬂv
—i—uuVKLA—i-u%B—i-umc.

In terms of conditional probabilities, it can be written as

Twabciy =  Tij Twlij Talw Tblw Tejw »

in which m,;; is restricted by a logit model without a three-variable in-
teraction term. Although above the external variables were assumed to
be exogenous variables, it is also possible to use external variables as
dependent variables.

Models for several subpopulations Other extensions are latent class
models for several subpopulations which may differ with respect to the
latent distribution and the relationships between the latent variables and
their indicators (Hagenaars, 1990:127-135). This is comparable to simul-
taneous factor analysis in several populations (Joreskog, 1971; Sérbom,
1974). Clogg and Goodman (1984, 1985) presented what they called a
simultaneous latent structure model using the classic parameterization of
the latent class model. McCutcheon (1987) applied this model to compare
latent distributions at different points in time.



Simultaneous latent class analysis involves incorporating a group vari-
able in the model. This group variable may influence the latent distribu-
tion and the conditional response probabilities. If G denotes the group
variable in a latent class model with latent variable W and indicators A,
B, and C, the multi-group latent class model can be written as

Twabeg — Tg Mw|g Talwg Tblwg Tec|wg -

Note that this unrestricted multiple-group model is equivalent to log-
linear model {GW A, GW B, GW C}. A specification of this kind implies
that the latent distribution, the distributions of the indicators, and the re-
lationships between the latent variable and the indicators are all assumed
to be different among subpopulations.

However, often one wants to impose restrictions on the parameters
across groups. An example of a restricted model is the log-linear model
{GW,WA,WB,WC,GA,GB,GC}. In this model, it is assumed that
the latent and manifest distributions differ among groups, but that the
strengths of the relationships between the latent variable and the indica-
tors are the same for all of the subpopulations. An even more restrictive
model is {GW, WA, WB,WC'}. Here, the measurement part of the model
is assumed to be equal for all subgroups. In terms of conditional proba-
bilities, this model can also be written as

Twabeg = Tg Twlg Tajw Thlw Tejw -

Actually, this model tests the assumption of invariance of the latent con-
struct (Joreskog, 1971), which is a vital test if the aim is to compare the
latent distributions of different groups. Latent distributions can only be
compared when the latent variable has the same meaning for all subpop-
ulations, which often implies that one wants the relationships between
the latent variable and the items to be equal among subgroups.

Local dependence models The log-linear latent class model can also
be used to specify models in which particular indicators are related to
one another. Hagenaars (1988) demonstrated how to specify these so-
called local dependence models. Figure 3.4 shows an example of a local
dependence model, i.e., model {WA, WB,WC,WD,CD}. In this model
with one latent variable and four indicators, there is a direct association
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Figure 3.4: Local dependence model

between the indicators C' and D. In terms of conditional probabilities,
the model can be written as

Twabed = Tw Talw Tojw Med|w »

where 4|, i8 restricted by means of a no-three-variable interaction log-
linear model. These local dependence models are analogous to factor
analytic models with correlated error terms (Sérbom, 1975).

3.1.3 Causal log-linear models with latent variables

Some extensions of the standard latent class model were discussed in the
previous subsection. A limitation of these extensions is that they were all
developed within the framework of either the classical or the log-linear
latent class model. Therefore, it is not always possible to postulate the
desired a priori causal order among the variables incorporated in the
model. But, as was demonstrated, all these extended latent class models
can be written as modified path models in which one or more variables
are not observed. This subsection presents the general formulation of
the modified path model with latent variables which was proposed by
Hagenaars (1985, 1990:135-142, 1993). Because of the analogy with the
LISREL model for continuous variables (Joreskog and Sérbom, 1988),
Hagenaars called it a modified Lisrel approach.
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Figure 3.5: Modified Lisrel model

Suppose we want to investigate the causal relationships between six
categorical variables denoted by E, F', G, H, W, and Y, where W and Y’
are latent variables. Figure 3.5 shows the assumed causal order and the
assumed direct relations of the variables. It can be seen that the variables
E, F, and G are exogenous variables. The others are endogenous, where
H is assumed to be posterior to W, and Y is assumed to be posterior to
H. Moreover, A and B serve as indicators for the latent variable W, and
C and D serve as indicators for Y.

The probability of belonging to cell (e, f,g,w,h,y,a,b,c,d) of the
joint distribution of all the variables included in the model is denoted
as Tefgwhyabed- As demonstrated in section 2.9, the a priori information
on the causal order of the variables can be used to decompose 7 fguwhyabed
as follows:

Tefgwhyabed =~ Tefg Twlefg Thlefgw Tylefgwh Tabed|wy - (36)

The only difference between a modified path model containing only ob-
served variables and the modified Lisrel model described in Equation 3.6
is that the latter contains an additional component in which the rela-
tionships between the latent variables and their indicators are specified
(Hagenaars, 1993; Vermunt, 1994, 1996), in this case mgpeqjuy- This part
will be called the measurement part of the model, while the other part will
be called the structural part of the model. On the basis of the relation-



ships between the variables depicted in Figure 3.5, the model represented
in Equation 3.6 can be written in a more restricted form as

Tefgwhyabed = Tefg Twlefg Thlefw Ty|fgwh Ta|w Tblw Tely Tdly - (37)

As in a modified path model containing only observed variables, the prob-
abilities appearing in Equation 3.7 can be restricted further by means of
a logit parameterization or by the equivalent log-linear parameterization
proposed by Goodman (1973). For instance, in accordance with the rela-
tionships depicted in Figure 3.5, 7.z, has to be restricted as follows:

exp (uZJV +ulVl + uuVE/fF + uuV,VgG + uWFG)

wfg
Twlefg ,
2w €XP (uwW +ullF a4+ ullE G)
or equivalently, by means of log-linear model
log Mefgw = Cefg+ UZ;V + UuVE/eE + UZJVfF + UZJVgG + UZJV;;G.

This model contains direct effects of £ and F' and G on W, where there
is an interaction between F' and G with respect to their effects on W.

Some other special cases As was shown in the previous subsection,
all extensions which have been proposed for the standard latent class
model are special cases of the modified Lisrel model. There are, however,
other models which are special cases of the modified Lisrel model.

Hagenaars (1988) specified a local dependence model in which he as-
sumed the relationships between indicators to be asymmetrical. Suppose
we want to specify a local dependence model like the one depicted in Fig-
ure 3.4, but now with a direct effect of C' on D instead of a symmetrical
relationship. Such a model is equivalent to a modified path model of the
form

Twabed =  Tw Talw Tojw Tejw Td|we s

where g, is restricted by a no-three-variable interaction model. Al-
though in this case the model with an asymmetrical direct relationship
between indicators gives the same model fit as the symmetrical specifi-
cation used in Equation 3.6, this is not always the case. Moreover, even



though the model fit is the same, the estimated effect of W on C will be
different in the two specifications.

Another special case of the modified Lisrel model is the latent budget
model which was proposed by Van der Heijden, Mooijaart, and De Leeuw
(1992). A latent budget model is a kind of MIMIC model in which one
set of variables is used as a joint explanatory variable and another set of
variables is used as a joint response variable or observed budget. When A
denotes the joint explanatory variable, B, the observed budget, and W,
the latent budget, the latent budget model is given by

Tawb = Ta Tyla Thlw »

where the marginal distribution of A, m,, is not restricted, and where
Ty|q and my, can be restricted via fixed-value or equality restrictions on
the conditional probabilities or via a logit parameterization.

In the previous chapter, it was shown that the discrete-time Markov
model is a special case of the modified path model. Therefore, it is not
surprising that the discrete-time latent Markov model is a special case
of the modified Lisrel model. The discrete-time latent Markov model
was originally proposed by Wiggins (1955, 1973), while more recently
Poulsen (1982), Van de Pol and De Leeuw (1986), and Van de Pol and
Langeheine (1990) proposed estimation methods for the latent Markov
model. Suppose that S; denotes the observed state at time point [ and
that s; denotes a category of S;. Moreover, let ®; denote the true state at
time point [ with values ¢;. For the sake of simplicity, it will be assumed
that there are observations for only 3 points in time, 1 < < 3. In that
case, a first-order latent Markov model can be represented as follows:

Ts1sas3h1¢2d3  —  Tp1 Tgn|o1 Tps|da M|y Ts2|p2 Ts3|ps

where some restrictions have to be imposed on either the transition prob-
abilities 7y, 4, or the conditional response probabilities 7,4 to make
the model identifiable (Van de Pol and Langeheine, 1990). Explanatory
variables can be incorporated in the model in the same way as in man-
ifest Markov models (Vermunt and Georg, 1995; Vermunt, Langeheine,
and Bockenholt, 1995).

As in modified path models, every conditional probability in modified
Lisrel models may be parameterized by means of a multinomial logit



model of the general form

exp (Zj /Bjxijk)
Siexp (X Bjwijk)

(3.8)

Tk

where ¢ denotes a level of the response variable, k, a level of the joint
explanatory variable, and j, a particular effect. This implies that, as
was demonstrated for modified path models, modified Lisrel models can
also be used with continuous exogenous variables. Dayton and Macready
(1988) and Van der Heijden and Dessens (1994) proposed a latent class
model with continuous covariates. In their model, the latent proportions
are regressed on one or more continuous explanatory variables using a
logistic regression model. Assuming that the latent variable W has 3
indicators A, B, and C, in our notation, such a model can be written as

Tabedw|k — Ww\acwjk ﬂ-a\wmajk 7rb|w:tbjk ﬂ-c\wmcjk )

where xjk, Tajk, Tojk, and z.j; denote the observed value for person k
on the exogenous variable j for W = w, A = a, B = b, and C = ¢,
respectively. These conditional probabilities can, of course, be restricted
using the multinomial logit model or the logistic regression model given in
Equation 3.8. Note that this modified path model with a latent variable is,
in fact, more general than the model proposed by Dayton and Macready
because the conditional response probabilities may also depend on the
continuous covariates.

3.1.4 Unobserved heterogeneity

Above, one particular application of log-linear models with latent vari-
ables models was discussed, i.e., correcting for measurement error in ob-
served variables. However, log-linear models with latent variables can also
be used to correct for unobserved heterogeneity. The term unobserved
heterogeneity is generally used in the context of regression models.! Tt
means that particular variables that influence the dependent variable are
not measured and can therefore not be used as covariates in the regres-
sion model (Heckman and Singer, 1982, 1984). One possible solution in

1Other terms that are sometimes used to describe this phenomenon are omitted
variable bias (Chamberlain, 1985) and overdispersion (MCCullagh and Nelder, 1983).



such situations is to include in the regression model a latent unobserved
covariate which is assumed to capture (part of) the unobserved causes of
the phenomenon under study (DeSarbo and Wedel, 1993).

From a technical point of view, the main difference between the latent
class models discussed in the previous subsections and the finite mixture
models which are used to correct for unobserved heterogeneity is that in
the latter, the latent variable incorporated in the model does not have
indicators. Since this makes the models more difficult to identify, models
with unobserved heterogeneity will generally be rather restrictive. More-
over, the results obtained from mixture models may be sensitive to the
choice of the identifying restrictions.

Follman and Lambert (1989) and Formann (1992) proposed a logit
model with a non-parametric unobserved heterogeneity component. For-
mann called this model a mized logistic regression model. In this model,
the existence of a categorical latent variable is assumed which may in-
fluence not only the dependent variable but also the effect of the other
independent variables on the dependent variable. An important assump-
tion of the model is that the mixture distribution is independent of the
other explanatory variables.?

Suppose we want to explain C using the observed variables A and B
and the unobserved variable W as regressors. In that case, the mixed
logit model is given by

Twabe = Tw Tab Telabw » (3.9)

where the probability 7., has to be restricted in some way because,
otherwise, the model is not identified. One possibility is to postulate a
logit model in which all regressors influence C' through the two-variable
effects, but in which all higher-order interaction terms are absent.
Another model for categorical data in which a latent variable is used
to correct for unobserved heterogeneity is the discrete-time mized Markov
model (Poulsen, 1982, Langeheine and Van de Pol, 1990, 1994). In this
model, it is assumed that the observed transition probabilities are actually

2These models are sometimes also called random-effects logistic regression models
(Willekens, 1994). The approach that is used here is a non-parametric random-effects
approach because the distribution of the latent variable which is included in the re-
gression model is not parameterized. Sections 4.8 and 5.2 explain the different ways
of handling unobserved heterogeneity in the context of event history analysis in more
detail.



a mixture of the transition probabilities of several unobserved groups.
This is equivalent to assuming that there is an unobserved variable which
influences the transition probabilities. The mixed Markov model can be
identified without further restrictions when a first-order Markov model is
postulated within the unobserved subgroups. Suppose that S; denotes the
state occupied at time point [, that s; denotes a category of S;, and that
1 <1 < 4. Assuming that W is the latent variable, the mixed Markov
can be written as

Twsy1 898384 — T 7751\11) Wsz\wsl 7753\1052 7T54|w33 . (310)

It should be noted that the well-known mover-stayer model (Goodman,
1961) is a special case of the mixed Markov model. Tt is obtained by
restricting the probabilities 7, ,,,_, to be equal to zero if S; # S, for
one latent class.

Van de Pol and Langeheine (1990) extended the mixed Markov by
incorporating observed covariates. Moreover, they combined the mixed
Markov model and the latent Markov model into one general model which
they called the mixed Markov latent class model.

From Equations 3.9 and 3.10, it can easily be seen that both the mixed
logistic regression model and the mixed Markov model are also special
cases of the modified Lisrel model. The same applies to Van de Pol and
Langeheine’s extensions of the mixed Markov model. Other examples of
mixture models that can be dealt with within the context of modified
path analysis with latent variables are the mixed Rasch model proposed
by Rost (1990) and models for analyzing ranking data (Croon, 1989) and
other types of choice data (Kamakura, Wedel, and Agrawal, 1992).

3.1.5 Estimation and testing

Obtaining maximum likelihood estimates of the parameters of latent class
models, log-linear models with latent variables, and modified Lisrel mod-
els is a bit more complicated than for log-linear models in which all
variables are observed. Several estimation methods can be used to esti-
mate the parameters of the models discussed in the previous subsections.
The best known methods are the Newton-Raphson algorithm, includ-
ing variants such as Fisher’s scoring algorithm and other quasi-Newton
algorithms, and the Expectation-Maximization (EM) algorithm. Lazars-
feld and Henry (1968:101-105) have already demonstrated how to apply



Fisher’s scoring method to estimate latent class models, while Goodman
(1974a, 1974b) was the first to use the EM algorithm for estimating latent
class models.

Computer programs Fisher’s scoring algorithm is implemented in the
LAT program which was developed by Haberman (1979: Appendix A.2),
while Haberman’s NEWTON program is based on the Newton-Raphson
algorithm (Haberman, 1988). These programs were developed to esti-
mate latent class models using a log-linear parameterization. Mare and
Winship (1989) showed that with a complicated reparameterization, it is
also possible to estimate modified path models by means of NEWTON.
The other widely available programs for latent class analysis are all based
on the EM algorithm. Clogg’s MLLSA program can be used to estimate
the classical latent class model, including some of its extensions discussed
above (Clogg, 1977). Hagenaars and Luijkx’ LCAG program can be used
to estimate classical latent class models and modified Lisrel models with
hierarchical log-linear models (Hagenaars and Luijkx, 1990). The DIL-
TRAN program can be used to estimate latent class models with different
types of linear restrictions on the log-linear parameters or, more precisely,
discrete latent trait models (Heinen and Vermaseren, 1992). The PAN-
MARK program was especially developed for estimating latent and mixed
Markov models, but it can also be used to estimate classical latent class
models (Van de Pol, Langeheine and De Jong, 1989).

The {EM program is the most general program for estimating log-
linear models with latent variables (Vermunt, 1993) since it combines
all the features of the above-mentioned programs. It can be used to
estimate modified Lisrel models which, as was shown in the previous
section, are the most general models of which all other models are special
cases. By means of £EM, equality restrictions, fixed value restrictions,
and particular kinds of inequality restrictions can be imposed on the
(conditional) probabilities appearing in a modified path model with latent
variables. Moreover, a general multinomial logit parameterization of the
conditional probabilities can be used in which log-multiplicative effects
can be included. A weak point of ZEM is, however, that it does not
supply standard errors of the parameter estimates.



Newton-Raphson and Fisher’s scoring The Newton-Raphson algo-
rithm and Fisher’s scoring algorithm are strongly related gradient search
methods. The difference between them is that Fisher’s scoring algorithm
uses the expected information matrix, or Fisher’s information matrix,
while Newton-Raphson uses the observed information matrix to deter-
mine the optimal step size to improve the parameter estimates. When all
variables of a log-linear model are observed, the procedures are equivalent
because, in that case, the observed and the expected information matrix
are identical (Agresti, 1990:114; Heinen, 1993:287). The main advantage
of using Fisher’s scoring algorithm rather than Newton-Raphson to esti-
mate the parameters of models with latent variables is that the expected
information matrix can be obtained from the first-order derivatives of the
log-likelihood function. Therefore, it is no longer necessary to compute
the second-order derivatives. Appendix G explains how to obtain the
expected information matrix for modified path models with latent vari-
ables. It must be noted that this version of Fisher’s scoring algorithm for
estimating modified path models with latent variables has not yet been
implemented in a computer program.

The main advantage of using Newton Raphson or Fisher’s scoring in
comparison with the EM algorithm is that they converge very fast when
the model does not contain too many parameters, and, moreover, they
provide standard deviations of the parameter estimates as a by-product.
A major disadvantage is that they need starting values which are close
to the final solution to converge to the maximum likelihood solution (Ha-
genaars, 1988; Heinen, 1993:65). Therefore, Haberman (1988) proposed
a so-called stabilized Newton-Raphson algorithm, which he implemented
in his NEWTON program (Haberman, 1988). Although in most kinds of
latent class models this algorithm performs better, in particular types of
restricted latent class models, convergence is still problematic (Heinen,
1993:65). Another disadvantage of the Newton algorithms is that when a
model contains many parameters, they may become very time consuming
because of the necessity to compute and to invert the Hessian matrix or
the expected information matrix at every iteration. And finally, numeri-
cal problems may occur when some estimated cell counts go to zero, that
is, when some log-linear parameters go to minus infinity.



The EM algorithm The EM algorithm appears to be a good alterna-
tive (Dempster, Laird, and Rubin, 1977). The main advantage of the EM
algorithm compared with the Newton methods is that it does converge
to at least a local maximum under relatively weak conditions, even with
bad starting values (Wu, 1983). Generally, random starting values are
good enough. Furthermore, the EM algorithm is both conceptually and
computationally very simple. The main disadvantages are that it may
need many iterations to converge and that it does not give estimates of
the standard deviations of the parameter estimates. However, since every
EM iteration is performed relatively fast, it is not problematic that many
more iterations are needed than with the Newton methods. Moreover,
standard errors for the parameter estimates can be computed afterwards,
for instance, by computing the inverse of the negative of the expected
information matrix (see Appendix G). The ideal algorithm would be a
composite algorithm which starts with a number of EM iterations and
which, when it is close enough to the final solution, at which point the
EM becomes slow and Newton methods become more stable, switches to
one of the Newton algorithms (Titterington, Smith, and Makov, 1985;
Guo and Rodriguez, 1992).

The EM algorithm is a general iterative estimation procedure which
can be used when there are missing data (Dempster, Laird, and Ru-
bin, 1979). In log-linear models with latent variables, the scores on the
latent variables are missing. Each EM iteration consists of two steps.
The E(xpectation) step involves computing the expected complete data,
given the observed data and the ‘current’ parameter estimates. In the
M (aximization) step, the complete data likelihood function is maximized.
This implies computing updated estimates of the model parameters as if
there were no missing data. These EM iterations continue until conver-
gence is reached.

Suppose one wants to obtain maximum likelihood estimates for the
model parameters of the modified Lisrel model presented in Equations
3.6 and 3.7. Assuming multinomial sampling, this involves maximizing
the following incomplete data log-likelihood function

log [’(7r) = Z Ne fghabed log Z Te fgwhyabed - (3.11)
efghabed wy

Here, 7. tgwhyabed denotes the estimated probability of belonging to cell
(e, f,g,w,h,y,a,b,c,d) in joint distribution of the observed and unob-



served variables. Note that in Equation 3.11, the estimated probabilities
are collapsed over the dimensions that are missing, i.e., the dimensions
pertaining to the latent variables W and Y.

In the E step of the EM algorithm, the expectation of the complete
data log-likelihood, given the incompletely observed data and the ‘cur-
rent’ parameter estimates is computed, i.e.,

log L‘E}) = Z 'ﬁefgwhyabcd IOg frEfgwhyabcd .
efgwhyabecd

This log-likelihood function is sometimes also called the complete data
likelihood. In this equation, fiefguwhyabea denotes an estimated cell count
in the frequency table including the latent dimensions. Thus, the E step
involves computing estimates for the unobserved frequencies of the table
including the latent dimensions, i.e.,

'ﬁfefgwhyabcd = MNefghabed 7Arwy|efghabcd ) (3'12)

in which 7y rghabed 18 the estimated probability that W = w and Y =y,
given A=a,B=bC=c¢,D=d, E=e¢, F = f,and G = g, in other
words, the probability of the missing data given the observed data, eval-
uated using the estimated probabilities resulting from the previous EM
iteration. The quantity e fghabed 18 Sometimes also called the posterior
probability.

In the M step, the complete data log-likelihood function given in Equa-
tion 3.12 is maximized to obtain improved parameter estimates, or equiv-
alently, improved estimated probabilities 7, fgunyabed- In fact, the model
parameters are updated using the Nerguhyabed’s as if they were observed
cell counts. For that purpose, the estimation procedures are the same as
those used in the case of log-linear models without missing data. In the
M of the EM algorithm as implemented in the CEM program (Vermunt,
1993), it is possible to use IPF, uni-dimensional Newton, and the meth-
ods proposed by Goodman (1974b) to estimate unrestricted and restricted
conditional probabilities. For more information about these estimation
procedures, see the subsections on IPF and uni-dimensional Newton in
Chapter 2 and the Appendices E and F.

The new estimates for the estimated probabilities 7.t guwhyabed are again
used in a new E step to obtain new estimates for the frequencies in the
complete table. The EM iterations continue until convergence is reached,



for instance, until the log-likelihood function given in Equation 3.11 in-
creases less than a specified minimum value or until the parameters no
longer change significantly.

It has been proven that the EM algorithm converges to a local max-
imum under rather weak conditions (Wu, 1983). However, there is no
guarantee that the global maximum of the likelihood function will actu-
ally be found. Therefore, it is recommended that the model of interest
be estimated using different sets of starting values (Hagenaars, 1990:112;
Formann, 1992). When all runs lead to the same value of the likelihood
function, it is more certain that the global maximum has been found.
On the other hand, if different solutions are found using different sets
of starting values, the solution with the highest likelihood value is to be
preferred. But, as with any kind of model which is known to have local
maxima, one can never be completely sure that the global maximum of
the likelihood function has been found.

Modifications of EM  The algorithm used in £EM is a modified version
of the true EM algorithm because the M step consists of only one iteration.
Generally, therefore, the complete data likelihood is not maximized but
only improved within a particular M step. This is a special case of the
GEM algorithm which states that every increase in the complete data
likelihood also leads to an increase of the incomplete data likelihood that
actually has to be maximized (Dempster, Laird, and Rubin, 1977; Little
and Rubin, 1987). Rai and Matthews (1993) called this version of the
EM algorithm the EM1 algorithm.

The algorithm which is used in EM is also a special case of the ECM
algorithm (Meng and Rubin, 1993), in which the M step is replaced by
a conditional maximization (CM) step. Conditional maximization means
that instead of improving all the parameters simultaneously, subsets of
parameters are updated fixing the others at their previous values. This
is exactly what is done using IPF and the uni-dimensional Newton algo-
rithm. Meng and Rubin (1993) state that such simple and stable linear
convergence methods are often more suitable for the M (or CM) step of
the EM (or ECM) algorithm than superlinear converging but less stable
algorithms as Newton-Raphson.

In most situations, this GEM, EM1 or ECM algorithm converges in
about the same number of (EM) iterations as the true EM algorithm.



This means that when the M step needs more than one (M) iteration
to converge, the modified EM algorithm is faster than the true EM al-
gorithm. However, experience with ¢EM has shown that sometimes it
is more efficient to perform more than one M iteration. This is true in
models in which the uni-dimensional Newton algorithm takes numerous
iterations in order to converge. As was mentioned in the previous chap-
ter, if the parameters are highly correlated, this algorithm requires a large
number of iterations in order to converge. In such cases, it is better to
perform between 5 and 25 M iterations when using {EM.

Identifiability It is well known that the parameters in models with
latent variables cannot always be uniquely determined. Of course, as in
log-linear models without latent variables, it is necessary that the number
of independent parameters does not exceed the number of observed fre-
quencies. In models with latent variables this is not a sufficient condition
for identifiability. According to Goodman (1974b), a sufficient condi-
tion for local identifiability is that the expected value of the matrix of
second-order derivatives with respect to all parameters is negative def-
inite (see also Formann, 1992). Therefore, when using Fisher’s scoring
method or Newton-Raphson to estimate the parameters of a log-linear
model with latent variables, the identifiability of a model is automati-
cally checked. Some programs which are based on the EM algorithm,
such as PANMARK (Van de Pol, Langeheine, and De Jong, 1988) and
MLLSA (Clogg, 1977), also make it possible to check the identification of
the parameters. Another way of checking identifiability when using the
EM algorithm is to estimate the given model using different sets of start-
ing values. If different sets of starting values result in the same value for
the log-likelihood function but different parameter estimates, the model
is not identifiable (Hagenaars, 1990:112).

Testing Log-linear models with latent variables can be tested in the
same fashion as the log-linear models discussed in the previous chap-
ter. Both the likelihood-ratio chi-square statistic L? and the Pearson
chi-square statistic X? may be used to compare the observed frequencies
with the estimates of the expected manifest frequencies. The estimated
expected frequencies M. fguwhyabed Can be obtained by multiplying the esti-
mated probabilities 7 fguwhyabea By the sample size N. The likelihood-ratio



chi-square statistic can be obtained by

Nefghabed
wy mefgwhyabcd

L2 = 2 Z Nefghabed IOg Z
efghabed

Note that the Mmerguwnyabed have to be collapsed over the latent dimen-
sions to obtain the estimated expected frequencies in the observed table
EFGHABCD.

As in the case of log-linear models without latent variables, conditional
tests may be used to compare nested models. However, it should be noted
that although latent class models with different numbers of latent classes
are nested, they cannot be tested against each other using conditional L?
tests. The reason for this is that the more parsimonious model, the model
with fewer latent classes, can only be expressed as a restricted version of
the less parsimonious model by fixing one or more latent proportions
to zero. The asymptotic theory no longer holds because these latent
proportions are on the boundary of the parameter space (Titterington,
Smith, and Makov, 1985; Formann, 1992).% Everitt (1988) examined the
distribution of the conditional L? statistic for pairs of nested latent class
models and found that L? was not distributed as 2. The use of the
AIC and BIC information criteria does not resolve the testing problem
because they rely on the same regularity conditions as the chi-square
statistics (Heinen, 1993:73).

3.2 Nonresponse

The previous section discussed one type of missing data problem in log-
linear analysis, that is, how to formulate models when one or more vari-
ables are completely unobserved. In this section, attention is given to
another type of missing data problem. Log-linear models are presented
which can be used when the scores on particular variables are partially
missing.

In most studies, the values of one or more variables are missing for
subsets of the original sample. It is common practice in such cases to use
only the complete observations in the analysis. This leads to less powerful

%It should be noted that this does not only hold for the latent proportions, but for
any probability appearing in the models discussed so far. It is never allowed to use a
conditional L? test to investigate whether a probability equals zero.



statistical tests and, if the nonresponse is selective, to biased parameter
estimates. However, methods have been developed which can also make
use of partially observed information in fitting log-linear models. These
methods are analogous to methods developed to deal with partially ob-
served continuous data (Marini, Olsen, and Rubin, 1979; Allison, 1987;
Muthén, Kaplan, and Hollis, 1987).

Suppose there is a four-way contingency table composed of the vari-
ables A, B, C, and D, for which the values of C, D, or both are missing
for a part of the sample. On the basis of the nonresponse patterns, it
is possible to divide the observations into four subgroups. Subgroup AB
consists of the subjects for which only the values of A and B are known;
for subgroup ABC, only A, B, and C are observed; for subgroup ABD,
C' is missing; and finally, for subgroup ABC D, all variables are observed.
The observed frequencies for these four subgroups will be denoted as ng,
Nabes Nabd, and Ngped, respectively. The sizes of the subgroups will be
denoted as N4B, NABC NABD and NABCD respectively.

3.2.1 Assumptions about the response mechanism

Different kinds of assumptions can be made with regard to the mechanism
causing the missing data. Generally, three basic types of mechanisms are
distinguished: missing completely at random (MCAR), missing at ran-
dom (MAR), and not missing at random (NMAR) (Rubin, 1976; Little,
1982; Little and Rubin, 1987). MCAR means that the nonresponse is
independent of the variables included in the analysis. In other words,
when the missing data is MCAR, the probability of having a particular
pattern of nonresponse is assumed to be equal for each cell of the ‘hy-
pothetical’ complete table. The much less restrictive MAR assumption
implies that the probability of having a particular pattern of nonresponse
depends only on the observed variables in the nonresponse pattern or sub-
group concerned. For example, MAR means that for a given individual
who only has a missing value on D (subgroup ABC'), the probability of
nonresponse on D may depend on A, B, and C, but not on D. For an
individual who has missing values on both C' and D (subgroup AB), the
probability of not observing C' and D may only depend on A and B. If the
missing data are not MAR or MCAR, they are NMAR. This occurs when
the probability of having a particular pattern of nonresponse depends on
the variables with missing values in the nonresponse pattern concerned.



For example, the response mechanism is MCAR  if for subgroup ABC the
probability of nonresponse on D also depends on D, or if for subgroup
AB the probability of nonresponse on both C and D also depends on C,
D, or both.

Besides the distinction between MCAR, MAR, and NMAR response
mechanisms, there is another strongly related distinction when dealing
with partially observed data, that is, whether the missing data mechanism
is ignorable or nonignorable for likelihood-based inference. According to
Rubin (1976), the missing data mechanism is ignorable for likelihood-
based inference if two conditions are fulfilled, namely, if the missing data
are MAR and if the parameters of the structural model* and the pa-
rameters associated with the response mechanism are distinct (see also
Little, 1982, and Little and Rubin, 1987). The condition that the two
sets of parameters must be distinct means that no restrictions may be
imposed between the parameters of the structural model and the param-
eters describing the response mechanism. As is demonstrated below, this
condition is almost always fulfilled. Therefore, for practical applications,
ignorability can be equated to MAR.

The consequence of ignorability is that the parameter estimates are
identical regardless of the precise ignorable mechanism causing the miss-
ing data, and that, therefore, the response mechanism can be ignored
when estimating the structural parameters. This is possible because in
that case, the likelihood can be factored into a part containing the struc-
tural parameters and a part containing the information on the missing
data mechanism. On the other hand, such a factorization is impossi-
ble when the response mechanism is NMAR or when the two sets of
parameters are not distinct, and, therefore, the response mechanism is
nonignorable.

Assuming a multinomial sampling scheme for the same variables and
subgroups as above, estimation of a log-linear model with partially ob-
served data involves maximizing the following incomplete data likelihood

og Lixgy = Y MNabed 108 Tabed O ABCD|abed
abed

“The term structural model is used to denote the model for the variables which
relationships we are interested in. In the context of this section, the structural model
will be a (causal) log-linear model.
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where

O aBcDlabed + 04BC|abed T 04BD|abed + OABlabea = 1-

Here, 0 aBc|abed> O4BC|abeds 0 4B DJabeds and 04B|apeq denote the conditional
probability of belonging to subgroup ABCD, ABC, ADC, and AB, re-
spectively, given that A = a, B = b, C = ¢, and D = d. The s, or
the response probabilities, contain the parameters associated with the re-
sponse mechanism. The missing data are MAR if the #’s are independent
of the missing variables in the subgroup concerned, that is, if

OaBClabed = OaBClabe > (3.13)
04BDlabed = 0ABD|abd s (3.14)
OaBlabed = OaBlab> (3.15)
OaBcDlabed = 1 —04BC|abe — OaBDIabd — O aB|ab - (3.16)

In that case, the likelihood function can be factored into a component
which depends solely on the log-linear parameters and a component which
depends solely on the response mechanism:

log [:(779) = log ,C(W) + log E(g) ,

where
log E(ﬂ') = Znabcd log Tabed + Znabc log Z Tabed
abed abc d
+ > naba108 Y Tabed + Y _nab108 > Tabed s
abd c ab cd
and
log Ligy = Y Mabed10804BCDIabed + P Nabe 108 OABC abe
abed abc

+ > 1441080 4B Djabd + Y _1ab 108 O apjab -
abd ab



If, in addition, no restrictions are imposed across the parameters deter-
mining the 6’s and the parameters determining the 7’s, the two parts
may be maximized separately. This means that the structural parame-
ters can be estimated without estimating the parameters of the response
mechanism. For this reason, the response mechanism is called ignorable
for likelihood-based inference.

The constraints imposed on the 6’s in Equations 3.13-3.16 to make the
response mechanism ignorable are the least restrictive ones. There are as
many free 0’s as observed frequencies in the subgroups with partially
observed data. Actually, a ‘saturated” MAR model is assumed for the
response mechanism. In other words, it is a model which uses all the
additional degrees of freedom obtained by using the partially observed
data. Of course, it is also possible to impose more restrictive constraints
on the #’s. Assuming the 6’s to be equal for every value of A, B, C, and
D, for instance, provides MCAR missing data. There are several ‘non-
saturated” MAR models which are less restrictive than the MCAR model
but more restrictive than the ‘saturated” MAR model. All of these MAR
models lead to the same parameter estimates for the structural model.

3.2.2 Fuchs’s approach

Extending earlier work by Chen and Fienberg (1974), Hocking and Ox-
spring (1971, 1974), and Chen (1979) on the treatment of missing data
in the analysis of categorical data, Fuchs (1982) demonstrated how to
estimate the parameters of a log-linear model by means of the EM algo-
rithm in cases in which the nonresponse is ignorable (Dempster, Laird,
and Rubin, 1977). As always, the E step of the EM algorithm involves
computing the conditional expected complete data likelihood. Because of
the ignorability of the response mechanism, only the part depending on
the log-linear parameters needs to be considered, or

log ‘CZKW) = Zﬁabcd log Tabed -
abed

This involves obtaining estimates for the frequencies in the complete table
ABCD by

Tabed = Mabed T Nabe Tdjabe T Mabd Teabd T Tab Tedlab -



In the M step, improved estimates for the probabilities 7 ;.4 are obtained
by maximizing the complete data likelihood using 7igp.g as if you were
dealing with observed frequencies.

It should be noted that when applying the above-mentioned proce-
dure, caution should be exercised if there are observed zeros in the suf-
ficient statistics for the subgroup for which all variables are observed.
In such cases, the starting values may determine the final estimates of
particular parameters (Fuchs, 1982).

To test the fit of a postulated log-linear model, Fuchs proposed ob-
taining the 0’s as follows:

Oapcp = NABCP/N,
Oapc = NAPCIN,
0ap = NABP/N,

0,5 = NAB/N

which is, in fact, equivalent to assuming that the missing data is MCAR.
This leads to the following likelihood chi-square statistic,

2 = 23 ngpealog ——2L 123 nylog fabe

b Tabed VABCD ot >_d Mabed YaBC
n n
+ 2 Z Ngpd 10§ =——— abd + 2 Z Ngp log =————— ab .
e >¢ Mabed YaBD ” > cd Mabed 048

It can be seen that the estimated expected frequencies for the complete
table, Mgpeq, are proportionally divided over the subgroups. Since this
amounts to assuming that the missing data are MCAR, this L? statistic
simultaneously tests the fit of the postulated log-linear model and the
validity of the MCAR assumption. This is, however, not a problem be-
cause the fit of the log-linear model of interest can be tested indirectly by
means of a conditional L? test. For that purpose, the saturated model,
model {ABCD}, has to be estimated. Since the saturated model itself
fits perfectly, the L? that is obtained for this log-linear model only tests
the validity of the MCAR assumption. By subtracting the L? value of the
saturated log-linear model from the L? value of the model of interest, one
obtains a test for the model of interest. This is a test under the weakest
ignorable type of missing data, that is, MAR nonresponse.



3.2.3 Fay’s approach

Sometimes one is interested in testing assumptions about the ignorable
response mechanism itself. Also, it is possible that one wants to spec-
ify a nonignorable response mechanism. In such cases, the method pro-
posed by Fuchs is not appropriate. Chen and Fienberg (1974) proposed
a method for relaxing the MCAR assumption by simultaneously model-
ing and testing the log-linear model for the variables of interest and the
response model. They demonstrated how to estimate the 6 parameters
under different types of ignorable response mechanisms. Nordheim (1984)
considered nonignorable response mechanisms, or NMAR missing data,
for a partially observed binary response variable. By fixing the 0’s to
particular values, he evaluated the sensitivity of the parameters of the
structural model to the assumptions about the response mechanism.

Causal models for nonresponse using indicator variables Little
(1985), Fay (1986), and Baker and Laird (1988) presented methods based
on defining response indicators for the variables which are partially ob-
served. Using these methods, it is possible to specify either ignorable or
nonignorable response mechanisms. Little (1985) used hierarchical log-
linear models for the joint distribution of two ordinary variables and two
response indicators (see also Winship and Mare, 1989). Fay (1986) and
Baker and Laird (1988) used recursive causal log-linear models, or modi-
fied path models, in which the response indicators are treated as depen-
dent variables. Below, the procedure which was proposed independently
by Fay and by Baker and Laird is presented using the same example as
above.

Let R and S denote two response indicators, in which R indicates
whether C' is observed or not observed and S indicates whether D is
observed or not observed. If variable C' is observed, R takes the value 1,
otherwise R takes the value 2. If variable D is observed, S equals 1, and
if D is missing, S equals 2. It is clear that the different subgroups can be
identified by the levels of R and S. If a given individual has R = 1 and
S =2, then C is observed and D is missing, which means that individual
belongs to subgroup ABC.

The procedure proposed by Fay (1986, 1989) consists of using these
response indicators together which the other variables in a modified path
model. More precisely, a log-linear path model is used to specify both



a model for the structural variables and a model for the response mech-
anism. According to Fay, the response indicators may never appear as
independent variables in a logit equation in which a structural variable
or a research variable is explained. This can easily be accomplished by
specifying the model for the structural variables in the first modified path
steps and the response model in the last steps. The modified path model
for the joint distribution of the structural variables A, B, C, and D, and
the response indicators R and S could, for instance, be

Tabedrs =  Tabed Trs|abed (3.17)

where 7,.44pcq denotes the probability that R = r and S = s, given an
individual’s scores on A, B, C, and D. In fact, these n’s have the same
meaning as the 6’s. Note that it is also possible to split m,.4|4pcq Into two
separate modified path steps: 7, |4pcq and mgjgpeqr. This is necessary if
R and S are time ordered, for instance, if R and S indicate whether a
respondent participated in the first or the second wave of a panel study,
respectively. Of course, the structural model may also be in the form of
a modified path model.

The conditional probability 7,4, may be restricted by means of
a logit model. Suppose that the probability of responding on C (the
score on R) depends on D and that the probability of responding on
D (the score on S) depends on C. Moreover, as in the case of MCAR
nonresponse, assume that R and S are related. This leads to the following
logit model for the joint distribution of R and S

exp (u}f2 + uf + uff + uﬁlD + ufcc)

Trslabed = Trsled = RD .
er €xp (url‘% + uss + uﬁss + Upg + usscc)

(3.18)

It can be seen that the dependence of R on D and of S on C involves
including the interaction terms ufP and u2 in the model for the response
mechanism. Note that the inclusion of the interaction term u/%% in the
response model fixes the margin RS, or equivalently, the sizes of the

subgroups.

Ignorable versus nonignorable response mechanisms It should
be noted that there is not always a simple one-to-one correspondence
between the log-linear models for the response mechanism and the clas-
sification of types of missing data discussed above. For instance, in the



case of the log-linear model for nonresponse specified in Equation 3.18
one would perhaps expect that the missing data are assumed to be MAR,
which would imply that the response mechanism is ignorable, since the
variables with missing data do not influence their own response indica-
tors. Nonetheless, the missing data are assumed to be NMAR. This can
be seen by writing down the response probabilities for the different values
of R and S in the terms of log-linear parameters, i.e.,

exp (uft +uf + uff + ullp + ufC)

Oacplae = Tijed = >ors xp (uff +uf +ulS +uliP +uiC)’
exp (ufl +uf + uff + P + )
OaBClabed = Mizled = s exp (uff +uf +uftS + P +ugC)’
exp (u§ +uf +ultS +ulP 4 ufcc)
OABDabed = T2ljed = >reexp (uf +ud + uftS + ulP +uSC)’
exp (ué‘2 +ud 4+ ul + ung + ugf)
OAB\abcd = T220ed =

RD ’
Ers exp (uﬁ + u§ + uﬁs’s + Upq + UECC)

Because of the appearance of the parameter uﬁiD in its logit expression,

0 ABC|abea 18 Dot independent of the value of D. The same argument ap-
plies t0 0 4Bpjabea and 04p|apeq Which both depend on C' and D as well.
Actually, all the response probabilities are influenced by both C and D
because the response probabilities must sum to unity within every level
of the joint variable C'D, which is accomplished by the scaling factor ap-
pearing in the denominator of the logit equations. As a result, the missing
data are NMAR. This phenomenon, which is also mentioned by Winship
and Mare (1989), occurs because the response probabilities depend on
variables with missing data. Even if the variables C' and D do not have
a direct effect on their own response indicators, the parameter estimates
for the structural model differ from the estimates under an ignorable re-
sponse model. This means that the response mechanism is nonignorable.
So, it is necessary to be cautious when labeling log-linear response mod-
els as MAR or ignorable. These terms refer only to the fact that the
response mechanism can be ignored for likelihood based inference about
the structural parameters, and, consequently, they do not always have
the expected substantive meaning.

The most restrictive ignorable response mechanism is obtained when



the log-linear response model does not incorporate interaction effects be-
tween the structural variables and the response indicators, that is, when
the data are postulated to be MCAR. In the example, this would imply
that m,44pcq = Trs- On the other hand, the least restrictive mechanism
which is still ignorable is obtained when the response indicators depend
on all variables which are observed for all persons, including all their
higher order interaction terms. In this case, the most extended ignorable
log-linear response model is obtained by assuming that m,sacd = Trsjabs
which is equivalent to a 'non-saturated” MAR mechanism. A ‘saturated’
MAR model cannot be specified with a log-linear model for m.44peq- Such
a model can only be obtained by imposing the restrictions described in
Equations 3.13-3.16 directly on the response probabilities.

Monotone patterns of nonresponse When the nonresponse follows
a monotone pattern, is it possible to formulate a log-linear path model for
the response mechanism which is equivalent to a ‘saturated’ MAR model,
or, in other words, a response model which uses all the additional degrees
of freedom obtained by using the partially observed data. A monotone
pattern of nonresponse means that the variables can be ordered in such a,
way that a missing score on one particular variable implies having missing
scores on all subsequent variables too. Such patterns of nonresponse occur
often in social research, especially in panel studies, where nonresponse at
one point in time often implies nonresponse at the next points in time.

Suppose we have data from a panel study in which A, B, C, and D
are measurements of the same variable at four points in time. Moreover,
assume that there are four subgroups: A, AB, ABC, and ABCD. Sub-
group A only participated on the first occasion, subgroup AB on the first
and the second occasion, subgroup ABC on the first three occasions, and
subgroup ABCD on all four occasions. This yields a monotone or nested
missing data pattern since if B is missing, C' and D are missing as well,
and if C' is missing, D is missing as well. Let R, .S, and T be the response
indicators for B, C, and D, respectively. In this case, a ‘saturated” MAR
model is obtained when

Trstlabcd =  Trla Ts|abr Tt|abers -

As a result of the monotone pattern of the missing data, certain probabil-
ities are structurally equal to one. More precisely, if R = 2, S = 2 as well,



and if S =2, T' = 2 too. Therefore, 7T§|ab2 =1 and WQTWW = W;abQQ =1.
Using this additional information, the 6’s are given by

OABCDlabed = Till|abed = Wﬁa 7T15|ab17T1T|abc11 J
OABClabed = T112|abed = Wﬁa 7T15|ab17T2T|abc11 ]
OAB\abcd = T122|abed = Wﬁa 7T%abl’
Oplabed = T222abed = T -

It can easily be seen that the missing data are MAR, since the probabil-
ity of belonging to a particular subgroup depends only on the observed
variables in the subgroup concerned.

Estimation via the EM algorithm Let us return to the model rep-
resented in Equations 3.17 and 3.18. Maximum likelihood estimation of
the parameters of this model involves maximizing the following incom-
plete data log-likelihood function,

log ﬁ(w) = Znabcd log TabedT11|abed + Znabc log Z TabedT12|abed
abed abc d

+ Znabd log Z Tabed 21 |abed T Znab log Z TabedT22|abed -
abd c ab cd

The simultaneous estimation of the model for the relationships between
A, B, C, and D and the model for the response mechanism can be accom-
plished via the EM algorithm. In the E step, the conditional expectation
of the complete data, that is, the unobserved frequencies 7i4pc4rs, have to
be computed by means of

Nabed1l = Nabed s
Nabed12 = Nabe Tdjabel2 s
Mabed21 =  Mabd Telabd21 5
Tlabed22 = Mab 7Arcal\abQQ .

Note that unlike the E step for models with latent variables (see Equation
3.12), here the posterior probabilities are subgroup specific because each
subgroup has different missing data to be estimated.



In the M step, improved estimates for the parameters of the modified
path model are obtained by maximizing the complete data log-likelihood

® .
log L(ﬁ) = Z Tabedrs 10 Tabed Trs|abed -
abedrs

Testing The model can be tested by means of the likelihood-ratio statis-
tic

I? = 2 Z Nabed 10g <W> +2 Znabc log <n“bc>

abed Mabedll abe Ed mabcdlZ
n n,
2 s (=) Y g ().
abd Zc Mabcd21 ab ch Mabcd22

This is a simultaneous test for the structural model and the response
model. The assumptions regarding the response mechanism and the
structural model can be tested separately by means of conditional tests.
The number of degrees of freedom is

df = number of cells — number of independent v parameters,

where the number of cells is the sum of the number of cells of all sub-
groups, and the number of independent u parameters is the sum of the
number of independent parameters of the structural model and the re-
sponse model.

Latent variables and nonresponse As demonstrated by Hagenaars
(1985, 1990:257), Fuchs’s method can also be used to deal with nonre-
sponse in latent class models and other types of log-linear models with
latent variables. In that case, there is a double missing data problem,
namely: partially unobserved and completely unobserved variables. The
same kind of solution was used by Vermunt (1988, 1994, 1996) to make
Fay’s method applicable to log-linear path models with latent variables
(see also Hagenaars, 1990:260).

Suppose we want to estimate a model which apart from the completely
and partially observed variables A, B, C, and D contains the latent vari-
ables W and Y. In that case, the E step of the EM algorithm changes
into

ﬁwyabcdll = Ngbed 7A'rwy\abcdll )



ﬁwyabcdl? = TNgbc frwyd\abcma
ﬁwyabcd21 = TNgbd 7?‘-wyc\abdQla

Nwyabed22 = TMab 7ATwyccl\abZQ'

Note that for each subgroup, both the values of the missing variables and
the values of the latent variable are estimated. The M step proceeds in
the same way as discussed above.

Computer programs Several programs have been developed which
can be used to estimate log-linear models with partially observed vari-
ables. In the LCAG program (Hagenaars and Luijkx, 1990), the method
developed by Fuchs is implemented, including Hagenaars’s extension for
models with latent variables. Although it is rather complicated, LCAG
can also be used to specify models with response indicators (Vermunt,
1988). In the £EM program (Vermunt, 1993), Fay’s method is the stan-
dard way to treat partially observed data. Moreover, models which con-
tain both partially and completely unobserved variables can be handled
by the extension of Fay’s method presented above. In addition, Haber-
man’s NEWTON program, which uses a Newton algorithm instead of EM,
can be used to estimate models with partially observed data (Haberman,
1988).



Chapter 4

Event history analysis

The main characteristic of event history data is that it provides infor-
mation on the times at which individual transitions between a number
of discrete states occurred. Because of the growing availability of event
history data, techniques for analyzing this kind of data are becoming
increasingly popular in the social sciences. There are many textbooks
which describe the fundamentals of this type of model (Kalbfleisch and
Prentice, 1980; Cox and Oakes, 1984; Lawless, 1982; Tuma and Hannan,
1984; Blossfeld, Hamerle, and Mayer, 1989; Lancaster, 1990; Yamaguchi,
1991; Courgeau and Lelievre, 1992). The aim of this chapter is to give an
overview of event history models, to investigate the relationship between
event history models and the log-linear models discussed in Chapter 2,
and to discuss all kinds of problems associated with the analysis of event
history data.

The first section discusses the characteristics of event history data
and explains the necessity of special techniques for analyzing this kind
of data. Section 4.2 deals with the basic statistical concepts. Models
for the analysis of event history data, or hazard models, are introduced
in section 4.3. After discussing the choice of the dependent variable and
presenting a classification of hazard models, attention is given to the three
main types of hazard models: parametric models, Cox’s semi-parametric
model, and discrete-time models.

Section 4.4 discusses the relationship between event history models
and the log-linear models presented in Chapter 2. More precisely, it
shows that particular kinds of event history models are equivalent to the



log-rate model which was presented in section 2.6.

While sections 4.3 and 4.4 deal strictly with the simplest kinds of
hazard models, that is, models for a single non-repeatable event with
time-constant covariates, the last four sections of this chapter illustrate
how the main principles of hazard modeling can be generalized to more
complex situations. Furthermore, a number of problems associated with
the analysis of event history data are discussed, some of which can be
solved by means of the event history models with latent variables and
missing data which are discussed in the next chapter.

Section 4.5 discusses the issue of censoring. Censoring is a form of
missing data which is inherent to event history data. Section 4.6 deals
with the potentials and pitfalls of dynamic modeling. Event history mod-
els are dynamic models because of the possibility of regressing the hazard
rate on different kinds of time variables, on time-varying covariates, and
on interactions between time and covariates. It is shown that the prob-
lems of selection bias, unobserved heterogeneity, and reverse causation
can hamper the causal interpretation of effects.

Section 4.7 presents models which can be used when there are different
types of events. These models are often called competing risks models.
The most general class of event history models, i.e., multivariate hazard
models, are presented in section 4.8. Included in the family of multi-
variate hazard models are models for repeatable events, multiple-state
models, models for clustered observations, and models for different types
of life-course events. Special attention is given to the relationship be-
tween discrete-time multiple-state models and the modified path models
discussed in Chapter 2, and to the problem of dependence among events.

It should be noted that in this chapter it is assumed that all covari-
ates are fully observed. Event history models with partially or totally
missing covariates are presented in Chapter 5. However, when discussing
particular problems associated with event history modeling, the use of
models with unobserved variables are sometimes mentioned as a possible
solution.

4.1 Why event history analysis?

In order to understand the nature of event history data and the purpose
of event history analysis, it is important to understand the following four



elementary concepts: state, event, duration, and risk period (Yamaguchi,
1991:1-3). These concepts are illustrated below using an example from
the analyses of marital histories.

The first step in the analysis of event histories is to define the rele-
vant states which are distinguished. The states are the categories of the
‘dependent’ variable the dynamics of which we want to explain. At every
particular point in time, each person occupies exactly one state. In the
analysis of marital histories, four states are generally distinguished: never
married, married, divorced, and widow(er). The set of possible states is
sometimes also called the state space (Tuma and Hannan, 1984:45).

An event is a transition from one state to another, that is, from an
origin state to a destination state. In this context, a possible event is ‘first
marriage’, which can be defined as the transition from the origin state,
never married, to the destination state, married. Other possible events
are: a divorce, becoming a widow(er), and a non-first marriage. It is
important to note that the states which are distinguished determine the
definition of possible events. If only the states married and not married
were distinguished, none of the above-mentioned events could have been
defined. In that case, the only events that could be defined would be
marriage and marriage dissolution.

Another important concept is the risk period. Clearly, not all persons
can experience each of the events under study at every point in time. To
be able to experience a particular event, one must occupy the origin state
defining the event, that is, one must be at risk of the event concerned.
The period that someone is at risk of a particular event, or exposed to
a particular risk, is called the risk period. For example, someone can
only experience a divorce when he or she is married. Thus, only married
persons are at risk of a divorce. Furthermore, the risk period(s) for a
divorce are the period(s) that a subject is married. A strongly related
concept is the risk set. The risk set at a particular point in time is formed
by all subjects who are at risk of experiencing the event concerned at that
point in time.

Using these concepts, event history analysis can be defined as the
analysis of the duration of the nonoccurrence of an event' during the risk
period (Yamaguchi, 1991:3). When the event of interest is ‘first marriage’,

!Other terms which are used instead of duration are waiting time, sojourn time,
and failure time.



the analysis concerns the duration of nonoccurrence of a first marriage,
in other words, the time that individuals remained in the state of never
being married. In practice, as will be demonstrated in section 4.3, the
dependent variable in event history models is not duration or time itself
but a rate. Therefore, event history analysis can also be defined as the
analysis of rates of occurrence of the event during the risk period. In
the first marriage example, an event history model concerns a person’s
marriage rate during the period that he/she is in the state of never having
been married.?

Why is it necessary to use a special type of technique for analyzing event
history data? Why is it impossible to relate the incidence of an event
within the period of the study to a set of covariates simply by means of, for
instance, a logit model, in which the binary dependent variable indicates
whether a particular event occurred within the observation period or not?
This is, in fact, what is generally done in the analysis of categorical data
collected by means of a two-wave panel. If using such a logit modeling
approach were a good strategy, it would not be necessary to use special
types of methods for analyzing event history data. However, as will be
demonstrated below, such an approach has some significant drawbacks.

Suppose there are data on intra-firm job changes of the employees
working at company ‘C’ which have to be used to explain individual dif-
ferences with regards to the timing of the first promotion. In other words,
the aim of the study is to explain why certain individuals in company ‘C’
remained in their first job longer than others. A single binary dependent
variable could be defined indicating whether a given individual received
a promotion within, for instance, the first five years after gaining em-
ployment in the company concerned. This dependent variable could be
related to a set of covariates, such as age, work experience, job level, edu-
cational level, family characteristics, and work-related attitudes by means
of a logit model.

Although such a simple logit approach can be quite valuable, it has
four important drawbacks (Yamaguchi, 1991:9). All of them result from
the fact that the choice of the period in which the event may have occurred
or not is arbitrary. The first problem is that it leads to a severe loss of

2While the aim of event history analysis is explaining the occurrence of events,
recently, Allison (1994) proposed methods for estimating the effects of events.



information since the information on the timing of a promotion within the
five-year period, on the promotions that occur after the five-year period,
and on the duration of the nonoccurrence of promotions after the five-year
period is not used.

The second problem of the approach with a single binary dependent
variable is that it does not allow the covariate effects to vary with time;
in other words, it cannot contain covariate-time interactions. Suppose
that the effect of the variable educational level changes with time, or
more precisely, that highly-educated employees have a higher probability
of being promoted in the first three years that they work at company ‘C’,
while less educated individuals have a higher probability after three years.
In that case, the results will heavily depend on the choice of the length of
the time interval. If a short time interval is used, a strong positive effect
of the educational level will be found, while longer intervals will lead to
a smaller positive effect or perhaps even to a negative effect of the same
explanatory variable.

The third disadvantage to the logit approach is that it cannot deal
with time-varying covariates. An example of a covariate that can change
its value during the five-year period is the number of children that some-
one has. It may be of interest to test whether the number of children a
woman has influences the probability of getting promoted. It is clear that
in a real dynamic analysis, it must be possible to use covariates which
change their value over time.

The last problem of the simple logit model is that is cannot deal with
observations which are censored within the five-year period. In this case,
there may be two types of censored observations: individuals who leave
before working five years at the company concerned and before getting
a first promotion, and individuals who had worked less than five years
at company ‘C’ and had not yet been promoted at the time that the
data were collected. These two types of observations have in common
that they provide the information that the event of interest did not occur
during a given period of time, but they do not provide information on
whether the event does occur during the remaining part of the five-year
period. Actually, censoring is a form of partially missing data. When
using the logit approach, it is not clear what should be done with such
censored observations. Ignoring the censored observations implies that
the information on non-promotion during a given period of time is not
used. On the other hand, incorporating the censored observations in the



analysis as observations on individuals that did not experience an event
adds information, namely, that they would not have experienced an event
if they had worked for at least five years at company ‘C’.

Clearly, special techniques are needed which overcome these disad-
vantages of the simple logit approach discussed above and which fully use
the richness of event history data. Before presenting these models, some
basic concepts have to be introduced.

4.2 Basic statistical concepts

The manner in which the basic statistical concepts of event history mod-
els are defined depends on whether the time variable T', indicating the
duration of nonoccurrence of an event, is assumed to be continuous or
discrete. Of course, it seems logical to assume 7' to be a continuous vari-
able. However, in many situations this assumption is not realistic for two
reasons. Firstly, in many cases, T' is not measured accurately enough to
be treated as strictly continuous. An example of this is measuring the
duration variable age of the mother in completed years instead of months
or days in a study on the timing of the first birth. This will result in
many women having the same score on 7', which is sometimes also called
grouped ‘survival’ times.

Secondly, the events of interest can sometimes only occur at particular
points in time. Such an intrinsically discrete T' occurs, for example, in
studies on voting behavior. Since elections take place at particular points
in time, changes in voting behavior can only occur at particular points in
time. Therefore, when analyzing individual changes in voting behavior,
the time variable must be treated as a discrete variable. However, if we
want to explain changes in political preference rather than in voting be-
havior, we again have a continuous time variable since political preference
may change at any point in time.

4.2.1 Continuous time

Suppose T' is a continuous non-negative random variable indicating the
duration of nonoccurrence of the event under study, in other words, the
time that the event under study occurred. Let f(¢) be the probability
density function of T', and F'(t) the distribution function of T'. As always,



the following relationships exist between these two quantities,

o - AI%I_I:OP(t<T<t+At) _ 8git)’
F(t) = P(T<t) /f

The survival probability or survival function, indicating the probability
of nonoccurrence of an event until time £, is defined as

S(t) = 1—F(t)=P(T > 1) / Flu

Another important concept is the hazard rate or hazard function, h(t),
expressing the instantaneous risk of experiencing an event at 7' = ¢, given
that the event did not occur before ¢. The hazard rate is defined as

L PEST<t+A4T>1) _ f(})
M) = Jfimg At = sy W

in which P (¢t <T <t + At|T > t) indicates the probability that the event
will occur during [t < T < t + At], given that the event did not occur
before . The hazard rate is equal to the unconditional instantaneous
probability of having an event at T = ¢, f(t), divided by the probability
of not having an event before T' = ¢, S(¢). It should be noted that
the hazard rate itself cannot be interpreted as a conditional probability.
Although its value is always non-negative, it can take values greater than
one. However, for small At, the quantity h(t) At can be interpreted as the
approximate conditional probability that the event will occur between ¢
and t + At.

Because the functions f(t), F(t), S(t), and h(t) give mathematically
equivalent specifications of the distributions of T, it is possible to express
both S(t) and f(¢) in terms of h(t). Since f(t) = —93S(t)/0t, Equation
4.1 implies that

—dlog S(t)
ot '

By integrating and using S(0) = 1, that is, no individual experienced an
event before T' = 0, the important relationship

S(t) = exp (— /0 th(u)d(u)) , (4.2)

h(t) =



is obtained. From Equations 4.1 and 4.2, it can be seen that the density
f(t) can also be written as a function of the hazard rate:

F) = RHSH) = h(t)exp (— /(fh(u)d(u)). (4.3)

Thus, both the survival function and the density function of 7' can be
written in terms of the hazard function.

4.2.2 Discrete time

Suppose T is a discrete random variable indicating the time of occurrence
of an event, and ¢; is the /th discrete time point, where 0 < ] < ty <

. < tz+, with L* indicating the total number of time points. If the
event occurs at t;, this means that the event did not occur before #;, in
other words, that the duration of nonoccurrence of an event equals ¢;_1.
It should be noted that this is slightly different from the continuous-time
situation in which 7" indicates both the time that an event occurs and the
duration of nonoccurrence of an event.

The probability of experiencing an event at T = #; is given as

ftt) = P(T=t).

The survivor function, which indicates the probability of having an event
neither before nor at 7' = t;,3 is

L*
St) = P(T>t) = > fltw).
k=41
An important quantity in the discrete-time situation is the conditional
probability that the event occurs at T' = ¢;, given that the event did not
occur prior to T' = t;. It is defined as

f(t)
S(t_1)

Similar to the way f(¢) and S(t) are expressed in terms of h(t) in con-
tinuous time, f(¢;) and S(¢;) can be expressed in terms of A(f;). Since

ANt;)) = P(T=4T>1t) =

81t should be noted that some authors define the survival probability in discrete-time
situations as the probability of not having an event before t;: S(t;) = P(T > t;).



f(t) =Sti-1) — S(t),

Sty =St) S(ty)
o - S g0,

Rearrangement of this equation results in
St) = S(ti—1) [1 = At)] -

Once again, using S(0) = 1 leads to the following expressions for S(t;)
and f(t;):

l

St) = JIL-=At)], (4.5)
k=1

ft) = At)S(ti1) = At) H : (4.6)

Because \(t;) is defined in much the same way as the continuous-time haz-
ard rate h(t), it is sometimes called a hazard rate (Yamaguchi, 1990:17;
Blossfeld, Hamerle, and Mayer, 1989:106). This is, however, not com-
pletely correct since a hazard rate is an instantaneous (conditional) prob-
ability, and therefore a continuous-time quantity. Nevertheless, it is pos-
sible to calculate the hazard rate h(t) from A(#;) and vice versa. As can
be seen from Equation 4.4, the conditional probability of experiencing an
event at ¢; equals one minus the probability of surviving between ¢;_; and
t;. Using h(t), this can also be expressed as follows:

M) = 1-—exp <— ttl h(u)d(u)> . (4.7)

If the hazard rate is assumed to be constant in time interval ¢; and if
the length of time interval ¢; is 1, the expression in Equation 4.7 can be
simplified to

Alt) = 1—exp(—h(t;)) .
This gives the following hazard rate in time interval ¢;:

h(t) = —log(1—A(#)) (4.8)



The quantity h(t;) could be called a discrete-time hazard rate, or an
approximation of the hazard rate in the [th discrete time interval. Note
that the relationship between h(¢) and A(#;) as expressed in Equation 4.7
is only meaningful if the event can occur at any point in time, that is, if
time is a continuous variable which is measured discretely.

4.3 Hazard rate models

4.3.1 The form of the dependent variable

As defined above, the duration of nonoccurrence of the event under study
in an event history model is related to a set of covariates. However, to
be able to formulate a regression analytic model for event history data, it
first has to be decided which is the best form of the dependent variable.
There are at least four candidates for this purpose, namely, duration or
time (7), the density of T' (f(t) or f(#;)), the survival function (S(¢) or
S(t;)), and the hazard rate (h(t)) or, in discrete time, the conditional
probability A(¢;). It is clear that the best candidate is the one which
overcomes all the problems associated with the simple logit approach
discussed in section 4.1. This means that an event history model must
make it possible to

1. use all the information on the duration of the nonoccurrence of an
event,

2. specify time dependent effects of covariates (covariate-time interac-
tions),

3. use time-varying covariates,
4. use censored observations.

The simplest solution seems to be to use T or some transformation of
T, such as logT, as the dependent variable in an ordinary regression
model. Models in which logT is linearly regressed on a set of covari-
ates are known as accelerated failure-time models (Cox and Oakes, 1984:
section 6.3; Lancaster, 1990:40). Accelerated failure-time models use all
the information on the duration of nonoccurrence of an event. Moreover,
censored observations can be dealt with by estimating the models using



maximum likelihood with missing data. In accelerated failure-time mod-
els, it is, however, not possible to let the effects of covariates change with
time nor to use time-varying covariates.

As was demonstrated in the previous section, the remaining candi-
dates give equivalent descriptions of the information on the duration of
nonoccurrence of an event. Like T' or logT, the density function, the
survival function, and the hazard rate fulfill the first and last requisite.
As in accelerated failure-time models, the censoring problem is solved by
using maximum likelihood methods for obtaining estimates of the model
parameters. With respect to the second and third requisite, that is, with
respect to the dynamic character of event history analysis, the most natu-
ral dependent variable seems to be the hazard rate. Modeling the hazard
rate is a logical dynamic extension of the simple logit approach presented
above in which the probability of occurrence of an event in a period of five
years was modelled. By modeling the hazard rate, it becomes possible to
regress it both on covariates and on time. When time is entered as an
independent variable in the model, it is a rather straightforward proce-
dure to include time-covariate interactions, that is, to allow the covariate
effects to be time dependent. Moreover, the hazard rate at T' = ¢ can be
related to the covariate values at T' = ¢, which means that the covariates
may be time-varying.

Besides the hazard rate, f(¢) and S(¢) can also be used as dependent
variables in an event history model. However, contrary to the hazard
rate, it is prohibitively complicated to take the dynamic character of the
process under study into account when modeling either the unconditional
(instantaneous) probability of experiencing an event at T = ¢ or the
survival probability. As was mentioned above, the hazard rate at T = ¢
depends only on the conditions at T' = ¢, that is, on the covariate effects
and covariate values at 7' = t. On the other hand, both S(¢) and f(%)
depend on the circumstances encountered between 7' = 0 to 1" = ¢t or,
more precisely, on the covariate effects and covariate values on the hazard
rates between 1" = 0 and 1" = ¢. This can be seen in Equations 4.2 and
4.3, which describe the relationships between the survival, density, and
hazard function.

Because of the necessity of cumulating the covariate effects between
T = 0 and T = t if the covariate effects change with time or if there
are time-varying covariates, it is, compared to h(t), relatively difficult to
regress S(t) or f(¢) on a set of covariates. It is for this reason that the



hazard rate is generally used as the dependent variable in event history
models. Sometimes, S(¢) is used for this purpose when there are only
time-constant covariates which effects do not change with time. The
same arguments in favor of using h(t) as the dependent variable in the
continuous-time case do also apply for A(#;) in the discrete-time case.

Here, attention is focussed solely on event history models in which
h(t) or A(t;) is used as the dependent variable. These regression models
are also called hazard rate models or simply hazard models.*

4.3.2 Types of hazard models

The classification which is used in most textbook on hazard modeling is
the distinction between parametric models, Cox’s semi-parametric model,
and discrete-time models (see, for example, Kalbfleisch and Prentice,
1980; Blossfeld, Hamerle, and Mayer, 1989; Yamaguchi, 1991). Paramet-
ric models and Cox’s semi-parametric model are used for continuous-time
event history data.

The two continuous-time methods differ from each other with respect
to the treatment of the time dependence of the hazard rate. In parametric
models, the time dependence is assumed to have some known functional
form. Well-known parametric models are the exponential model, the
Weibull model, the Gompertz model, and the log-logistic model (Lawless,
1982; Blossfeld, Hamerle, and Mayer, 1989:50-55). On the other hand,
if the time dependence is not parameterized, i.e., if no model is specified
for the time dependence, a semi-parametric hazard model is obtained.
Because the semi-parametric hazard model was first proposed by Cox
(1972), it is often called the Cox semi-parametric hazard model or the
Cox proportional hazard model; the meaning of the term proportional
will be explained below.

The distinction between parametric and semi-parametric models is
not as relevant when dealing with discrete-time models. The reason for
this is that both the parametric and semi-parametric models can be spec-
ified with the same discrete-time methods. More precisely, by specifying
one time parameter for every discrete time point, a model is obtained that
is similar to the semi-parametric hazard model, while more parsimonious

Tt should be noted that the term hazard model is not always correct in discrete-
time situations because there we often model the conditional probability A(¢;) instead
of the hazard rate.



specifications of the time dependence, such as polynomials, lead to mod-
els similar to the parametric hazard models (Allison, 1982; Yamaguchi,
1991:17).

Another related approach to the analysis of event history data is the
use of non-parametric methods. These methods, such as demographic
life-table methods (Elandt-Johnson and Jonhson, 1980; Namboodiri and
Suchindran, 1987) and Kaplan-Mayer’s (1958) product-limit estimates for
the hazard rates, have in common that the dependence of the hazard rate
on covariates is not parameterized. In that sense, they are not real models
but tools for the description of event history data. Since these methods
fall outside the scope of this book, they will not be discussed in further
detail.

Two special families In addition to the three above-mentioned types
of hazard models, two special families can be distinguished: proportional
hazard models and log-linear hazard models (Lancaster 1990:42-43).

Let h(t|x) be the hazard rate at T' = ¢ for an individual with covariate
vector x. When all regressors are time-invariant, a model of the form

Btx) = (®)a(x), (4.9)

in which k1 (¢) and k2(x) are the same functions for all individuals is called
a proportional hazard model. The reason for this is that the hazard rates
for two persons with regressor vectors x; and xz are in the same ratio,
ka(x1)/ke(x2), for all t. Proportional hazard models can be defined as
models in which the effect of T" and the total effect of X on the hazard rate
are multiplicative and in which there are no interaction effects between
T and X.

The concept of proportional hazard rates is especially relevant for
Cox’s semi-parametric model. The development of this model is based on
the feature that if the hazard rate can be assumed to be proportional, a
large simplification of inference in event history models is achieved. More
precisely, the proportionality assumption makes it possible to estimate the
unknown parameters of ka(x) without the necessity of specifying k1 (t).

Although Cox’s regression model is the best-known proportional haz-
ard model, some of the parametric hazard models also lead to proportional
hazard rates. Parametric models in which the effect of T' and X is mul-
tiplicative, such as the Weibull model, are proportional hazard models if



the effect of T' is assumed to be the same for all values of X. As the time
variable is treated in the same way as any other time-varying covariate in
discrete-time models, it depends on the inclusion of interaction terms be-
tween 1" and X whether a particular discrete-time model is a proportional
hazard model or not.

Another special family of hazard models include the log-linear type.
They have the form

J
log h(t|x) = Zﬁjkj[t,x(t)]. (4.10)
j=1

Here, k;[t,x(t)] denotes some known function either of T' or of the time-
varying or time-constant covariates X(t). The ;s are the log-linear pa-
rameters which can be effects of T', X, or both. Thus, a hazard rate
model is called log-linear if the log of the hazard rate is a linear function
of time effects and covariate effects.

It should be noted that these two special families are not exclusive
categories. A proportional hazard model may also be a log-linear hazard
model, namely, if ko(x) = exp(3_; Bjz). On the other hand, if there are
no time-covariate interaction effects, a log-linear hazard model will also
be a proportional hazard model.

Some parametric models, such as the exponential, the piecewise ex-
ponential, and the Weibull models, are log-linear or can be reparameter-
ized to be log-linear. Cox’s regression model is, likewise, log-linear. In
discrete-time methods, either a log-linear specification for the hazard rate
or a logit specification for the conditional probability of experiencing an
event at a particular point in time is used. While the concept of propor-
tional hazard rates was especially relevant for the development of Cox’s
semi-parametric model, the special family of log-linear hazard models is
particularly relevant in the context of this book because it deals with
event history analysis by means of log-linear analysis techniques. As will
be demonstrated in section 4.4, log-linear hazard models are, to a great
degree, related to the standard log-linear models which were discussed in
Chapter 2.

In summary, three fundamentally different types of hazard models were
distinguished: parametric hazard models, Cox’s semi-parametric propor-
tional hazard model, and discrete-time models. These models will be



presented in the next subsections. It was also shown that two special
families can be distinguished which contain models belonging to these
three main types.

4.3.3 Parametric hazard models

Let h(t|x) be the value of the hazard rate at T = ¢ for an individual
with covariate values x. As mentioned above, parametric hazard models
assume a particular functional form for the relationship between T and
the value of the hazard rate. There are many parametric models, such
as exponential, piecewise exponential, Weibull, Gompertz-Makeham, log-
logistic, log-normal, gamma, and inverse Gaussian models, the names of
which refer to the functional form which is chosen for one of the basic
functions h(t), f(t) or F'(t). In most textbooks on hazard models, a great
deal of attention is given to parametric hazard models (Elandt-Johnson
and Johnson, 1980; Kalbfleisch and Prentice, 1980; Cox and Oakes, 1984;
Lawless, 1982; Blossfeld, Hamerle, and Mayer, 1989; Lancaster, 1990).
Here, a few of the best known parametric models are presented to illus-
trate the main principles underlying parametric methods, and to show
some of the parameterizations which belong to the special families of
proportional hazard and log-linear hazard models. For the simplicity of
exposition, it will be assumed that the covariates are time-invariant. In
section 4.6, it will be demonstrated how to apply the hazard models which
are presented below when some of the covariates are time-varying.

The ezponential survival model is the simplest parametric hazard
model. It assumes exponential survival, or a time-constant hazard rate,
ie.,

J
htx) = exp | Bjzi

J=0

Here, g3; is an unknown parameter and z;; is the value of covariate j
for subject 7. Thus, the hazard rate depends only on the values of the
covariates X. Note that [y is the intercept which implies that x;p must
be one for all persons.

One possible extension of the rather restrictive exponential survival
model leads to the piecewise exponential survival model, in which the
hazard rate is assumed to be constant within time periods. In other words,



the hazard rate is a step function of T'. Suppose the time axis is split
into L* time periods with upper limits ¢;, such that 0 < t; < to... < tp~.
Moreover, let d; denote one of the L* indicator variables taking the value
1if ;1 < t < t;, and otherwise the value 0. This gives the following
hazard model:

J L*
h(t|lx) = exp (Z Bjzij + Zaldl> . (4.11)
j=1 =1

Note that the intercept [y is not included in the model in order to identify
all oy parameters. As a result, the o parameters can be interpreted as the
log hazard rate of an individual for which all covariates are equal to zero.
When the number of time intervals increases, it makes less sense to treat
this model as parametric (Lancaster, 1990:43). As will be demonstrated
in section 4.4, when the number of time intervals equals the number of
distinct times that events occur, a piecewise exponential survival model
is equivalent to a semi-parametric hazard model.

Another popular extension of the exponential model is the Weibull
model, which describes the monotonous time dependence of the hazard
rate by means of one additional parameter. It parameterizes the hazard
rate as

J
h(tjx) = exp (Z ,le'z'j> at® !,

=0

for @ > 0. Sometimes it is reparameterized as

J
h(t|lx) = exp (Z Biwij + o logt) ,
§j=0
in which o/ = a —1, 8 = Ina + f, and, for j =1 to J, §; = B;. Asis
shown in the last equation, the hazard rate depends on 7" in the Weibull
model, or equivalently, the log hazard rate on log T. If o equals 1, the
Weibull model becomes an exponential model. Values for o smaller than
1 indicate that the hazard rate declines as T" increases, while values larger

than 1 indicate that the hazard rate increases as 1" increases.
In the Gompertz-Makeham model, the hazard rate is given as

J
h(tjx) = a1 +exp (Z Bizij + agt) ,

3=0



with a; > 0. The difference with the Weibull model is that the log
hazard rate depends on T instead of logT. The a1 parameter denotes a
lower boundary of the hazard rate. By fixing «; = 0, a simpler model
is obtained which is called the Gompertz model, in which the log of the
hazard rate is simply a linear function 7.

A possible extension of the Gompertz model is a model in which the
time dependence of the hazard rate is parameterized by a higher order
polynomial function of T'. Such models can be used when there is a non-
monotonous time dependence of the hazard rate. A polynomial model of
degree K is

J K
h(tjx) = exp (Z,le'ij+zaktk) ;

7=0 k=1

in which the a}’s are the parameters associated with the time dependence
of the hazard rate. Instead of T, it also possible to use a polynomial
function of InT" (Clayton, 1983). In that case, an extension of the Weibull
model is obtained.

It can be seen that all parametric hazard models presented so far,
except for the Gompertz-Makeham model, are both proportional and log-
linear hazard models. They are proportional because the total effect of the
covariates influences the hazard rate multiplicatively and, moreover, there
are no time-covariate interaction effects. Note that the proportionality
assumption can be relaxed by allowing the o parameters to depend on
the values of particular covariates. The models are log-linear because the
log of the hazard rate is a linear function of time effects and covariate
effects.

An example of a hazard model which is neither proportional nor log-
linear is the log-logistic model. This is defined as

«
Q@ [exp (Z({ 53’33@']')] to-l
J (o'
1 + [exp (ZO ,Bjxij) t]
for a > 0. The log-logistic function can be used to describe non-monoton-
ous hazard rates, or more precisely, hazard rates that first increase then
subsequently decrease with time. The model is nonproportional because

the size of the hazard rate does not simply result from a multiplication of
the total covariate effect and the time effect. It is likewise not log-linear

h(t|x) =




because the log of the hazard rate is not a simple linear function of time
and covariate effects.

Estimation The parameters of parametric hazard models are generally
estimated by means of the maximum likelihood method. Let ¢; be either
the time that individual 7 experienced an event or the time that individual
1 was censored, that is, either individual 4’s survival or censoring time. Let
d; be a censoring indicator taking the value 0 if case i is censored and the
value 1 if case ¢ experienced an event. When the censoring mechanism can
be assumed to be independent (Lagakos, 1979; Kalbfleisch and Prentice,
1980:119-122), in other words, when the missing data can be assumed to
be ignorable for likelihood-based inference, the likelihood function to be
maximized can be written as

N N
£ o= J]fix)%Stlx)'=% = ] hti|x:)%S(t:x:)
=1 =1

_ i:ﬂlh(mxi)a exp <_ /Otih(u|xi)du> , (4.12)

In section 4.5, which deals with censoring, it will be explained under
which conditions this likelihood function is correct. When these condi-
tions are fulfilled, the contribution to the likelihood function of a person
who experienced an event is f(¢;|x;). Since only information on survival
until ¢; is available for censored observations, their contribution to the
likelihood function is S(¢;|x;).

For most parametric models, there is a tractable expression for the
survival function appearing in the likelihood function. With regard to the
models presented above, numerical integration in order to compute the
likelihood equations is only necessary for the polynomial model (Rohwer,
1993). The likelihood equations can be solved by the Newton-Raphson
algorithm or one of its variants (Petersen, 1986). In the case of log-linear
hazard models, it is also possible to use a simpler conditional maximiza-
tion method which is discussed in section 4.4 (Aitkin and Clayton, 1980).

The parametric models discussed above can be estimated by means
of standard programs for event history analysis. The best known pro-
gram is Tuma’s RATE program (Tuma, 1979). Recently, Rohwer (1993)
introduced his TDA program which at this moment is probably the most



complete for estimating parametric hazard models. In a series of work-
ing papers accompanying the TDA program, Rohwer gave an excellent
overview of the different parametric models and of the technical details on
obtaining maximum likelihood estimates of their parameters by means of
the Newton-Raphson algorithm. Using either RATE or TDA, it is possi-
ble to specify models in which the duration parameters (the a’s) depend
on the covariate values.

4.3.4 Cox’s semi-parametric hazard model

The use of the parametric models discussed above requires that the dis-
tributional form of T" is known. However, in many situations, there is no
a priori information on the time dependence of the process under study.
That is the main reason that Cox’s semi-parametric hazard model, which
does not parameterize the time dependence of the process, is so popular
in many research fields. More precisely, it involves an unspecified function
of T in the form of an arbitrary baseline hazard function. The relation-
ship between the covariates and the hazard rate is parameterized using a
log-linear model, which leads to

J
h(tlx) = ho(t)exp | > Bjzij | (4.13)
=1

in which ho(¢) is the unspecified baseline function. Note that the effect
of T, ho(t), is not allowed to depend on the covariate values as a result
of the proportionality assumption. Although the model represented in
Equation 4.13 seems to be very simple, the main problem associated with
it is how to estimate the  parameters without the necessity of specifying
ho(t). Cox (1972, 1975) proposed solving this problem by means of what
he called partial likelihood estimation.?

Estimation Assume that all events occur at distinct times, in other
words, that there are no tied durations.® To compute the partial likeli-

5The procedure is called partial likelihood because some information in the data
is not used for parameter estimation. More precisely, only the order in which events
occur is used, which means that the length of the time intervals between events is
disregarded (Cox and Oakes, 1984: section 8.4).

5Two durations are called tied if the two people concerned experienced the event of
interest at the same point in time. Ties are problematic in the partial likelihood method



hood function, the observations must be ordered on the basis of the length
of the duration t;, that is, t; < to < t3... < tn. The partial likelihood
function is formulated as

d;
NI h(t]x;) ri hO(ti)eXp(ZjIBjxij)
E ey _— =
PL z:l_[l _legvzih(ti|xk) Zzl_[l Zé\;l ho(ti) exp (Ejﬁjmkj)
N [ Bigis 0
- fifgraeds] iy
=1 | SR exp (2 Bawy)

in which h(t;|xy) is the hazard rate for subject k at T' = ¢, ¢; is either the
survival or censoring time of subject 7, and d; is a censoring indicator.

The partial likelihood is a product of conditional probabilities. Given
that an event occurred at ¢;, the :th conditional probability represents the
likelihood that the event will occur for the particular subject who actually
had the event at T' = ¢; rather than for any other subject who was at risk
T = t; (Yamaguchi, 1991:106). Note that the individuals who are at risk
at t; are those with a survival or censoring time which is greater than or
equal to ¢;. Since the partial likelihood is affected only by the relative
order of durations, information about the exact time that the events and
censorings occur is lost. It can be seen that the unspecified baseline
hazard ho(t) cancels out from the partial likelihood function described in
Equation 4.14.

By maximizing the partial likelihood as if it were an ordinary likeli-
hood function, maximum partial likelihood estimates for the 8 parameters
are obtained without the necessity of estimating the unspecified baseline
hazard function. Although particular information is lost when using this
method, it has been proven that it has all the essential properties, such
as consistency and asymptotic normality, under quite broad conditions
(Tsiatis, 1981; Andersen and Gill, 1982).

By using only the order in which the events occurred and by assuming
the hazard rate to be proportional, the partial likelihood provides a sim-
ple estimation procedure for the covariate effects without the necessity of
specifying the time dependence of the hazard rate. The semi-parametric

because it is based on the observed order between events and the order between tied
observations cannot be determined. Note that if T is strictly continuous, ties cannot
occur.



hazard model does, however, have two weak points: the proportionality
assumption is unrealistic in most applications and the non-availability of
time effects is problematic if one is interested in the duration dependence
of the hazard rate. A simple solution for these two problems is the inclu-
sion of a time-varying covariate indicating time or duration in the model
(Cox and Oakes, 1984:73; Yamaguchi, 1991:107-108). The time depen-
dence of the hazard rate can be detected by estimating the effect of this
time-varying covariate on the hazard rate. The proportionality assump-
tion can be relaxed by specifying models with interactions between ‘time’
and other covariates.

Because time changes continuously, in practice, time can only be used
as a time-varying covariate if it is treated as discrete. This means that
if time is included as a covariate in a semi-parametric hazard model, a
model is obtained that is very similar to both the piecewise exponential
survival model described in Equation 4.11, in which the hazard rate is
assumed to be constant within time intervals (see also section 4.4), and
the discrete-time methods which are presented in the next section.

Ties Above, the possibility that two persons have the same survival
times, or in other words, that there are ties in the data, was disregarded.
However, since duration is always measured discretely, in practice, equal
durations frequently occur. Several modifications of the partial likelihood
method have been proposed to deal with ties. The solution proposed by
Peto (1972) and Breslow (1974) on somewhat different grounds is the one
which is used most often. In the case of ties, the data must be ordered
such that t; < 9 < it3... <tpy. Because some t; are equal, the summation
over the risk set in the denominator of Equation 4.14 has to be changed.
Instead of starting from k£ = ¢, it must start from the smallest & for which
ty = t;: Everyone with either the same or a greater value of T' than ¢
belongs to the risk set at T' = t;. This principle can be formulated in
several equivalent fashions, such as

, (4.15)
i=1 Zk€(tk2ti) €xp (ZJ ﬁjkaj)




or

N exp (Zj ﬂjSi*j)
£ — g% °
t i*l_:Il [Zke(thti*) exp (ZJ' ﬁjwkj)] Z

(4.16)

Compared to Equation 4.14, in the first expression (4.15), only the index
of the summation in the denominator is changed to include all cases in
the risk set for which ¢, > ¢;. The second, somewhat more complicated
expression (4.16) is the one which is used most often. There, N* denotes
the number of distinct times at which one or more events occurred, t; a
particular time at which one or more events occurred, s;«; is the sum of
the values of the jth covariate for all individuals who experience an event
at T = t;~, and finally, n;~ is the number of events at 1" = t;~.

In section 4.4, the solution for ties as proposed by Breslow (1974)
is discussed in more detail. The resulting proportional hazard model is
shown to be equivalent to a proportional piecewise exponential survival
model with as many time categories as different observed times at which
events occurred.

4.3.5 Discrete-time models

When the time variable is measured rather crudely, which leads to many
ties in the data, or when the process under study is intrinsically discrete, it
is more appropriate to use one of the discrete-time event history models.”
These models involve regressing the conditional probability of occurrence
of an event in the /th time interval, given that the event did not occur
before this period, denoted by A(;), on a set of covariates. It must be
noted that when these probabilities are relatively small for all values of
T and X, the parameters of discrete-time models and continuous-time
models are very similar. The reason for this is that the hazard rate h(t)
and A(#;) have almost the same value if the hazard rate is small. On
the basis of the relationship between h(t) and A(#;) given in Equation
4.8, it can be seen that values of .1, .2, and .5 for A(¢;) correspond with
values of .105, .223, and .693 for A(t). This means that if all \(¢;) are

"For applications of discrete-time event history models in situations in which the
time dimensions is intrinsically discrete see, for example, Mare (1994) and Van Rees
and Vermunt (1996).



smaller than .1, discrete-time methods provide good approximations of
continuous-time methods.

There are several ways to parameterize the dependence of the condi-
tional probability of experiencing an event on time and on covariates. The
most popular choice is the logistic regression function (Cox, 1972; Myers,
Hankley, and Mantel, 1973; Brown 1975; Thompson 1977; Allison, 1982)

exp (Oél + 25 ﬁjxij)
1+exp (ozl + Zj ,Bjxij) 7

which leads to the well-known discrete-time logit model

log {A(tﬂx)] ap + Zﬁjmij .
J

Altilx) =

1— A(ti|x)

Although the logistic regression model is a somewhat arbitrary choice, it
has several advantages: It constrains A(¢;|x) to between 0 and 1, and it is
computationally convenient because of the existence of sufficient statis-
tics.

On the other hand, as is demonstrated below, if one assumes that the
data are generated by a continuous-time proportional hazard model, it
is preferable to use the complementary log-log transformation for A(#;)
(Allison, 1982). It can be derived from Equation 4.7, that the conditional
probability of experiencing an event in ¢; can be written in terms of the
hazard rate as

t

At|x) = 1—exp <— h(u|x)d(u)> .

tr—1
If there is no information on the variation of the hazard rate within the

time intervals, it seems reasonable to assume that the hazard rate is
constant within each interval #;, or that

Aty|x) = 1—-exp(—h(t|x)At) , (4.17)

in which At; denotes the length of the /th time interval. This amounts
to assuming exponential survival within every particular time interval.
Suppose the following log-linear and proportional hazard model is postu-
lated:

h(t)|x)At; = exp (Oél'i‘Zﬁjwij) . (4.18)

J



Substitution of Equation 4.18 into Equation 4.17 yields

At|x) = 1—exp [— exp (al + Zﬂszj>] .

J

Rearrangement of this equation yields what is known as the complemen-
tary log-log transformation of the conditional probability of experiencing
an event at {,

log [—log (1 — A(ti]x))] = o+ Bjzi;.
J

The B parameters can now be interpreted as the covariate effects on the
hazard rate under the assumption that h(#;) is constant within each of
the L* time intervals. Since h(#;|x)At; appears at the left-hand side of
Equation 4.18 instead of h(t;|x), the estimates for the baseline hazard
rates or the time parameters must be corrected for the interval lengths
At;. The correct time parameter for the [th time interval equals oy —
In(At).

If the model is a proportional hazard model, that is, if there are no
time-covariate interactions, the 5 parameters of a complementary log-log
model are not sensitive to the choice of the interval lengths since At; is
completely absorbed into «;. This is the main advantage of this approach
compared to the discrete-time logit model, which is not only sensitive
to the choice of the length of the intervals, but also requires that the
intervals be of equal length (Allison, 1982). The reason for this is that
the interval length influences the probability that an event will occur in
the interval concerned, and therefore also the logit of A(¢;). Although
the complementary log-log model can handle unequal interval lengths in
proportional hazard models with one parameter for each time interval,
unequal time intervals are problematic when the time dependence is pa-
rameterized or when the model is nonproportional (Allison, 1982). Thus,
as long as the duration parameters are treated as nuisance parameters, as
in a Cox regression model, unequal interval lengths are allowed. If, how-
ever, the time dependence itself becomes the object of study, the time
intervals must be of equal length.

Estimation Cox (1972) proposed a partial likelihood estimator for the
discrete-time logit model which is analogous to the partial likelihood es-



timator for continuous-time data (see Equation 4.14). However, discrete-
time models are generally estimated by means of maximum likelihood
methods (Allison, 1982). From Equations 4.5 and 4.6, it is known that

Pl — At T =Mkl = 20 T (1= Aty
l l P k 1— )\(tl|X) Pt k 3

l
Slhlx) = 1‘[ At ]x)]

Just as in continuous-time models, f(#;|x) is the contribution to the likeli-
hood function for an individual who experienced an event and S(¢;|x) for
an individual who was censored. Let N denote the sample size, and let
l; denote the time interval in which the ith person experienced an event
or was censored. In that case, the likelihood function can be written as

N A X5 6 L
L= H[(%) H(l—A(tuxi))].

i=1 k=1

Let y; be a vector of /; indicator variables taking the value 1 if person ¢
experienced an event in T' = ¢;, and otherwise taking the value 0. In fact,
the first [; — 1 elements of y; are zero and the last one is equal to the
censoring indicator §;. Using this vector y; instead of §;, the likelihood
function becomes

H H KM)M (1 — Atg %))

i—1 k=1 Alte[xi

This is, actually, the likelihood function for regression models for binary
response variables (Brown, 1975; Allison, 1982). The only difference is
that there is not one observation per individual but [; observations per
individual, that is, one observation for each time interval in which the
individual concerned belongs to the risk set. Therefore, discrete-time
logit models can be estimated by means of standard software for logis-
tic regression analysis. The input should not consist of one record per
individual but one record for every period that an individual belongs to
the risk set. These records are sometimes called person-period records.
When all covariates are categorical, discrete-time logit models can also
be estimated using standard log-linear analysis programs, such as ECTA



(Fay and Goodman, 1975), FREQ (Haberman, 1988), GLIM (Baker and
Nelder, 1978), and YEM (Vermunt, 1993). In EM, a special option is
implemented which makes it possible to use person or episode records
as input instead of person-period records. The program generates the
contingency table which is used to obtain the parameter estimates. The
complementary log-log model can be estimated by means of GLIM (Baker
and Nelder, 1978).

4.4 Event history analysis using log-linear
models

Particular parametric hazard models as well as Cox’s semi-parametric
hazard model are based on a log-linear parameterization of the time and
covariate dependence of the hazard rate. This section discusses the re-
lationship between the log-linear models for frequency tables discussed
in Chapter 2 and log-linear hazard models. It is shown that log-linear
hazard models can also be written as ordinary log-linear models.

The piecewise exponential survival model (see Equation 4.11) is one
of the hazard models which belongs to the log-linear family. In this
continuous-time hazard model, the hazard rate is assumed to be constant
within time intervals. Holford (1980) demonstrated that the likelihood
function for a piecewise exponential survival model is proportional to
both a Poisson and a multinomial likelihood function. The consequence
is that when all covariates are categorical, the same estimation and test-
ing procedures can be used as in log-linear models for contingency tables
or, more precisely, as in log-rate models (see section 2.6) (Holford, 1976,
1980; Laird and Olivier, 1981). Laird and Olivier (1981) demonstrated
how to apply the log-rate model using grouped event history data. Thus,
log-rate models, like the discrete-time methods discussed above, can be
used to approximate the results of continuous-time models.

In addition to the piecewise exponential survival model, Cox’s semi-
parametric model (see Equation 4.13) can also be written as an ordinary
log-linear model. Holford (1976) demonstrated that Breslow’s maximum
likelihood procedure for Cox’s model (Breslow, 1972, 1974) is equivalent
to a piecewise exponential survival model with as many time categories as
distinct observed times at which events occur. Laird and Olivier (1981)
and Whitehead (1980) showed how to estimate Cox’s semi-parametric



hazard model using standard log-linear analysis programs.

Aitkin and Clayton (1980) and Clayton and Cuzick (1985) demon-
strated how to estimate a general class of log-linear hazard models by
a two-step conditional-maximization procedure which they implemented
in GLIM (Baker and Nelder, 1978). This conditional maximization pro-
cedure makes use of the fact that, given the values of the parameters
describing the duration dependence of the hazard rate, the likelihood
function for any log-linear hazard model is equivalent to the Poisson like-
lihood function.

Below, piecewise exponential survival models, Breslow’s maximum
likelihood approach to Cox’s semi-parametric model, and the estimation
of a general class of log-linear hazard models by means of log-linear Pois-
son models are discussed.

4.4.1 Piecewise exponential survival models

The piecewise exponential survival model, or piecewise constant hazard
model, described in Equation 4.11 can also be written down using the
notation introduced in Chapter 2. Let Z denote the time variable, z a
particular value of Z, and Z* the number of categories of Z. The starting
and end points of the Z* time intervals are (0,11], (t1,t2], ..., (tz=—1, 0],
in which the round brackets ‘(’ express that the starting points are ex-
cluded from the intervals and the square brackets ‘|’ express that the
end points are included. The end point of the last interval may also
be assumed to be equal to the longest observed duration or the longest
duration to be used in the analysis instead of occ.

Suppose there is a hazard model with 2 categorical covariates A and
B. Let hg, denote the constant hazard rate in the zth time interval for
an individual with A = ¢ and B = b. The saturated log-linear model
for the hazard rate hgp,, or the saturated piecewise exponential survival
model, is

log hay: = utug +uy +uf +ug” + il +upl? +ugl?, o (4.19)
in which the u terms are log-linear parameters which are constrained by
means of ANOVA-like restrictions. A proportional variant of the piece-

wise exponential survival model is obtained by assuming the two-variable
and higher-variable interaction terms involving Z to be equal to zero, i.e.,

oghapy = u+ul +ul +u? +udP. (4.20)



As demonstrated in the previous section (see Equation 4.12), maxi-
mum likelihood estimates for the parameters of parametric continuous-
time models can be obtained by maximizing

L = lj_vllh(mxi)éi exp (— /Otih(u|xi)du> .

If the hazard rate is constant within each of the Z* time intervals, the
likelihood function can also be written as

N Zz*

£ = TIII rGlx:)’ exp (—h(zlxi)ei)

i=1z2=1
in which e;, denotes the total time that individual 7 belongs to the risk
set in time interval z. It is also called the exposure time. Generally, e;,
is equal to t, —t, 1 for the time intervals before individual 7 experienced
an event or was censored, equal to ¢t; —¢,_; for the time interval in which
an event or censoring occurred, and equal to zero for the other time
intervals. Furthermore, §;, is an indicator variable taking the value 1 if
person ¢ experienced an event in time interval z, and otherwise 0.

Since A, B, and Z are categorical variables, the number of events and
the total exposure times can be represented in a cross-tabulation. Let
Ny, denote the number of events and E,;, the total exposure time in
time interval z for A = a and B = b. The tables with observed numbers
of events ng, and with the total exposure times E;, are generally called
the occurrence matrix and the exposure matrix. They are obtained by

N

Nab: = Y Oz Yiab
=1
N

Eop, = Zeiz Yiab
=1

in which ;44 is an indicator variable taking the value 1 if person ¢ has
A = a and B = b, and otherwise 0. When cross-tabulated events and
exposure times are used rather than the individual data, the likelihood
function for a piecewise exponential survival model with covariates A and
B can be written as

L = thabz exp (_haszabz) . (421)

abz
abz



As will be demonstrated below, this likelihood function (4.21) is propor-
tional to a Poisson likelihood function.

Suppose there is a frequency table for the variables A, B, and Z
with observed cell counts ng,,, which, conditional on F,;,, are Poisson
distributed with means my,. In other words, there is a Poisson model
for the rates mgp,/FEqp,, which is a log-rate model as discussed in sec-
tion 2.6. Under the Poisson sampling scheme, the likelihood function is
proportional to

L, = H mZE;’" exp (—Mgbz)
abz

= H (haszabz)nabz €xp (_haszabz) ’

abz

in which Ay, denotes the Poisson rate mgp,/Fgp,. It can now be seen
that the likelihood function for the observed Poisson counts ng;, given
E,. is proportional to the likelihood function described in Equation 4.21,
ie.,

L, = CL][EY:.

abz
abz
Since E#** is a constant that does not depend on the unknown parame-
ters which are to be estimated, piecewise exponential survival models with
categorical covariates can be estimated with the same estimation methods
as are used for the log-rate models discussed in section 2.6. Moreover,
piecewise exponential survival models can be written as log-rate models.
For instance, the proportional piecewise constant hazard model described
in Equation 4.20 can also be formulated as

log <mabz> = utul +uf +uf +uldP,
Eqp.

or

log map, = log Egp, +u+ ug‘ + uf + uzZ + ube , (4.22)
where mygp, is the expected number of events in time interval z among
persons with A = a and B = b. From Equation 4.22, it can easily be
seen that the piecewise exponential survival model is equivalent to the
log-rate model discussed in section 2.6. As in a log-rate model, the log of
the expected cell frequency is a linear function of a cell-specific constant
and a set of log-linear parameters.



Grouped duration data The log-rate model can also be used with
grouped duration data, which occur when there is only information on
the discrete time interval in which events and censorings occurred, in
other words, when the exact value of #; is not known, but only that
t,_ 1 < t; < t,. This implies that there is no exact information on the
length of the individual exposure times in the interval in which censoring
or an event occurs. This makes it necessary to approximate a person’s
exposure time in this interval. Generally, it is assumed that on average
censorings and events occur in the middle of the time interval concerned
(Laird and Olivier, 1981; Yamaguchi, 1991:81 ; Xie, 1994). Thus, the
only modification that is necessary in situations in which the observed
durations are grouped is that when computing the exposure matrix £ for
the interval in which an event or censoring occurred, e;, is not equal to
t; —t,_1, but equal to (t, —t,_1)/2.

This simple approximation procedure amounts to assuming that both
events and censorings are uniformly distributed within the discrete time
interval in which they occur. It is equivalent to assuming linear survival
within time intervals for events, which is not completely in accordance
with the postulated piecewise exponential survival model. However, if
the hazard rates are not too high, the resulting bias will be small.® Of
course, when there is additional information on the timing of events and
censorings within particular time intervals, this information can be used
to get better approximations of the true exposure times (Yamaguchi,
1991:84).

As mentioned in the previous section, discrete-time logit models and
discrete-time complementary log-log models can also be used to approx-
imate continuous-time hazard models when there are grouped duration
data. However, the logit specification is an arbitrary one which, more-
over, is sensitive to the choice of the length of the time intervals. The
complementary log-log transformation approximates the continuous-time

8Suppose that we know that the event of interest occurred in a time interval of
length A, and that h(t.) is the size of the constant hazard rate in this interval. In that
case, the mean fraction of A, that an individual is exposed to the event of interest
equals 1+ 1/(A;h(t.)) — 1/[1 — exp(—A;h(t.))] (Chiang, 1984:139; Willekens, 1990).
This quantity is close to .5 for almost all relevant values of h(t.) and A,. For instance, if
A =1, it ranges from .492 when h(t.) = .1 to .459 when h(t.) = .5. Therefore, Petersen
(1991) concluded with respect to the approximation of exposure times: ‘Thus, a good
rule of thumb is to assign the duration that lies at the midpoint of the window within
which the true duration lies.’



proportional hazard model in that it assumes exponential survival within
time categories, and the occurrence of censorings at the end of the time
intervals. However, unequal time intervals are problematic when the time
dependence is restricted in some way or when the hazard rate is assumed
to be nonproportional. The main advantage of the log-rate model com-
pared to the complementary log-log model is that unequal time intervals
are never problematic. Another advantage is that log-rate models can be
estimated using widely available programs for log-linear analysis.

Non-hierarchical models Until now, only hierarchical log-rate mod-
els have been given consideration. However, by using a more general
formulation, it is also possible to specify non-hierarchical models. In its
most general form, the log-rate model can be written as

log My, = log E;, + Zﬂjxizj , (4.23)
J

in which z;,; denotes an element of the design matrix and 3; a particular
log-linear parameter. The index ¢ refers to a category of the joint variable
formed by all the independent variables, and z to a category of the time
variable. From the appearance of the index z in x;,;, it follows that the
design matrix also includes the time variable and that covariate effects
may be time dependent.

Perhaps the most interesting kinds of restrictions that can be imposed
with the design matrix appearing in the general model given in Equation
4.23 are restrictions on the time parameters. Yamaguchi (1991:75-77)
proposed approximating the Gompertz and Weibull models by means of
a step-functional characterization of ¢ and In(¢). Suppose that the first
parameter in Equation 4.23, (i, is the intercept and that the second
parameter, (39, is the restricted time effect. Furthermore, let z denote the
middle of the zth time interval, Z = ({,_1 + ¢,)/2. An approximation of
the Gompertz model is obtained by specifying the elements z;,o of the
design matrix to be equal to zZ. In a Weibull model, we would replace
z by logz. It is also possible to use higher-order polynomials of z or
(log z) to describe the time dependence of the hazard rate. Moreover,
these restricted time effects can also be used in time-covariate interaction
terms.

Recently, Xie (1994) presented another parsimonious method of spec-
ifying time-covariate interactions in log-rate models. He proposed using



a log-multiplicative parameterization of time-covariate interaction terms.
In fact, it is an application of the row and column effects model type 1T
discussed in section 2.7 (Goodman, 1979; Clogg, 1982).

Contrary to what is stated by Holford (1980) and Laird and Olivier
(1991), log-rate models can also be used when particular covariates are
continuous. In the same fashion that a logistic regression model is ob-
tained from a logit model by including continuous covariates (see section
2.8), the log-rate model given in Equation 4.23 can be used with continu-
ous covariates. In that case, individual data have to be analyzed instead
of cross-tabulated data, which implies that the index ¢ appearing in Equa-
tion 4.23 denotes a particular observation rather than a level of the joint
independent variables, which also means that E;, = ¢;, and n;, = d;,.

Testing In addition to the estimation procedures available for log-linear
modeling, the testing procedures can also be used in log-rate models. The
estimated expected number of events, mg;,, can be compared with the
observed number of events, ngp,, using either the Pearson’s chi-squared
statistic or the likelihood-ratio chi-squared statistic (see section 2.4). As
in logistic regression models, the fit of hazard models with continuous
covariates cannot be tested because of sparseness of the ‘table’ which is
analyzed. Nevertheless, it is possible to test the significance of particu-
lar effects by means of conditional likelihood-ratio chi-squared tests (see
section 2.4).

Computer programs Hierarchical log-rate models, such as the one
represented in Equation 4.22, can be estimated using log-linear analysis
programs which are based on the IPF algorithm. However, the program
must calculate the parameters using mean removal on the cumulated mul-
tipliers of the IPF cycles in order to get correct parameter estimates (see
Appendix A.1). The LOGLIN (Olivier and Neff, 1976) and £EM (Ver-
munt, 1993) programs use this procedure. Log-rate models of the general
form described in Equation 4.23 can be estimated using programs for
log-linear analysis which use a Newton algorithm, such as FREQ (Haber-
man, 1979) and SPSS Log-linear. In £EM, such models are estimated
by means of the uni-dimensional Newton algorithm. A special feature of
{EM is that, as opposed to standard programs for log-linear analysis, the
user does not need to supply the occurrence and exposure matrices as



input since these are generated by the program itself, where the exposure
time within the time interval in which censorings or events occur can be
specified by the user. Moreover, it is possible within £EM to estimate
models which contain the log-multiplicative interaction terms proposed
by Xie (1994).

4.4.2 Estimation of Cox’s semi-parametric model

Breslow (1972, 1974) proposed estimating the 8 parameters and the base-
line hazard rate ho(t) of the Cox semi-parametric model (see Equation
4.13) simultaneously by means of maximum likelihood. Holford (1976)
and Laird and Olivier (1981) demonstrated that Breslow’s approach was
a special case of the piecewise exponential survival model, that is, a pro-
portional model with as many time intervals as distinct observed times
at which events occurred.

Breslow’s approach is as follows. First, as in the partial likelihood
approach, the N cases must be ordered according to their observed du-
rations ¢;. Then, the time axis has to be divided into Z* intervals, where
Z* equals the number of distinct times that events occurred. The end
points of the time intervals, denoted by t,, correspond with the durations
at which events occur. Each censoring is assumed to have occurred at
the nearest preceding event and the hazard rate is assumed to be con-
stant within time intervals just as it would be in a piecewise exponential
survival model. An equivalent approach is to assume the hazard rate to
be zero everywhere except at the observed times at which events occur
(Cox, 1972; Holford, 1976; Laird and Olivier, 1981). The latter approach
does not require shifting the censored observation to the nearest previous
event.

Suppose there is a semi-parametric hazard model, or equivalently, a
piecewise exponential survival model of the form

J
M) = holz)exp 3 B | | (1.24)
7j=1

in which hy(z) denotes the baseline hazard rate in time interval z. Note
that the hazard rate is assumed to be proportional since the model does
not contain interactions between the covariates and time.



The likelihood function for the model described in Equation 4.24 can
be obtained by substituting h(z|x) into Equation 4.21, i.e.,

N ZzZ*

£ = TITII #zlx)’= exp (—h(zxi)eiz)

i=12z=1

Nz iz
= II1I [ho(Z) exp (Z ﬁjwz‘j)]
i—12=1 J

exp [ho(z) exp (Z 5ja;ij) €iz] } , (4.25)
J

in which e;, equals t, —t,_1 if subject 7 neither experienced an event nor
was censored before t,, in other words, if subject 7 belongs to the risk set
at Z = z. Setting the first order derivatives of the log likelihood with
respect to ho(z) equal to zero yields the following maximum likelihood
estimate for ho(z):
N
ho(2) = izt Oic . (4.26)
S exp (3, Bwis) e

Substitution of this estimate of hy(z) into Equation 4.25 yields

exp (Z ; ﬂjﬂ?ij) -
X 0s2 .
P (Z > [Zz 1 €Xp (Z 5szj) ezz]

As only one 6;, is 1 for each 7, the product over z is redundant. Because
e;, = 0 for all persons who are not at risk, the sum over 7 in the denom-
inator consists of the persons at risk at Z = z. Note that e;, takes the
same value for every person at risk, ¢, —¢,_;. This leads to the following
simplification:

iz

- 1T (50

i=1z2=1

- 11

=1

[ = (£ 652 c, (4.27)

Dke(ty>t;) €XP (Z Bjxkrj)
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exp Oix () .



It can be seen that, with the exception of the constant C', Equation 4.27
is equivalent to both Equation 4.14 and Equation 4.15. This implies that
if the data contains no ties, a proportional piecewise exponential survival
model in which the end points of the time intervals are defined by the
event times and in which the censorings are assumed to occur at the near-
est preceding event time is equivalent to Cox’s semi-parametric model. If
the data contains ties, the maximum likelihood approach leads to the
solution for ties proposed by Breslow (1972, 1974), which is described in
Equation 4.15.

The consequence of the equivalence with the exponential survival
model, and therefore with the log-rate model, is that Cox’s semi-para-
metric model can be estimated using standard programs for log-linear
analysis. Whitehead (1980), for instance, showed how to estimate the
Cox model with the GLIM program using a log-linear Poisson model.

4.4.3 Estimating log-linear hazard models with log-linear
Poisson models

Above, it was demonstrated that both the piecewise exponential sur-
vival model and the Cox model can be estimated by means of log-linear
analysis techniques. Aitkin and Clayton (1980) proposed estimating the
parameters of a general class of continuous-time log-linear hazard models
using the equivalence between the Poisson likelihood and the likelihood
for log-linear hazard rate models.

Let h(t) denote the baseline hazard and H(t¢) denote the cumulative
baseline hazard, fg h(u)d(u), belonging to a particular parametric hazard
model. If the hazard model is log-linear, the likelihood function can be
written down as

N b
L H [h(t) exp (Z ﬁg%)] exp [—H(ti) exp (Z ,BJ:U”)]
J J

=1

|
=

[m? exp (—my)] [n(t:)/H (£:))"

=1

in which

m; = H(tz) exp (Z ﬁjxij) .
7



The first term in the likelihood function, mfi exp (—m;), is equivalent to
the kernel of the likelihood function for N independent Poisson variates
0; with means m;. The second term does not contain [ parameters. It de-
pends only on the o parameters associated with the duration dependence
of the process.

Aitkin and Clayton (1980) proposed estimating the « and 8 param-
eters by means of a simple two-step conditional maximization method.
First, the § parameters can be estimated using the log-linear Poisson, or
log-rate, model given the current estimates for the unknown parameters
determining H(t;), i.e.,

logm; = log H(tl) + Zﬁjmij , (4.28)
J

in which H(t;) is treated as a weight vector, or in the GLIM terminol-
ogy used by the authors, log H(¢;) is an offset. In the second step, new
estimates for the a parameters must be obtained. Of course, the exact
relationship between H(t) and « depends on the parametric model that is
chosen (see below). This two step algorithm continues until convergence
is reached.

Although the hazard rate is assumed to be proportional in the model
given in Equation 4.28, it is also possible to make the o parameters de-
pendent on covariate values. However, then h(t;) and H(t;) are subgroup
specific. If y is used as an index for the variable interacting with the time
dependence, h(t;) and H(t;) have to be replaced by hy(t;) and Hy(t;) in
all of the given formulas.

The simplest log-linear hazard model is the exponential model in
which the cumulated baseline hazard, H(t), equals ¢. As a result, the
estimates for the § parameters can be obtained by using logt; as a fixed
effect in a log-linear model in which the censoring indicator ¢; is treated as
an observed Poisson count. The second step is not necessary because the
second part of the likelihood function presented above does not contain
unknown parameters. More precisely, it equals 1/¢;.

As h(t) = at®! and H(t) = t* in Weibull models, alogt must be
used as an offset when obtaining new £;’s in the first step of a particular
iteration. In the second step, a new « is obtained by

N
Efil (mz — (51) log ti '




Although the expressions for H(t;) and the o parameters may become
more complicated, the same principles apply to any parametric hazard
model which belongs to the log-linear family.

Clayton and Cuzick (1985) demonstrated that a similar two step max-
imization method can be used to obtain maximum likelihood estimates
for the parameters of Cox’s semi-parametric proportional hazard model.
Suppose that there are N* distinct times that events occur, which are de-
noted by t;+. As demonstrated above, the maximum likelihood estimates
for the baseline hazard parameters can be obtained using Equation 4.26.
If, as Cox did, it is assumed that the hazard rate is zero everywhere ex-
cept where an event occurs, the formula for the baseline parameters can
be simplified to

ho(tir) = = , (4.29)
Ztkzti* exp (Zj ,ijij)

in which n;« indicates the number of events in ¢;+. The cumulated haz-
ard function for person k with observed survival time 5, H (), equals
2t,.<t, Po(ti=). Again, the algorithm consists of two conditional maxi-
mization steps. First, new estimates of the § parameters are obtained
by means of a log-linear Poisson model for the censoring indicator §; in
which log H(t;) is used as a fixed effect. In the second step, new hg(t;-)
are calculated by means of Equation 4.29. These quantities are used to
obtain a new H (t;) for each person. Contrary to the procedure presented
above, Clayton and Cuzick (1985) called this two step procedure an EM
algorithm, in which the computation of hg(t;+) and H(tg) form the E
step. The reason for this is that the cumulated hazard rate H(t) can be
seen as an unobservable quantity in the semi-parametric hazard model.

4.5 Censoring

Event history techniques are used to explain individual differences in the
duration of nonoccurrence of a particular event. For that purpose, it
is necessary that there be, in addition to information on the covariates
determining the process under study, information on the calendar time
of entry into the risk set (73) and on the calendar time of occurrence of
the event (7.). The duration of nonoccurrence of an event, T, is defined
as T, — Tp. It often occurs that information is missing on 73, 7., or both
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Figure 4.1: Six different types of observations

for some of the subjects involved in the study. This means that T is
also unknown. Observations with this type of missing data are called
censored observations. One of the strong points of hazard models is that
they can deal with several kinds of censored observations. As in the
log-linear models for nonresponse discussed in Chapter 3, hazard models
make it possible to include particular types of partially observed data in
the analysis under certain plausible assumptions.

It is possible to illustrate the different kinds of (missing) observations
that can occur by giving a hypothetical example. Suppose the aim of a
study is to explain the duration preceding the first promotion of employees
of a particular company. For that purpose, data are collected from 7y to
71, in which 7 again denotes calendar time. The period from 7y to 7|
is called the observation period. Figure 4.1 depicts six different types of
observations. A solid line indicates the risk period, an ‘*’ at the right hand
side of a line indicates that risk period ended because of the occurrence
of the event under study, and an ‘o’ indicates that a person has been
removed from the risk set as a result of the occurrence of an event other
than the event of interest.

Person A started working at the company after 79 and experienced



the event, the first promotion, before 7. Therefore, the complete dura-
tion of nonoccurrence of the event of interest is known for observation A.
Observations B and C are examples of right-censored cases. It is known
for observations B and C when they entered into the risk set, but it is not
known when they will experience their first promotion. Although both
cases are right-censored, their censoring has different causes. Observation
C is censored because the observation period ended, while observation B
is censored as a result of the occurrence of another event which removed
it from the risk set, for example, a voluntary job change to another em-
ployer. Case D is (fully) right-censored, since neither the time of entry
into the risk set nor the time of occurrence of an event is known. This
case represents a future employee of the company. Case E is an individ-
ual who was given his first promotion before the start of the observation
period. It is a (fully) left-censored case. Like case D, both the time of
entry into the risk set and the time of experiencing an event are unknown.
Finally, case F is a left-censored observation. It represents an individual
who started working at the company before 79 and who experienced an
event during the observation period. Since the time of entry into the risk
set is unknown, it is also unknown how long it took for an event to occur.
It must be noted that for cases like F, information on the time of entry
into the risk set is sometimes collected retrospectively.

Hazard models can deal with right-censored observations under quite
mild conditions. Left censoring is a more complicated matter. However,
when 7, is known, there is a simple solution for left censoring which is
comparable to the way in which right-censored observations are dealt
with. It is important that the procedures which are used for handling
right- and left-censored observations satisfy two conditions: they must use
as much of the available information as possible, and they must prevent
sample selection bias as much as possible. Selection bias means that
individuals with certain values of the dependent variable, in this case the
duration of nonoccurrence of an event, have a higher or lower probability
of being included in the sample than other persons.

4.5.1 Right censoring

There are at least three possible approaches to right censoring problem
(Tuma and Hannan, 1984:119): 1] ignoring censored observations and
analyzing only the cases who experienced an event; 2] treating censored



observations as though events occurred at the censoring times; 3] using
methods of estimation that make use of the partially observed information
while making certain assumptions with regards to censoring mechanism
which are analogous to response mechanisms.

The first solution may lead to a considerable loss of information, since
it neglects the information that a particular person did not experience an
event during a particular period. Moreover, deleting the censored ob-
servation from the analysis may lead to sample selection bias, because
censored observations generally have longer durations than noncensored
observations. In other words, the hazard rate for censored cases dur-
ing the risk period will be lower than the hazard rate for noncensored
cases. Thus, by deleting the censored cases, the estimated hazard rates
for groups with large numbers of censored cases will be biased upwards.

The second solution, in which the times at which the event of interest
occurred are treated as censoring times is even worse because nonexistent
or wrong information is added to the data. Therefore, recoding non-events
as events will generally make the results of the analysis meaningless.

The best way to deal with right-censored cases is to use estimation
methods which use this type of partially observed data under certain
plausible assumptions. As is shown below, it is relatively easy to use
right-censored observations for parameter estimation as long as the miss-
ing data mechanism can be assumed to be ignorable for likelihood-based
inference (see also section 3.2).

Censoring mechanisms In the fields of engineering, medicine, and
the biological sciences, a great deal of attention has been given to right
censoring (Kalbfleisch and Prentice, 1980:39-41; Lawless, 1982). In these
fields, hazard models are often used to analyze data collected by means of
experimental designs. Experimental studies in which, for instance, a new
type of apparatus or a new lung cancer medication are tested, generally
prevent the occurrence of left-censored data, but right-censored data are
unavoidable for two reasons. First, the experiment is generally ended
before all of the apparatus fail or all of the subjects die. Second, other
events may occur which remove machines or persons from the risk set.
A machine may fail as a result of another cause than the one of interest,
and an individual’s cause of death may not be lung cancer.

If there are right-censored observatious, it is relatively easy to derive



the likelihood function if, at each ¢ given the covariate values x, the cen-
soring rate is independent of the rate of occurrence of the event under
study, in other words, if individuals are not censored because they ap-
pear to have high or low risks of experiencing an event. Actually, this is
analogous to assuming MAR (missing at random) nonresponse in a panel
study with a monotonous missing data pattern. In the context of panel
analysis, nonresponse is said to be MAR if, for someone who responded
at T =t — 1, the probability of nonresponse at 1" = ¢ is independent of
the values of the variables at 7' = ¢, though it may depend on the values
of the variables before T' = t (see section 3.2). The same formulation can
be applied to right censoring, which is, likewise, a monotonous missing
data pattern. The data are MAR if, for someone who is at risk at T' = ¢,
the probability of censoring in the interval [t,¢ + At] is independent of
the state occupied at ¢t + At, given the observed covariate values. Since
the state occupied at ¢t + At is determined by the hazard rate at T' = ¢ for
someone who is at risk at T' = ¢, it can also be said that the censoring rate
must be conditionally independent of the hazard rate. In the biometrical
literature, this form of censoring is most often referred to as independent
right censoring (Kalbfleisch and Prentice, 1980:120) or non-informative
right censoring (Lagakos, 1979).

In experimental settings, conditional independence between the haz-
ard rate and the censoring rate is usually fulfilled. Two well-known special
cases of independent censoring which often occur in experimental studies
are Type I censoring and Type II censoring (Kalbfleisch and Prentice,
1980:39-41; Lawless, 1982). Type I occurs when a study is stopped after
a fixed time period, while Type II entails that a study continues until a
particular number of events have occurred. In both cases, all censored
observations are censored at the same value of T'. It is clear that in nei-
ther of these cases is the censoring rate related to the hazard rate of the
event under study since all persons at risk have the same probability of
being censored, that is, a probability of zero before the point in time that
censoring occurs and a probability of one at the point in time that censor-
ing occurs. However, one cannot be sure that the censoring mechanism
is independent of the process under study if observations are censored as
a result of other kinds of events, such as other causes of failure or other
causes of death.

The mechanism causing the censoring of observation C in Figure 4.1
is very similar to Type I censoring since observation C is censored as a



result of the cessation of the observation period. However, contrary to
the experimental context on which Type I censoring is based, observations
like C enter into the risk set at the different points in calendar time (73)
in a survey context. As a result, both the duration in which censoring
occurs (t = 7 — 7,) and the censoring rate will depend on 7;,. More
precisely, there is, depending on 73, a probability of one or zero that a
given individual will be censored at a particular ¢. The implication of
this is that the censoring mechanism is not MAR if the hazard rate also
depends on 7.

This can be illustrated by means of an example. Suppose that, as a
result of an increase in the labor supply of young people, the company
being studied changed its promotion policy. More precisely, it made it
more difficult to obtain a promotion during the first three years of em-
ployment. The result would be that the hazard rate of being promoted
at the beginning of an individual’s career would depend on 73, that is,
on whether a given individual’s employment started before or after the
moment that the policy changed. Because the censoring times of cases
like C (71 — 73) depend on 7, as well, this leads to a dependency between
the censoring rate and the hazard rate. The solution to this problem is,
however, very simple. The only thing that has to be done is to include 7,
as one of the regressors in the hazard model. By controlling for the cal-
endar time of entry into the risk set, a form Type I censoring is obtained
within the subgroups of persons who enter into the risk set at the same
Th-

In general terms it can be stated that if censoring occurs at a partic-
ular calendar time, which is the most common type of censoring in social
science research, the censoring mechanism and the process under study
will have one potential common cause, i.e., the calendar time of entry
into the risk set or the causes associated with that calendar time, such as
the altered policy in the example. In demography, such an effect is called
a cohort effect (see also section 4.6). Controlling for the calendar time of
entry into the risk set or the causes associated with it makes the censoring
mechanism (conditionally) independent of the duration distribution. In
other words, it makes the missing data MAR.

The right censoring of observation D is the result of the same censoring
mechanism applied to case C: The time at which the event of interest
occurs is unknown because of the cessation of the observation period.
Therefore, the same solution applies to this type of censored observations.



However, it should be noted that if the time of entry into the risk set
influences the hazard rate, the results of the study cannot be generalized
to other observation periods. If, for example, an effect is found of the
variable birth cohort on the hazard rate in a study on fertility behavior,
the results cannot be generalized to future birth cohorts. Moreover, if
an interaction effect is found between the time variable and cohort, the
results cannot even be generalized to the same cohorts beyond the age at
which they have been censored. In fact, this is a type of selection bias
which is inherent in the study of social change.

Observation B is also right-censored but by a very different mecha-
nism. It is removed from the risk set because an event other than the
event of interest occurred during the observation period. In this case,
the validity of the assumption of (conditionally) independent censoring
depends on whether the event that led to censoring and the event under
study have common causes which are not controlled, for instance, because
they are not observed. If person B was removed from the risk set because
he died as result of an accident, it can safely be assumed that censoring
is independent of the event of getting promoted. If, however, person B
stopped working at the company because of health problems, the inde-
pendence of the censoring rate and the hazard rate of getting promoted
is less clear. It is probable that less healthy individuals not only have
a higher risk of losing their jobs, but also have a lower risk of getting
promoted. If it is possible to control for health, again a (conditionally)
independent censoring mechanism can be obtained, assuming that health
is the only common cause of the two types of events. There are many
other events that can lead to the type B censoring, such as a voluntary
or involuntary move to another employer or retirement. The same argu-
ments apply to these events. It is necessary to identify all of the causes
that these ‘censoring events’ have in common with getting a promotion
in order to be able to assume that the missing data are MAR.

The problems associated with the type B censoring are the same which
occur when analyzing competing-risks data. Actually, the various kinds
of events leading to censoring can be seen as risks which compete with
the event under study. Section 4.7 discusses models for competing risks
in more detail, including the problem of unobserved common risk factors
leading to dependent risks.



Estimation Let T denote the time that an event or censoring occurred,
and let § denote a censoring indicator taking the value 1 if an event oc-
curred and 0 if an observation was censored. If censoring can be assumed
to be conditionally independent of the occurrence of an event, the joint
probability density of the observed data, T" and ¢, is

P(T =16 =1%) = f(t}x)[1 - G(tx)]
for non-censored cases, and
P(T'=t,6=0[x) = g(t}x)[l - F(t}x)]

for censored cases (Lagakos, 1979). Here, f(¢|x) and F(¢|x) are the den-
sity and the distribution function of the time that an event occurs (dura-
tion), given x, and g(¢|x) and G(t|x) are the density and the distribution
function of the censoring time, given x. The fact that censoring is in-
dependent, or equivalently, that the missing data are MAR, makes it
possible to obtain the joint density of 7" and § by multiplying the con-
tributions of the censoring and duration distributions. For instance, the
probability of experiencing an event at 7' = ¢ and observing this is ob-
tained by multiplying the probability of an event taking place at T =t
and the probability of not being censored before T = t.

Using the joint density of 7" and 0 given above yields the following
likelihood function:

N
L= T4 k) [L = Gt} {g(talxi) [L = F(tilx)]} % (4.30)
=1

Here, f(ti|x;) [1 — G(t;|x;)] is the contribution to the likelihood function
of case i if the event was experienced. It denotes the product of the
instantaneous probability of experiencing an event at ¢;, given x, and the
probability of not being censored before ¢;, given x. The contribution of
a censored observation to the likelihood function is g(#;|x;) [1 — F(t;|x;)]-

The likelihood function represented in Equation 4.30 can be broken
down into a segment which depends on the determinants of the dura-
tion process of interest, and a segment which depends on the censoring
mechanism, i.e.,

N

£o= TT{rkx)" L= Fltax)' "} {gttilx)' " [1 - Gltilx)" } -

i=1



In order to be able to ignore the censoring mechanism when estimating the
parameter of the hazard model an additional assumption has to be made,
that is, that the parameters of the censoring model are distinct from the
parameters of the hazard rate model. In other words, it must not be nec-
essary to place restrictions between the time and covariate effects on the
hazard rate and the time and covariate effects on the censoring rate. Note
that the same assumption is made in the case of ignorable nonresponse,
which was previously defined as the missing data being MAR and the
parameters of the response mechanism and the parameters of the model
of interest being distinct (see section 3.2).

If the parameters determining the duration distribution and the pa-
rameters determining the censoring distribution are distinct, maximum
likelihood estimates for the parameters of the postulated hazard model
can be obtained by maximizing the first part of the likelihood function

N
L= I fltilx)® 1 = F (k=)
i-1

which can also be written completely in terms of the hazard rate h(#;|x;)

L = lj_vllh(mxi)éi exp (— /Otih(u|xi)du> .

Using the missing data terminology introduced in Chapter 3, the miss-
ing data mechanism is ignored for likelihood-based inference about the
parameters of interest. Instead of using the term independent censor-
ing, it would be possible to use the term ignorable censoring mechanism.
Analogous to the case of nonresponse, the censoring mechanism is non-
ignorable if the censoring times and the survival times are correlated, in
other words, if the probability of missing data depends on the value of the
variable for which the scores are missing, or if the censoring mechanism
and the process under study have common parameters (Rubin, 1976). If
the censoring mechanism is nonignorable, the censoring and the event
under study have to be analyzed simultaneously. This will be discussed
in the next chapter.

4.5.2 Left censoring

Left censoring is a more complicated problem than right censoring. There
are at least three possible strategies for dealing with left-censored obser-



vations: 1] deleting all left-censored observations; 2] treating 7y as 7, and
3] using estimation methods which make it possible to use left-censored
observations.

The first strategy, deleting the left-censored observations (Allison,
1984), is the simplest of the three. Unlike the deletion of right-censored
observations, this procedure does not result in biased parameter estimates
(Yamaguchi 1991:7; Guo, 1993). The reason for this is that ignoring left-
censored cases does not introduce selection with regards to T (Ridder,
1984). On the contrary, it prevents selection bias as will be demon-
strated below. However, there is one important disadvantage to deleting
the left-censored observations. It can lead to a huge loss of information,
especially if the observation period is relatively short in comparison to
the average survival time. In such cases, there will not only be a large
number of left-censored observations, but they will also provide unique
information on the hazard rates for durations which are longer than the
observation period 71 — 79. Thus, the procedure is only recommendable
if a small proportion of the sample is left-censored, even though deletion
of left-censored cases does not introduce bias.

The second option is to assume that left-censored cases entered into
the risk set at 79, that is, to assume that 7, = 7. This amounts to
assuming that the duration of nonoccurrence of an event, T’ is equal to
Te — Tp. Clearly, this solution is only correct if the hazard rate is time
independent. Unfortunately, the assumption of a constant hazard rate,
or exponential survival, is often unrealistic while erroneously assuming
an exponential survival distribution may lead to severe bias in parameter
estimates (Heckman and Singer, 1985, 1986; Guo, 1993).

The third alternative is to use left-censored observations in the anal-
ysis as was done in the case of right-censored cases. There are, however,
two problems associated with using left-censored observations for param-
eter estimation: It may introduce selection bias and it can prove difficult
when the times of entry into the risk set are unknown.

Sample selection bias occurs whenever a sample is selected on the
basis of the values of an endogenous variable (Heckman, 1979). Actually,
left-censored cases are a selective sample of the individuals who entered
into the risk set before 75. They form the group with lower hazard rates
between 7, and 7, the group with longer survival times T'. For example,
a sample of individuals who are unemployed at 75 will contain a relatively
large proportion of persons who have a low probability of getting a job



at short unemployment durations. This phenomenon is sometimes called
length-bias sampling (Cox 1962, Flinn and Heckman, 1982). Using left-
censored observations in the analysis may lead to a downwards bias of
the duration effect for short durations. Therefore the deletion of all left-
censored cases from the analysis prevents sample selection bias.

In left-censored cases, the exact time of entry into the risk set, 73, is
often unknown. Sometimes, however, 7, is known but there is no infor-
mation on the values of the time-varying covariates between 7, and 7.
The latter situation is most likely to occur when the data are collected
by means of a panel design in which an individual’s time of entry into
the state occupied at 7y is requested retrospectively. In the promotion-
duration example, it would certainly be possible to obtain information on
the date that employees started working at the company. On the other
hand, collecting information on time-varying covariates may not be pos-
sible. Of course, if it were possible to collect all necessary information for
both E and F, there would no longer be any left-censored cases.

It is clear that the solution to the left censoring problem depends on
what is known about 7. In order to prevent biased estimates, moreover,
the solution has to take into account that left-censored observations may
have lower hazard rates or higher survival probabilities in the preobserva-
tion period than persons who entered into the risk set at the same point
in time and who experienced the event before the start of the observation
period.

Unknown 7, Left-censored observations are more difficult to deal with
when their time of entry into the risk set is unknown. Heckman and
Singer discussed extensively what they call the ‘problem of initial con-
ditions’ (Heckman and Singer, 1985, 1986). Ridder’s work on the distri-
bution of survival data also provided an important contribution to the
treatment of left-censored observations (Ridder, 1984). More recently,
Hamerle (1991) gave a comprehensive overview of methods for handling
left-censored data.

Let R denote the length of the risk period before 7y, R = 7 — 73, and
let S denote the length of the risk period after my, S = 7. — 79. The total
survival time T is R+ S. According to Ridder (1984), the joint density



of function of R and §' is given by

g(mo = r[x) f(r + s[x)
Jo~g(r0 = rx)S(r|x)dr

f(r,s|x,s > 0) (4.31)
Here, g(79 — r|x) denotes the probability that someone with covariate
values x will enter into the risk set at 79 —r, that is, at 7. S(r|x) denotes
the probability of surviving until 77 = r and f(r + s|x) is equivalent
to f(t|x), that is, the density of 7. In the denominator of Equation
4.31, the probability of entering into the risk set at 79 — r and surviving
until 7y is integrated over all possible r. This results in the marginal
probability of entering into the risk set before 7y and surviving to 79. The
numerator expresses the probability of entering into the risk set at 79 —r
and experiencing an event at r + s which is ¢.

The density of S, given x, the density of a left-censored survival time,
is obtained by integrating f(r, s|x,s > 0) over r, the unobserved part of
T’

Jo o g(ro —rx) f(r + s|x)dr

flebes > 0) = e — ) S

(4.32)

Thus, the marginal density of S equals the probability of entering into
the risk set before 7y and experiencing an event at T' =t = r + s, divided
by the probability of entering into the risk set before 79 and surviving
until 7. This density no longer depends on the unknown values of R.
Unfortunately, the likelihood contribution on the basis of f(s|x,s > 0)
not only involves the survival distribution of interest, but also depends
on g(1p — r|x), i.e., the distribution of the calendar time of entry into the
risk set (75). Therefore, the parameters of interest cannot be estimated
without making additional assumptions with regard to entry rates g(79 —
r|x), except if there is some external information by which to estimate the
entry rates empirically (Tuma and Hannan, 1984:132). In the analysis of
the timing of divorces, for example, statistics on marriage rates may be
used to estimate the rates of entry into the risk set for the event divorce.
One possible simplifying restriction is to assume that 7' is exponen-
tially distributed. In that case, Equation 4.32 simplifies to h(s|x)e~(s/%)s
which is the same result obtained by the second solution for left censor-
ing discussed above. This involves setting the time of entry into the risk
set arbitrarily equal to 7 for all left-censored cases, and, moreover, as-
suming exponential survival. As was mentioned previously, erroneously



assuming an exponential distribution, which is a quite common ‘solution’
to the left censoring problem, may lead to severe bias in the parameter
estimates (Heckman and Singer, 1985, 1986).

Another possibility is to assume that the rate of entry is time invari-
ant, i.e., that g(79p — r|x) = g(x). In that case, Equation 4.32 simplifies
to

Jo fr+spx)dr [ f(r + s|x)dr

fspes>0 = Tresimar -~ BT

After making further parametric assumptions on the distribution of T (see
section 4.3), this yields a likelihood function for estimating the parameters
related to T" which can be solved without too many problems. However,
the validity of the results depends to a large degree on the validity of the
assumption of a constant entry rate, given x (Guo, 1993).

Known 7, If there is information on the time of entry into the risk set
of left-censored observations, things are much less complicated. But, as
mentioned above, treating left-censored observation in the same fashion
as the other cases leads to an underestimation of the hazard rates for
short durations. The only way to prevent this form of selection bias is to
take the selection mechanism into account when estimating the model’s
parameters. In this case, we must take into account that a person can
only belong to the sample if he/she did not experience the event of in-
terest before 79. This can simply be accomplished by constructing the
likelihood function with the conditional density of 1" given survival up to
R rather than with the unconditional density of 7' (Tuma and Hannan,
1984:130-131). When R is known, this leads to the conditional maximiza-
tion approach which was first proposed by Lancaster (Lancaster, 1979;
Hamerle, 1991; Guo, 1993). The result is that only the information on
a given individual which is not selective, that is, the survival informa-
tion between r and ¢ (or between 7y and 7.), is used for estimating the
parameters.

The conditional density of a left-censored case which, as in the case of
F in Figure 4.1, experiences an event in the observation period is defined
as (Lancaster, 1979; Tuma and Hannan, 1984; Guo, 1993)

h(tx)S(tx)  PEx) exp (= [ h(ulx)du)
Strlx) exp (— [y h(ulx)du)

T > r,x)



—  h(t}x) exp (- / th(u|x)du> . (4.33)

This conditional density is almost equal to the density for a noncensored
observation. The only difference is that the ordinary survival probability
is replaced by a conditional survival probability: The hazard rate is not
integrated from 0 to ¢, but from r to t.

Apart from preventing selection bias, this procedure has the further
advantage that no information is needed on the values of time-varying
covariates between T' = 0 and 7' = r. Since the conditional density func-
tion depends only on the covariate values in the observation period, the
required data corresponds exactly to the data collected during the obser-
vation period. In that sense, the conditional density approach resembles
the way in which period life tables are constructed (Guo, 1993).

Hamerle (1991) showed that the conditional density function used in
the conditional likelihood method (Equation 4.33) can be also obtained
by conditioning the joint density of R and S (Equation 4.31) on the
marginal density of R without making additional assumptions with regard
to g(1o —r|x). Nevertheless, Ridder (1984) and Hamerle (1991) criticized
the conditional likelihood approach. It would lead to considerable loss of
efficiency because the information on R would only be used for eliminat-
ing selection bias and not for estimating the parameters of interest. More
precisely, by conditioning on R and X, the information in the joint distri-
bution of (R, X) is neglected. On the other hand, Guo (1993) states that
there are two important disadvantages to using the joint density of R and
S when R is known: The results may depend on the time-homogeneity
assumption about g(79 — r|x) and the procedure can only be used when
all covariates are time-invariant. Thus, if it is taken into account that no
assumptions need to be made on the distribution of 7,, that the method
can be used for estimating models with time-varying covariates, and that
obtaining maximum likelihood estimates only requires a small modifica-
tion of the standard procedures, it seems reasonable to state that when
Ty is known, the conditional likelihood method is preferable.

Computer programs The conditional maximization method for left-
censored observations can be implemented using standard computer pro-
grams for estimating hazard models. It can be applied in continuous-time
hazard models if the program concerned can deal with episode records.



An episode record has a starting time that does not need to be equal to
zero and an end time which does not need to be equal to t. Rohwer’s
TDA program is one such example (Rohwer, 1993). Since discrete-time
methods always use episode records, that is, one record for every discrete
time interval that a person is at risk, the conditional maximization pro-
cedure can easily be implemented in discrete-time hazard models. The
only thing that has to be done is deleting all person-period records from
T =0 to T = r for all left-censored observations.

In section 4.4, it was shown that the likelihood function for piecewise
exponential survival models equals

N Z*
£ = TI1I rzlx:)’= exp (=h(zlxi)eir)
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where e;, denotes the total time that person ¢ belongs to the risk set in
time interval z, and E;, denotes the total exposure time in time interval
z for persons with covariates values A = ¢ and B = b. When applying
the conditional likelihood approach in combination with a piecewise ex-
ponential survival model, the exposure times ¢;, are equal to zero until
the time interval containing r, that is, until £, < r < t,. Of course,
the changes in e;, will also influence the cross-tabulated exposure times
in Eg,. The only difference between the ordinary maximum likelihood
method and the conditional maximum likelihood is that left-censored ob-
servations do not contribute to the total exposure times before T = r.
In the {EM program (Vermunt, 1993), this procedure is implemented by
allowing the user to specify the time of entry into the risk set.

4.6 Time-varying covariates, time, and time-covariate
interactions

Until this point it was assumed, for the sake of simplicity, that the values
of the explanatory variables used in hazard models do not change their
values during the observation period. The only variable that was allowed
to change its value was the time variable itself. However, dynamic analysis
by means of event history analysis techniques not only implies that the



hazard rates may change over time, but also that the values and the
effects of covariates may change over time.

This section explains how to use time-varying covariates in hazard
models. Special attention is paid to two special types of time-varying co-
variates: time and time-covariate interactions. Furthermore, some of the
problems associated with the use of time-varying covariates are discussed.

4.6.1 Time-varying covariates

The chance to include explanatory variables which may change their val-
ues during the observation period is one of the great advantages of event
history models. It is also one of the most difficult aspects of event history
modeling since various mistakes can be made in the causal interpretation
of the effects of time-varying covariates (Chamberlain, 1985; Lancaster,
1990:23-31; Yamaguchi, 1991:130-134).

Of course, as is true in all nonexperimental research, the initial distri-
bution of the time-varying covariates may introduce selection bias when
important covariates are not included in the model. However, selection
bias may occur even if persons are randomized into the different categories
of a time-varying covariate at T" = 0, that is, if the covariate concerned
is not correlated at T' = 0 with possibly unobserved confounding factors.
During the observation period, people may take on particular covariate
values more often than other values as a result of unmeasured risk factors
which are common for the covariate process and the dependent process.”
More precisely, there may be unobserved factors that influence both the
transitions in the time-varying covariates and the hazard rate of the event
of interest. As a result, a part of the sample has both a higher proba-
bility of occupying a particular covariate state and a higher hazard rate.
In such cases, the effect of a time-varying covariate on the hazard rate of
the event under study is, at least partially, spurious.

Another possible pitfall with respect to the causal interpretation of
the effects of time-varying covariates is the problem of reverse causation.
One would expect that determining the causal order between covariates
and the dependent process under study would be simpler in the case of

Following Yamaguchi (1991:133), the term covariate process will be used to denote
the changes which occur in the values of the time-varying covariates, and the term
dependent process to denote the transitions in the dependent variable in the study
concerned.



dynamic analysis of event history data than in the case of static analysis.
However, this is only true for the covariates that do not change their value
during the observation period. Time-dependent covariates may be subject
to reverse causation, that is, the process under study may influence the
covariate process. The covariate process may be either influenced by the
state occupied at the different points in time or by the size of the hazard
rate. The former is called state dependence, the latter, rate dependence
(Tuma and Hannan, 1984:268; Yamaguchi, 1991:137-139). Both forms of
reverse causation may severely bias the results obtained from an event
history analysis.

Exogenous versus endogenous covariates The problems of selec-
tion bias (or spuriousness) and reverse causation which are associated
with the use of time-dependent covariates can be clarified using the dis-
tinction between exogenous and endogenous (time-varying) covariates
proposed by Lancaster (1990:23-31). Endogenous covariates may be sub-
ject to spuriousness and reverse causation, while exogenous covariates do
not have these problems. Lancaster derived the distinction between en-
dogenous and exogenous covariates by writing down the joint probability
distribution of the covariate process and the dependent process under
study. Assume, for the sake of simplicity, that an event or censoring can
only occur at discrete points in time and that there is only one time-
varying covariate. Let ; be the Ith from L* discrete time points, z(#;) a
value on the time-varying covariate at the /th time interval, and z(0, ;)
a complete covariate path from T = 0 through T = ¢;. The joint prob-
ability of surviving through T' = ¢; and having observed covariate values
x(0, ;) can be written as

{
P({I)(O,tl),T > tl = {H tk |T >t 1, (O,tkfl))
k_

[
H Atg|z(0 tk))]} (4.34)

and the joint probability of experiencing an event at T' = #; and having
covariate values x(0, ;)

P(z(0,4;), T =1t;) = {HP (te)|T > tg1,2(0,1 1))
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According to Lancaster (1990:28), the nature of a time-varying covariate
is determined by the factor

P (z(t)|T > t;-1,2(0,4-1)) , (4.36)

which describes the probability of having a particular covariate value at
T = t;, given survival through T" = ¢;_; and the covariate path between
T =0and T = t;_1. Now, a covariate is exogenous if and only if

P(a(t)|T > ti_1,2(0,t1_1)) = P (z(t)]z(0,t_1))  (4.37)

for all £;. Thus, a covariate is exogenous if the covariate process is inde-
pendent of the process under study, that is, if the probability of having a
particular value on a time-dependent covariate at time point ¢; does not
depend on the condition T" > t; 1, given the covariate history through
T = t;_1. In other words, an individual who did not experience an event
at or before T' = t; 1 must have the same probability of having a par-
ticular value on a time-dependent covariate in T' = #; as an individual
who experienced an event at or before T' = t; 1, even after controlling for
the covariate path through T' = ¢;_;. Note that the condition that z(#;)
is independent of survival through 7" = ¢;_; is equivalent to stating that
z(t;) is independent of the state occupied at T = t;_.

As can be expected, a covariate that is not exogenous is endogenous.
This occurs whenever the covariate process is in some way related to
the dependent process under study, that is, whenever experiencing of the
event at or before ¢;_; helps to predict an individual’s covariate value at
T = t;, even after controlling for the complete covariate path up to #;_1,
$(0, t1—1 ) :

Chamberlain (1985) and Croughley and Pickles (1989) defined exo-
geneity in slightly different terms as

fs@)]z(0,t2-)) = f(s(t)|(0, %)),

where s(t;) denotes the state that a person occupies at the [th time point.
Thus, exogeneity implies that the state occupied at a particular moment
in time depends only on current and past covariate scores. On the other



hand, if future covariate values possess additional predictive power, the
exogeneity condition is not fulfilled. Note that this formulation of exo-
geneity is an inversion of Lancaster’s formulation. While Equation 4.37
shows that survival up to ¢; does not predict future covariate values, Equa-
tion 4.38 states that future covariate values do not predict survival up to
t;. Of course, these two seemingly different formulations are completely
equivalent.

Covariates which take their values independently of whether a person sur-
vived or not are always exogenous. Kalbfleisch and Prentice (1980:121-
122) called these covariates external covariates. They distinguished three
types of external covariates, namely, time-constant covariates, defined co-
variates, and ancillary covariates. Time-constant covariates do not change
their values during the observation period. Defined covariates are time-
varying covariates for which the values are determined in advance for each
subject at the different points in time. Examples of defined covariates are
time variables, such as age and duration, factors which are under control
in an experimental setting, and interaction terms between time variables
and time-constant covariates. Ancillary covariates are the output of a
stochastic process that is external to the individuals under study, such
as macro-level variables which influence the individual risk of becoming
unemployed. Time-constant, defined, and ancillary covariates have in
common that their values are not influenced by whether a person sur-
vives up to T' = t;_;. Moreover, external covariates have in common that
they are defined, that is, that they have a value, irrespective of whether
an event occurred or not.

Covariates which are defined only if the event under study does not occur,
that is, the values can only be determined as long as a person survives,
are by definition endogenous because the expression P (z(¢;)|z(0,%;-1)) at
the right-hand side of Equation 4.37 is a probability that cannot be eval-
uated at all values of T' (Lancaster, 1990). Examples are an individual’s
wage in a study of the length of employment spells or an individual’s gen-
eral condition in a clinical trial. After all, upon becoming unemployed a
person has no wage and after dying no general condition measure is avail-
able. Kalbfleisch and Prentice (1980:122-124) referred to such covariates
as internal covariates. They defined an internal covariate as a time mea-



surement taken on an individual that, as a result, requires survival of
the individual for its existence. According to Kalbfleisch and Prentice
(1980:124), internal covariates often act as intermediate variables. For
instance, a medical treatment or another type of intervention may have
an effect on the hazard rate of dying from a particular disease. How-
ever, after controlling for the time-varying covariate general condition,
the effect may disappear. This may result from an indirect effect of the
treatment on the risk of dying, that is, the treatment may improve the
general condition and thus lower the risk of dying. The use of inter-
nal covariates can help to understand the process more precisely, but to
understand the ongoing process completely the changes in the internal
covariates themselves also have to be studied. For this reason, Manton,
Woodbury, and Stallard (1988) strongly advocated models in which not
only the process of interest — in their case mortality from different causes
— is modelled, but in which also the evolution of risk factors is modelled.
This makes it possible to improve the prediction of the effects of inter-
vention in risk factors on the size of the hazard rate.

There are also covariates which are not defined externally to an individ-
ual subject, but which are not necessarily endogenous. For instance, in
a study of unemployment, a person’s marital status may be either an
exogenous or endogenous covariate. The marital status is not internal
according to the definition by Kalbfleisch en Prentice (1980) because it
is still defined after an individual becomes unemployed. Whether marital
status is endogenous or exogenous depends on whether the employment
history up to T' = t;_1 helps us to predict an individual’s marital status
at t; or not. Endogeneity can either be the result of reverse causation
between employment and marital status, for instance because being em-
ployed makes the probability of a divorce smaller, or be the result of
some common unobserved covariates which influence both the hazard of
becoming unemployed and the hazard of divorce, such as, for instance,
the stability of an individual’s lifestyle.

Another example of a covariate that can be either exogenous or en-
dogenous is the time-varying covariate of pregnancy in an analysis of the
event marriage. The relationship between pregnancy and marriage may
be the result of one of the following causal processes: pregnancy may be
a reason to marry, women with a higher likelihood of marriage may have



a higher risk of becoming pregnant, or the decision to marry and become
pregnant may be taken simultaneously. In the first case, there is a direct
effect of pregnancy on the hazard rate of marriage, which means that in-
dividuals with a high risk of premarital pregnancy at a young age will, as
a result, have a higher risk of marrying young. In the second case, there
may be reverse causation. More precisely, the rate of becoming pregnant
may depend on the size of the rate of getting married. The latter case
involves a spurious effect resulting from the fact that the rate of getting
pregnant and the marriage rate are influenced by the same unobserved
factors. It is not only difficult to determine which kind of process is at
work, but an additional problem is that the three kinds of processes may
each be valid for different subgroups.

4.6.2 Different dimensions of time

The previous sections discussed various methods for modeling the time
dependency of the process under study. However, no attention was given
to the operationalization of the variable time or to the interpretation of
its effect. The operationalization of the time dependency of the haz-
ard rate depends on the substantive research question which is to be an-
swered. Hazard rates may be related to different kinds of time dimensions,
such as age, calendar time, duration, and experience (Tuma and Hannan,
1984:189-197). However, normally, it is not correct to assume that the
time variable has a direct causal effect on the hazard rate. Time depen-
dence will generally be the result of unobserved factors which change in
some systematic way together with the time dimension involved.

A time variable which is very often used, particularly in demographic
research, is age. Age is, for instance, related to marriage, birth, and death
rates. It seems plausible to explain the age dependence of marriage rates
from social norms about the best age to marry. Birth rates are related to
age both as a result of social norms and due to the physiological capacity
to reproduce. In that case, there is a mixture of two types of age effects
which can only be separated when at least one of them is operationalized
in different fashion. And finally, death rates are related to age as a result
of changing physiological conditions as individuals grow older.

Another time variable is calendar time or period. This variable gen-
erally indicates changing unmeasured macro conditions which influence
the individual hazard rates. Divorce rates may be correlated to calendar



time because of changed laws or changing social norms. In addition, the
period dependence of the rate of becoming unemployed may be caused
by fluctuations in the economy.

The time spent in the risk set, or duration, is also a useful time di-
mension. In the analysis of unemployment spells, a negative duration
dependence is often found. This is explained by the fact that employers
prefer to employ individuals who have only been unemployed for a short
period of time. Duration is equivalent to the stigmatization of unem-
ployment by society. The dependence of, for instance, divorce rates on
the duration of marriage may be the result of a number of psychological
aspects which influence the strength of a relationship.

Tuma and Hannan (1984:195) mentioned ezperience as another possi-
ble time variable. Experience is the total time spent in a particular state.
Generally, it differs from duration only for the second and subsequent
spells. In the analysis of employment spells, experience is the total time
that an individual has been employed.

The last time dimension mentioned by Tuma and Hannan (1984:191)
is cohort. Contrary to the above-mentioned time variables, cohort is not
a time-varying variable. It is a variable that is constant during each par-
ticular spell. The variable cohort is often used in demographic research,
but is useful in other fields as well. Cohort is generally defined as the
period of entry into the risk set. Therefore, it is sometimes also called
period-cohort. In the case of some specific life-course events, such as first
marriage and first birth, it is simply someone’s birth date or birth year.
In the analysis of divorce, cohort may be the year of marriage, also re-
ferred to as a marriage-cohort. In the analysis of the length of the first
job search after leaving school, cohort may be either the date of leaving
school or the individual’s year of birth. Generally, the variable cohort
is used as an indicator for cumulated circumstances or experiences that
particular subgroups of persons have in common.

Another constant time variable which is similar to cohort is the age
at the entry into the risk set. It is also called the age cohort. The age
at which an individual becomes unemployed may influence the hazard
rate of becoming employed. The age that a women has her first child
may influence the hazard rate of the second birth. Like the other time
variables that were mentioned, this variable also serves as a correlate for
particular unobserved factors.

Often, several time dependencies are at work simultaneously. For



instance, divorce rates may depend on age, period, age at marriage, year
of marriage, and duration of marriage. Unemployment rates may depend
on age, experience, duration, and period. However, the number of time
dependencies that can be included in a model is limited as a result of
the well-known collinearity which also occurs in age-period-cohort models
(Tuma and Hannan, 1984:196-197; Mason and Fienberg, 1985; Hagenaars,
1990:326-332).

A serious problem associated with the interpretation of the effects of
time variables is that the observed time dependence may not only be the
result of unobserved factors which change simultaneously with the time
dimension being used in a particular model, but may also be influenced
by unobserved factors which do not change with time. This is generally
referred to as unobserved heterogeneity (Vaupel, Manton, and Stallard,
1979; Heckman and Singer, 1982, 1984; Trussell and Richards, 1985)
and can easily be demonstrated. Suppose there are two subgroups with
constant but different hazard rates. In that case, the relative size of the
group with a lower hazard rate will increase with time. As a result, the
mean hazard rate will decrease with time. This means that if this source
of heterogeneity remains unobserved, there will be spurious negative time
dependence (Ridders and Elbers, 1982).

The negative duration dependence of the hazard rate of becoming em-
ployed may result from the fact that those who are more capable find a job
more easily, rather than from the fact that stigmatization by employers
takes place. In addition, divorce rates may go down because individuals
who know each other for a longer period before marrying have lower di-
vorce rates, rather than because the quality of the relationship improves
with the duration of marriage.

In general, unobserved heterogeneity leads to either an underestima-
tion of positive time dependence or an overestimation of negative time
dependence. An important difference with static regression models is,
however, that in event history models unobserved factors influence the
results even if they are uncorrelated with the observed variables at the
time of entry into the risk set, that is, at 7' = 0. Although unobserved
heterogeneity has the strongest impact on the duration effect, it may also
influence the effects of observed covariates on the hazard rate.



4.6.3 Time-varying covariate effects

A strong point of event history models is that the effects of covariates
may change with time, or equivalently, that the time effects may de-
pend on covariate values. Such models, which are obtained by including
interaction terms between time variables and covariates, are called non-
proportional hazard models. Note that time-covariate interactions are
also time-varying covariates.

These time-covariate interaction effects can be interpreted in different
manners. The simplest interpretation is that the time dependence differs
for subgroups. In other words, the unobserved factors which are associ-
ated with the time dimension concerned differ or function in a different
manner for different observed subpopulations. For instance, women with
different educational levels have their first child at different ages. This
can occur because the social norm explanation for the effect of age only
applies to less educated women. Highly educated woman may postpone
the birth of their first child because they want to participate in the labor
force and are subsequently confronted with both norms and physiologi-
cal factors which determine the maximum age for starting a reproductive
career.

On the other hand, time-covariate interaction effects can be inter-
preted as covariate effects that change with time. For instance, the inter-
action effect between age and educational level on the rate of first birth
also means that the effect of the educational level on the rate of first birth
changes with age. Suppose that at younger ages a higher educational level
is a barrier to starting the reproductive career because the costs of having
a child are too high. As time goes on, the relative costs for better edu-
cated women will go down in comparison to the costs for less educated
women who have not yet had children. This phenomenon may lead to
higher first-birth rates for less educated women than for highly educated
women, but only at younger ages. At older ages, the birth rates may
be equal for both groups, or may actually be higher for better educated
women.

As is the case with time dependence itself, the interpretation of time-
covariate interactions is not always straightforward: a significant inter-
action term between time and a time-constant covariate may also be the
result of unobserved heterogeneity. Spurious time-covariate interaction



effects occur when there is an unobserved variable which is correlated
with the observed covariate concerned. This is the classic form of selec-
tion bias. In that case, the differences between the hazard rates for the
categories of the observed covariate decline with time. The problem is
even more complicated, since differences may still increase, but it is less
so than if there is no selection bias.

For example, the interaction term between educational level and age
discussed above will at least partially be the result of unobserved fac-
tors which are correlated with educational level. Suppose that the ethnic
group that a woman belongs to influences her educational level: women
from ethnic minorities, on average, have lower educational levels than
women from the ethnic majority. This implies that at age 18, the pro-
portion of childless women from an ethnic minority will be higher in the
less educated group than in the more educated group. In addition, sup-
pose that the variable ‘ethnic group’ is not observed and that women
from ethnic minorities have higher first-birth rates than women from the
ethnic majority. As a result, the proportion of women belonging to an
ethnic minority in the risk set, thus without children, will decrease with
age. However, since the less educated group contains more women be-
longing to an ethnic minority, the hazard rate for those with lower levels
of education group will decrease faster than the hazard rate for the better
educated group. This leads to a spurious age-education interaction.

Another example could be the interaction effect found between type of
union (married/unmarried) and the duration of the union in the analysis
of union dissolution. What is found is that at short durations unmarried
couples have a much higher risk on separating than married couples, but
at longer durations the difference between married and unmarried couples
disappears (Manting, 1994). It is almost certain that this interaction
effect is caused by unobserved factors which are strongly associated with
the type of union such as, for instance, the stability of the relationship
which could be operationalized as ‘how long a couple has known each
other at the start of the union’. If it were possible to control for such a
factor, the difference in the duration of union between cohabiting couples
and married couples might become much smaller.



4.6.4 Unobserved heterogeneity, selection bias, and spuri-
ous relationships

Above it was shown that the presence of unobserved heterogeneity may
introduce bias in the parameters of hazard models in a number of different
ways. In summary, unobserved heterogeneity usually has a downwards
effect on the time dependence, even if the unobserved factors are uncorre-
lated with the values of covariates included in the model at T'= 0. More-
over, covariate effects will be biased as well since the unobserved variables
and the observed variable become correlated after 7' = 0. When the unob-
served variable is related to other covariates at 1" = 0, that is, when there
is some form of selection bias, spurious interaction effects between 7' and
X will be found. Finally, the effect of (endogenous) time-varying covari-
ates may be spurious as a result of the presence of unobserved risk factors
which influence both the covariate process and the dependent process.

Of course, it is important to be aware of these phenomena. However,
it would be even more useful to have instruments which could be used
to minimize the distortion resulting from this type of problem. Various
authors (Heckman and Singer, 1982, 1984; Vaupel, Manton, and Stal-
lard, 1979) have proposed including a latent variable or a random effect
in the hazard model to tackle the problem of unobserved heterogeneity.
Normally, a latent variable with either a parametric or non-parametric
distribution function is assumed to exist which is uncorrelated with the
observed covariate values at 17" = 0. Under weak conditions, such a latent
variable makes it possible to separate spurious from true time dependence
(Elbers and Ridder, 1982; Heckman and Singer, 1984).

Spurious time dependence is, however, only one source of bias intro-
duced by unobserved factors. The above-mentioned approach is limited
because it does not allow the latent variable to be related to observed
covariates. Therefore, it cannot be used to eliminate selection bias in
general. Chapter 5 presents a more general approach which makes it
possible to model the relationships between unobserved categorical or
non-parametric covariates and observed covariates, including the initial
states of the time-dependent covariates and the dependent process. This
approach also makes possible the elimination of specific forms of selection
bias.

Spurious effects of time-varying covariates, or selection bias in time-
varying covariates, can be tackled by simultaneously analyzing the de-



pendent process and the covariate process by means of the multivariate
hazard models, which are discussed in section 2.7. By incorporating a
latent variable which influences both the covariate process and the de-
pendent process, it is possible to identify common unobserved risk factors
and to recover the true effect of a time-varying covariate. This is only
possible, of course, if the correlation between the dependent process and
the covariate process does not result from reverse causation. In Chapter
5, these latent variable approaches are discussed more extensively.

4.6.5 Reverse causation

As mentioned previously, the causal interpretation of the effects of en-
dogenous time-varying variables can be hampered by the existence of
one of two forms of reverse causation, namely, state dependence or rate
dependence (Tuma and Hannan, 1984:268).

State dependence occurs whenever the transition rates of the covariate
process depend on the state occupied in the dependent process of interest.
It leads to a correlation of the duration in the risk period with the state
dependent covariate (Yamaguchi, 1991:137-139). In these circumstances,
the time dependence and the effect of the covariate concerned can easily
be confused. In other words, bias will be introduced in the covariate effect
whenever the duration dependence is not modelled correctly. The only
solution to this problem is a careful specification of the duration depen-
dence of the process. The bias caused by state dependence is difficult to
prevent because in many situations the time dependence is unknown.

Suppose employment status is used as a time-varying covariate in an
analysis of the risk of divorce, and additionally it is known that married
individuals have a lower risk of becoming unemployed than individuals
who are not married. The result will be that the risk set will contain
more employed people at longer durations than at shorter durations, not
only because employed individuals have a lower risk of divorce, but also
because married people have a higher probability of being employed. This
leads to a correlation between duration and the time-varying covariate
employment status.

Rate dependence, which means that the hazard rate of the covariate
process depends on the value of the hazard rate of the dependent pro-
cess, is an even more difficult form of reverse causation to tackle. Rate
dependence can be illustrated by means of an example. In hazard models



for the first birth, the employment status of a women is often used as a
time-dependent covariate (Vermunt, 1991). What is generally found is
that employed women have lower hazard rates of having children, while
women who are not in the labor force have much higher rates. This ef-
fect may, however, be partially caused by the fact that some women stop
working some time before the birth of their first child. They stop work-
ing because having children is seen as incompatible with a career. Thus,
when a woman decides to have children, the hazard rate of first birth
increases and, as a result of rate dependence, the risk of leaving the state
of employment increases as well.

Yamaguchi (1991:138-139) mentioned a similar case. He found that
people tended to stop using marijuana some time before they got married
because of the perceived incompatibility of marijuana use and marriage.
The consequence is that if using marijuana is used as a time-varying
covariate for marriage, the effect will be, at least partially, the result of
reverse causation: The hazard rate of abstinence from marijuana smoking
increases as the hazard rate of getting married increases.

Actually, rate dependence results from a person’s capacity to antic-
ipate future or desired situations. When there is rate dependence, the
causal order of events will no longer be in agreement with their time or-
der (Marini and Singer, 1988). According to Yamaguchi (1991:139), a
possible solution for rate dependence is to use a time-lag large enough for
a possible rate dependent time-dependent covariate to make anticipation
less probable. The main disadvantage of such an approach is that a true
effect may disappear as a result of a too large time-lag. In fact, the only
real solution is to perform additional research on the decision-making pro-
cess governing the covariate value and the value of the dependent variable
in order to understand the nature of the reverse causation. Do women
stop working because they plan to have a baby? Do marijuana users
stop using marijuana because they plan to marry? Such questions can
only be answered by asking the actors concerned about their behavioral
intentions (Marini and Singer, 1988:378; Willekens, 1991).

4.6.6 Estimation of hazard models with time-varying co-
variates

As demonstrated by Lancaster (1990:29-31), the estimation of hazard
models with time-varying covariates is straightforward if the condition



of exogeneity is fulfilled. In that case, Equation 4.36, which describes
the dependence of the covariate process on the dependent process, does
not contain information on the hazard parameters. More precisely, it
is simply the marginal probability of the observed covariate path x(¢;).
Therefore, the individual contribution to the likelihood function can be
based on the second part of Equations 4.34 and 4.35, i.e.,

:jN

[1— A(tx]x(tk))] (4.38)
i
-1
Atilx(t) || [1 — A(telx(te))] - (4.39)
f=1

These are probabilities given covariate values, which is the same inter-
pretation as if all of the covariates are time-constant. However, if some
time-dependent covariates are endogenous, this is not true. In that case,
the expressions given in Equations 4.38 and 4.39 are factors in the joint
probability of T" and x(#;), and are not probabilities conditional on the co-
variate path. According to Lancaster (1990:30), neglecting the last term
of Equations 4.34 and 4.35 when the covariates are endogenous leads to a
partial likelihood solution which can be seriously inefficient. In addition,
if the endogeneity of time-varying covariates results from selection bias
or reverse causation, the effects of these covariates will be biased.

Continuous time For continuous time, the likelihood function for a
hazard model with time-varying covariates is given by

N

£ = [ htix(t)® exp <—/0ti h(u|x(ui))du> . (4.40)

1=1

Equation 4.40 can also be written down in terms of episodes in which the
covariates do not change their values. Let K; be the number of episodes,
K;—1 the number of times that a change occurs in the covariate values of
person 4, and ¢, the time point at with the £th change occurs. Moreover,
to, is the time point at which the first episode starts and ¢k, is the survival
or censoring time. The censoring indicators dy, are equal to 0 for all
k; < K; and have the usual meaning for k; = K;, that is, all episodes
except the last one are always treated as censored. In terms of these K;



episodes for subjects 7, the likelihood equals

N K; -
£ =TI II 2tk %)% exp <—/k h(u|xki)du> . (4.41)
i=1k=1 tri—1
The advantage of splitting each record into K; episodes is that these
N* = Zi]L K; episodes can be analyzed as if all of the covariates are
time-constant. If each episode is treated as a left-censored case with a
known starting time R = r; for episode j, Equation 4.41 can be simplified
to

N* t
L = Hh(tj|xj)5j exp <—/ h(u|xj)du> .
j=1 Ty
Maximizing this likelihood function is equivalent to the conditional max-
imization method for left-censored observations which was presented in
section 4.5.

Log-rate model Like Equation 4.41, the likelihood for the piecewise
exponential survival or log-rate model can be adjusted to allow for time-
varying covariates (Trussell and Hammerslough, 1983). Suppose there is
a model with two covariates A and B which may now be time-varying.
This leads to

N K; Z

L = H H H h(z|xki)5kiz exp (_h(z|xki)ekiz)
i=1k=12=1
= H hzggz exp (_haszabz) >

abz
in which ey, denotes the total time that person 4 in episode k£ belongs
to the risk set in time interval z. Although the likelihood in terms of the
cross-tabulated number of events, ngp,, and the cross-tabulated exposure
times, Fyp,, seems to be equivalent to the situation in which there are no
time-varying covariates (see Equation 4.21), it should be noted that in
this case ng, and E,p, are obtained in a different fashion:

N K,
Nabe = DY OkieVhiad
i=1 k=1
N K

Eop: = Y. €hizVhiab -

1=1 k=1



Here, 7,45 is an indicator variable taking the value 1 if person ¢ has A = a
and B = b in the kth episode and otherwise it takes the value 0.

Computer programs The estimation of the parameters of continuous-
time hazard models with time-dependent covariates can easily performed
by means of programs which permit the use of episode records as input.
The TDA program which was developed by Rohwer (1993) can be used
for that purpose.

The £EM program (Vermunt, 1993) can be used to estimate log-rate
models with time-varying covariates. It allows the user to enter episode
records as input. However, changing values of time-varying covariates
can also be specified by defining the different covariate values as different
states and utilizing the possibility of defining several transitions within
one record. In that case, it is not necessary to perform episode splitting.
This makes it relatively easy to analyze the covariate process simultane-
ously with the dependent process. The multivariate hazard models which
can be used for this purpose are discussed more extensively in section 4.8.

Of course, the log-rate model with time-varying covariates can also be
estimated by means of standard programs for log-linear analysis. In that
case, the occurrence and the exposure matrix must be given as input.

4.7 Different types of events

Thus far, only hazard rate models for situations in which there is only one
destination state were considered. In many applications it may, however,
prove necessary to distinguish between different types of events or risks.
In the analysis of the first-union formation, for instance, it may be relevant
to make a distinction between marriage and cohabitation. In the analysis
of death rates, one may want to distinguish different causes of death. And
in the analysis of the length of employment spells, it may be of interest to
make a distinction between the events voluntary job change, involuntary
job change, redundancy, and leaving the labor force.

Before arguing the need for special models for analyzing event history
data with more than one possible type event, a classification of multiple-
risk situations is presented below. Then, the statistical concepts and the
special types of models used in multiple-risk cases are presented. And
finally, attention is given to the assumption of conditional independence



of the survival times for the different types of events which can occur.

4.7.1 Classification of multiple-risk situations

In the sociological literature on competing risks, it is quite common to
distinguish two ideal situations in which competing events can be ana-
lyzed with little methodological difficulty (Allison, 1984:42-44; Hachen,
1988; and Yamaguchi, 1991:169-171). Following Allison and Yamaguchi,
they will be labeled as Type I and Type II situations. It is attractive to
assume one of the two situations to be valid because in that case the same
types of methods can be applied as are applied in the single-destination
case. However, as will be argued below, it is almost always advisable to
use a competing-risk model because none of the two situations is valid.

While the distinction between the above Type I and Type 1I situ-
ation is an important issue in the sociological literature on competing
risks, in other fields, such as biometrics and demography, another prob-
lem associated with the analysis of different types of events is given a
great deal of attention: the problem of dependence among competing
risks (Tiatsis, 1975; Prentice and Kalbfleisch, 1979; Vaupel and Yashin,
1985; Yashin, Manton, and Stallard, 1986; Heckman and Honore, 1989).
As is demonstrated below, the dependence or independence of competing
risks strongly influences the range of interpretation of the results.

Type I and Type II situation In the Type I situation, the occurrence
of one of the possible events is dominated by two separate independent
steps. According to Allison (1984:42), such a situation occurs whenever
the occurrence or nonoccurrence of an event, irrespective of its type, is
determined by one causal process and, given that an event occurs, a
second causal process determines which type of event occurs. The two
steps are independent and governed by their own set of parameters.

The assumption of a Type I process can be valid, for instance, in
consumer behavior research. One causal process determines whether an
individual buys a particular product in T' = ¢ and a second process deter-
mines the brand of the product. The aim of commercials may be either
to influence the second step or to distort this two-step pattern. Likewise,
the process leading to the first-union formation can be interpreted as be-
ing the outcome of such a two-step process. This is correct whenever
one causal process determines the timing of the first-union formation and



another determines the decision to marry or to cohabit, given that the
first union will be formed.

If this Type I situation is valid, the two steps can be analyzed sepa-
rately. The causal structure determining the occurrence or nonoccurrence
of an event can be analyzed by means of a hazard model for one destina-
tion state. The second step can be analyzed using a discrete choice model,
such as a logit or probit model, in which the kind of event is explained.
These two separate models may contain common covariates.

A second ideal situation, which is called Type II by Allison (1984:43-
44) and Yamaguchi (1991:171), occurs whenever the occurrence of each
event type has a different causal structure. In that sense, it is the opposite
of the Type I situation, in which it is assumed that the occurrence of
an event, irrespective of its type, can be explained by a single causal
process. Although the same covariates may be relevant, each event has
an independent set of parameters, that is, the parameters for the different
events are assumed to be distinct. Type II multiple-risk situations are
often called competing risks (Kalbfleisch and Prentice, 1980: Chapter
7; Cox and Oakes, 1984: Chapter 9), since the occurrence of one type
of event removes an individual not only from the risk set for the event
concerned, but also from the risk set for the other events. This perception
of situations in which there are different types of events is especially
popular in biostatistics and demography.

The classical competing-risk example is death from competing causes.
For instance, it is plausible to assume that different causal processes lead
to death from heart disease and to death from cancer. In that case, a per-
son dying of heart disease can be treated as being free of risk for dying of
cancer. The same arguments could be applied in the analysis of employ-
ment spells if a distinction is made between voluntary and involuntary
job changes. Different causal processes could be assumed to determine
voluntary and involuntary job changes since different actors are involved
in these two modes of leaving employment.

The process leading to a first-union formation could likewise be viewed
as a competing-risk situation rather than a Type I situation. In the
Type 11 situation, it would be assumed that there were no factors which
influenced a first-union formation by marriage and a first-union formation
by cohabitation in the same fashion. In other words, the two processes
would be assumed to have no parameters in common.

If the process being studied takes place within a Type 11 situation, the



different types of events can be analyzed separately, and the occurrence of
one of the other possible events can be treated as a censored observation.
There is, however, one exception: if a discrete-time logit model is used,
the competing events must always be analyzed simultaneously (Allison,
1982). The reason for this is demonstrated below.

It appears attractive to assume one of the two ideal situations dis-
cussed above to be valid. In that case, it is not necessary to apply special
instruments to the analysis of data on different types of events. The
analysis can be performed in the same fashion as was discussed in the
preceding sections of this chapter: in the Type I situation no distinction
is made between the events and in the Type Il situation the different kinds
of events are analyzed separately. In social science research, however, nei-
ther of these two ideal situation is normally plausible. Most often, the
occurrence of the events being studied is partially influenced in the same
fashion by the same factors, and is partially influenced by unique factors
or in a different fashion by the same factors. In other words, the process
determining the occurrence of the events of interest is a mixture of Type
I and Type II situations.

In the first-union example, it seems reasonable to assume that specific
factors influence the timing of the first-union formation, regardless of
the type of union, while other factors influence the risk of marriage and
cohabitation is a different manner. Suppose that education is a factor of
the former type and religion a factor of the latter type. This would imply
that education determines the age at which a first union is formed and
perhaps also influences the decision to marry or to cohabit, regardless of
the age at which the union is formed. Thus, there is an effect of education
on the overall hazard rate and possibly age-education and risk-education
interaction effects as well. On the other hand, religion is assumed to
have a different effect on the age-specific hazard rates of marriage and
unmarried cohabitation. This implies that the model contains an age-
risk-religion interaction.

A mixture of the two types is often the result of a Type I or Type
II process being valid for different subpopulations. For instance, some
individuals embark upon one type of union without the other type being
a salient alternative, while others choose between marriage and cohabi-
tation after deciding to form a first union.

Clearly, it is dangerous to choose the method of analyzing the data
on the basis of a priori assumptions with regard to the mechanism which



determines the occurrence of the events being studied. Therefore, it is
recommended that a simultaneous analysis of the different events be per-
formed using hazard models which are suited to that purpose. These
techniques not only make it possible to specify models without the neces-
sity of making assumptions on the type of multiple-risk situation, they
can also be used to test these assumptions. Thus, even if it seems plau-
sible to assume either Type I or Type II to be valid, it is not sensible
to choose a particular way of analyzing the data without checking the
validity of the assumption concerned.

When a simultaneous analysis is performed, the occurrence of a Type
I or Type 1I situation can be detected on the basis of interaction effects
which are included in the hazard model. If no interaction effect involving
both duration and risk is significant, there is a Type I situation. If the
interaction between duration and risk is significant and all covariate-risk
interactions are significant as well, there is a Type II situation. In all
other cases, there is a mixture of the two ideal situations.

Conditionally (in)dependent risks While the distinction between
the Type I and Type II multiple-risk situations is especially relevant to the
choice of the method for analyzing multiple-risk data, another distinction
can be made on the basis of the range of interpretation of the results
obtained from an analysis, namely, the distinction between independent
and dependent competing risks.

In discussing the censoring problem in section 4.5, it was claimed that
the estimation and interpretation of the parameters of hazard models was
straightforward only if the censoring rate and the hazard rate could be
assumed to be conditionally independent, given the covariates included
in the model, of the event under study. This condition is fulfilled when
there are no unobserved factors which influence both the hazard rate and
the censoring rate. The independence of censoring and the occurrence
of an event is so important because otherwise estimates of the hazard
parameters would depend on which observations were censored.

The same argumentation can be applied to multiple-risk situations,
particularly as it should be realized that censoring can be seen as a com-
peting risk. When competing events are not independent, the size of the
estimated hazard parameters for one type of event will be influenced by
which cases experience which of the competing events, or in other words,



the results will only be valid under current study conditions (Prentice
and Kalbfleisch, 1979). However, it is often useful to be able to inter-
pret the hazard rate of a particular event without having to take the
sizes of the other risks into account. This makes it possible to predict
the number of occurrences of each of the possible events under different
assumptions about the values of the other hazard rates. For instance, it
is possible to predict the substitution effect of the interest event when
it becomes impossible for one of the other events to occur. A classic
application of conditionally independent risks in the study of mortality
is cause removal, or the estimation of overall mortality rates assuming
that one cause of death could be eliminated (Manton and Stallard, 1987).
But this is only allowable if the survival times are independent given
the covariates included in the model, that is, when we have an indepen-
dent competing-risk situation. Yashin, Manton, and Stallard (1986), for
example, demonstrated that the effect of eliminating cancer and heart
disease on survival is overestimated if the hazard model does not take
dependencies between causes of death into account.

Hill, Axinn, and Thornton (1993) applied the principle of ‘cause re-
moval’ to estimate the number of cohabiting couples if the probability
of marriage would decrease as a result of changes in the law. Suppose
that marriage rates and cohabitation rates are positively correlated, and
that this correlation is completely captured by the covariates included
in the model. This would imply that if marriage became less attractive,
for example, because of changed legislation, cohabitation rates would rise
since it could be expected that a segment of the individuals who would
have married would now choose to cohabit. What happens is that mar-
riage is partially substituted by cohabitation. On the other hand, if the
dependence between the two events is not captured by the covariates in-
cluded in the model, it is not possible to estimate this substitution effect
correctly.

One major problem, however, is that although the conditional inde-
pendence assumption is very attractive from a substantive point of view,
it is difficult to test because only one of the possible durations, i.e., the
shortest one, can be observed (Tiatsis, 1975; Heckman and Honore, 1989).
Below, the (in)dependence among different types of events is discussed in
more detail.



4.7.2 Statistical concepts in multiple-risk situations

As in the single destination situation, assume that for each individual
there is a random survival time T'. Suppose that, in addition, there is a
random variable D indicating which of the possible events occurred. Of
course, censored observations are also allowed. For the moment, covariate
dependencies will not be taken into account. The multiple-risk equivalent
of the hazard rate is given by

Pt<T<t+At,D=dT >t

ha(t) = Alir—l;lo At '

It denotes the instantaneous risks of experiencing an event of type d in
the time interval [t < T < ¢+ At], given that no event occurs before
T = t. Econometricians generally use the term transition intensity or
transition rate for h4(¢) (Lancaster, 1990:99-108), while biometricians use
the terms crude hazard rate or cause-specific hazard rate (Cox and Oakes,
1984:143-145). The overall hazard rate can be obtained by summing the
event-specific hazard rates, that is,

h(t) = D ha(t).
d

The usual relationships between h(t), f(t), and S(t) described in section
4.2) also apply in the multiple-risk situation.

The joint density of T" and D, or the instantaneous probability that
an event of type d will occur at T' = ¢, is given by

FT=tD=d) = ha)S() = hat) exp (- /Oth(u)d(u)> .

The marginal probability that the event is of type d is given by

P(D=d) = /000 ha(t) exp (- /Oth(u)d(u)> dt)

Moreover, given that an event occurs at time ¢, the conditional probability
that the event is of type d is

P(D=dT=t) = f(D=d,T=t)/f(T=t) = ha(t)/h(t).
An important special case occurs if

P(D=dT=t) = P(D=d),



that is, if the type of event is independent of the time that an event occurs.
In that case, the transition intensities for all d and ¢ can be written as

ha(t) = h(t)P(D =d).

In fact, this is the formal definition of the Type I situation presented
above: there is no interaction between 7" and D, and T and D are inde-
pendent of each other. Note that it is also a variant of the assumption of
proportional hazard rates because the hazard rates of the various risks are
in the same ratio for all £ (Cox and Oakes, 1984:143). It is for this reason
that Lancaster (1990:103-104) termed models of this type proportional
intensity models.

Competing risks A slightly different treatment of situations includ-
ing different types of events is what Cox and Oakes (1984:144) call the
competing-risk approach. This approach assumes the existence of D*
random variables T, ... 7®P7) denoting an individual’s latent survival
times, that is, one survival time for each of the D* possible destination
states assuming that the other types of events cannot occur. These sur-
vival times are called latent because the shortest one is the only one which
is observed while the other ones remain unobserved. The relationship be-
tween the observable random variables 7" and D and the latent survival
times is

T = min(TW,...,7P)),

D = argmin(TW, ... TP,
Thus, T is the minimum risk-specific survival time and D is the argument
of the shortest 7%, In the competing-risk approach, the observable or
crude hazard function is defined as

P(thM)<t+AﬂTW)an:ﬂw.wDﬁ

hq(t) = lim
At—0 At

that is, as the instantaneous probability of occurrence of event d in the
interval [t < T < t + At], given that all the latent survival times are
greater than or equal to ¢.

Another important concept is the hazard function of the latent sur-
vival time T4

)

P(t<T@D <t At|T@D > ¢
A = lim ( | )

At—=0 At



This hazard rate is sometimes also called the net hazard function (Moon,
1991). Note that the net hazard rate is defined in exactly the same fashion
as the hazard rate for a single destination state. According to Cox and
Oakes (1984:145),

if the latent survival times T, ..., TP") are mutually independent. This
is, in fact, the formal definition of the independent competing-risk situa-
tion presented above. Thus, if the survival times for the various destina-
tion states are independent, the crude hazard rate h4(t) can be interpreted
as a net hazard rate h{%(t), that is, in the same fashion as a hazard rate
for a single event. This means that removal from the risk set that is not
caused by the event under study may be treated in the same fashion as
independent censoring.

Note that both the Type I situation and the independent competing-
risk situation, as defined here, are more restrictive than presented earlier.
The reason for this is that the basic concepts are defined without using
covariates. When covariates are introduced, the Type [ situation occurs
if

P(D =d|T =t,x) = P(D=d|x),
and
ha(t|x) = h(t|x)P(D = d|x).
Furthermore, competing risks are conditionally independent if
ha(tlx) = A9 (tx),
that is, if crude and net hazard rates are equal, given covariate values.

4.7.3 Multiple-risk models and their estimation

Continuous-time models Continuous-time hazard rate models for
different types of events have the same form as hazard rate models for a
single type of event. Actually, a multiple-risk model consists of a hazard



model for each destination state. For instance, a proportional log-linear
hazard model for an event of type d is given by

ha(t|x) = hq(t)exp (Zﬁdﬂdij)-
j

Nonproportional models can be obtained by allowing hy4(t) to depend on
particular covariates.

Maximum likelihood estimates for the parameters of a continuous-
time hazard model for multiple destination states can be obtained by

maximizing
D t; D
(H (tx:) ) exp (— | zhd(mxi)du)
= d—
H (ti]x%:) %di oxp ( / hy u|xz)du> ,

in which dg4 is an indicator variable taking the value 1 if the event for
person 7 is of type d, and otherwise taking the value 0. It can now easily
be seen why the parameters of the risk-specific hazard models can be
estimated separately in the Type II situation. Since hg4(t) and B4 are
unequal for all d’s in the Type II situation, the likelihood function can
be factored into separate components for the different d’s. Thus, if the
parameters for the different types of event are distinct, each

Ly H h(t;]x;)0% exp( / ha( u|xz)du> ,

=1

L

I
i

can be maximized separately. Various standard computer programs exist
which can be used to estimate parametric multiple-risk models with re-
strictions between the parameters across destination states. An example
is the very flexible TDA program (Rohwer, 1993).

Discrete-time logit models Discrete-time models can also be adapted
for analyzing data on different types of events (Allison, 1982). The proba-
bility that event d occurs in time interval #;, given that no event occurred



before t;, can be related to a set of covariates by means of a multinomial
logit model. A proportional hazard model would take the form

exp (adl +2; 5dj$dz’j)

Aa(tilx) = :
1+ Zg exp (agl + Zj 6gj$gij)

The likelihood function which is to be maximized equals

N D* A Ix; Odi li
e = I (242) "} o)

i=1 d=1 k=1

in which the overall conditional probability of experiencing an event at
i, A(tk]|x;), is defined as

D*
Atelxi) = > Aaltelxi).
]

Contrary to the continuous-time likelihood function, this likelihood can-
not be factored into separate components for each of the D* events (Alli-
son, 1982). This is the result of the difference in definition of the survival
probability,

li li

D
St) = JJ@—-Mtlx) = I (1_Z>\d(tk|xi)> :
d=1

k=1 k=1

The summation over d makes factorization impossible. Just as the single
type of event model can be estimated by means of standard binomial
logit programs, the multiple-risk model can be estimated by means of
multinomial logit programs, which include programs for the log-linear
analysis of frequency tables.

Log-rate models The log-rate model can also be adapted for analyzing
data on different types of events (Larson, 1984). The extension to the
multiple-risk case consists of including the type of event as an additional
dimension to the tables with observed and expected number of events.
Assuming that there is a model with two covariates denoted by A and



B, and that Z and D denote the time variable and the type of event,
respectively, the log-rate model for competing risks can be written as

log apza = 108 Eap: + > BajTabj -
J

As in the single-event case, the data consists of a frequency table con-
taining the number of events per level of A, B, Z and D, ng.4, and a
table with total exposure times, F,;,. It should be noted that, in most
situations, the exposure matrix does not need to have an index for D,
since the number of persons at risks is equal for each d: an individual
who is at risk for one event will generally also be at risk for the other
possible events.

As already mentioned above, a model is of the Type I form if it does
not contain interaction terms involving both Z and D, that is, if the type
of event that occurs does not depend on the time that an event occurs.
An example of such a model is

108 Mapzqg = 10g Eap, +u + ul +uf +u? +ul +ul? +ullP. (4.42)

Here, A, B, and Z influence the overall hazard rate, in which the effect
of B is nonproportional. Moreover, A also influences the ‘choice’ between
the different types of events. The log-rate model described in Equation
4.42 can also be written as

Mabzd

5 = exp(utug +uf +ul +ug?)explug +ugf) . (443)
abz

The first part, at the right-hand side of Equation 4.43, defines the rate
of occurrence of an event, irrespective of its type, at Z = z, given A = a
and B = b. The second part defines the probability of experiencing an
event of type d. It can be seen that this probability is independent of the
value of Z, which is simply the definition of the Type I situation.

A log-rate model is of the Type II form if it at least contains all of
the two-variable interaction terms involving D. The reason for this is
that the risk-specific models have no parameters in common and can, in
principle, be estimated separately. An example of a model of the Type 11
form is

logmgprg = log Egp, +u + uf + uf + uZZ + udD + ude + udeD + uZZdD .



Clearly, the flexibility of the log-rate model with respect to the inclusion
of interaction terms can be used to test whether the process under study
is in agreement with one of the above-mentioned special types, or whether
it is a mixture of the two types. This means that it is not necessary to
make a priori assumptions about the nature of the process in order to
simplify the analysis.

The log-rate model for multiple risks presented here can be estimated
using standard programs for log-linear analysis. The lEM program (Ver-
munt, 1993) is, however, relatively easy to use because it does not require
the occurrence and exposure matrices as input. These matrices are made
by the program itself on the basis of information on covariate values,
survival time, and type of event.

4.7.4 Conditionally (in)dependent risks

In presenting the different types of multiple-risk situations, some atten-
tion was given to the distinction between dependent and independent
competing risks. Below, following the work of Vaupel and Yashin (1985),
the implication of dependencies between risk-specific latent survival times,
or equivalently, between risk-specific hazard rates is demonstrated.

Suppose that one of two types of events D can occur and that the
latent survival times denoted by TMW and T® have a common correlate
X which has two categories. Let hi(t|1) and ho(¢]1) denote the risk-
specific hazard rates for X = 1, and h;(¢|2) and hy(t|2) the risk-specific
hazard rates for X = 2. Suppose, furthermore, that

0> hi(#1) > hy(#2) for all ¢,
and
0 > ha(t|1) > ho(t|2) for all ¢.

Since the first group has higher hazard rates for both event 1 and event
2, the latent survival times 71 and T, that is, the survival times that
would be observed if the other event could not occur, will be positively
correlated: individuals with X = 1 have shorter survival times for both
events than individuals with X = 2.

The mean risk-specific hazard rates at T' = t are equal to

hi(t) = w(®)hi(t1) +[1 =7 (B)]hi(t]2),



and
ha(t) = w(t)ha(t|1) + [1 — = (t)] ha(t]2),

in which 7(¢) denotes the proportion of the population at risk at 7' = ¢
with X = 1.

Furthermore, suppose that the hazard rate of the second event be-
comes very small (or perhaps even 0) and equal for both groups. This
can be the result of, for example, a changed law in the analysis of union
formation, a changed economic conjuncture in the analysis of employ-
ment, or the invention of a new medicine in the analysis of death. Not
surprisingly, this will lead to a decrease in the mean hazard rate of the
second event. However, it will also lead to an increase of the mean haz-
ard of the first event. Since the decrease of hgo(t|1) is greater than the
decrease of hy(t]2), relatively more persons belonging to the first group
will survive, in other words, (¢) will increase. But, if 7(¢) increases, hq (t)
will also increase since hq(t|1) > hq(£|2) (Vaupel and Yashin, 1985).

This is a general phenomenon. If the latent survival times of compet-
ing risks are correlated as a result of common risks factors, a change in
one risk-specific hazard rate will influence the other risk-specific hazard
rates as well (Hill, Axinn, and Thornton, 1993). If, as in the example,
two risk-specific hazard rates are positively correlated, a decrease in one
hazard rate will lead to an increase in the other hazard rate. On the
other hand, if two events are not correlated, that is, if they do not have
common risk factors, a change in the hazard rate of one event will not
influence the mean hazard rate of the other event.

The implications of this phenomenon for the interpretation range of
the results obtained from a particular analysis are considerable. If it is
not possible to observe one or more of the common factors causing the
correlation between the risk-specific hazard rates, the results obtained
for one type of event will be only valid given the observed occurrence
of the other events, or, as Prentice and Kalbfleisch (1979) state it, the
risk-specific regression coefficients describe covariate effects on the risk-
specific hazard rates under current study conditions (see also Hachen,
1988). Often, however, researchers want to answer questions about the
implication of changes in the occurrence of one type of event for the occur-
rence of another type of event. For instance, to what extent would other
causes of death increase if one cause could be eliminated? Will the rate



of voluntary job changes increase if the rate of involuntary job changes
decreases? To what extent will unmarried cohabitation substitute an ex-
pected decrease in the hazard rate of married cohabitation? Of course,
if the dependencies between the hazard rates are captured by including
the right covariates in the model, if the hazard rates are conditionally
independent, these kinds of questions can be answered quite adequately
(see, for example, Manton, Woodbury, and Stallard, 1988).

The above-mentioned example also illustrates the importance of the
independent censoring assumption. Censoring can be considered one of
the possible events. If the censoring mechanism is not conditionally in-
dependent of the causal process underlying the event(s) under study, the
results from a particular study are only valid given the observed censor-
ing rates. In other words, different results will be obtained with other
observed censoring rates. This would, of course, enormously devaluate
the results of an analysis.

Common unobserved risk factors In section 4.6, the implication
of unobserved heterogeneity for the parameter estimates of hazard rate
models was discussed for one kind of event. But, as demonstrated above,
the implications of unobserved heterogeneity may be even larger in mod-
els for competing risks since there may be unobserved factors which are
shared by the different risks.

Two strategies have been proposed to identify possible common un-
observed risk factors: the inclusion of one or more unobserved variables
which influence the risk-specific hazard rates (Vaupel and Yashin, 1985;
Heckman and Honore, 1989) in the hazard model and the use of nested
logit models (Hill, Axinn, and Thornton, 1993). The former strategy can
be used with both continuous-time and discrete-time data, the latter only
with discrete-time data.

Actually, including unobserved covariates, or random terms, in a
multiple-risk hazard model is the same type of solution for unobserved
heterogeneity as the one presented in section 4.6 for the situation in
which there is only one type of event. A difference is, however, that
now it is necessary to specify a model for the joint distribution of the
risk-specific unobserved latent variables since these variables may be cor-
related. The simplest specification is to assume the same unobserved
factor to be relevant for all events, in other words, to assume that the



risks-specific unobserved factors are perfectly correlated. Vaupel and
Yashin (1985) proposed using a general unobserved factor together with
risk-specific unobserved factors. They assumed these latent variables to
be gamma-distributed and mutually independent. Moon (1991) showed
how to include non-parametric unobserved heterogeneity in a competing-
risk model, including a mover-stayer specification. However, he did not
consider dependencies among the latent variables. Butler, Anderson
and Burkhauser (1988) presented a competing-risk model with semi-
parametric unobserved heterogeneity: A discrete bivariate distribution
was used as a numerical approximation of an underlying continuous joint
distribution of two unobserved factors. The general non-parametric la-
tent variables approach presented in Chapter 5 makes it possible to specify
the relationships between the latent variables influencing the risk-specific
hazard rates in many different ways, including the specifications proposed
by Vaupel and Yashin (1985) and by Butler, Anderson, and Burkhauser
(1988).

The second method for handling shared unobserved risk factors among
competing risks has recently been proposed by Hill, Axinn and Thornton
(1993). Their solution consists of a modification of the discrete-time logit
model which is based on using a nested logit model developed in the field
of discrete choice modeling (McFadden, 1981) rather than an ordinary
(multinomial) logit model. In nested logit models, it is assumed that the
choice alternatives can be grouped into stochastically independent sets,
the individual members of which may be correlated with each other. In
other words, nested logit models allow relaxation of the ITA (Indepen-
dence of Irrelevant Alternatives) assumption which underlies ordinary
(multinomial) logit models. The difference with the ordinary discrete-
time logit model is the inclusion of an additional parameter called the
index of dissimilarity for each subset of alternatives. This parameter,
which is denoted by p and which takes values between 0 and 1, captures
the unmeasured dependence among the different kinds of events. More
precisely, the unmeasured correlation among alternatives within the sub-
set concerned equals (1 — p?).

Suppose there is a nested discrete-time logit model in which the de-
pendent competing risks belong to the same subset. In that case, the
regression model for the overall conditional probability of experiencing



an event at #; is specified as

dd [GXP (Zj ﬁdj/ﬂl‘dij)]p
L+ 3 [exp (5, B/ prai)]”

Altlx) =

in which, for simplicity of notation, the time parameters are incorporated
in the 8’s. The probability that the event that occurred at ¢; is of type d
equals

exp (Zj ﬂdj/PiUdij)
2_g eXPp (Zj ﬁgj/ﬂxgij) '

The conditional probability of experiencing an event of type d at ; can
be simply obtained by combining the two above equatiouns, i.e.,

P(D=dT=tx) =

M(tilx) = Mtx)P(D =d|T =t,x).

In an application on union formation, with marriage and unmarried co-
habitation as competing events, Hill, Axinn, and Thornton (1993) found
a value of 0.44 for p. They demonstrated that when the event marriage is
less likely to occur, a model including the dependence parameter leads to
considerably more substitution of marriage by cohabitation than a model
that does not take the dependence between the alternatives into account.

4.8 Multivariate hazard models

Up to now, it was assumed that each individual experiences no more than
one event. The information that was used to estimate a hazard model
consisted, besides the covariate information, of one survival time and an
indicator variable indicating whether censoring or an event occurred. In
the case of multiple risks, information on the type of event that occurred
was also needed. This section presents models for simultaneously an-
alyzing several events per unit of analysis, that is, for analyzing event
histories.

First, the different kinds of multivariate event history data are pre-
sented. Then an explanation is given on how to analyze repeatable events
of one type. After that, the multiple-state model is presented, including
the Markov and the semi-Markov chain model which are special cases



of it. It is shown that the multiple-state generalization of the discrete-
time logit model (Allison, 1982) leads to a model that is equivalent to
the discrete-time Markov model introduced in section 2.9. Subsequently,
hazard models for some other kinds of multivariate survival data are pre-
sented. And finally, attention is given to methods that can be used to
take dependencies among survival times into account.

4.8.1 Multivariate event history data

Most events studied in social sciences are repeatable, and most event
history data contains information on repeated events for each individual.
This is in contrast to biomedical research, where the event of greatest
interest is death. Examples of repeatable events are job changes, having
children, arrests, accidents, promotions, and residential moves. It is not
surprising that most of the work on methods for simultaneous analysis of
repeatable events is done by sociologists, economists, and demographers
(Tuma and Hannan, 1984; Hamerle, 1989; Lancaster, 1990; Heckmann
and Singer, 1982, 1985; Hoem and Jensen, 1982).

Often events are not only repeatable but also of different types, that
is, we have a multiple-state situation. When people can move through a
sequence of states, events cannot only be characterized by their destina-
tion state, as in competing risks models, but they may also differ with
respect to their origin state. An example is an individual’s employment
history: an individual can move through the states of employment, un-
employment, and out of the labor force. In that case, six different kinds
of transitions can be distinguished which differ with regard to their origin
and destination states. Of course, all types of transitions can occur more
than once. Other examples are people’s union histories with the states
living with parents, living alone, unmarried cohabitation, and married
cohabitation (Manting, 1994), or people’s residential histories with dif-
ferent regions as states (Mulder, 1993). Special multiple-state models are
the well-known Markov and semi-Markov chain models (Coleman, 1981;
Tuma and Hannan, 1984:91-115, Hoem and Jensen, 1982).

Hazard models for analyzing data on repeatable events and multiple-
state data are special cases of the general family of multivariate hazard
rate models. Another application of these multivariate hazard models is
the simultaneous analysis of different life-course events, or as Willekens
(1989) calls it, parallel careers. For instance, it can be of interest to in-



vestigate the relationships between women’s reproductive, relational, and
employment careers, not only by means of the inclusion of time-varying
covariates in the hazard model, but also by explicitly modeling their mu-
tual interdependence. Manton, Woodbury, and Stallard (1988) stressed
the importance of simultaneously modeling the process of interest and
the evolution of risk factors to be able to predict the effect of interven-
tion in risk factors on survival. Multivariate hazard models which make
it possible to simultaneously model changes in the value of the depen-
dent variable and changes in the values of the time-varying covariates
can also be used to detect spurious effects of time-varying covariates and
particular forms of reverse causation.

Another application of multivariate hazard models is the analysis of
dependent or clustered observations. Observations are clustered, or de-
pendent, when there are observations from individuals belonging to the
same group or when there are several similar observations per individual.
Examples are the occupational careers of spouses, educational careers
of brothers (Mare, 1994), child mortality of children in the same family
(Guo and Rodriguez, 1991), or in medical experiments, measures of the
sense of sight of both eyes or measures of the presence of cancer cells in
different parts of the body. In fact, data on repeatable events can also
be classified under this type of multivariate event history data, since in
that case there is more than one observation of the same type for each
observational unit as well.

The different types of multivariate event history data have in common
that there are dependencies among the observed survival times. These
dependencies may take several forms. The occurrence of one event may
influence the occurrence of another event. Events may be dependent
as a result of common antecedents. And, survival times may be corre-
lated because they are the result of the same causal process, with the
same antecedents and the same parameters determining the occurrence
or nonoccurrence of an event.

Multivariate event history data can also be viewed as a form of multi-
level data (Goldstein, 1987). It is always possible to distinguish at least
two levels. This can either be an individual and the different observations
on an individual, or a group and the different observations on individuals
belonging to a group.



4.8.2 Analyzing repeated events

There are three approaches for analyzing data on repeated events, mul-
tiple spells, or multiple cycles as Lancaster (1990:108) called it, namely:
1] performing separate analyses of subsequent events, 2] performing a
pooled analysis in which every spell is treated as a separate observation,
and 3] analyzing the events simultaneously taking dependencies among
the separate events into account.

The first strategy, analyzing each subsequent event separately, is a
rather simple one. For employment spells, it would imply that a separate
analysis is performed for the first employment spell, for the second em-
ployment spell, and so on. Such an approach requires no special assump-
tions, and is especially useful when the events are actually of a different
type, in other words, when each spell-specific hazard model has its own
set of parameters. However, when the causal process is essentially the
same across subsequent spells, doing a separate analysis is both tedious
and statistically inefficient (Allison, 1984:51). In the analysis of employ-
ment spells, this procedure will generally not be followed. But when
analyzing the timing of births, it is quite common to perform separate
analyses for different parities. The main disadvantage of this procedure is
that no restrictions can be imposed on the parameters across the parity-
specific hazard rate models. Moreover, it makes it impossible to identify
unobserved risk factors which are the same for all spells.

The second strategy, performing a pooled analysis in which each event
is treated as a separate case, is also very simple. From a substantive
point of view, this approach is just the opposite of the first strategy in
that the factors determining the occurrence or nonoccurrence of an event
are assumed to be equal for each of the subsequent events. In other
words, all parameters are restricted to be equal across spells (Hamerle,
1989). For employment spells this may be a realistic assumption, but in
many other cases the causal process may depend at least partially on the
ranking of the event.

When performing a pooled analysis, the different events for one in-
dividual are treated as statistically independent observations. In most
cases, there is good reason to think that the independence assumption
is false, at least to some degree (Allison, 1984:54). In general, it can
be expected that people having short employment spells, will continue
to have short employment spells because for some reason they have high



probabilities of becoming unemployed. This does, however, not violate
the (conditional) independence assumption as long as the dependence is
captured by the explanatory variables included in the model. But, in
most situations it is unrealistic to assume that all heterogeneity is taken
into account by the observed covariates. If the assumption of statistical
independence is not fulfilled, parameter estimates are biased and their
standard errors are underestimated.

Another problem associated with the pooled analysis approach is that
the only time dimension that can be used is the time since the last event or
since the entry into the risk set for the event concerned (Hamerle, 1989).
When discussing the different kinds of time variables, this time dimension
was called duration. But, sometimes it is necessary to use other kinds
of time variables, such as age or calendar time. And if duration is used
as the principal time dimension, for the first event this will generally not
be possible, and even if it is possible, the duration dependence of the
first event will probably be different from the duration dependence of
the subsequent events. For example, the time dimension for a second or
subsequent birth can be duration since the previous birth, but for the first
birth it is more logical to use age or duration since marriage or unmarried
cohabitation as the time dimension. It will be clear that pooled analysis
seriously limits the treatment of the time dependence of the process.

Another disadvantage of the approach concerned is that it does not
use information on the correlations among the durations of subsequent
spells. These correlations are not only statistically problematic, they
also make it possible to identify sources of unobserved heterogeneity. By
treating spells as separate observations this valuable information in the
data is neglected.

The third approach for analyzing repeatable events is to perform a
simultaneous analysis of the several events recorded per individual tak-
ing similarities, differences and dependencies among events into account.
This makes it possible to restrict particular parameters to be equal across
subsequent events, to use different kinds of time dimensions, to use in-
formation about the previous history as independent variables, and to
identify unobserved heterogeneity by means of the local independence
assumption.

As mentioned above, the choice of the appropriate time dimension is
always problematic when analyzing repeated events. Often, it is advisable
to use several time dimensions at the same time. In section 4.6, which



introduced the different types of time variables, it was demonstrated that
for repeatable events, additional time dimensions can be defined contain-
ing information on the previous history, such as the mean duration of the
previous spells, total time spent in the risk set for the event concerned
(experience), age at occurrence of the previous event (age-cohort), cal-
endar time at occurrence of the previous event (cohort), and time since
the previous event (duration). Of course, linear dependencies among the
potential time dimensions restrict the number of time dimensions that
can actually be used at the same time.

Since hazard models for a single type of repeated event are special
cases of the multiple-state models to be discussed in the next subsection,
they are not discussed separately.

4.8.3 Multiple-state models

The advantages of the simultaneous analysis of data on repeated events
was demonstrated above. Of course, the same arguments apply to situ-
ations in which there is not only information on the occurrence of more
than one event per observational unit, but in which different types of
events can occur. Below models for analyzing such multiple-state data are
presented. These multiple-state models are very similar to the multiple-
risk models discussed in section 4.7. There are, however, three important
differences, namely: 1] there may be more than one origin state, 2] there
may be more than one spell per person, and 3] not only time or dura-
tion and covariate values may influence the transition rates, but also the
previous history.

Statistical concepts The notation must be extended to make the
above-mentioned three extensions possible. Let M be an indicator vari-
able denoting the episode or spell number and M the total number of
observed episodes for person i. Let O™ be an indicator variable denoting
the origin state in the mth spell, O* the number of origin states, and 0™ a
value of O™, with 1 < 0™ < O*. For the destination states the same no-
tation is used as in the previous chapter. The only difference is that anal-
ogous to O™ and 0™, D and d are replaced by a spell-specific destination
state indicator D™ and a spell-specific destination state value d". Note
that generally O™ = D™ !. Moreover, the number of origin states will
generally be equal to the number of destination states, that is, O* = D*.



Let T™ be the time that the mth event occurred or the censoring time
if m = M. If an individual is in episode m, his previous history of the
process is collected in w™ 1, ie., W™t = {t0 ot ! dt, ...t d™Y,
It contains information on the previous states and the time points that
transitions occurred. It is often referred to as a sample path (Tuma and
Hannan, 1984:48).

The hazard rate or transition intensity for a change from O™ = o™
to D™ = d™, given previous history, can be defined as

m m—1 _
od(t|W ) -
. P{t<T™<t+ At, D™ =d™T™ >t,0™ = o™, w™!)
lim .
At—0 At

This quantity can be interpreted as an origin and destination-specific
hazard rate. Note that here, the transition intensity is postulated as
dependent on T™, a time dimension that is not reset to zero after each
particular transition.

Let U™ be a random variable denoting the duration or the waiting
time at which the mth event occurred, i.e., U™ = T™ — T™ . Equiv-
alently, the transition intensities can be specified as dependent on the
waiting time U™ rather than T, i.e.,

pa(ulw™ 1) =
. Puw<U™<u+Au, D™ =dm|U™ > u,0O™ = o™, w™ 1)
lim .
Au—0 At

It should be noted that the definition of the hazard rate is very similar
to the definition that was used for multiple risks (see section 4.7). The
only difference is the appearance of O™ = 0™ and w™ ! as additional
conditions in the definition of the hazard rate. The overall hazard rate of
leaving origin state 0" in the mth spell is

W (™) = Zh (™"

P (ulw™ ) = Zh (w|w™™

and the spell and origin-specific surv1val probability is

t D
S = exp (— [ thzlwwml)d(v)) ,
d=1



u D~
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0
d=1

The other relevant functions, such as the joint probability of either 77"
or U™ and D™, the marginal probability that D™ = d™, the conditional
probability that D™ = d™, given ¢ or u™, and the net hazard rate, are
defined analogous to the case of multiple risks as well. The only modifi-
cation of the definition as presented in section 4.7 is the conditioning on
o™ and w™ L.

Markov and semi-Markov chain models As mentioned above, tran-
sition rates may depend either on time or on duration since the previous
event, on the spell number, and on information of the previous history.
For the moment, we will not consider the influence of covariates on the
spell, origin, and destination-specific hazard rates.

Markov chain models are special cases of the multiple-state models.
The key assumption of the Markov chain model is that the transition in-
tensities do not depend on either the previous history or the spell number
(Tuma and Hannan, 1984:92-94). The hazard rates or transition intensi-

ties are only allowed to depend on the origin state, the destination state,
and T

pa(tlw™ ™) = hoat).

Note that in Markov models, by definition, the use of waiting times (U™)
instead of process times (7™) is not allowed. Markov models also forbid
self-transitions, in other words, hy(t) = 0. The Markov model given
above is a non-stationary or time-inhomogeneous Markov model since
the rates depend on T™. However, often an additional assumption is
made, namely, that the transition intensities do not vary with time:

hod(t) = hog.

This gives a stationary or time-homogeneous Markov chain model.

Semi-Markov models or Markov renewal models are similar to Markov
models. In the semi-Markov model, the transition intensities are re-
stricted either as

pa(tlw™ ™) = hoa(tlt™ ™),



or as
oa(ulw™ ™) = hoa(ult™1).

This implies that, unlike the Markov model, the transition intensities
may also depend on waiting time, and, moreover, on the calendar time at
which the previous event occurred. Another difference with the Markov
model is that self-transitions are allowed. This makes the model suited
for analyzing repeatable events of the same type as discussed above. In
that case, the model is also called a renewal model (Lancaster, 1990:88-
97). A special case of the renewal process occurs when the hazard rate is
time-homogeneous. In that case, a Poisson model is obtained (Lancaster,
1990:85-88). Another special case of the semi-Markov occurs when there
are two different states and self transitions are not permitted. This gives
an alternating renewal model (Lancaster, 1990:97-98; Tuma and Hannan,
1984:106).

When the transition rates are allowed to depend on covariates, the
same definitions apply. However, in that case, Markov and semi-Markov
models are generally called modulated or heterogeneous Markov and semi-
Markov models.

Continuous-time models Event history models for multiple-state sit-
uations are very similar to the multiple-risk models discussed in section
4.7. In principle, a separate model is specified for each combination of o,
d, and m. A proportional log-linear hazard model for a transition from o
to d in the mth spell is given by

0d(t[X™) = hgg(t) exp (Zﬂ%ﬁbij),
j

od(ulx™) = hgy(u) exp (Zﬂé’éﬂ?&g) ;
j

where x™ is the spell-specific covariate vector which may also contain

information on the previous history. Nonproportional models can be ob-
tained by allowing hl%(t) or h)%(u) to depend on x™. Maximum likelihood



estimates of the 5%’ parameters can be obtained by maximizing

m
tm €oi

o D~ . i
II HH hﬁé(tmxm%}exp (— [ hwxr)dv)] ,
d=1
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D* wm €o;
HH h%(umxm%}exp (— / h?<v|xz">dv>] ,
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where 477} is an indicator variable taking the value 1 if a transition to d
occurred for person 7 in the mth spell, and €]} is an indicator variable
taking the value 1 if the origin state is o for person ¢ in the mth spell.
Otherwise, 6 and €[} are equal to zero.

Since the likelihood function can be factored into separate components
for each combination of o, d, and m, the spell and type of transition-
specific models can be estimated separately if the parameters are postu-
lated to be distinct, that is, if no restrictions are imposed across spells.
However, generally it is of interest to impose restrictions across spells and
across different types of events, which implies that the above likelihood
function has be to maximized without factorizing it.

There are various standard computer programs which can be used to
estimate parametric multiple-state models with restrictions on the pa-
rameters across origin and destination states and across spells. The best
known is the RATE program (Tuma, 1979). Another example is the very
flexible TDA program (Rohwer, 1993).

i=1m=1o0=1

Log-rate models Log-rate models can also be used to specify multiple-
state models. The only difference with the log-rate models for a single
nonrepeatable event is that the table to be analyzed contains three addi-
tional dimensions. Let O denote the origin state, D the destination state,
M the spell number, Z the time dimension which can be either process or
waiting time, and A and B two categorical covariates. In its most general
form, the multiple-state variant of the log-rate model can be written as

IOg Mabzodm = log Eabzom + Z /Bodmjxabodmj .
J

The data which is needed to estimate this model consists of a frequency
table containing the number of events per value of A, B, Z, O, D, and



M, ngpr0dm, and a table with total exposure times, E,p.0m. Note that, as
in the case of competing risks, the exposure matrix has no index d, since
in most situations the number of persons at risk is equal for each d. If
this is not true, the index d has to be added to the table with exposure
times.

It will be clear that the log-rate model is very flexible for analyzing
multiple-state data. Equality restrictions can easily be imposed on the
time and covariate effects across types of transitions and spells. This can
simply be accomplished by leaving out particular interaction terms of the
model.

The multiple-state log-rate model can be estimated relatively easily
by means of the /EM program (Vermunt, 1993). The program allows
specification of different origin and destination states, and, moreover,
more than one spell per record. Of course, it is also possible to use a
standard program for log-linear analysis.

4.8.4 Discrete-time Markov chain models

The discrete-time logit model can also be adapted for analyzing multiple-
state data (Allison, 1982). It can be shown that if the transition rates are
in agreement with a Markov chain model, the discrete-time logit model
is equivalent to the discrete-time Markov model which was presented in
section 2.9. In order to distinguish between these two models, the latter
will be called the classical Markov model. This subsection discusses the
differences and similarities between these two models.

According to the definition of a Markov chain model presented above,
a discrete-time logit model which fulfills the Markov assumption can be
defined as

exp ( odt + i BodjTodij
Aod(tilx) = ( j ) ' 444

1+ Zg €xXp (aogl + Zj /Bogjxogij)

Note that the time dimension is process time (7') and not waiting time
(U). Since the transition probabilities are not allowed to depend on the
spell number, A,q(%;|x) does not contain the superscript m. For the sake
of simplicity, the model for A,q(¢;|x) does not contain time-covariate in-
teractions and time-varying covariates.



Let 67" and €' be spell-specific indicator variables taking value 1 if
a transition to destination state d occurs and if the origin state equals
o, respectively, and otherwise taking value 0. Using these indicator vari-
ables, the probability density function of the discrete-time survival data
is given by

MO od(tm|x) g
f(tl,dl,..-,tM,dM|017 nchH[{H <1—)\o(t7n|x)> }
tm i
I[ (1- Ao(tk|x))} , (4.45)

where A, (t;|x) is the probability of leaving state O, irrespective of the
destination state.

Using the same notation as in section 2.9, for the classical Markov
model, the joint probability of the observed covariate values and the states
a person occupies at the different points in time is given by

L*

7TX8081...SL* = 7TX7T$0|X H 7T$1|X81,1 ° (446)
=1

Here, s; denotes a value of S, the state occupied at the [th point in time,
So is the starting position or the initial states, and L* is the total number
of time points. The total number of states is denoted by S*.

As a result of a different type of notation, the density functions de-
scribed in Equations 4.45 and 4.46 seem to be quiet different. However, if
the length of the observation period is the same for all persons, the den-
sity function for discrete-time survival data (Equation 4.45) can also be
written as a product of time-point-specific transition probabilities rather
than spell-specific densities. As above, let L* be the length of the ob-
servation period, and S; be the state occupied at ¢;. In that case, the
density function of the discrete-time survival data given in Equation 4.45
can also be written as follows:

F(s1,- .., 81+|50, %) Hxsl (%) {1 = Ay, (%)} (a.47)

in which d; is an indicator variable indicating whether a transition oc-



curred in ¢; or not, and in which

S*

>‘5171 (tl|x) = Z >‘8171g(tl|x) if sy =811,
g=1

Asi_is(tifx) =0 if s =s,1.

Now it can be seen that the density function given in Equation 4.47 is
equivalent to the last part of Equation 4.46, since

Tsilxsi—1 = >\Sl—1$l (tl|X) if 5j <> 91,
= 1- )\slil(tl|x) if Sy = S1—1 -

Ts1lxs1-1

This reflects that, if the length of the observation period is the same for
all individuals, the models are very similar.

The parameters of the classical discrete-time Markov model are the
conditional probabilities which appear in Equation 4.46. More restricted
models are specified by means of equality and fixed-value restrictions on
these probabilities (Van de Pol and Langeheine, 1990). The different pa-
rameterizations make the classical Markov model and the discrete-time
logit model look rather different. However, by using the logit parame-
terization of (conditional) probabilities discussed in section 2.9, in other
words, by treating the classical Markov model as a modified path model
(Goodman, 1973; Hagenaars, 1990), a version is obtained that is equiv-
alent to the discrete-time logit model. Yamaguchi (1990) already rec-
ognized the similarity between Goodman’s causal log-linear model for
categorical variables and the discrete-time logit method. The logit pa-
rameterization of the transition probabilities appearing in Equation 4.46
can, as in Equation 4.44, be parameterized as

exp (asl—lé‘l + Zj Ile—lsljxsl—15lij)
Zg exp (assz + Zj Ileflgijglflgij)

(4.48)
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As always, identifying restrictions have to be imposed on the log-linear
parameters. In discrete-time logit models, these restrictions have very
specific form. As can be seen from the logit model described in Equa-
tion 4.44, within every level of O, the category no event is the reference
category. This is the reason that the denominator contains the term 1
for the reference category and that the summation is over all possible



events, given the value of O. As a result, the o and 8 parameters in the
discrete-time logit model represented in Equation 4.44 can be interpreted
as effects on transition probabilities. To obtain the same parameteriza-
tion when using a modified path model with steps of the form given in
Equation 4.48, the one-variable parameters of S5; have to be left out of
the model and the a’s and 8’s in which S; = S;_; have to be fixed to
zero. The result is that, as in Equation 4.44, the stayers are treated as the
reference category within each origin state s; 1. These identifying restric-
tions guarantee that the modified path model gives parameters identical
to the discrete-time logit model, namely, time and covariate effects on the
transition probabilities rather than on the probability that S; = s;. In
other words, the model consists of transition-specific main and covariate
effects for each point in time.

A difference between the discrete-time logit model and the classical
discrete-time Markov model is that in the latter the observation period is
assumed to be the same for all persons. Generally, there are no facilities
to handle observations which are censored during the observation period.
However, by using the missing data methods discussed in Chapter 3, cen-
soring, partial nonresponse, and panel attrition can be handled without
any problem. Chapter 5 will demonstrate how to deal with different kinds
of partially observed event history information when using the modified
path analysis approach for analyzing discrete-time event history data.

Another difference between the two methods is that in the classical
model described in Equation 4.46, the marginal distribution of the covari-
ates, mx, and the marginal distribution of the initial state, m, |, appear
in the model. This means that restrictions can be imposed on them as
well. As will be demonstrated in the next chapter, the ability to specify a
model for the covariates and the initial state can be an important feature.
For instance, in the hazard modeling tradition, unobserved heterogeneity
is generally assumed to be independent of the covariate values and of
the initial position. However, when it is possible to model the covariate
structure and the initial position, it is no longer necessary to make such
assumptions. Then, it is just one of the possible model specifications.

Although both models are based on the Markov assumption, in the
hazard modeling tradition the Markov assumption is never explicitly
tested. When using the classical Markov model, the Markov assumption
can be explicitly tested by means of, for instance, the likelihood-ratio chi-
squared statistic. This is the result of the fact that when all covariates



are categorical, the data can be represented in a frequency table.

The last difference to be mentioned between the two models is that
in the classical discrete-time Markov model the basic time dimension is
always process time. As demonstrated earlier, in hazard models the time
dimension can also be duration or waiting time, although in that case it
is no longer a Markov model, but a semi-Markov model. It is possible to
accommodate the classical model to allow the transition rates to depend
on waiting time as well.

To summarize, a strong point of the discrete-time hazard model is
the logit parameterization of the transition probabilities which makes
it possible to specify parsimonious models for covariate dependence of
the process to be studied. Another strong point, of course, is the way
it handles censored observations. Some weak points are, however, that
the covariate values and the initial position are always treated as fixed
quantities and that the Markov assumption is never tested explicitly.

It can be concluded that the classical discrete-time Markov model is,
in fact, an event history model as well. It is identical to the discrete-time
logit model when it is parameterized as a modified path model and when
partially observed data can be included in the analysis. This implies, for
instance, that the latent variables techniques presented in Chapter 3 can
easily be transferred to discrete-time logit models. This is an interesting
feature which will be used in Chapter 5.

The logit parameterization of the transition probabilities of classical
discrete-time Markov model, including the potential for using partially
observed data and the latent variable techniques mentioned above, is
implemented in the EM program (Vermunt, 1993).

4.8.5 Other kinds of multivariate hazard models

In section 4.6, some problems associated with the use of time-varying
covariates in hazard models were discussed. More precisely, it was shown
that the effect of a time-dependent covariate may be (partially) spurious
as a result of unobserved factors influencing both the covariate process
and the dependent process. Another problem associated with the use of
time-varying covariates is reverse causation.

Multivariate hazard models make it possible to detect dependencies
among different life-cycle transitions which are caused by common an-
tecedents. Moreover, they make it possible to analyze the simultaneous



relationships among two or more processes. This implies that multivari-
ate hazard models can help to tackle some of the problems associated with
the use of time-varying covariates. An example of an application of such a
multivariate hazard model is Yamaguchi’s analysis of the interdependence
between marijuana use and marriage (Yamaguchi, 1990).

The use of multivariate event history techniques for studying the rela-
tionships among different life-cycle transitions rather than investigating
their relationships by means of the use of time-varying covariates is also
richer from a substantive point of view. Willekens (1989) promoted these
kinds of models for the analysis of interdependencies among parallel ca-
reers, where the term parallel careers refers to different aspects of life,
such as place of residence, union type, birth of children, education and
occupation. Manton, Woodbury, and Stallard (1988) stressed the impor-
tance of simultaneously modeling the process of interest — in their case
death from different causes — and the evolution of risk factors to be able
to predict the effect of intervention in risk factors on survival.'”

There is, however, also a statistical reason to model several life-cycle
transitions simultaneously. According to Lancaster (1990:30), using in-
formation on the covariate process of endogenous covariates, improves the
efficiency of the parameter estimates.

The analysis of dependent or clustered observations is another field of
application of multivariate hazard models. Examples of dependent obser-
vations are employment histories of husbands and wives, infant mortality
of children from the same family (Guo and Rodriguez, 1991), and school
transitions of brothers (Mare, 1994). For clustered or dependent obser-
vations, the same arguments in favor of simultaneous analysis apply as
the ones that were mentioned when discussing the analysis of repeat-
able events. Actually, data on repeatable events is a particular type of
clustered data.

Models Let us use the term cluster in the most general sense. More
precisely, a cluster can consist of: 1] a number of observations of the same
type on different individuals belonging to the same group, 2| a number
of observations of the same type on one individual, or 3] a number of

10T hey proposed modeling changes in discrete and continuous variables by means of
a continuous-time multivariate Gaussian stochastic model (see also Manton and Wood-
bury, 1985). The main difference between their approach and the approach presented
in this subsection is that the latter assumes that all the variables are discrete.



observations of different types on one individual. Examples of these three
types of clustered observations are data on school transitions of brothers,
measurements of different parts of the body in a clinical trial, and data on
a woman’s occupational, reproductive and relational career, respectively.

Let M indicate a particular observation within a cluster. Assume, for
simplicity of exposition, that there is data on one single kind of event for
each within-cluster observation. This assumption can easily be relaxed
by defining a multiple-state model for within-cluster observations. In
principle, a separate hazard model can be specified for each within-cluster
observation, i.e.,

R (Ex™) = h™(t)exp Z,B;nx?;
J

For clustered observations of the types 1 and 2, restrictions are generally
imposed on the parameters across m’s. The hazard model could, for
instance, be of the form

KT(EX™) = h(t)exp [ Y Bz + Y Brai
j k

Here, both the time dependence and the effects of the covariates which
have the same value for all observations belonging to the same cluster are
assumed to be equal.

Models for clustered observations of the third type will generally in-
clude information on one type of observation as a time-varying covariate
in the hazard model for another type of observation. Suppose we perform
a simultaneous analysis of women’s reproductional, occupational and rela-
tional histories. In that case, a woman’s employment and relational status
can be used as time-varying covariates in the hazard rate model for the
first birth, probably with some time-lag to prevent the effects which are
found being the result of reversed causation (see section 4.6). In addition,
the number of children and marital status can be used as time-varying
covariates in the hazard rate model for employment transitions.

The estimation of the model parameters is performed in the same
way as in the case of repeatable events, which as already mentioned, are
clustered observations as well.!!

" Recently, Petersen (1995) compared three alternative approaches for dealing with



A strong point of the simultaneous analysis of clustered observations
in the way proposed here, is that dependencies among observations which
are not described by the observed covariates included in the model can be
captured by means of the latent variables techniques to be discussed in the
next chapter. Below the problem of conditionally dependent observations
is introduced.

4.8.6 Conditional dependence among observations

The maximum likelihood methods for estimating multivariate event his-
tory models discussed so far are based on the assumption of conditional
independence. More precisely, the observations within every unit of ob-
servation are assumed to be independent given the covariate information
which is used in the multivariate hazard model. However, in most sit-
uations, this assumption is not very realistic. As a result of common
unobserved risk factors, the spells, the different kinds of transitions for
a particular person, or the observations within a particular cluster may
remain correlated, even after controlling for observed risk factors.

Since dependencies among observations lead to biased parameter es-
timates and underestimated standard deviations (Allison, 1984:54), de-
tecting dependencies among observations belonging to the same cluster is
important from a statistical point of view. However, detecting common
unobserved risk factors is also important from a substantive point of view
(Mare, 1994). It helps us to answer the following kinds of questions: Are
there common unobserved variables influencing different types of life-cycle
transitions? How are survival times of the different observations within
one unit related?

There are three types of methods which can be used to detect and to
control for dependencies among observations belonging to the same clus-
ter: random-effects methods, fixed-effects methods, and methods which
are based on using association parameters.

interdependent event history data of the third type, data on different types of life-cycle
transitions. He demonstrated that as long as events cannot occur at the same point
in time, the three approaches are equivalent to one another and to using one type of
history as a time-varying covariate in the hazard model for another type of history.
On the other hand, if it is possible to experience more than one type of transition at
the same time, the three approaches yield different results due to the fact that each of
them specifies the risk of the simultaneous occurrence of events is a slightly different
way.



Randome-effects approach The random-effects approach is based on
the introduction of a latent variable having the same value for all obser-
vations belonging to the same cluster (Heckman and Singer, 1982; Guo
and Rodriguez, 1992; Clayton and Cuzick, 1985). This latent variable,
whose distribution may have either a parametric or non-parametric func-
tional form, is included in the hazard model as one of the covariates.
The random-effects approach (Yamaguchi, 1986) is, in fact, very simi-
lar to the way unobserved heterogeneity is handled in univariate hazard
models (see section 4.6). An important difference is, however, that the
local independence assumption, that is, the assumption that the observa-
tions belonging to one cluster are independent given the latent variable
included in the model, makes it easier to identify the model. Note that
the local independence assumption is identical to the basic assumption of
latent structure models (see section 3.1).

Chamberlain (1985) and Yamaguchi (1986) stated that random-effects
methods have two important disadvantages. First, the functional form
of the distribution of the unobserved variable may strongly influence the
results. Therefore, Heckman and Singer (1982, 1984, 1985) recommended
using a non-parametric approach which is similar to a latent class model.
A second problem is that the latent variable is generally assumed to be
independent of the observed covariates and of the initial position. But,
in most cases it is unrealistic to assume that the unobserved factors influ-
encing the hazard rate are not correlated with the observed factors and
with the state occupied at T' = 0. In the next chapter, a random-effects
approach is presented which overcomes the two weak points mentioned by
Chamberlain and Yamaguchi: it is non-parametric and makes it possible
to relate the latent variable capturing the unobserved heterogeneity to
the observed covariates and to the state occupied at T' = 0.

Fixed-effects approach A second method for dealing with dependen-
cies among observations counsists of including cluster-specific effects, or
incidental parameters, in the model (Chamberlain, 1985; Yamaguchi,
1986)). In fact, a categorical variable is included in the hazard model
which indicates to which cluster a particular observation belongs. Thus,
observations belonging to the same cluster have the same value for this
variable while observations belonging to different clusters have different
values. This approach, which is called the fixed-effects method for treat-



ing unobserved heterogeneity, can only be applied with multivariate sur-
vival data, that is, when there is more than one observation for the largest
part of the observational units.

The advantage of using fixed-effects methods to correct for unobserved
heterogeneity is that they circumvent the two objections against random-
effects methods which were presented above: No functional form needs
to be specified for the unobserved heterogeneity and the unobserved het-
erogeneity is automatically related to both the initial state and the time-
constant covariates.

The major limitation of the fixed-effects approach is that since each
cluster has its own incidental parameter, no parameter estimates can be
obtained for the effects of covariates which have the same value for the
different observations belonging to the same cluster. Only the effect of
observation-specific, or in the case of repeatable events, of time-varying
covariates can be estimated. Another problem is that the incidental pa-
rameters cannot be estimated consistently, since by definition they are
based on a limited number of observations regardless of the sample size.
This inconsistency may be carried over to the other parameters if the
parameters are estimated by means of maximum likelihood methods (Ya-
maguchi, 1986).

The maximum likelihood estimation of the fixed-effects model can
be performed by means of standard programs for event history analysis.
The only thing that has to be done is to include in the hazard model a
categorical covariate having a different value for each cluster or observa-
tional unit. Because the number of incidental parameters is generally very
large, it may be difficult to estimate the model parameters by means of
Newton-Raphson-like methods. Yamaguchi (1986) proposed estimating
the fixed-effects model by means of the Newton-Raphson algorithm after
removing the incidental parameters from the likelihood function. This is
possible only if the time-varying covariates, including the time variable
itself, are step functions of T or U. Another option is to use the iterative
proportional fitting algorithm or the uni-dimensional Newton algorithm
which were presented in Chapter 2 and which are implemented in, for
instance, the /EM program (Vermunt, 1993).

Alternative procedures for estimating the parameters of hazard mod-
els with these kinds of incidental parameters are marginal likelihood
(Chamberlain, 1985), conditional likelihood (Cox and Lewis, 1966) and
partial likelihood (Chamberlain, 1985) methods. These approaches allow



us to obtain a likelihood function which is independent of the incidental
parameters by imposing additional restrictions on the duration depen-
dence of the process and the types of covariates which may be used in the
regression model (Yamaguchi, 1986). Although these alternative proce-
dures do not have the inconsistency problem of the maximum likelihood
method, the additional restrictions strongly limit their applicability.

When there are two completed survival times for each unit of obser-
vation, the partial likelihood approach for estimating fixed-effects models
can simply be implemented using a logistic regression model (Kalbfleisch
and Prentice, 1980:190-192). A variable has to be defined which takes
the value 1 for the shorter of the two spells and the value 0 for the longer
of the two spells. Applying a fixed-effect approach involves using this
variable as the dependent variable in a logistic regression model in which
the time-varying covariates are used as regressors.

Using association parameters A third approach for modeling depen-
dencies among survival times consists of including additional parameters
in the hazard model describing the associations among the observed sur-
vival times. Clayton and Cuzick (1985) proposed that the association
between two survival times be described by means of one parameter de-
noted by @. This parameter has a direct interpretation in terms of hazard
rates, i.e.,

h(t1|T2 = t2) = 9h(t1|T2 > t2) ,
h(t2|T1 = tl) = 9h(t2|T1 > tl) .

Here, 77 and T denote the first and second survival time, respectively.
It can be seen that the hazard rate for observation 1 at a particular point
in time is 6 times higher if T5 equals t9 than if T5 is greater than 5. In
fact, 6 is a continuous generalization of the well-known continuation ratio
in the contingency table literature (Clayton and Cuzick, 1985).

Winship (1986) and Mare (1994) modelled the association between
discrete survival times by means of a (conditional) quasi-symmetry model.
This model is well known in the contingency table literature as well.
But it is also possible to use other kinds of models for investigating the
associations among discrete survival times, such as, for instance, the log-
multiplicative association models discussed in section 2.7.



The main limitation of modeling the conditional dependence among
survival times by means of association parameters is that no causal in-
terpretation can be given to the parameters (Whitehead, 1985). This
is in contrast to the random-effects approach, in which the additional
parameters can be interpreted as the effects of unobserved common risk
factors.



Chapter 5

Event history analysis with

latent variables and missing
data

The previous chapter introduced models for the analysis of event history
data and discussed various problems associated with the analysis of event
history data, most of which are caused by missing information. In section
4.6, it was demonstrated that unobserved heterogeneity hampers the in-
terpretation of the effects of time-varying covariates, time variables, and
time-covariate interactions. More precisely, unobserved heterogeneity bi-
ases the duration dependence downward, even if it is not correlated with
the observed covariates. If the unobserved risk factors are correlated with
the time-constant covariates included in the model, in other words, if there
is selection bias, not only are the model parameters biased, but there will
also be spurious time-covariate interactions. If there are unobserved risk
factors which also have an effect on changes in the values of particular en-
dogenous time-dependent covariates, the effects of these covariates will be
at least partially spurious. In section 4.7, it was demonstrated that unob-
served common risk factors may lead to dependent competing risks. And
finally, as discussed in 4.8, unobserved heterogeneity may invalidate the
assumption of conditional independence in models for repeatable events
or other types of clustered observations, and may lead to spurious effects
of time-varying covariates.

In the field of event history analysis, techniques have been developed



to tackle some of these problems. In particular, the problem of spurious
time dependence has received a lot of attention (Heckman and Singer,
1982, 1984; Flinn and Heckman, 1982; Vaupel, Manton and Stallard,
1979; Manton, Vaupel and Stallard, 1986; Trussell and Richards, 1985).
Also, some work has been done on the problem of dependent observations
(Mare, 1994; Guo and Rodriguez, 1994; Yamaguchi, 1986; Clayton and
Cuzick, 1985) and on the problem of dependent competing risks (Vaupel
and Yashin, 1985; Heckman and Honore, 1989). However, some other
problems, such as the selection bias problem, remain unresolved since the
latent covariates introduced in the hazard models are always assumed to
be independent of the observed covariates and of an individual’s initial
state (Yamaguchi, 1986, 1991:132). The general latent variable approach
that is presented in this chapter does not have this limitation. Therefore,
it can also help to resolve some of the remaining problems, especially the
problems of selection bias and of spuriousness of effects of time-varying
covariates.

In Chapter 3, two other kinds of missing data problems were dis-
cussed: measurement error, and partially missing data. It was shown
that the problem of measurement error in categorical covariates can be
handled by means of latent class models (Goodman, 1974; Haberman,
1979: Chapter 10). Measurement error is a problem which may also oc-
cur when collecting event history data. The covariates may be measured
with error, which, as is known for ordinary regression models, leads to
biased covariate effects. But duration, or more generally, the states that
individuals occupy at different points in time, may be measured with
error as well.

Lancaster (1990:59-61) showed that in particular situations measure-
ment error in recorded regressors and durations can, in addition to the
above-mentioned omitted variables problems, be an argument to use a
mixture model. If the hazard is of a Weibull or exponential form and
the random measurement error in the recorded duration is multiplicative,
the error generates a mixture model. If the hazard is proportional and
log-linear and the error in the covariates is additive, a mixture model is
also obtained. In the latter case, the mixture distribution depends on the
value of the covariate concerned.

Here, another more general approach to measurement error in re-
corded states and in recorded durations is used which is based on the
latent class techniques discussed in section 3.1. A latent class model



can be used to relate the latent or true score to one or more observed
variables by a set of conditional response probabilities, which may be
restricted by means of a logit model. When covariates are measured with
error, or when covariates can only be measured indirectly, one or more
categorical latent variables can be used as covariates in the event history
model instead of the unreliable observed covariates concerned. A related
approach was proposed by Gong, Whittemore, and Grosser (1990) who
presented a method for handling misclassification in covariates with a
restricted latent class model. Their approach is actually a special case
of the approach that is presented here, that is, a situation in which the
mechanism leading to measurement error is known.

In the field of event history analysis, correcting for measurement error
in recorded states is very rare. However, as already mentioned in section
3.1, in the field of discrete-time Markov modeling, the idea of correcting
measurement error in the observed states is very old (Wiggins 1955, 1973;
Lazarsfeld and Henry, 1968), and has been worked out more recently by
Poulsen (1982) (see also Van de Pol and De Leeuw, 1989; Van de Pol and
Langeheine, 1990; and Vermunt, Langeheine, and Bockenholt, 1995). In
latent Markov models, the latent unobserved states at the different points
in time are related to the observed states using a latent class model with
as many latent variables as observed ones. A Markov model is specified for
the relationships among these latent variables. This way, it is possible to
distinguish true changes from changes which are caused by measurement
error in the recorded states. As demonstrated in section 4.8, discrete-time
Markov models are equivalent to discrete-time logit models, especially if a
logit parameterization of the transition probabilities is used. As a result,
discrete-time event history models with error in recorded states can be
formulated by means of the latent class methods discussed in Chapter
3. The same methods can be used to correct for measurement error in
time-varying covariates.

Another type of missing data problem is partially missing information.
Of course, researchers may be confronted with this problem in event his-
tory analysis as well. Both covariate values and information on the depen-
dent process may be missing for some individuals. Schluchter and Jackson
(1989) proposed using the information of subjects with partially missing
time-constant covariates in a hazard analysis using a method which is
similar to the one proposed by Fuchs (1982) for log-linear models. Their
approach can easily be extended when using the models for nonresponse



proposed by Fay (1986, 1989) which were introduced in section 3.2. This
makes it possible to specify nonignorable response models for the par-
tial nonresponse on particular covariates. Recently, Baker (1994) applied
these models for nonresponse in a discrete-time logit model with a par-
tially missing covariate.

Besides time-constant covariates, information on the dependent pro-
cess can be partially missing as well. Censoring is, of course, the best
known form of missing information on the process to be studied. As
demonstrated in section 4.5, censoring can easily be dealt with as long as
the censoring mechanism is independent of the process to be studied, in
other words, as long as the response mechanism is ignorable. However,
when the censoring mechanism is nonignorable, other methods for han-
dling censored observation must be used. For that purpose, it is possible
to use Fay’s causal models for nonresponse (Fay, 1986, 1989). The models
for nonresponse can be used not only to deal with censoring, but also to
deal with event history data with nonnested missing data patterns. The
same methods can be used to handle partially missing information on
time-dependent covariates.

This chapter presents a unifying framework for dealing with unob-
served heterogeneity, measurement error, and partially missing data in
the context of event history analysis. The general model that is used
for this purpose consists of two parts, a log-linear model in which the
relationships among the observed, partially missing, and unobserved co-
variates are specified, and a event history model for those events whose
occurrence has to be explained. The event history model can be either
a piecewise exponential survival model, which is also known as log-rate
model, or a discrete-time logit model. This means that only models which
can be handled within the framework of log-linear analysis are used in
this chapter. The advantage of this restriction is that the models are
mathematically simple and that it is not necessary to assume paramet-
ric functional forms for the covariate and survival distributions. When
necessary, parametric models can be approximated by imposing restric-
tions on the log-linear parameters. In spite of the restriction to models
which can be handled within the framework of log-linear modeling, the
main principles of the general approach can be transferred to parametric
models for the covariates and the duration process.

Although above the general approach to be discussed in this chap-
ter was presented as a tool for handling different kinds of missing data



Table 5.1: Special cases of the general missing data approach presented
in this chapter

1. Unobserved heterogeneity 5.2
- a. a single nonrepeatable event 5.2.4
- b. dependent competing risks 59.2.5
- c. repeatable events and multiple-state processes 5.2.6
- d. clustered or dependent observations 5.2.7
- e. spurious effects of time-varying covariates 5.2.8
2. Measurement error 5.3
- a. in covariates 5.3.1
- b. in recorded states 5.3.2
3. Partially missing data 5.4
- a. information on covariates 5.4.1
- b. event history data 5.4.2

problems in event history analysis, it can also be seen as an extension of
the log-linear path model. By combining the log-linear path models pre-
sented in Chapters 2 and 3 with event history models, it becomes possible
to use information on the timing of events in a modified path model. One
possible application concerns the construction of typologies by means of
latent class models which contain information on the timing of events as
indicators.

After the general model is presented in section 5.1, attention is given
to the three above-mentioned types of missing data problems: unobserved
heterogeneity, measurement error, and partially missing data. Table 5.1
gives an overview of the special cases of the general model that are pre-
sented in this chapter. As can be seen, the three main types of miss-
ing data problems, unobserved heterogeneity, measurement error, and
partially missing data, are dealt with in sections 5.2, 5.3, and 5.4, re-
spectively. Within these missing data categories, different special cases
are distinguished which are discussed in separate subsections. As already
mentioned, unobserved heterogeneity may introduce spurious time depen-
dence when analyzing a single nonrepeatable event, (5.2.4), may lead to
dependence among competing risks (5.2.5), may complicate the analysis
of repeatable events, multiple-state processes (5.2.6), and other types of
dependent observations (5.2.7), and may lead to spurious effects of time-
varying covariates (5.2.8). Measurement error may occur in the covariates



which are used in the hazard model (5.3.1) and in the states occupied at
the different points in time (5.3.2). The same applies to partially missing
data (5.4.1 and 5.4.2).

Unlike the previous chapters, which described the techniques on which
the general missing data approach is based, in this chapter many applica-
tions are presented using real-world data sets from different substantive
fields to illustrate the potentials of the general missing data approach.

5.1 General model

The general model which is used for dealing with missing data in event
history analysis consists of two parts. The first part is a model for the
time-constant covariates used in the event history model. These covari-
ates may be observed, unobserved, or partially unobserved. A variable
indicating the initial state may also be included in this part of the model.
For the covariates, we will use a causal log-linear model of the type dis-
cussed in Chapters 2 and 3. This implies that, as in modified path models,
all endogenous variables have to be categorical. The second part of the
general model is a multiple-state event history model, which can be used
not only to model the dependent process to be studied, but also the tran-
sitions occurring in the time-varying covariates. Here, we will use either
a log-rate model or a discrete-time logit model in the second part of the
model.

If only information on time-constant covariates is missing, the model
can be written in its most compact form as

> P(x,t,6) = Y P(x)P(t,d]x). (5.1)

Xmis Xmis

The joint probability function of the time-constant covariates (x) and the
times that transitions occur (t,¢) is decomposed into a part containing
the covariate information and a part containing the event history infor-
mation, given the covariate values. Of course, to obtain the density for
the incompletely observed data, one has to sum over the missing data,
denoted by Xns-

As in other types of regression models, the relationships between the
covariates are normally not investigated in event history analysis. This
means that only the second part at the right-hand side of Equation 5.1,



P(t,d|x), is considered. However, by specifying a log-linear path model
for the covariates, it not only becomes possible to investigate the rela-
tionships among the covariates, but also to handle all kinds of missing
data problems concerning the covariates using the techniques discussed
in Chapter 3.

If, apart from ignorable censoring, no missing information appears
in the second part of the model, it is possible to use any of the event
history models discussed in the previous chapter. However, if there is
measurement error in the recorded states or if there is a more general
form of partially missing information on the dependent process, it is most
tractable to use a discrete-time model. The same applies if some informa-
tion on time-varying covariates is missing. The reason for this is that for
continuous-time models, such as the log-rate model, measurement error in
the recorded states and general forms of partially missing information on
the dependent process cannot easily be dealt with yet. Here, we will only
use discrete-time logit models in such situations. Because the discrete-
time logit model is also a modified path model (see subsection 4.8.4), it
is possible to use the missing data techniques developed in the field of
log-linear analysis for dealing with missing information on the dependent
process.

Thus, the models that are used in this chapter may consist of three
different types of models for the event history part. If only information
on some time-constant covariates is missing, the event history model may
be either a log-rate model or a discrete-time logit model. If event history
information is missing, the event history model is a discrete-time logit
model which is extended with the missing data methods developed for
the modified path model discussed in Chapter 3, that is, in which the
states at the different points in time may be latent or partially observed.
In the latter case, the general model can be written as

> P(x,s) = Y P(x)P(slx). (5.2)

XmisSmis Xmis:Smis

Here, s denotes the observed and unobserved states of an individual at
the different points in time, and s,,;s the missing information in these
states. As demonstrated in section 4.8, the density function of discrete-
time event history model can also be written in terms of states occupied at
different point in time, instead of survival times and censoring indicators.



Estimation Maximum likelihood estimation of event history models
with missing data can be performed by various means, including the EM
algorithm which was introduced in Chapter 3 in the context of log-linear
modeling with missing data (Dempster, Laird and Rubin, 1979). The E
step of the algorithm involves completing the data on the basis of the
observed data and the parameter values from the previous iteration.'
In the M step, the same estimation methods can be used to compute
improved estimates of the model parameters as when there is no missing
data. The event history model and the model for the covariates can be
estimated separately by means of the algorithms discussed in Chapter 2,
i.e., iterative proportional fitting, Newton-Raphson, and uni-dimensional
Newton.

To complete the data in the E step, the probability of the missing
data given the observed data and the parameters estimates from the last
iteration has to be computed. These conditional probabilities, which are
sometimes also called posterior probabilities, are obtained by

P(x,t,0)
Yox,. P(x,t,0) ’

P(x,s)

P(szs, szs|xobsa Sobs) meis’smis P(X, S) . (5'4)
Equation 5.3 refers to situations in which only data on time-constant
covariates is missing; Equation 5.4 refers to situations in which also event
history information is missing.

This EM algorithm has been implemented in the computer program
CEM (Vermunt, 1993). The program allows the user to specify a log-linear
path model for the covariates and a hazard model for the dynamic process
under study. In the M step of the EM algorithm, both the iterative
proportional fitting and the one-dimensional Newton algorithm can be
used in /EM. In this way, not only hierarchical log-linear models can be
specified, but also models with all kinds of restrictions on the parameters
as discussed in Chapter 2.

P(Xmis|x0bsat36) (53)

11t should be noted that the general definition of the E step is the computation
of the expectation of the complete data likelihood. However, if the density function
of the complete data belongs to the exponential family, the E step simplifies to the
estimation of the complete-data sufficient statistics (see, for instance, Tanner, 1993:
Chapter 4). Since all the models which are discussed in this chapter belong to the
exponential family, we can use this simpler definition of the E step.



A disadvantage of using the EM algorithm is that it does not auto-
matically supply standard errors for the parameter estimates. Since the
computation of standard errors has not yet been implemented in £EM, the
significance of effects has to be tested using likelihood-ratio tests between
nested models.

5.2 Unobserved heterogeneity

The implications of unobserved heterogeneity or omitted variables in the
context of event history analysis was discussed in sections 4.6, 4.7, and
4.8 of the previous chapter. To summarize, it was demonstrated that un-
observed heterogeneity biases the duration dependence downward, even
if it is not correlated with the observed covariates. If the unobserved risk
factors are correlated with the time-constant covariates included in the
model, in other words, if there is selection bias, not only are the model
parameters biased, but there will also be spurious time-covariate inter-
actions. If there are unobserved risk factors which also have an effect
on changes in the values of particular endogenous time-dependent covari-
ates, the effects of these covariates will be, at least partially, spurious. In
addition, unobserved common risk factors may lead to dependent com-
peting risks. And finally, unobserved heterogeneity may invalidate the
assumption of conditional independence in models for repeatable events
or other types of clustered observations and may lead to spurious effects
of time-varying covariates.

Because of the serious implications of unobserved heterogeneity in
hazard models, it is not surprising that in the last two decades a great
deal of work has been done on this subject (Vaupel, Manton, and Stallard,
1979; Manton, Vaupel and Stallard, 1981, 1986; Vaupel and Yashin, 1985;
Heckman and Singer, 1982, 1984; Flinn and Heckman, 1982; Trussell and
Richards, 1985; Mare, 1994; Guo and Rodriguez, 1994; Yamaguchi, 1986;
Clayton and Cuzick, 1985; Heckman and Honore, 1989). In the above-
mentioned sections of Chapter 4, the most important methods for deal-
ing with unobserved heterogeneity were mentioned. One approach, also
known as the random effects methods, involves the introduction of one or
more latent covariates in the event history model. In this section, these
random effects methods are discussed in more detail. First, the paramet-
ric and non-parametric latent variable approaches which have become



standard tools for dealing with unobserved heterogeneity in event history
analysis are discussed. Then, a more general non-parametric latent vari-
able approach is presented, which is a special case of the general model
presented in section 5.1. Subsection 5.2.3 discusses the identifiability of
the parameters in hazard models with latent covariates. And finally, in
subsections 5.2.4-5.2.8, it is shown how to use the general latent vari-
able approach to detect spurious time dependence when analyzing a sin-
gle nonrepeatable event, how to identify dependencies among competing
risks, how to analyze repeatable events and other types of dependent ob-
servations, and how to detect spurious effects of time-varying covariates.
These last five subsections contain several examples in which real-world
data sets from different substantive fields are used.

5.2.1 Latent variable approaches to unobserved hetero-
geneity

Parametric mixture distributions Vaupel, Manton, and Stallard
(1979) proposed correcting for unobserved heterogeneity, or as they called
it ‘frailty’, in the life-table analysis of mortality rates (see also Manton,
Vaupel and Stallard, 1981). They were especially concerned about the
effect of unobserved heterogeneity on the size of the observed mortality
rates at higher ages. Individuals who are alive at a specific age form a
selective group of the birth cohorts to which they belong, namely, the
individuals who are less frail. As a result, observed age-specific mor-
tality rates, which equal the mean of the mortality rates of the persons
who are still alive, will be lower than the age-specific mortality rates for
someone with average frailty. Vaupel and Yashin (1985) described this
phenomenon nicely as: ”Individuals age faster than heterogeneous co-
horts”. In section 4.6, this phenomenon was described as the downwards
bias of the duration dependence resulting from unobserved heterogeneity.

To be able to estimate the age-specific mortality rates of someone with
average frailty, Vaupel, Manton and Stallard (1979) proposed including
a continuous latent variable in a hazard model. The value of this latent
variable was assumed to be constant during an individual’s life, and,
moreover, the latent variable was assumed to have a multiplicative and
proportional effect on the hazard rate, i.e.,

h(t) = h(t)o. (5.5)



Here, 6 denotes a value of the latent variable, which is assumed to have
a particular distributional form. Since the hazard rate is not allowed to
take negative values, § must be greater than or equal to zero. This must
be taken into account when choosing a particular distributional form for
f. The amount of unobserved heterogeneity is determined by the size
of the standard deviation of the distribution of the latent variable: The
larger the standard deviation of 6, the more unobserved heterogeneity
there is.

The model represented in Equation 5.5 is, in fact, a mixture model
as discussed in the context of latent class analysis (see section 3.1). The
only difference is that the mixture variable is assumed to have a particu-
lar continuous distribution function, while in latent class analysis, there
is a discrete mixture variable with an unspecified distributional form. Be-
low, a non-parametric approach to unobserved heterogeneity is presented
which, like latent class analysis, is based on the use of a finite mixture
model.

Since 6 cannot be observed, the hazard rate h(¢) which appears in
Equation 5.5 is also unobservable. The observable hazard rate is the
marginal hazard rate at T' = ¢, i.e.,

) = /0 SRt £1(0)d0 = h()a(E) (5.6)

Here, f;(0) denotes the density function of § at T =t and #(¢) the mean
value of the latent variable at T' = ¢. The mean value of 6 at T = 0,
6(0), can be arbitrarily set to 1. Note that h(t) is the hazard rate that is
modeled when the unobserved heterogeneity is not taken into account. It
can easily be seen from Equation 5.6, that, except at T' = 0, the individual
hazard rates h(t) are higher than the marginal hazard rates. The reason
is that the mean value of 6 declines with time since the individuals with
a higher 6 have higher hazard rates at all ¢.

Vaupel, Manton, and Stallard (1979) proposed using a gamma dis-
tribution for 6, with a mean of 1 and a variance of 1/, where 7 is the
unknown parameter to be estimated. Several other authors have pro-
posed incorporating a gamma distributed multiplicative random term in
event history models (Tuma, and Hannan, 1984:177-179; Tuma, 1985;
Lancaster, 1979, 1990:65-70). According to Vaupel, Manton and Stal-
lard (1979), the gamma distribution was chosen because it is analytically
tractable and readily computational. Moreover, it is a flexible distribu-



tion that takes on a variety of shapes as the dispersion parameter «y varies:
When v = 1, it is identical to the well-known exponential distribution;
when « is large, it assumes a bell-shaped form reminiscent of a normal
distribution. Multiplicative frailty cannot be negative, and the gamma,
distribution is, along with the log-normal and Weibull distribution, one
of the most commonly used distributions to model variables that are nec-
essarily positive.

The estimation of the parameters of hazard models with a gamma
disturbance term is relatively easy for particular conditional survival dis-
tributions such as the exponential model, the Weibull model and the
Gompertz model. This results from the fact that after integrating out the
mixture distribution, simple expressions remain for the hazard and sur-
vival functions appearing in the likelihood function to be maximized. For
instance, when an exponential survival model is postulated, the marginal
hazard and survival functions for person i with covariate values x; are

exp(2; Bjwij)y
exp(X; Bjzi)t +

)
) - v
Slthx) = (eXP(Zj 5j$ij)t+7> |

Note that the hazard rate depends on the time variable T' even though
in the exponential model the individual hazard rates are time indepen-
dent (Tuma and Hannan, 1984:177-179). Several computer programs
contain an option to specify parametric hazard models with gamma dis-
tributed unobserved heterogeneity, two of which are Tuma’s RATE pro-
gram (Tuma, 1979) and Rohwer’s TDA program (Rohwer, 1993).

Although the assumption of a gamma distribution has been dominant,
other distributions have also been advocated. Heckman and Singer (1982)
used both a log-normal and a normal mixture distribution. Hougard
(1984, 1986a, 1986b) proposed the inverse Gaussian distribution and
other kinds of positive stable distributions. Wrigley (1990) proposed a
beta or multivariate-beta (Dirichlet) form for the mixing distribution in
combination with a discrete-time logit model. The beta-logistic model is
a heterogeneity model which is often used in the context of discrete choice
modeling (Heckman and Willis, 1977).

Bltx) =




Non-parametric mixture distributions Heckman and Singer (1982,
1984) demonstrated by an analysis of one particular data set that the
results obtained from continuous-time hazard models can be very sen-
sitive to the choice of the functional form of the mixture distribution.
Therefore, they proposed using a non-parametric characterization of the
mixing distribution by means of a finite set of so-called mass points, or
points of support, whose number, locations, and weights are empirically
determined. In this approach, the continuous mixing distribution of the
parametric approach is replaced by a discrete density function defined by
a set of empirically identifiable mass points which are considered adequate
to characterize fully the form of the heterogeneity. Laird’s work provides
the theoretical underpinnings of this non-parametric mass points method
(Laird, 1978). In fitting models of this type, one typically starts with two
points of support and proceeds to add more as long as the estimated rel-
ative risks are distinct and the weights are positive (Laird, 1978). Often,
two or three points of support suffice (Guo and Rodriguez, 1992).

It should be noted that the arguments of Heckman and Singer (1982)
against the use of parametric mixing distributions have been criticized
by other authors who claimed that the sensitivity of the results to the
choice of the mixture distribution was caused by the fact that Heckman
and Singer misspecified the duration dependence in the hazard model
they formulated for the data set they used to demonstrate the poten-
tials of their non-parametric approach. (Blossfeld, Hamerle, and Mayer,
1989:97). Trussell and Richards (1985) demonstrated that the results
obtained with Heckman and Singer’s non-parametric mixing distribution
can severely be affected by a misspecification of the functional form of the
distribution of 7. Newman and McCulloch (1984) found no strong influ-
ence of the choice of the mixing distribution on the results in an analysis
of the timing of births. Ridder and Verbakel (1983) showed, by means of
a simulation study, that the results are much more sensitive to the choice
of the conditional survival distribution than to the choice of mixture dis-
tribution. These results indicate that the specification problem is not
solved simply by using a non-parametric rather than a parametric mix-
ture distribution. Irrespective of the type of mixture distribution, a lot of
attention has to be given to the specification of the duration dependence
of the process under study.

Actually, the non-parametric unobserved heterogeneity model pro-
posed by Heckman and Singer (1982, 1984) is, in fact, strongly related to



latent class analysis (Goodman, 1974a, 1974b). As in latent class anal-
ysis, the population is assumed to be composed of a finite number of
exhaustive and mutually exclusive groups formed by the categories of a
latent variable. Suppose Z is a categorical latent variable with Z* cate-
gories, and z is a particular value of Z. If there are no observed covariates,
the non-parametric hazard model with unobserved heterogeneity can be
formulated as follows:

h(t0,) = h(t),.

Here, 6, denotes the (multiplicative) effect on the hazard rate for latent
class z. The marginal hazard rate at T' = ¢ is now defined as

Z*

h(t) = Y h(t)m ()6, = h(t)0.(1)

z=1

where 7,(t) is the proportion of the population belonging to latent class
z at T =t and 0,(t) the mean value of 6, at T = t. In the terminology
used by Heckman and Singer (1982), the number of latent classes (Z*), the
latent proportions (7,(t)), and the effects of Z (6,) are called the number
of mass points, the weights, and the mass points locations, respectively.

Recently, Lindsay, Clogg, and Grego (1991) demonstrated the equiva-
lence between restricted latent class models and non-parametric mixture
models in the context of the Rasch model. The latent class model and
the non-parametric heterogeneity model are both applications of finite
mixture distributions (Everitt and Hand, 1981; Titterington, Smith, and
Makov, 1985; DeSarbo and Wedel, 1993). The only difference between
them is, in fact, the purpose for which they were developed: Models with
non-parametric unobserved heterogeneity were developed to approximate
a continuous mixing distribution with an unknown form, while latent class
models were originally developed to construct measurement models with
discrete latent variables.?

Davies (1987) and Wrigley (1990) showed that it is also possible to in-
corporate non-parametric unobserved heterogeneity in discrete-time logit
models. Wrigley proposed the standard incorporation of a 6, of zero for

2Recently, Heinen (1993) demonstrated that linearly restricted latent class models
can be used to estimate latent trait models by approximating the assumed continuous
distribution of the latent trait variable with a discrete distribution.



each origin state. Such a specification leads to a mover-stayer structure
with one class of stayers for each origin state (Goodman, 1961). Although
Heckman and Singer (1982) also mentioned the possibility of specifying
mover-stayer models, they never gave examples of this interesting special
case of their non-parametric approach. Farewell (1982) proposed using
the mover-stayer model in combination with either a discrete-time logit
model or a Weibull model for separating the probability of the occurrence
on the event of interest from its timing among the persons who experience
the event.? For the discrete-time Markov model, the use of a finite mix-
ture distribution, including the mover-stayer model, has been advocated
by Poulsen (1982) and Van de Pol and Langeheine (1990).

A strongly related application of the latent class model was proposed
by Wedel et al. (1992). They apply the latent class model in a Poisson
regression model. As demonstrated in section 4.8, the Poisson model is
equivalent to a continuous-time event history model for repeatable events
assuming a constant hazard rate, that is, assuming exponential survival.
Wedel, Kamakura, and DeSarbo (1993) included non-parametric unob-
served heterogeneity in a piecewise exponential survival model or log-rate
of the form presented in section 4.4. Recently, Béckenholt and Lange-
heine (1995) proposed including a categorical time-varying latent variable
to correct for unobserved heterogeneity in a Poisson regression model in
which the Poisson rate was assumed to be constant within periods of
time.

The estimation of non-parametric heterogeneity models is a bit more
complicated than, for instance, the gamma model because it is not pos-
sible to obtain simple expressions for the hazard and survival functions
by integrating out the mixture distribution. Heckman and Singer (1982,
1984) proposed estimating non-parametric models by means of the EM
algorithm (Dempster, Laird and Rubin, 1977). Poulsen (1982) and Lange-
heine and Van de Pol (1990, 1994) also used the EM algorithm to estimate
their mixed Markov models.

Limitations The use of parametric mixture distributions is relatively
simple in models for a single nonrepeatable event. However, when there

3Kuk and Chen (1992) used the same type of mover-stayer specification in combi-
nation with a Cox proportional hazard model, while Yamaguchi (1992) and Yamaguchi
and Ferguson (1995) combined it with an accelerated failure-time model.



is more than one (latent) survival time per observational unit, that is,
when there is a model for competing risks, a model for repeatable events,
or another type of multivariate hazard model, this is generally not true
anymore. It is not so easy to include several possibly correlated paramet-
ric latent variables in a hazard model because that makes it necessary
to specify the functional form of the multivariate mixture distribution.
Therefore, in such cases, most applications use either several mutually
independent cause, spell, or transition-specific latent variables, or one la-
tent variable that may have a different effect on the several cause, spell
or transition-specific hazard rates. The former approach was adopted,
for instance, by Tuma and Hannan (1984:177-183), and the latter, for
instance, by Flinn and Heckmann (1982) in a study in which they used a
normal mixture distribution.

The two above-mentioned specifications of the unobserved factors
have also been used in models with non-parametric unobserved hetero-
geneity (Heckman and Singer, 1985; Moon, 1991). However, the latent
class approach which is presented in the next subsection is much more
general. It can also be used to specify models with several latent vari-
ables which are mutually related without the necessity of specifying the
distributional form of their joint distribution since the joint distribution
of the latent variables is non-parametric as well. If necessary, the joint
distribution can be restricted by means of a log-linear parameterization
of the latent proportions.

Another important drawback of the usual way of modeling unobserved
heterogeneity is caused by the fact that the mixture distribution is as-
sumed to be independent of the observed covariates.* This is, in fact,
in contradiction to the omitted variables argument which is often used
to motivate the use of mixture models. If one assumes that particular
important variables are not included in the model, it is usually implausi-
ble to assume that they are completely unrelated to the observed factors.
In other words, by assuming independence among unobserved and ob-
served factors, the omitted variable bias, or selection bias, will generally
remain (Chamberlain, 1985; Yamaguchi, 1986, 1991:132). This is, in fact,
Chamberlain’s main argument for using fixed effects methods to correct

*An exception is the mover-stayer model proposed by Farewell (1982), in which the
probability of belonging to the class of stayers is regressed on a set of covariates by
means of a logit model (see also Yamaguchi, 1992).



for unobserved heterogeneity. However, as was shown in section 4.8, fixed
effects methods have serious limitations as well. They can only be used
when there is more than one observed survival time for the largest part
of the sample, and they do not allow for getting estimates for the effects
of time-constant covariates.

To solve the selection bias problem, Blossfeld, Hamerle, and Mayer
(1989:98) proposed regressing an individual’s score on the latent variable
0 on the covariates included in the model. In his TDA program, Rohwer
(1993) implemented an option to regress the coefficient of variation of the
gamma, distribution on covariate values, which is a first attempt to re-
late a parametric mixture distribution to observed covariates. However,
by regressing the coefficient of variation on covariates, the mean value
of @ is still equal for all individuals, irrespective of their covariate val-
ues. Therefore, Rohwer’s approach does not solve the above-mentioned
problem.

5.2.2 A more general non-parametric latent variable ap-
proach to unobserved heterogeneity

To overcome the limitations of the latent variable approaches which were
discussed above, a more general non-parametric latent variable approach
to unobserved heterogeneity was developed which is based on the general
hazard model with missing data presented in section 5.1. The main dif-
ference between this latent variable approach and Heckman and Singer’s
model is that different types of specifications can be used for the joint
distribution of the observed covariates, the unobserved covariates, and
the initial state. This means that it becomes possible to specify haz-
ard models in which the unobserved factors are related to the observed
covariates and to the initial state. A special case is, for instance, the
mover-stayer model proposed by Farewell (1982), in which the probabil-
ity of belonging to the class of stayers is regressed on a set of covariates
by means of a logit model. Moreover, when hazard models are specified
with several latent covariates, different types of specifications can be used
for the relationships among the latent variables, one of which leads to a
time-varying latent variable as proposed by Bockenholt and Langeheine
(1995). By means of a multivariate hazard model, the latent covariates
can also be related to observed time-varying covariates.

Like the general model presented in section 5.1, the model that is



used for dealing with unobserved heterogeneity consists of two parts: a
log-linear path model in which the relationships among the time-constant
observed covariates, the initial state, and unobserved covariates are speci-
fied, and an event history model in which the determinants of the dynamic
process under study are specified.

Suppose there is a model with three time-constant observed covari-
ates denoted by A, B, and C, and two unobserved covariates denoted
by W and Y. In the first part of the model, the relationships between
these five variables are specified by means of a log-linear path model as
presented in sections 2.9 and 3.1. Let mgpeuy denote the probability that
an individual belongs to cell (a, b, ¢, w,y) of the contingency table formed
by the variables A, B, C, W, and Y. As was demonstrated in section 2.9,
specifying a modified path model for m,pcyy involves two things, namely,
decomposing Ty into a set of conditional probabilities on the basis
of the assumed causal order among A, B, C, W, and Y, and specify-
ing log-linear or logit models for these conditional probabilities. At least
three meaningful specifications for the causal order among A, B, C, W,
and Y are possible, namely, all the variables are of the same order, the
latent variables are posterior to the observed variables, and the observed
variables are posterior to the latent variables. In the first specification,
Tabewy 15 Dot decomposed in terms of conditional probabilities. The sec-
ond specification is obtained by

Tabcwy = Tabe Twylabe »

and the third one by

Tabewy —  Twy Mabclwy -

Suppose that the second specification is chosen. In that case, mgp. and
Twylabe Can be restricted by means of a non-saturated (multinomial) logit
model. A possible specification of the dependence of the unobserved
covariates on the observed covariates is, for instance,

exp (ull +ul +uldll +ufV +ull)

Twylabe w Y AW BW cw)
Zwy exp (uw + Uy +ugy + Uy + Ugyy )

Here, W depends on A, B, and C, while Y is assumed to be independent



of W and the observed covariates. Other specifications are, for instance,

exp (uwW + uyY + uwWyY)

Twy|abe ) = Ty ,

>y €XP (uZJV +uy +ugt
where the joint latent variable is assumed to be independent of the ob-
served variables, and

exp (uy + u;/)
Sy exp (ull + )
in which the two latent variables are mutually independent and inde-
pendent of the observed variables. It should noted that for these latter
specifications it does not matter which assumption is made about causal

order between A, B, C, W, and Y since the same models can be obtained
by imposing restrictions on Tgpewy OF Tapelwy Tather than m, ..

Tawy|abe = My Ty,

The second part of the model with non-parametric unobserved hetero-
geneity consists of an event history model for the dependent process to
be studied. The event history models which are used here are log-rate
models (section 4.4) and discrete-time logit models (section 4.3).

As demonstrated in section 4.8, in its most general form, the hazard
rate for the log-rate model in which the variables A, B, C, W, and Y are
used as regressors is denoted by hl}(z|a,b,c, w,y), where o denotes the
origin state, d the destination state, and m the spell or episode number.
In discrete-time models, the transition probability from O = o to D =
d is denoted by A%(ti|a,b,c,w,y). When the discrete-time logit model
is a Markov model, the transition probability may also be denoted by
s |abewys,,» Where s; is the state that an individual occupies at the /th
point in time.

Estimation To obtain maximum likelihood estimates of the parame-
ters of a hazard model with the observed covariates A, B, and C and
latent covariates W and Y, the following likelihood function has to be
maximized:

N

L = H Z 7Tabcwy‘czﬁ (h) ’ (57)
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in which £7(h) denotes the contribution of person ¢ to the complete data
likelihood function for the hazard model, and a, b, ¢ are the observed val-
ues of A, B, and C for person 7. More information about the exact form of
L*(h) can be found in section 4.8. Since the likelihood function described
in Equation 5.7 is based on the general density function represented in
Equation 5.1, as already mentioned in section 5.1, the parameters can be
estimated with the EM algorithm.

The posterior probabilities which are needed in the E step to compute
the complete-data sufficient statistics can be obtained by means of Equa-
tion 5.3. Here, we need the probability that person ¢ belongs to latent
class (w,y) is

7I'abcwyz'f (h)
Zwy Wabcwy»c;k(h)

When using a log-rate model, these posterior probabilities are used to
obtain estimates of the number of events and the total exposure times,

P(w,yli) =

ie.,

™=

(5;’;0(113(11], y|7’) Yiabe »
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-
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Eabcwyzom =
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-
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Here, 7iqpc and 9;7, 4, are indicator variables taking the value one if a par-

ticular condition is fulfilled, and which are otherwise equal to zero. More
precisely, ;e indicates whether person i has covariate values (a,b,c),
and 67, whether person 7 experienced a transition from O =oto D =d
in time interval z in the mth spell. And finally, e}, is the total time that
person ¢ spent in the origin state o in time interval z in the mth spell.
In the M step of the EM algorithm, the completed tables Ngpcwyzodm
and Eabcwyzom are used to obtain improved estimates for the hazard pa-
rameters as if it were completely observed data. The completed data
which is needed to update the estimates for the parameters of the log-

linear part of the model is obtained in the E step by

N

ﬁabcwy - Z P(’U), y|’L) Yiabc -
i=1



As demonstrated in section 4.8, the discrete-time logit model is equivalent
to a modified path model. This means the estimation of discrete-time logit
models with latent covariates can be performed with the same version of
the EM algorithm presented in section 3.1.

5.2.3 Identifiability

Elbers and Ridder (1982) proved that the parameters of hazard mod-
els with unobserved heterogeneity for a single nonrepeatable event are
identifiable if three conditions are fulfilled, namely, if the model is a pro-
portional hazard model with at least one regressor, if the mixture distri-
bution has a finite mean, and if the duration dependence is parameterized.
Heckman and Singer (1984) showed, however, that regressors are not nec-
essary for identification provided that the hazard function is assumed to
be a member of particular parametric families. They proved identifiabil-
ity for a class of Box-Cox hazard rate models from which the Weibull,
the Gompertz, and the exponential models are special cases, and for the
log-logistic model. Heckman and Singer also showed that non-parametric
mixture models are identifiable if the time dependence is parameterized.

If the time-dependence is not parameterized, that is, if the hazard
model is a semi-parametric model, it is possible to identify the mixture
distribution in models for repeatable events, clustered observations, or
other kinds of multivariate survival times which can be assumed to have
equal random terms (Clayton and Cuzick, 1985; Klein, 1992; and Nielsen
et al., 1992). Van de Pol and Langeheine (1990) showed that the param-
eters of discrete-time mixed Markov models, which are also models for
repeatable events, can be identified without imposing restrictions on the
time dependence or on the mixture distribution. Recently, Kortram et
al. (1995) demonstrated that for identification it suffices that the model
is a proportional hazard model. This means that in proportional hazard
models, it is not necessary to parameterize the time dependence or the
mixing distribution, or to have multivariate survival times.

In summary, the parameters of event history models with unobserved
heterogeneity can be identified by ensuring that at least one of the follow-
ing conditions is fulfilled: 1] the model is a proportional hazard model;
2] the duration dependence is parameterized; 3] the mixing distribution
is parameterized; or 4] the model is a multivariate hazard model.

Oune factor determining identifiability has not yet been mentioned.



Contrary to the usual practice, in the approach that is used here, it is not
necessary to assume the latent variable capturing the unobserved hetero-
geneity to be independent of the observed covariates. Limited experience
with this approach has shown that the inclusion of additional parameters
in the model describing the relationships between latent and observed
covariates does not lead to identification problems as long as one of the
above-mentioned sufficient conditions is fulfilled.

When using non-parametric unobserved heterogeneity, it is not known
beforehand how many latent classes can be identified on the basis of the
data. Laird (1978) proposed starting with two latent classes and adding
more classes as long as the estimated relative risks are distinct and the
weights are greater than zero. Often, two or three latent classes suffice
(Guo and Rodriguez, 1992). In some situations, it is even impossible to
identify two latent classes. This occurs, for instance, if exponential sur-
vival is assumed in a model for a single nonrepeatable event, while the
data shows a positive time dependence. The reason for this is that if
survival is exponential, unobserved heterogeneity must lead to spurious
negative duration dependence. Thus, in fact, the observed positive dura-
tion dependence is in contradiction with the postulated model. The same
occurs when there is a positive duration dependence within time intervals
in a piecewise constant hazard model.

A well-known method to ensure local identifiability in latent class
models is to run the same model using different sets starting values
(Goodman, 1974b; Hagenaars, 1990:111-112; Formann, 1992). This is
the simplest way to check identifiability when using the EM algorithm
to estimate the parameters. If two different sets of starting values yield
different parameter estimates but the same values for the log-likelihood
function, the model parameters which are different are not identifiable.
Note that when both parameter estimates and likelihood values are differ-
ent, the solution with the lower likelihood value is either a local maximum
or a boundary solution.

5.2.4 A single nonrepeatable event

Above, a general approach to the unobserved heterogeneity problem in
the analysis of event history data was introduced. In this subsection, two
applications are presented to demonstrate how to deal with unobserved
heterogeneity when analyzing a single nonrepeatable event. The first



application uses a log-rate model for the analysis of first-birth rates. The
second application uses a discrete-time logit model for the analysis of
school transition.

Example 1: Timing of the first birth

The use of hazard models for the analysis of demographic transitions is
increasingly becoming standard practice. However, as was demonstrated
above, the results can be influenced by the presence of unobserved risk
factors. An example is presented in which a latent covariate is included in
a log-rate model for the timing of the first birth. It should be mentioned
that the example serves mainly as an illustration of the use of the latent
variable methods introduced above. The intention is not to present an
accurately real-world model for the timing of first births.

Data The data for the example was obtained from a Dutch family and
fertility survey called ORIN® (NIDI, 1989) which was conducted in 1983.
The data set contains information on the fertility histories of 846 18-54
year-old women. The time variable which was used is age measured in
years. The time axis was divided into 23 intervals indicating all different
ages between 18 and 40 years. Because two age groups are empty, there
are 21 different ages at which the event under study occurred. A very
small number of women in the sample already had a first child at age 18.

Two observed covariates were used in the log-rate model. The first
is a woman’s educational level, with 4 categories: 1] primary school, 2]
secondary school, 3] vocational education and 4] university or polytech-
nic. In demographic research, educational level is often used as an indi-
cator of either the occupational aspirations of a woman (Vossen, 1989;
Willekens, 1991; Vermunt, 1991a) or the opportunity costs of children
(Becker, 1981). Women with a higher educational level can be expected
to have a lower probability of having a first child because they have work
aspirations which conflict with having children and because their relative
costs of having children are higher, assuming that they have to stop work-
ing after the birth of their first child. The second covariate is an attitude

®The name ORIN stands for Onderzoek Relatievorming in Nederland (Survey on
Union Formation in the Netherlands). This study was conducted by the NIDI institute
in The Hague.



item on the importance of family and children in one’s life. This indica-
tor was used to operationalize the concept of familism which is thought
to influence fertility behavior (Lesthaege and Meekers, 1986; Vermunt,
1991b). The familism item is classified into three categories: 1] familistic
2] neither familistic nor non-familistic, and 3] non-familistic.

Model As explained when presenting the hazard model with unob-
served heterogeneity, the models to be specified counsist of two parts:
a log-linear path model for the covariates and a hazard model for the
dependent process to be studied. Let A denote a woman’s educational
level, B familism, and W a latent variable which is assumed to capture
the unobserved heterogeneity. The general form of the model which is
used in this example to describe the relationships between the covariates
is

Tabw =  Tab Tylab -

This means that the latent variable W is seen as an intervening variable
between the observed covariates and the hazard rate of having a first
child. So, W stands for intervening variables influencing the rate of first
birth which are not included in the model, such as having a partner,
wanting to have children, and being employed.

Although it is possible, the joint distribution of the observed covari-
ates A and B, 7y, is not restricted in this example. Since it is the purpose
of the example to show which types of specifications can be used for the
unobserved heterogeneity rather than to show how to model the relation-
ships between observed covariates. Measurement models in which the
joint distribution of the observed covariates is restricted as well will be
discussed in section 5.3. To be able to specify more restricted models for
Tw|abs 1t is parameterized by means of a logit model,

exp (uwW + ufu‘fv + ufww)

s == .
vt Y exp (ulf + gl + )

(5.8)

This is the least restrictive model that will be used for m4;. Note that

it is not a saturated model because it does not contain the three-variable

ABW
abw

On the basis of the model described in Equation 5.8, it is possible
to specify more restrictive models with regard to the effects of A and B

interaction term wu



on W by imposing particular restrictions on the uqujv and uwa param-
eters. One constraint that is used below is to fix both uA" and upv

to zero, which yields a model in which the unobserved heterogeneity is
independent of the observed heterogeneity, that is, T, = my. This
specification, which is how unobserved heterogeneity is usually modeled
in event history analysis, will be denoted as an ‘independent’ unobserved
heterogeneity model.

Another set of restrictions which may be used to reduce the number
of parameters of the model for the covariates is

WfV = (- a)w - o) gV,
W = (b B)(w —w) BV

These restrictions lead to a linear-by-linear association between A and
W and B and W (see section 2.5). Below, the reason for using such a
specification is explained in more detail.

Several different types of specifications may be used for the event
history part of the model. In its most general form, the log-rate model
that will be used is

Mabwz

h(z|a,b,w) = 5
abwz

= exp (v+vf+v£+vy+vf+vmz) , (5.9)

where the variable Z with index z denotes the time intervals. It should
be noted that here, unlike in the presentation of the log-rate model in
section 4.4, the hazard parameters are denoted by v instead of u to dis-
tinguish them from the parameters of the covariate part model. As can
be seen, the hazard model described in Equation 5.9 does not contain
higher-order interaction terms involving A or B; only the simplest spec-
ification for the dependence of the first-birth rate on A and B is used.
As discussed in the previous section, the assumption that the covariate
effects are proportional is sufficient for identifying a model, irrespective
of the choice of specification for the unobserved heterogeneity.

Different types of hazard models are specified by restricting vZ and
vWZ.  An exponential model is obtained by fixing both vZ and v}/?
to zero. Fixing only v}¥.? to zero yields a proportional hazard model, in
which different kinds of specifications for vZ can be used. When no further
restrictions are imposed on UZZ , a model is obtained which is equivalent to
Cox’s proportional hazard model (see section 4.4). Another specification



which is used for vZ is quadratic time dependence, which is a rather
common way to describe the age pattern in the timing of the first birth,
ie.,

z A Y
vy = z2fp{ +2° 6%,

where 37 is the linear effect of Z and 3% quadratic effect of Z on the
hazard rate. And finally, in some models both vZ and v/Y.? are restricted
to a quadratic functional form. This results in a nonproportional model
with different quadratic time dependencies for the different values of W.

Testing The test results for the estimated models are presented in Table
5.2. In the first set of models (Models la to 3b), the latent variable W
is assumed to be independent of the observed covariates; in other words,
u W and uB" are fixed to zero. Moreover, the effect of the latent variable
on the hazard rate is assumed to be proportional, which means that UUVYZZ
is fixed to zero. This is the standard way of correcting for unobserved
heterogeneity in hazard models.

A comparison of the log-likelihood values of the models with one la-
tent class, that is, the models without heterogeneity, shows that there is
duration dependence. The conditional likelihood test between Model 1a
and Models 1b and 1c show that the exponential model, which assumes no
duration dependence, fits a lot worse than the Cox and quadratic models
(L%aub = 56.37,df = 20,p = .000 and L%a‘lc = 42.41,df = 2,p = .000).5
The quadratic model captures the time dependence rather well using only
two time parameters since it does not fit significantly worse than the Cox
model (L%C“b =28.1,df = 18,p > .06).

Including a second latent class does not improve the log-likelihood
value of the exponential model (Model 2a) as there is a positive dura-
tion dependence, while, as already mentioned in subsection 5.2.3, the
exponential model can only capture unobserved heterogeneity if there
is a (spurious) negative duration dependence. As can be seen from the

®The likelihood-ratio chi-square statistic Lflu to compare nested models can be

computed by taking 2 times the difference between the log-likelihood value of the
unrestricted model and of the restricted model (section 2.4). The number of degrees of
freedom can be obtained by taking the difference in the number of parameters of the
models concerned. However, as already mentioned in section 3.1, models with different
numbers of latent class cannot be compared this way because of difficulties associated
with parameter space boundaries (Titterington, Smith and Makov, 1985).



Table 5.2: Test results for the estimated models for the timing of the first
birth

Model log-likelihood  # parameters
Independent /proportional

la. 1 class exponential -3497.95 18
1b. 1 class Cox -3441.58 38
le. 1 class quadratic -3455.54 20
2a. 2 class exponential -3497.95 20
2b. 2 class Cox -3437.95 40
2c. 2 class quadratic -3453.12 22
3a. 3 class Cox -3437.48 42
3b. 3 clas quadratic -3452.83 24
Independent /nonproportional

4a. 2 class Cox -3429.14 60
4b. 2 class quadratic -3449.08 24
5a. 3 class Cox -3426.84 82
5b. 3 class quadratic -3445.55 28
Dependent (AW, BW) /proportional

6a. 2 class Cox -3431.37 45
6b. 2 class quadratic -3445.70 27
7a. 3 class Cox -3422.25 52
7b. 3 class quadratic -3438.51 34
Dependent (AW, BW linear)/proportional

8a. 2 class Cox -3435.50 42
8b. 3 class Cox -3433.44 44
8c. mover-stayer Cox -3437.13 41

8&d. 2 movers Cox -3434.89 43




comparison of the two-class Cox model (Model 2b) and the two-class
quadratic model (Model 2¢) with their no-unobserved heterogeneity vari-
ants, the log-likelihood decreases a bit more for the Cox model. Including
a third class does not have much influence on either the Cox model (Model
3a) or the quadratic model (Model 3b).

The first extension of the usual way of modeling unobserved hetero-
geneity is the specification of models in which the latent variable W is al-
lowed to have a nonproportional effect on the hazard rate, in other words,
the interaction term v,).Z is included in the model (Models 4a-5b). Includ-
ing the interaction effects between duration and the unobserved covariate
in the Cox model leads to so many extra parameters that the improve-
ment of the fit is no longer significant. This applies to both the two- and
three-class models (Models 4a and b5a): L%b\4a = 17.6,df = 20,p > .99

and L%CW) = 21.3,df = 40,p > .61. But, the quadratic two- and three-
class models both improve significantly by assuming nonproportionality
(Models 4b and 5b): L3 5, = 8.1,df = 2,p < .02 and L35, = 14.6,df =
4,p < .01.

In Models 6a-7b, the assumption that the unobserved factor W is
independent of the observed covariates is relaxed. This is another impor-
tant extension of the usual way of modeling unobserved heterogeneity.
For simplicity of exposition, the effect of W on the hazard rate is again
assumed to be proportional (v}? = 0). Table 5.2 shows that the in-
clusion of the u2lV B
leads to a significant increase in log-likelihood value for Models 6a, 6b,
7a and 7b: L%bma = 13.2,df = 5,p < .02, L§C|6b = 14.8,df = 5,p < .01,
Lga‘ﬁa = 30.5,df = 10,p < .0008, and Lgb‘ﬁb = 28.6,df = 10,p < .002. Tt
must be stated that although the models fit very well, many local maxima
were encountered when fitting these models. This indicates that one has
to be cautious with these kinds of models. One cannot even be sure that
the final solutions presented in the table are the global maximum likeli-
hood solutions. Nevertheless, the fact that several sets of starting values
lead to the same log-likelihood value and the same parameter estimates
demonstrates that the models are identified.

Models 6a-7b are not only problematic because of the occurrence of
local maxima, but, as will be demonstrated below, the parameter esti-
mates of these of models are also rather strange. It seems that to get
more stable results, a more restricted specification for the relationships

and u interaction terms in the covariate model



between the observed covariates and the latent variable has to be used.
To be able to specify more restrictive models, substantive hypotheses are
needed about the nature of the unobserved heterogeneity. One option is
to assume that particular covariates influence the unobserved covariate
but not the hazard rate (Heckman, 1979). Such a solution is, in fact,
very similar to using the observed covariates as indicators for the latent
variables, as in the measurement models that will be discussed in section
5.3. Another option is to restrict the relationship between the covariates
and the latent variables to have a more systematic pattern. To demon-
strate this option, the relationships between A and W and between B and
W are restricted to linear-by-linear (see Equation 5.8). The main reason
for choosing this specification here is that the parameter estimates of the
nonrestricted covariate parts of Models 6a-7b are very difficult to inter-
pret. It is not possible to detect any systematic pattern in the ufu‘fv and
ubBwW parameters, which is strange if one realizes that both A and B are
ordinal variables. By the rather restrictive linear-by-linear specification
it was hoped to get more interpretable results. Other less restrictive spec-
ifications that could be used are, for instance, row or column association
models or log-multiplicative association models (see sections 2.5 and 2.7).

For simplicity of exposition, the linear-by-linear 4" and 8" terms
(see Equation 5.9) are only included in the Cox proportional models with
two and three latent classes (Models 8a and 8b). Now, only the three-
class model fits significantly better than the ‘independent heterogeneity’
model concerned (Models 2b and 3a): Lgb\Sa =4.9,df = 2,p > .08 and

L%Cle =8.1,df = 2,p < .03. Furthermore, both Models 8a and 8b are re-
stricted by fixing the log-linear hazard parameter for one class to be equal
to —o0o.” In other words, the models become mover-stayer models with
one class (Model 8c) or two classes (Model 8d) of movers, respectively.
This mover-stayer structure is interesting from a substantive point of
view, because the proportion of stayers can be interpreted as the propor-
tion of women that remain childless. Note that testing the mover-stayer
restriction using the likelihood-ratio statistic is not allowed since the v,
parameter concerned is fixed on a boundary value. Nevertheless, the

"Fixing a log-linear parameter to —occ is the same as fixing the multiplicative param-
eter concerned to zero. When using the IPF or the uni-dimensional Newton algorithm
discussed in Chapter 2, a multiplicative parameter can simply be fixed to zero by using
zero as starting value for the parameter concerned. This will lead to structural zero
cells in the table concerned.



small decrease in the likelihood of Models 8c and 8d compared to Models
8a and 8b indicates that the mover-stayer structure performs quite well.

Parameters Table 5.2 presents the estimates for the covariate effects
on the hazard rate and for the parameters describing the relationships
among the covariates for some of the model in Table 5.3. When there is
no unobserved heterogeneity, the effects of A and B on the hazard rate
are very similar for the different specifications of the duration dependence
(Models 1a, 1b, and 1c¢). Inclusion of a two-class independent unobserved
heterogeneity component in the model, leads to stronger effects of A and
B (Models 2b and 2c). In other words, ‘independent’ heterogeneity at-
tenuates the hazard parameters. Again, the hazard parameters for the
Cox model (Model 2b) and the quadratic model (Model 2c¢) are very sim-
ilar. Also, the class proportions and the effects of the latent variable are
almost the same for the two models. Both models identified two latent
groups, one with a low hazard rate and one with a much higher hazard.
In Models 2b and 2c, the ratio of the hazard rates of the two groups is .12
(= exp(—1.0589 —1.0589)) and .17 (= exp(—.8916 —.8916)), respectively.

In the three-class ‘dependent’ unobserved heterogeneity models (Mod-
els 7a and 8d), the parameter estimates are very different from Models
2b and 2¢ and also from one another. In the three-class model with
unrestricted interaction terms w2 and 2 (Model 7a), the hazard pa-
rameters for the covariates become very extreme. For instance, someone
with A = 2 has a 100 (=exp(1.6523 — —2.9491)) times higher hazard rate
than someone with A = 4. Similar extreme effects are found for covariate
B. However, at the same time, the parameters describing the effects of
A and B on W indicate that the extremely low-risk groups, A = 4 and
B = 3, have a very high probability of belonging to latent class number
three, the class with an extremely high risk of a first birth. The opposite
is true for A = 2 and B = 1, the groups with the highest risks. They
have a very low probability of belonging to the high-risk class. Thus, what
actually happens is that class membership and covariate effects compen-
sate one another, which makes the results obtained from Model 7a very
difficult to interpret.

In the restricted ‘dependent’ model (Model 8d), the hazard parame-
ters for A are very similar to the ‘independent’ models (Models 2b and
2c¢). However, B has the opposite effect: Non-familistic women have



Table 5.3: Some parameter estimates for models for the timing of the first
birth

Model
la 1b lc 2b 2c Ta 8d
log-rate parameters
v -2.7772  -2.9806 -3.8788 -2.5186 -4.2968 -2.5498 -2.2176
vft 0.5361  0.5552  0.5541 0.8595  0.7980  1.2742  0.7399
v3 0.2860  0.3019  0.3017  0.4497 0.3968 1.6523  0.4404
vg -0.0216 -0.0246 -0.0246 -0.0417 -0.0604  0.0226  0.0090
vy -0.8005 -0.8324 -0.8311 -1.2675 -1.1345 -2.9491 -1.1893
B

V1 0.2915  0.3054 0.3032  0.4023 0.3791  1.4303 -0.2122
v¥ -0.0838 -0.0831 -0.0823 -0.1419 -0.1272 -0.2199 -0.1800
v¥ -0.2076  -0.2222 -0.2209 -0.2603 -0.2520 -1.2104  0.3922

i -1.0589  -0.8916 -2.3954 -
oy 1.0589  0.8916 -0.0531 -0.8140
vy 2.4485  0.8140
latent proportions

o 0.5967  0.5858  0.3119  0.1991
o 0.4033  0.4142  0.3922  0.3350
. 0.2960  0.4659
effects of A and B on W

uf -0.5629

ustv 0.6103

ugV -0.8561

uf 0.8087

witV 1.3447

usyV 1.1049

usyV 1.7891

usV -4.2387

uiv -0.7818

usV -1.7151

usyV -0.9330

usdV 3.4300

uBW 1.7124

uB -0.2492

uB -1.4632

ulBy 0.1958

ulv -0.1085

udv -0.0872

uB -1.9081

ulv 0.3577

uly 1.5504

gxA -0.1207

pxB -0.6252




higher risks of a first birth than familistic women. The linear effects of A
and B on W indicate that both educational level and familism are nega-
tively related to the latent variable. Women with a low educational level
and with a familistic attitude have a much lower probability of belong-
ing to class one, the group that remains childless, than highly educated
non-familistic women. This is consistent with what one expects to find.
In fact, the only result in Model 8d which is difficult to interpret is the
reversed effect of B on the hazard rate. Apparently, after controlling for
the indirect effect of B via W on the hazard rate, there remains a positive
effect of B. Of course, we do not know whether that is true, or whether it
results, for instance, from a misspecification of the relationship between
B and W.

To summarize, this example showed how to deal with unobserved hetero-
geneity using the general approach presented in subsection 5.2.2. Two
extensions of the usual way of modeling unobserved heterogeneity, which
can be routinely handled within the general hazard model, were applied,
namely, the effect of the unobserved variable was allowed to be nonpro-
portional and the unobserved heterogeneity was allowed to be related to
the observed covariates. The latter extension seems to be problematic
in that the results are sensitive to the specification that is used for the
relationships among A, B, and W. This means that it is necessary to
have some a priori information to be able to decide which of the specifi-
cations is the correct one. This cannot simply be decided on the basis of
the model fit. The specification problem also shows that the independent
unobserved heterogeneity model which is just one of the possible models
may be misspecified as well.

Example 2: School transitions

Data and model The application of the latent variable approach when
time is a discrete variable is illustrated using data published in a recent
paper by Mare (1994). The data is a cross-tabulation of the educational
attainments of 18,563 men, their fathers, and their oldest brothers ob-
tained from the 1973 Occupational Changes in a Generation IT Survey
(Featherman and Hauser, 1975). Further on, in subsection 5.2.7 on mod-
els for dependent or clustered observations, both the respondents’ and
the oldest brothers’ information on school transitions will be used. Here,



only the respondents’ information is used.

Mare (1994) proposed analyzing data on school transitions by means
of discrete-time hazard models. As in the analyses of Mare, the time
axis is not formed by time or age, but by the qualitative stages of the
schooling process. The actual amount of calendar time that it takes an
individual to get through a particular school level is assumed to be ir-
relevant. The time axis or the respondent’s schooling is classified into
three levels: did not finish high school, finished high school, and com-
pleted some post-secondary schooling. The event whose occurrence is
explained is dropping out of school, that is, not finishing the next school
level, given that one has finished the previous level. Dropping out may
either occur after finishing primary school or after finishing high school.
Mare used one observed covariate, the educational level of the father of
the respondent which is measured in five categories (0-8, 0-11,12,13-15
and > 16 years). In the application presented by Mare, a latent covariate
was used in a simultaneous analysis of respondents’ and brothers’ school
transitions. Here, we demonstrate how to incorporate a latent covariate
into a discrete-time logit model for a single event.

Let A denote the observed covariate father’s schooling and W the
unobserved covariate. As in Example 1, two types of specifications are
used for the relationship between the observed and unobserved covariate.
The unobserved covariate, denoted by W, may be either independent of
or dependent on A. If it is dependent, the relationship is restricted to
linear-by-linear because otherwise the model is not identifiable.

In its most general form, the discrete-time logit model which is used
equals

exp (v +U;4 + vy —i—vlL —i—vﬁL —i—me)

1+exp(v+vf+v}f,v+vf+v(ﬁ’:+UX,I§L)'

A(tl|a7 w) =

Here, A(t;|a,w) denotes the probability of dropping out of school at the
Ith school level, given an individual’s scores on A and W.

Because of identification problems it is not always possible to include
all the hazard parameters (v’s) in the model at once. To identify the
model parameters when W is included in the model, both vflL and ’UZSL
must be assumed to be equal to zero for all a, w, and [. In other words,
the covariate effects on the probability of dropping out must be assumed

to be proportional. As will be demonstrated later on, these restrictions



Table 5.4: Test results for the estimated models for respondents dropping
out of school

Model L? # parameters df D
1. no covariates 4195.36 7 8 .0000
2. A proportional 175.72 11 4 .0000
3. A nonproportional 0.00 15 0 -
4. Model 2 + 2 class 16.59 13 2 .0002
5. Model 2 + mover-stayer 17.30 12 3 .0006

are not necessary when the respondent’s and brother’s schooling histories
are analyzed simultaneously.

The discrete-time event history data for this example can be orga-
nized into a contingency table format because the length of the observa-
tion period is the same for all individuals and because all covariates are
categorical. This makes it possible to test the fit of the models by means
of the Pearson’s and the likelihood-ratio chi-square statistics. Therefore,
L? values and number of degrees of freedom are presented instead of log-
likelihood values and number of parameters.

Results Table 5.4 presents the test results for the models which are es-
timated with the respondents schooling data. Models 1, 2, and 3 do not
include unobserved heterogeneity. In Model 1, it is assumed that A has no
effect on the probability of dropping out, in other words, it contains only
the main effect v. This model fits very badly (L% = 4195.36,df = 8,p =
.000). In Model 2, the effect of fathers’ education (A) on the rate of drop-
ping out of school (v2) is included and in Model 3, this effect is allowed
to be nonproportional, which involves including vg‘lL. The conditional L?
tests between the three models without unobserved heterogeneity show
that both the main effect of fathers’ educational level on the probability
of dropping out (L%‘2 = 4019.64,df = 4,p = .000) and the interaction
of fathers’ education with duration (Lg‘3 = 175.72,df = 4,p = .000)
are highly significant. Thus, only the saturated model fits the data well.
However, as demonstrated in section 4.6, this nonproportionality can also
be caused by unobserved heterogeneity.

Model 4 is a proportional hazard model with a two-class latent co-
variate which is independent of A. Although its absolute fit is not perfect



Table 5.5: Parameter estimates for some models for respondents dropping
out of school

Model 1 Model 4 Model 5
discrete-time logit parameters

v -0.8257 -2.2685  -0.5212
ot 1.1677 1.6060  1.5700
03! 0.8261 1.1093  1.0821
vyt -0.0300 -0.1537  -0.1505
v -0.6639 -0.9207  -0.8977
v -1.2999 -1.6409  -1.6039
vl -0.5062 -0.8969  -0.8692
vk 0.5062 0.8969  0.8692
v}V 1.8251  0.0000
vy -1.8251 —00
latent proportions

v 0.8327  0.8749
¥ 0.1673  0.1251

(L? = 16.59,df = 2,p < .0003), it fits much better than Model 2, using
only two additional parameters. Model 4 can be simplified by imposing
a mover-stayer structure on the effect of the latent variable, that is, by
restricting the hazard parameter for one class to be equal to —oo. The fit
of the mover-stayer model (Model 5) is not worse than the unrestricted
two-class model (L? = 17.30,df = 3,p < .0006). It should be noted that
although Model 5 does not describe the data perfectly, it performs quite
well if the huge sample size (18563 cases) is taken into account. Finally, a
linear-by-linear effect of A on W was included in the mover-stayer model
(Model 6). The conditional test between Models 5 and 6 shows that this
effect of A on W is not significant (Lg‘6 = 1.65,df = 1,p > .19).

Table 5.5 reports the parameter estimates for three different propor-
tional hazard models. As in Example 1, the effect of the observed co-
variate becomes somewhat stronger after correcting for unobserved het-
erogeneity. Not surprisingly, correcting for unobserved heterogeneity also
increases the positive duration dependence. The hazard parameters of
the mover-stayer model (Model 5) and the unrestricted two-class model
(Model 4) are very similar. In the mover-stayer model, one group con-
taining 12.5 percent of the respondents is identified having a dropout



probability of zero. The other 87.5 percent have a ‘mean’ probability of
dropping out of .20 (= exp(—.5212 — .8692)/(1 + exp(—.5212 — .8692)))
and .59 (= exp(—.5212 + .8692)/(1 + exp(—.5212 + .8692))) at the first
and second school level, respectively.

The example on school transitions demonstrated that a more par-
simonious description of the data can be obtained when correcting for
unobserved heterogeneity. Instead of assuming a nonproportional effect
of father’s education on the probability of dropping out at a particular
school level, the data could be described almost as well by means of a
mover-stayer model which contained only one parameter more than a
proportional model without heterogeneity.

5.2.5 Dependent competing risks

As mentioned in section 4.7, the latent variable techniques can also be
used to model conditional dependence among different types of events.
Dependence among competing risks can be modelled either by allowing
the different types of events to depend on the same unobserved factor or
by specifying event- or risk-specific unobserved factors which are allowed
to be related to one another. Below an example is presented in which
the events becoming employed and leaving the labor force are treated
as competing risks for individuals who are unemployed (Example 3). A
discrete-time logit model with a latent covariate is used to capture the
dependence between these two transitions. In a second example (Example
4), the first birth example discussed in subsection 5.2.4 is extended by
treating censoring as a dependent competing risk, in other words, by
relaxing the independent censoring assumption.

Example 3: Transition from unemployed to employed or out of
the labor force

Data and models This example investigates the determinants of the
process of leaving the state of ‘unemployed’, with destination states ‘em-
ployed’ and ‘out of the labor force’ being treated as competing risks. It
seems unrealistic to assume that, even given covariate values, becoming
employed and leaving the labor market are independent events. Certainly,
there will be unobserved individual factors influencing both the probabil-
ity of finding employment and of leaving the labor force. This example is



used to show how to take possible dependencies among competing risks
into account by means of the general latent variable approach introduced
in subsection 5.2.2.

The data are taken from the well-known ‘Survey of Income and Pro-
gram Participation’ (SIPP). This survey is a panel study in which every
three months information is gathered on the respondents’ employment
histories during the preceding three months. The information which is
used for this example is obtained from a group of individuals who were
followed during the years 1986 and 1987. Not all available employment
information is used, only a person’s employment status in the middle of
the month before the interview. For the group of individuals concerned,
complete information is available for 6 points in time for 4,597 people.
Section 5.4 shows how the partially observed employment histories can
also be used for parameter estimation.

To analyze the transition from unemployed to either employed or out
of the labor force, the first unemployment spell is selected for each person
in the sample. Of course, it would also be possible to use all unemploy-
ment spells. In that case, the dependencies among the spells have to be
taken into account, which is the subject of the next subsection. For this
example, in which the problem of dependencies among competing risks is
the central issue, it is sufficient to use only the first unemployment spell
for each individual. In total, 535 persons were either unemployed at the
beginning of the observation period or became unemployed during the ob-
servation period. These 535 persons form the risk set for the competing
events of interest.

The discrete-time logit model which is used contains three observed
covariates: sex (male, female), ethnic group (non-black, black), and age
at the beginning of the observation period or cohort (47-66, 27-46, < 27).
The age group above 66 years is not used in the analysis, because only
very few of them belonged to the risk set of unemployed persons. The
observed covariates are denoted by A, B and C, respectively. Also an
unobserved covariate is included in the model to take unobserved risk
factors into account. As in the examples presented above, this latent
covariate, denoted by W, can be either independent of or dependent on
the observed covariates.

For simplicity of exposition, the event- or risk-specific transition prob-
abilities are assumed to be constant over time. Note that if these proba-
bilities depend on some time dimension which is unknown as a result of



left censoring, such as the length of the current unemployment spell, it
is only possible to perform the analysis correctly if there is some exter-
nal information on the distribution of the time of entry into the risk set
(see section 4.5). Of course, it would have been possible to postulate the
risk-specific transition probabilities as dependent on some known time
dimension, such as age or calendar time.

The most general model which is used for destination state d is given
by

D ,AD BD 4 ,CD 4 WD
exp (vd F U T Vg TV T Vpd )

1+ S exp (v2 +vP +0BP + 0P +oVD)

Ad(tila, b, e, w) = . (5.10)

If D =1, the event is finding a job, and if D = 2, the event is leaving the
labor force. The fact that this model does contain the one-variable effects
for A, B, C', and W does not mean that it is a non-hierarchical model. As
explained in section 4.8, the two-variable effects vde , U(%D , vng , and va
are parameterized in such a way that they can be directly interpreted as
the risk-specific covariate effects.® Note that the model represented in
Equation 5.10 is already a restricted model since many interactions are
excluded from it. Of course, it is possible to specify models which contain,

for instance, three-variable interaction terms, such as vc‘?c%D .

Results The test result for the estimated models are given in Table 5.6.
Model 1 contains only the main effect 'UdD , and Model 2a also contains the
two-variable interactions vde , v,ﬁlD , and Ung . By comparing these two
models without unobserved heterogeneity, it can be seen that the ob-
served covariates have a significant effect on the probability of leaving
unemployment (pr = 54.8,df = 8,p < .0001). Although not demon-
strated here, separate tests for sex, ethnic group, and age show that all
three variables have a significant effect on both transition probabilities.
Models 2b-3b contain a latent variable which is postulated to be in-
dependent of the observed covariates. By comparing the log-likelihood
values of Models 2a, 2b, and 2c¢, it can be seen that the two-class solution

(Model 2b) captures almost all unobserved heterogeneity. The decrease

8The parameters vAP, for instance, can be interpreted as the effect of A on the
probability of the occurrence of event d at #; if Ea vAP = 0. In other words, the
identifying restriction which is used is that the two-variable terms sum to zero within
each level of D.



Table 5.6: Test results for the estimated competing risks models for leav-
ing the state of unemployment

Model log-likelihood ~ # parameters
1. no covariates -1930.59 15
2a. 1 class -1903.19 23
2b. 2 class -1891.94 26
2c. 3 class -1891.29 29
3a. 1 stayer + 1 mover -1899.77 24
3b. 1 stayer + 2 movers -1891.99 27
4a. 2 class + AW, BW,CW -1886.16 30
4b. 2 class + linear AW, BW,CW -1890.91 29
4c. 3 class + AW, BW,CW -1880.15 37
4d. 3 class + linear AW, BW,CW -1883.93 32

of the log-likelihood by including a third latent class (Model 2c) is negligi-
ble. The likelihood values of the mover-stayer models” indicate that both
the model with one class of movers (Model 3a) and the model with two
classes of movers (Model 3b) detect unobserved heterogeneity. However,
the fit of Model 3b is almost identical to the fit of Model 2b. This is
caused by the fact that in Model 3b, the estimated probability of belong-
ing to the class of stayers is almost zero, which makes it almost identical
to the two-class model.

In Models 4a-4d the assumption that the unobserved heterogeneity
models is independent of the observed covariates is relaxed by including
direct effects of A, B, and C on W in the model. Both the two-class model
(Model 4a) and the three-class model (Model 4c¢) improve significantly by
including these additional effects (L%b|4a = 11.6,df = 5,p > 0.05 and

L§c|4b = 19.0,df = 8,p < 0.02). When linear-by-linear effects are used
instead of unrestricted two-variable effects the situation changes slightly.
In that case, only the three-class model (Model 4d) performs well.

Table 5.7 reports the parameter estimates for Models 2a, 2b, and
4a. The comparison between the no unobserved heterogeneity model
(Model 2a) and the two-class ‘independent’ unobserved heterogeneity
model (Model 2b) with respect to the effects of the observed covariates

°The mover-stayer models (Models 3a and 3b) are obtained by fixing one v}V,
parameter to —oo within each level of D.



Table 5.7: Parameter estimates for some competing risks models for leav-
ing the state of unemployment

Model 2a  Model 2b  Model 4a
transition to employed (D = 1)

v -0.1071 -0.1249 0.2993
v, —vs! -0.2471 -0.2738 0.1905
vB, —vB 0.4448 0.5933 0.4303
vf -0.4726 -0.5936 0.8642
v 0.1576 0.2092 -2.3748
v§ 0.3150 0.3845 1.5106
oV, —vlV -1.2766  -2.4741
transition out of the labor force (D = 2)

v -0.1577 0.0194 0.2347
v, —vs! -0.4499 -0.4641 -0.3734
vP, —vP -0.1174 -0.0609  -0.1261
vf -0.0717 -0.1140 0.5332
v§ -0.1356  -0.1318  -1.3419
v 0.2072 0.2458 0.8086
oV, —olV -0.5262 -1.0502
latent proportions

i 0.4142 0.4550
i 0.5858 0.5450
effects of A, B and C on W

utW —udW —u W ulV -0.4301
ulW, —uBW, —uBW BV 0.1737
u§W, —uS W -0.9073
uSW, —uSV 1.4872

u§W, —uV -0.5799




on the event-specific transition probabilities shows that, as in the previ-
ous examples, most effects become slightly stronger by correcting for the
unmeasured risk factor. The only exception is the effect of C' on the prob-
ability of leaving the labor force at t;. Furthermore, the parameters of
Model 2b show that the unobserved risk factors for the two kinds of events
are strongly positively related. Both the risk of becoming employed and
the risks of leaving the labor force is much higher for the second class
than for the first class.

The parameter estimates of the competing-risk model differ a great
deal between the ‘dependent’ two-class model (Model 4a) and Model 2b.
First, it must be noted that, as in Example 1, the effects of the latent
variable become much stronger when the latent covariate is related to the
observed covariates. The effects of age (C) on the risk-specific transi-
tion probabilities are influenced most strongly by this specification of the
unobserved factor. This is not surprising when one considers the direct
effects of the observed covariates on the latent covariate. Persons with
C = 2 have a much higher probability of belonging to the low-risk class.
This effect is partially compensated by a higher transition probability for
C = 2. The same kind of compensation occurs for the effect of sex on
the rate of becoming employed. After controlling for ‘dependent’ unob-
served heterogeneity, the effect of sex on the rate of becoming employed
changes its sign: Women have a higher risk of finding a job than men.
But, women have, at the same time, a lower probability of belonging to
the latent class with the highest risk of becoming employed than men.

As in Example 1, this shows that the results are strongly influenced
by the specification that is used for the nature of the unobserved het-
erogeneity. It should be noted that besides assuming the unobserved
heterogeneity to be independent of all the observed covariates or to be
dependent on all the observed covariates, there are many other possible
specifications. For instance, W could be assumed to depend on age (C)
but not on sex (A) and ethnic group (B). Theoretical considerations must
determine which of the possible specifications should be preferred.

Example 4: Timing of the first birth with dependent censoring

When discussing the example on first births (Example 1), the censoring
mechanism was assumed to be conditionally independent of the process
under study. In other words, it was assumed that there are no unobserved



Table 5.8: Test results for the estimated models for the timing of the first
birth in which censoring is treated as a competing risk

Model log-likelihood ~ # parameters
1. 1 class -4753.33 65
2. 2class -4749.50 68
3. 3class -4748.99 71
4. 4 class -4748.99 74

risk factors influencing both censoring and the occurrence of an event. Of
course, assuming independent censoring is the usual way of performing
such an analysis. However, by treating censoring as a competing risk,
it is possible to test the independent censoring assumption. That is, we
can investigate whether there are common unobserved risk factors for
censoring and the occurrence of a first birth.

For this example, the same ORIN data as in the example on first births
discussed above is used. For simplicity of exposition, the latent variable
is assumed to be independent of the observed covariates. In Example
1, the possibility of relaxing this assumption was discussed. The hazard
model is similar to Cox’s proportional hazard model in that the covariate
effects are assumed to be proportional and the time dependencies of the
processes concerned is not restricted. This gives the following log-rate
model:

hazla,b,w) = 22 = exp (o] + v AP +vfP +ollP +ZP) .
Eopw:

The event is a first birth if D = 1 and censoring if D = 2. The same

identifying restrictions are imposed on the two-variable parameters as in

the preceding example.

The test result given in Table 5.8 show that a two-class solution
(Model 2) suffices in describing the unobserved heterogeneity in the com-
peting risks, first birth and censoring. Table 5.9 presents the parameter
estimates for the model without an unobserved heterogeneity component
(Model 1) and the two-class model (Model 2). The opposite sign of the
hazard parameters of the latent variable W for first birth and for cen-
soring indicates that there is a (weak) negative dependence between the
competing risks, first birth and censoring. Women belonging to the class
with a lower risk of having a first child run a bit higher risk of being cen-



Table 5.9: Parameter estimates for two models for the timing of the first
birth in which censoring is treated as a competing risk

Model 1 Model 2
first birth censoring first birth censoring
(D=1) (D=2) (D=1) (D=2)
log-rate parameters

v -2.9806 -2.8914 -2.4921 -3.0160
vt 0.5552 -0.7024 0.8716 -0.7248
vg! 0.3019 0.0471 0.4670 0.0305
vi! -0.0246 0.2875 -0.0417 0.2848
v -0.8325 0.3678 -1.2970 0.4096
vP 0.3054 -0.0830 0.4078 -0.0951
vP -0.0831 -0.0136 -0.1467 -0.0047
vP -0.2222 0.0966 -0.2611 0.0997
oV -1.0649 0.1565
)V 1.0649 -0.1565
latent proportions

i 0.6301

o 0.3699

sored. The parameter estimates for the two-class model are very similar
to the ones for Model 2b in Example 1 (see Table 5.3), where there was
no correction for dependencies between censoring and first birth. Appar-
ently, the weak negative dependence between the occurrence of an event
and censoring does not influence the parameter estimates very much. The
only difference of some importance is the small increase from 59.7 to 63.0
percent of the size of the class with a lower risk of experiencing a first
birth. If the ‘event’ censoring could be removed, that is, if there were no
censored observations, the hazard rate of having a first child would be
slightly lower than the one that is currently observed.

5.2.6 Repeatable events and multiple-state processes

The two preceding subsections illustrated the use of the latent variable
approach to unobserved heterogeneity in situations in which each individ-
ual can experience only one event. However, when events are repeatable,
the problem of unobserved heterogeneity is even more serious. As demon-
strated in section 4.8, in such a case unobserved heterogeneity may not



only introduce spurious time dependence and selection bias, but may also
lead to a violation of one of the principal assumptions on which the max-
imum likelihood estimation of the model parameters is based, that is, the
assumption that the different events for one individual are independent
given the covariates which are included in the hazard model.

Fortunately, it is relatively easy to detect dependencies among dif-
ferent spells for the same observational unit. When events are not re-
peatable, the detection of omitted variables can be rather sensitive to
model assumptions, such as proportionality of covariate effects, parame-
terization of the time dependence, and specification of the relationships
between observed and unobserved covariates. Since in repeatable events
situations it is generally plausible to assume that the unobserved risk fac-
tors are the same for all events, there is much more information to identify
unobserved heterogeneity. More precisely, dependencies among observed
survival times can be used to detect common unobserved risk factors.
Actually, this is the same principle used in standard latent class models
in which the relationships between the indicators are used to identify the
latent variables. As with latent class models where the indicators are as-
sumed to be independent of one another given the latent variable(s), here
the spell-specific duration distributions are assumed to be independent of
one another after controlling for their common unobserved risk factor(s).

Below, the modeling of dependencies among events is illustrated by
means of an application to the timing of the first, second, and third
birth, and by means of an application to labor market transitions. The
former application uses a log-rate model, the latter one a discrete-time
logit model.

Example 5: Timing of the first, second, and third birth

Data and model This example extends Example 1 on the timing of
the first birth by simultaneously analyzing the occurrence or nonoccur-
rence of the first, second, and third birth. For this purpose the same
ORIN data is used. Although the parity-specific births can be seen as
repeatable events, it is implausible to assume that the parameters de-
termining the three different processes are the same. This means that
the hazard parameters will almost certainly depend on the number of
previous events, which is sometimes also called occurrence dependence
(Heckman and Singer, 1985). Rather than seeing birth as a repeatable



event, it can be seen as a multiple-state process in which only particular
transitions are possible. More precisely, the only transitions which are
possible are forward transitions in which no parities are skipped. Such
a process in which individuals pass through different stages is sometimes
referred to as a staging process (Chiang, 1984: Chapter 12; Willekens,
1990).

A special problem in analyzing repeatable events is the choice of the
time axis. In this example, the number of years after turning 18 is used as
the time variable for the first birth, while the duration since the previous
birth is used as the time variable for the second and third births. Using
such different types of time variables is not problematic as long as one
does not want to make the time dependency equal across spells. Instead
of, or in addition to duration, it would also have been possible to use,
for instance, age and calendar time as additional time variables in the
transition-specific hazard models. Of course, in a more extended applica-
tion it would be preferable to perform the analysis using different kinds
of time variables. For this illustrative example, however, it is sufficient to
include one single type of time variable in the hazard model.

The specification that is used for the covariate part of the model is the
same as in Example 1 (see Equation 5.8). Apart from the latent variable
W, the models contain two observed covariates: educational level (A) and
familism (B). As in Example 1, three different specifications are used for
the covariate part of the model, namely: models with an ‘independent’
latent variable, models in which W depends on A and B, and models in
which W is linearly related to A and B.

For the hazard model only the simplest specification is used, that is, a
proportional hazard model in which there is a separate duration param-
eter for each duration category. The log-rate model for the application
concerned is given by

™ (2la, b,w) = exp (vh! + van! + v’ + o +oZi)

As in section 4.8, superscript m of h"™(z|a, b, w) is used to denote a partic-
ular spell. The variable indicating the spell number is denoted by M. In
this case, 1 < m < 3, that is, the first, the second, or the third birth. As
can be seen from the specification of the log-linear parameters included
in the hazard model, the effects of A (education), B (familism), and W
on the hazard rates are assumed to be unequal for the different events.



Table 5.10: Test results for the estimated models for the timing of the
first, second, and third births

Model log-likelihood  # parameters
independent W

la. 1 class -4734.89 73
1b. 2 class -4726.61 7
lc. 3 class -4723.75 81
1d. 4 class -4721.14 85
W related to A and B

2a. 2 class -4719.57 82
2b. 3 class -4711.61 91
2c. 4 class -4697.82 100
W linearly related to A and B

3a. 2 class -4724.75 79
3b. 3 class -4719.45 83
3c. 4 class -4715.71 87

Results Table 5.10 presents the test results for the models that are
estimated. When the latent variable is assumed to be independent of the
observed covariates, each additional latent class leads to an increase in
the likelihood function (Models la-1d). It can be seen that the increase
becomes smaller for each next latent class. Again, the fit of the models
can be greatly improved by including the unrestricted direct effects of
the observed covariates on the latent variable W (Models 2a-2c¢). But,
as in Example 1, these models are very unstable. Many different sets of
starting values were needed to obtain the solutions presented here, and
many local maxima were encountered. The linearly restricted ‘dependent’
models are much more stable. Irrespective of the starting values, the
same solution was always obtained. In the two-class model (Model 3a),
the linear effects of A and B on W are, however, not significant (L%b|3 0=
3.7,df = 2,p > .15). On the other hand, the fit of the three- and four-class
models (Models 3b and 3c¢) improves by including the linear effects of the
observed covariates on the latent variable: L%c\?)b = 8.6,df =2,p < .02
and Lfd‘?)c =10.9,df = 2,p < .005.

The parameter estimates for Models 1a, 1b, and 3b are reported in Ta-
ble 5.11. The parameter estimates for the model without an unobserved
heterogeneity component (Model 1a) indicate that the effect of educa-



Table 5.11: Parameter estimates for some models for the timing of the
first, second, and third births

Model 1a  Model 1b  Model 3b
first birth (M =1)

v -2.9806 -2.9832 -2.6088
Uf‘ 0.5552 0.5529 0.4193
vs 0.3019 0.3031 0.2851
’U? -0.0246 -0.0242 0.0239
vy -0.8325 -0.8318 -0.7283
vE 0.3054 0.3061 0.6521
4 -0.0831 -0.0837 0.0510
v -0.2222 -0.2224 -0.7030
vV 0.0300 1.1710
vy -0.0300 -0.5202
ol -0.6509
second birth (M = 2)

v -2.0748 -1.6604 -1.8450
v -0.0906 -0.1229 -0.0007
v 0.1132 0.0845 0.1081
Ué“ -0.1612 -0.1751 -0.1820
v 0.1386 0.2135 0.0746
vE 0.1659 0.1812 -0.1318
vl -0.1229 -0.1151 0.0182
vP -0.0430 -0.0661 0.1135
vV -0.6420 0.0616
vy 0.6420 -0.6893
vV 0.6277
third birth (M = 3)

v -2.8524 -2.9053 -19.7604
vt 0.1725 0.2332 0.4364
Ué“ -0.1995 -0.2157 -0.2317
vg -0.2866 -0.4344 -0.4589
v 0.3137 0.4170 0.2542
vP 0.3422 0.4392 0.0371
v -0.0107 -0.0049 0.2704
Uf -0.3315 -0.4343 -0.3075
vV -1.0010 17.5065
I 1.0010 -35.3455
vl 17.8390
latent proportions

W 0.5468 0.1444
Y 0.4532 0.4645
P 0.3911
linear effects of A and B on W

BAW 0.5550

BBW -1.6538




tional level is strongest for the first birth and weakest for the second
birth. The effect of the familism indicator is strongest for the third birth
and weakest for the second birth. Including a two-class ‘independent’
unobserved heterogeneity component in the model (Model 1b) slightly
increases the hazard parameters of the observed covariates for the sec-
ond and third births. The hazard parameters of the latent variable W
indicate that the two-class latent variable captures the positive depen-
dence between the second and the third event: Class one has both a
lower risk of a second birth and a lower risk of a third birth than class
two. The two latent classes do not differ with respect to the hazard rate
for the first birth. Seemingly, Model 2b does not capture the unobserved
heterogeneity that was encountered in the example on the occurrence or
nonoccurrence of the first birth. In Example 1, two latent classes were
identified which differed strongly with respect to the risk of the first birth.
Although not demonstrated here, the ‘independent’ three-class solution
(Model 2c) detects the unobserved heterogeneity in the first birth. In
addition, the hazard parameters for the first birth are similar to the ones
of the ‘independent’ two-class model in Example 1.

The parameter estimates for the ‘linearly dependent’ three-class model
(Model 3b) are rather different from the other two models. The first class
consists of women with a high risk of a first birth and a moderate risk
of a second and third birth. Note that the strong positive effects of
W =1 and W = 3 on the hazard rate of the third child is compensated
by the extremely low intercept. Class two has a low risk of a first and
a second birth and an extremely low risk of a third birth. Class three
has a low risk of a first child, but a relatively high risk of a second and
third child. The direct effects of A and B on W indicate that there
is a strong positive relationship between educational level and W and a
strong negative relationship between familism and W, where one has to be
aware of the fact that familism is coded from familistic to non-familistic.
Non-familistic women with a low education have the highest probability
of belonging to class one, while highly educated familistic women have
the highest probability of belonging to class three. Compared to Model
1b, the hazard parameters of the familism indicator for the first and the
third birth change most. The direct effect of B on the rate of the first
birth becomes much stronger. This works in the opposite direction to the
indirect effect of B via W. The direct effect of B on the hazard rate of
the third birth not only becomes somewhat smaller, but also the order



between the parameters for B = 1 and B = 2 reverses.

The example on the timing of the first, second, and third birth showed
that a substantial amount of unobserved heterogeneity may be detected
using the dependencies among spells. Although the models in which the
latent variable was assumed to be related to the observed covariates fitted
significantly better than the model with an ‘independent’ latent variable,
there are several problems associated with the former type of model. If
the relationships between the observed covariates and the latent variable
are not restricted, the models may become unstable. Another problem
is that indirect effects of the observed covariates via the latent variable
and direct effects of the observed covariates on the hazard rates may
compensate one another.

Example 6: Labor market transitions

This example demonstrates how unobserved heterogeneity can be dealt
with when analyzing multiple-state data as in the case of labor market
transitions. In a particular period of time, individuals may move several
times through the states of employed, unemployed, and out of the labor
force. As in the preceding examples, the goal is not to build a model
that explains as well as possible the processes that are going on in real-
ity, but to demonstrate the flexibility of the latent variable approach to
unobserved heterogeneity which was introduced in subsection 5.2.2.

Data and model Example 6 uses the SIPP data which were intro-
duced in Example 3. As in that example, information on a respondent’s
employment status at six points in time with a mutual distance of three
months is selected from the available 1986-1987 SIPP data. For the sake
of simplicity, only two different states are distinguished: employed and
not employed, where not employed can be either unemployed or out of
the labor force. The analysis presented below concerns the transitions be-
tween these two states. The observed covariates race, sex, and age that
are used in the model for the transition probabilities are the same as in
Example 3. The only difference is that now the information on the oldest
age group is also used. As a result, there are four age/cohort categories
instead of three (> 66,47 — 66,27 — 46, < 27).

The time dimension that is used in the discrete-time logit model is



calendar time. This means that the transition probabilities are assumed
not to depend on the duration in a particular state. So, in fact, a discrete-
time Markov model is used. When working with this kind of panel data,
it is very difficult to allow the transition probabilities to depend on dura-
tion. The reason for this is that the observations are left-censored, which
means that no information is available on the time of entry into the state
occupied at the time of the first interview (see section 4.5). Although the
Markov assumption also implies that the transition probabilities depend
only on the origin state at the time point concerned, this assumption can
easily be relaxed.

Actually, the combined covariate model and discrete-time Markov
model used to analyze the SIPP data is a modified path model with
a latent mixture variable, sometimes also referred to as a mixed Markov
model (Poulsen, 1982; Van de Pol and Langeheine, 1990). The joint
distribution of the observed covariates (A, B, and C), the unobserved
covariate (I¥), the initial state (Sp), and the states occupied from 7' =1
up to T'=5 (S1, 52, S3, Sy, and S5) can be written as

5
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1=1
If S; = 1, an individual is employed at T' = ¢;, and if S; = 2, an individual
is not employed at T' = #;. Thus, if S;_1 # Si, Ty, |abews,_, 1S the probability
of experiencing one of the possible transitions at the [th point in time.
It can be seen that in the model represented in Equation 5.11, the
latent variable W capturing the unobserved heterogeneity is assumed to
intervene between the observed covariates A, B, and C, and the depen-
dent process of interest. In this particular situation, such a specification
seems to be the most logical one since it is more plausible that an individ-
ual’s sex, race, and age influence unobserved factors which are relevant for
employment transitions than the other way around. Possible intervening
variables which are not included in the model and which, as a result, may
introduce unobserved heterogeneity are educational level, human capital,
work-related attitudes, and position in the household in which one lives.
The most general model that is used for my|qp. is

exp (u) + udl) +uflV + uGl)

P exp (uy +ugy’ +ug,” +uG’)

(5.12)
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This means that in the ‘dependent’ unobserved heterogeneity models,
only the two-variable interaction terms between W and the observed co-
variates are included. An ‘independent’ unobserved heterogeneity model
is obtained by fixing the two-variable interactions u2"V, uPW, and uS)V
to zero.

From Equation 5.11, it can be seen that the state that an individual
occupies at T' = 0 is included as one of the variables in the model. This
makes it possible to specify a model for the relationship between the
unobserved covariate and the initial state. Two specifications are used for
the relationship between Sy and W: models containing the two-variable
interaction term um*go and models in which uuV,ngO is fixed to zero. The
relationships between A, B, C, and Sy are not restricted.

The model that is used for the transition probabilities is

Tsi|abcws; 1 — (513)

S1Si—1 ASySi—1 BS;S1—1 CS5151-1 WS5151-1
exp ('Uslsl,l + Vas;s_, + Vpsys1_1 + Ves;si—1 0+ Vws;s;— g

S1S1—1 ASS11 BS;S;11 CS1S11 WSiSi-1\’
>, €XP (Uszsz—1 tVasisioy t Vhgs, . T Vesisiiy Tt Vwsysig

where
S5 1 AS;S; 1 BS,S; S5, WSS )
Usisioy = Vasisior = Upgyqp = Vesisin = Vwsisi = 0 if 5y = Sp1.

So, actually, the discrete-time logit model which is used to model the tran-
sitions from state S;_; to state S is a modified path model with modified
path steps of the form given in Equation 5.14. However, as demonstrated
in subsection 4.8.4, to obtain the same parameter estimates as in the
standard discrete-time logit model, the v parameters cannot be identi-
fied by the usual ANOVA-like restrictions, but the v parameters in which
S; = S;_1 must be fixed to zero. Within each level of S;_; the stay-
ers are treated as reference category. These identifying restrictions give
parameters that can be interpreted as covariate effects on the transition
probabilities rather than covariate effects on the probability that S; = s;.
In other words, the model consists of transition-specific main effects and
covariate effects for each [.

The discrete-time logit model represented in Equation 5.14 is already
a restricted model since it does not contain higher-order interaction terms
involving more than one covariate. This does not mean, however, that it is
not possible to include these higher-order interaction terms in the model.



In addition, more restricted models can be specified on the basis of this
one. For instance, a stationary Markov model is obtained by assuming
both the main effects and the covariate effects to be equal across time
points. Moreover, a proportional model is obtained by assuming the
covariate effects to be equal across time points.!°

Because in the SIPP panel the observation period is the same for all
persons, and all the covariates included in the model are categorical, the
data can be organized into a contingency table. This makes it possible
to test the fit of the estimated models by means of the likelihood-ratio
chi-square statistic L?.

Testing Table 5.12 presents the test results for the models that are
estimated using the SIPP data. Models 1a and 1b are without covariate
effects. Models 2a-2e contain the effects of the observed covariates and
of the unobserved covariate, which is assumed to be independent of both
the initial position and the observed covariates. In Models 3a-3g, the
unobserved heterogeneity is assumed to be related to the initial position,
and in Models 4a-4d, it is assumed to be related to both the initial position
and the observed covariates.

The stationarity assumption can be tested by comparing the station-
ary and nonstationary models without covariates (Models la and 1b).
The conditional test of Model 1a against Model 1b indicates that, al-
though the nonstationary model fits significantly better than the station-
ary model (L%aub = 41.6,df = 8,p < .001), the fit does not improve very
much by assuming nonstationarity, especially if one compares it with
the improvement of the fit that occurs by including the effects of the
observed covariates on the two transition probabilities in the stationary
model (Model 2a). The conditional test between Models 1a and 2a shows
that the L? value falls from 3390.6 to 1919.8 using only 10 degrees of
freedom. Therefore, for the sake of simplicity, in all the other models the
Markov process is assumed to be stationary.

The test results for the ‘independent’ unobserved heterogeneity mod-
els (Models 2b-2e) show that there is a large improvement of L? when a
latent covariate is included. Compared to 2a, the two-class model has an

10 Assuming parameters to be equal across time points involves restricting parameters
to be equal across modified path steps. Appendix E.3 explains how to estimate models
with such restrictions.



Table 5.12: Test results for the estimated models for the transitions be-
tween employed and not employed

Model L? # parameters  df D
no covariates

la. stationary 3390.59 34 990 0.000
1b. nonstationary 3349.01 42 982 0.000
independent W

2a. 1 class 1919.82 44 980 0.000
2b. 2 class 1198.27 47 977  0.000
2¢. 3 class 1116.78 50 974  0.001
2d. 4 class 1101.91 53 971 0.002
2e. 5 class 1077.53 56 968 0.008
W related to Sy

3a. 2 stayer + 1 mover 1573.99 46 978  0.000
3b. 2 stayer + 2 mover 1098.98 50 974  0.003
3c. 2 stayer + 3 mover  963.86 54 970  0.550
3d. 2 stayer + 4 mover  945.33 58 966 0.677
3e. 2 class 1183.44 48 976  0.000
3f. 3 class 964.59 52 972  0.561
3g. 4 class 945.54 56 968 0.691
W related to Sg, A, B and C

4a. 2 class 1088.26 53 971 0.005
4b. 3 class 859.66 62 962 0.992
4c. 4 class 801.40 71 953 1.000

4d.  2*2 class 915.34 61 963 0.862




L? value more than 700 points lower using only three additional param-
eters. Also, the third class captures a substantial amount of unobserved
heterogeneity. Even after including a fifth class (Model 2e) the L? value
goes down. Apparently, there is a substantial amount of unobserved het-
erogeneity in the data.

It seems implausible to assume that the unobserved risk factors influ-
ence the transition probabilities, or equivalently, the states occupied from
T = t; to T = t5, but not the state occupied at T" = ty. Therefore, a
direct effect of W on Sy is included in the model (Models 3a-3g). Includ-
ing such an effect makes it possible to specify a mover-stayer structure
as proposed by Wrigley (1990), that is, a model with one class of stay-
ers for every origin state. Models 3a-3d are models with two classes of
stayers, one for the state employed and one for the state not employed,
while Models 3e-3g are unrestricted. As in the example on the transition
out of the state of unemployment (Example 3), the mover-stayer models
become almost equal to the non-restricted models if the number of classes
increases. This is caused by the fact that the latent proportions in the
classes of stayers become rather small very quickly. In this example, the
unrestricted three-class model (Model 3e) fits as well as the model with
two classes of stayers and three classes of movers (Model 3c), and the
four-class model (Model 3f) fits as well as the model with two classes of
stayers and four classes of movers (Model 3d). It has to be concluded that
in this particular situation the mover-stayer structure does not function
very well.

Comparison of Model 3e with Model 2b shows that the fit of the two-
class model does not improve as much as one would expect by including
a direct effect of W on S (L%b‘38 = 14.83,df = 1,p < .001). On the other
hand, the three- and four-class models improve a great deal. This can be
seen by comparing Model 3f with Model 2c (Lgc\sf =152.19,df = 2,p =

.000) and Model 3g with Model 2d (Lgc|3g = 156.38,df = 3,p = .000).
As in the previous examples, it is possible to relax the assumption that
the unobserved heterogeneity is independent of the observed heterogene-
ity. This can be accomplished by including direct effects of the observed
covariates on the latent variable in models as described in Equation 5.12.
The test results of Models 4a-4c compared with those of Models 3e-3g
indicate that inclusion of the two-variable interactions u2W, uZW  and

aw > Upy
uSW greatly improves the fit, irrespective of the number of latent classes:



L34, = 95.18,df = 5,p = .000; L2, = 104.93,df = 10,p = .000; and

ngm = 144.54,df = 15,p = .000. Here, the linear-by-linear model is
not used because two covariates are dichotomous and the third covariate,
age, cannot be expected to have a linear effect on W.

The models presented so far contained one latent variable influencing
both the transition from employed to not employed and the transition
from not employed to employed. So, in fact, it was assumed that the
unobserved risk factors are the same for both transitions. Whether the
unobserved factors which influence the two transition probabilities are the
same or not can be tested by using a specification with two latent vari-
ables, each of which is assumed to influence one of the two transitions.
Model 4d contains two related dichotomous latent variables, one influenc-
ing the transition from employed to not employed and one influencing the
transition from not employed to employed. Although the fit of Model 4d
is better than the two-class model with only one latent variable (Model
4a), it is much worse than that of Model 4b, which has almost the same
number of parameters as Model 4d. So, assuming origin state-specific
latent variables does not lead to a simpler and better fitting model.

Parameters Table 5.13 reports the parameter estimates for Model 2a
and for three variants of the well-performing three-class model (Models 2c,
3f, and 4b). In the model without unobserved heterogeneity (Model 2a),
females, blacks, and persons belonging to the oldest and the youngest age
groups have the highest risk of experiencing a transition from employed
to not employed. On the other hand, males, non-blacks, and persons
belonging to the two youngest age groups have the highest risk of moving
from not employed to employed.

In Model 2¢, most parameter estimates are somewhat more extreme
than those in Model 2a. This is the same result as in the other examples
with an ‘independent’ latent variable. The effects of the latent variable on
the transition probabilities indicate that the largest class, containing 61
percent of the population, consists of persons with a low risk of becoming
not employed and a low risk of finding a job after becoming not employed.
Actually, it is a class of stayers in either the position employed or the
position not employed. The first class, with a latent proportion of 29
percent, consists of persons with a high risk of becoming not employed
and a moderate risk of becoming employed. And finally, the smallest class



Table 5.13: Parameter estimates for some models for the transitions be-
tween employed and not employed

Model 2a  Model 2¢ Model 3f Model 4b
employed to not employed (S;—1 =1 and S, = 2)

v -2.2322 -3.4195 -1.8300 -1.7077
Uf, fvé“‘ -0.1387 -0.1848 -0.2434 -0.2183
vB —vB -0.2015 -0.1978 -0.2977 -0.1289
v¢ 0.4350 0.2213 0.6636 1.2675
v§ -0.3295 -0.2811 -0.1445 0.0698
’Ug -0.6525 -0.6561 -0.9430 -0.8746
v§ 0.5470 0.7158 0.4239 -0.4627
Ul 2.4825 2.0276 2.2000
vy 1.8466 0.0519 -0.4863
UgV -4.3291 -1.9757 -1.7137
not employed to employed (S;—1 =2 and S, = 1)

v -2.5460 -2.0755 -2.3941 -1.7470
v, —vg 0.2657 0.2190 0.3040 0.2757
vB —vB 0.2741 0.3244 0.3334 0.3763
v¢ -2.3389 -3.3943 -3.6445 -1.2043
’Ug -0.2172 -0.1899 -0.3652 -0.6219
USC 1.1196 1.6259 1.7978 1.1606
v§ 1.4365 1.9583 2.2119 -0.6656
Ul -0.5004 -0.4788 0.0620
vy 3.0430 2.7974 2.5858
Ugv -2.5426 -2.3186 -2.5478
latent proportions

ol 0.2919 0.1876 0.1357
w5 0.1000 0.2168 0.2620
w3 0.6081 0.5956 0.6023
effects of observed covariates on W

utW, —ugW -0.0140
ulW, —ufW 0.0413
uitW | —ufW -0.0273
uBW, —uBW -0.2457
ulBW, —uyBW 0.1898
uBW, —uBW 0.0559
uéW -14.5024
udW 4.2171
ulW 4.6044
uoW 5.6809
uly 6.0965
uly” -2.0766
uSW -2.0003
uSW -2.0195
ulw 8.4059
uS W -2.1405
uCw -2.6040
ulw -3.6614
effect of W on initial position (Sp)

uly 50, )7 50 -0.7375 -0.7313
U 50— 50 0.6070 0.6988

uly %0, —upy 0 0.1304 0.0325




is a class of frequent movers, that is, persons that have both a high risk
of becoming not employed and a high risk of finding a job.

In Model 3f, the latent variable was allowed not only to influence the
transition probabilities but also the initial position; in other words, W
was allowed to have an indirect effect on the states occupied after T' = ¢
via the value of Sy. As can be seen, this slightly increases the effects of the
observed covariates on the transition probabilities. The effect of W on the
initial position indicates that persons belonging to the first class have a
relatively high probability of starting in the position not employed, while
persons belonging to the second class have a relatively high probability
of starting in the position employed. Apparently, these unequal initial
positions of persons belonging to the different latent classes have two
consequences. First, the latent distribution changes considerably, and
second, the effect of the latent variable becomes less strong. The first
class now has a much higher risk of becoming not employed than the
other two groups, and although the risk of becoming not employed for
the third class is not so low any more as in Model 2a, it is still much
lower than for the other two classes. The effect of W on the transition
from employed to not employed does not change very much.

The parameter estimates for Model 4b indicate that including di-
rect effects of the observed covariates on the latent variable W has the
strongest impact on the age effect. This is not surprising given the es-
timates for the effects of A, B, and C' on W. Sex (A) has no effect on
a person’s score on W. Non-blacks (B = 1) have a somewhat higher
probability of belonging to class two, while blacks (B = 2) have a higher
probability of belonging to class one. The effect of C' on W is extreme,
however. Persons belonging to the oldest age group (C' = 1) never belong
to class one, and have the highest probability of belonging to class three,
which is the class with a very low probability of becoming employed. This
is caused by the fact that almost all persons over 66 years of age are retired
and, therefore, stay out of the labor force. After controlling for W, the
effect for the oldest category on the probability of becoming not employed
increases because the persons that are still employed have a high risk of
becoming not employed, or more precisely, of leaving the labor force as a
result of retirement. In fact, this compensates for the negative effect of
belonging to class three on the transition concerned. On the other hand,
the effect on the probability of becoming employed decreases since the
lower probabilities are partially captured by means of an increased mem-



bership of class three. Also, the parameters for the youngest age group
(C = 4) change a great deal when one compares Model 4b with Model 3f.
Note that the youngest people have a relatively high probability of be-
longing to class one and a relatively low probability of belonging to class
three. So, after controlling for the fact that persons under 27 years of
age have a higher probability of belonging to the class with a high risk of
becoming not employed, the effect of C' = 4 on the transition probability
concerned decreases. Equivalently, the effect of C' = 4 on the probability
of becoming employed decreases because the younger persons belong to
either the moderate or the high-risk class for finding a job.

This example demonstrates the importance of correcting for unob-
served heterogeneity when analyzing multiple-state data. The ‘indepen-
dent’ unobserved heterogeneity models detected a substantial amount of
interdependence between the different spells of one individual. In addi-
tion, it was shown that the latent variable approach which is proposed
here is very flexible: Several specifications can be used for the latent
variable capturing unobserved heterogeneity. Besides the standard ‘inde-
pendent’ unobserved heterogeneity specification, the latent variable cap-
turing the unobserved heterogeneity may be related to both the observed
covariates and the initial position. Moreover, models with several mutu-
ally related latent variables can be specified. It was shown that the results
may be strongly influenced by the specification which is chosen. This
illustrates that substantive arguments must guide the choice of model
specification.

5.2.7 Dependent or clustered observations

As demonstrated in section 4.8, not only models for repeatable events and
multiple-state processes, but also models for dependent or clustered ob-
servations belong to the family of multivariate hazard models. Clustered
survival data occurs in many situations. Instances of clustered data are
observations of members of the same household, observations of spouses
or brothers, observations of different parts of the body of one individual
or animal in medical trials, observations of different parts of a machine,
etc. Repeatable events can also be seen as a specific form of clustered
observations since, in that case, there are several observations of the same
individual too. Like repeatable events, clustered survival times can gen-
erally not be treated as independent observations, even after controlling



for the observed covariates which are included in the hazard model. The
reason for this is that there will be unobserved heterogeneity which the
observations belonging to the same cluster have in common.

This subsection demonstrates how to use the general latent variables
approach to unobserved heterogeneity when analyzing bivariate survival
data. For this purpose, Example 2 (on dropping out of school) is ex-
tended: the respondents’ school careers as well as the school careers of
their brothers are analyzed. Although the example concerns a situation
in which each cluster consists of exactly two observations, the approach
used here can also be applied when clusters contain more than two ob-
servations, possibly with clusters of unequal sizes.

Example 7: School transitions of brothers

Data and model The example of respondents’ school careers (Exam-
ple 2) is extended by analyzing simultaneously the school histories of
respondents and their brothers. As mentioned above, Mare (1994) used
the data on the schooling of brothers to demonstrate how to use a latent
class approach to detect dependencies between survival times when ob-
servations are dependent or clustered. The model proposed by Mare is
a special case of the hazard model with unobserved heterogeneity which
was presented in subsection 5.2.2. Mare specified a bivariate discrete-
time logit model with a dichotomous ‘independent’ latent variable which
was assumed to have a proportional and equal effect on respondents’ and
their oldest brothers’ probabilities of dropping out of school.!!

Here, part of Mare’s analysis is repeated, but also several types of ex-
tensions are presented which lead to models fitting much better than the
latent class models presented by Mare. In addition, it is demonstrated
that the discrete-time event history model proposed by Mare can be spec-
ified in a much easier and efficient way when it is treated as a modified
path model with latent variables.

Apart from the observed covariate father’s education denoted by A,
the bivariate discrete-time logit model contains two latent variables W
and Y denoting the unobserved respondent’s (W) and brother’s (V) fac-
tors influencing the risk of dropping out of school, where W and Y are

UTnformation is available on the school careers of respondents and their oldest broth-
ers. It should be noted that a respondent’s oldest brother is not necessarily older than
the respondent.



assumed to be associated with each other. As in the previous examples,
the unobserved variables are assumed to be intervening variables. This
implies that, in the covariate part of the model, a model has to be speci-
fied for m,,|,. The most general model that is used for m,y, is

exp (uZJV + uz,/ + uqu,V + ufyy + uu%y)

(5.14)

Twyla .
Sy exp (ul +u +udlV +ud) +ullY)

AWY

awy 18 assumed

It can be seen that the three-variable interaction term w
to be zero.

Several kinds of specifications can be obtained by restricting the two-
variable interactions appearing in the model described in Equation 5.14.
The latent variables can either be assumed to be independent of or de-
pendent on A. When they are independent of A, all ufuvjv and ufg pa-
rameters must be fixed to zero. Dependence of W and Y on A is modeled
by means of linear-by-linear interaction terms. This specification is used
because it forces the effects of the ordinal variable father’s education on
the intervening unobserved factors to have systematic patterns.

In the discussion below, the relationship between W and Y is modeled
in several ways. The simplest one is to assume all nondiagonal elements

of the conditional distribution of WY given A to be empty,
Tuyla =0 ifw #y, (5.15)

that is, to assume all umy terms in which w # ¥y to be equal to —oo.
This boils down to assuming that the unobserved factors influencing the
risk of dropping out of school are the same for respondents and brothers.
In other words, W and Y are actually identical, and it is more efficient
then to use only one latent variable instead of two.

Other possible specifications of the conditional distribution of W and
Y given A are symmetry and quasi-symmetry. A symmetry model is
obtained by restricting

WY _, WY Wo_ Y
Uy = Uy and uy, =u, , (5.16)

and quasi-symmetry by

WY — VY (5.17)



The likelihood-ratio test of the symmetry model against the quasi-symme-
try model can be used to test the assumption of marginal homogeneity of
W and Y (Bishop, Fienberg and Holland, 1975: Chapter 8; Hagenaars,
1986, 1990:156-162). Thus, it is not only possible to test the strong
assumption that W and Y are identical, it is also possible to test the
weaker assumption that W and Y have the same marginal distribution.

The event history part of the model consists of separate discrete-time
logit models for oldest brothers and respondents,

M LM AM Y M ALM YLM
exp (vl T U Tl Uy T oy )

M (ti]a, w) = 1+ exp (UM 1 pEM 4y AM | VM | ALM +UYLM)’
1 11 al yl all ylil
(5.18)
g - (0 + vBM + oM oM 4 oM 4 T EM) |
’ 1+ exp (v! + oM + v A + WM 4 o ALM 4 o WEM)
(5.19)

Here, \'(#;]a, w) is the brother’s probability of dropping out of school at
the Ith point in time, while A\?(¢;|a,w) is the same probability for the
respondent. To distinguish the parameters of the two discrete-time logit
models a variable M is introduced, taking value 1 for the oldest brother
and value 2 for the respondent. Variable A denotes the father’s education,
W and Y are the latent covariates, and L is the discrete time interval.

Equality restrictions can be imposed on the parameters across the two
models represented in Equations 5.18 and 5.19. For simplicity of exposi-
tion, the models that are presented here differ only from each other with
respect to the specification of the effects of W and Y. The specification
of the duration effects and the effects of father’s schooling is based on
Mare’s best fitting model. This means that the duration effects are not
restricted and that the effects of father’s schooling are assumed to be
nonproportional, but equal for respondents and brothers. In other words,
the restrictions that

vAM =AM and oAM= pALM (5.20)

are imposed.
Mare (1994) estimated the bivariate discrete-time logit model with
Haberman’s NEWTON program (Haberman, 1988), which is a program



for estimating latent class models and other kinds of log-linear models
with latent variables. It can be demonstrated that the model formulated
in Equations 5.14, 5.18, and 5.19 is similar to a latent class model or, more
precisely, to a latent class model with direct effects between indicators.
When a specification is used in which W is identical to Y (see Equation
5.15), using the modified path notation introduced in sections 2.9 and 3.1,
the probability density function of the above bivariate survival model can
also be written as

Taws11812821822 — 7ra7rw\a7rsu|aw7rs12\aw3117r521|aw7r522\aw321 . (521)

Here, S11, Si9, S21, and S9s denote the states occupied by the brother
(S11, S12) and the respondent (S2;, S22) at the two points in time. It
will be clear that the model represented in Equation 5.21 is a modified
path model with a latent variable. As a result, it must be estimated in
the same way as the modified path models described in section 3.1.

It can be seen that, in fact, the variables S11, S12, So1, and Sa2 serve as
indicators for the latent variable W. The model differs from an ordinary
latent class model in that the states occupied at the second point in time
depend on the states occupied at the first point in time. In this sense
the model is similar to a latent class model with direct effects between
indicators as proposed by Hagenaars (1988). Here, these direct effects
are, however, fixed a priori by means of structural zero probabilities, or
equivalently, by log-linear parameters fixed to be equal to —oo, because
the state dropped out is an absorbing state: If someone drops out at
the first point in time, the probability of being a dropout at the second
point in time is one. Another difference between the model described in
Equation 5.21 and a standard latent class model is the presence of an
external variable (A) that is assumed to be related to the indicators.

Because Mare (1994) used the NEWTON program to estimate the
bivariate logit model, he specified it in a different way. Although Winship
and Mare (1989) showed that it is possible to specify modified path models
by means of NEWTON, normally the model parameters are estimated in
the complete table, that is, in the table containing all variables. For
a standard latent class model, this is not a problem. Because of the
assumed local independence among indicators, it does not matter whether
the parameters are estimated in the separate marginal tables containing
an indicator and the corresponding latent variable or in the complete



Table 5.14: Test results for the estimated models for respondents’ and
oldest brothers’ dropping out of school

Model L? df P

1. 1 class 4381.64 28 0.000
2. 2 class 689.26 26 0.000
3a. 3 class 256.07 24 0.000
3b. 3 class with linear effect of W 257.61 25 0.000
4a. 4 class 186.76 22 0.000
4b. 4 class with linear effect of W 199.22 23 0.000
ba. Model 3b + linear AW 132.20 24 0.000
5b.  Model 3b + unequal effects of W 214.47 24 0.000
5¢.  Model 3b + nonproportional effects of W 244.13 24 0.000
6a. 2*3 class unrestricted WY 163.45 19 0.000
6b.  2*3 class symmetric WY 234.56 22 0.000
6c.  2*3 class quasi-symmetric WY 164.94 20 0.000
7a. Model 6¢ + linear AW and AY 26.77 18 0.083
7b.  Model 6¢ + linear AW = AY 29.16 19 0.064
7c.  Model 6¢ + unequal effects of W and Y 155.18 19 0.000
7d. Model 6¢c + nonproportional effects of W and Y 159.75 19  0.000
7e. Model 7b + unequal effects of W and Y 27.62 17 0.050

8. Model 7d - effect of A + unrestricted AW = AY 50.43 19 0.000

table. This results from the collapsibility theorem (Bishop, Fienberg, and
Holland, 1975:47-48). However, in this example it does matter whether
W is specified to be independent of A in the marginal table AW or in
the complete table. This results from the fact that both A and W are
supposed to have a direct effect on 511, S12, S21, and Sa2. By specifying W
to be independent of A in the table including S11, Si2, S21, and S2s, Mare
(1994) made the latent covariate conditionally independent of A, that is,
given the values of Si;, Si2, S21, and S32. Such a specification is not
in agreement with the usual way of specifying unobserved heterogeneity
and, moreover, it is a bit strange since normally it makes no sense to
set conditions on something that is posterior. As will be demonstrated
below, Mare’s specification may yield estimates which differ a great deal
from the ones obtained with the specification described in Equation 5.21.

Testing Table 5.14 gives the test results for the models that are esti-
mated with the brothers’ schooling data. Model 1, which is used as a
reference model, does not contain unobserved heterogeneity. The model



for the risk of dropping out is of the form given in Equations 5.18 and
5.19, with the restriction described in Equation 5.20. In other words, the
effect of fathers’ schooling on the dropout probability for respondents and
their oldest brothers is assumed to be nonproportional and equal for re-
spondents and their brothers. Model 1 fits very badly (L? = 4381.64, df =
28,p = .000). Apparently, the assumption of conditional independence
between brothers’ and respondents’ schooling must be rejected. Note
that here it is possible to test explicitly the conditional independence
assumption by means of the likelihood-ratio chi-square. However, when
using continuous-time models, such a test does not exist. This is perhaps
the reason why most researchers use event history models without being
concerned about possible dependencies among observations.

The next set of models contains one latent variable to be denoted by
W. As mentioned above, this is equivalent to assuming that the associa-
tion between W and Y is perfect (see restriction 5.15). For the moment,
the effects of the latent variable in the discrete-time logit model are as-
sumed to be equal for respondents and brothers and proportional, that
is, vy M = oM and vVEM = yWIM — () and W is assumed to be
independent of A.

As can be seen from Table 5.14, including a two-class latent covari-
ate in the bivariate logit model (Model 2) improves the fit a great deal
compared to Model 1 (L? = 689.26) with only two additional parameters:
a latent class proportion and the effect of W on the transition probabil-
ities. A two-class model of this form is the most extended model with
unobserved heterogeneity presented by Mare (1994). But, as mentioned
above, an important difference with the approach presented here is that
Mare estimated the model parameters in the complete table, which gives
an L? value of 877.65 instead of 689.26.

By including a third latent class (Model 3a), the fit improves again
a great deal (L? = 256.07). Even including a fourth class in the model
(Model 4a) improves the fit considerably (L% = 186.76), especially if one
realizes that only two additional parameters are used for each additional
latent class. To test whether the latent variable has a linear effect on the
transition probability, in Models 3b and 4b, the effects of W are restricted
to be linear. The fit of the three-class model does not deteriorate by this
additional restriction (L§b|3a = 1.5,df = 1,p > .21). Although in the four-
class model the linear restriction leads to a significantly worse model, the



increase in L? is moderate (Lib|4a = 12.5,df = 2,p < .002), especially if
the huge sample size of 18,563 cases is taken into account.

Because the gain of incorporating a fourth class is relatively small
compared to the gain of incorporating a second and third class, an effort
can be made to improve the well-performing three-class model (Model
3b) by relaxing one by one the underlying assumptions of this model
with regard to the nature of the unobserved heterogeneity. These as-
sumptions are: an equal effect of W on the probability of dropping out
for the respondent and his brother, proportionality of the effect of W, W
independent of A, and identical unobserved risk factors for the respon-
dent and his oldest brother. The first three assumptions can be relaxed
using models with only one latent variable W (Models 5a-5¢). To relax
the other assumption, it is necessary to specify models with two latent
variables W and Y (Models 6a-6c¢).

Inclusion of a linear direct effect of A on W in the model (Model 5a)
greatly improves the fit of the model compared to Model 3b (L§b|5a =
125.41,df = 1,p = .000). Also, relaxing only the assumption that the
effect of W is equal for respondents and brothers (Model 5b) leads to
a considerably better fit (Lgbwb = 43.14,df = 1,p = .000). Although
the improvement is relatively less important, allowing the effect of W
to be nonproportional (Model 5¢) leads to a significantly better fitting
model as well (Lgb‘5C = 13.48,df = 1,p = .000). So, all three assumptions
concerned seem to be violated.

To check whether the unobserved risk factors are the same for respon-
dents and their brothers, a model is specified with two latent variables
denoted by W and Y (Model 6a). As mentioned above, W is assumed
to capture the respondent’s unobserved factors and Y the brother’s un-
observed factors. Actually, compared to Model 3b, only the restrictions
described in Equation 5.15 are relaxed. Because these restrictions in-
volve fixing parameters to their boundary values, it is not possible to test
Model 3b against Model 6a by means of a likelihood-ratio test. Neverthe-
less, the large difference in L? between Model 6a and Model 3b — 94.14
using six additional parameters — indicates that the assumption that the
unobserved risk factors for the respondent and the brother are exactly
the same, is too strong.

Besides the unrestricted specification of the relationship between W
and Y which is used in Model 6a, more restricted specifications can be



used. In Model 6b, the relationship between W and Y is assumed to
be symmetric, and in Model 6¢, it is specified to be quasi-symmetric.
The restrictions to obtain these two models are described in Equations
5.16 and 5.17, respectively. The conditional test of the quasi-symmetry
model (Model 6¢) against Model 6a demonstrates that the relationship
between W and Y can be described very well by a quasi-symmetry model

(L%C‘Ga = 1.49.df = 1,p > .22). On the other hand, the symmetry

model (Model 6b) performs very badly compared to Model 6a (Lgbwa =
71.11,df = 3,p = .000). The test of the symmetry model against the
quasi-symmetry model provides us with the well-known conditional test
for marginal homogeneity (Bishop, Fienberg and Holland, 1975: Chapter
8; Hagenaars, 1990:156-162). This test leads to a significant result as
well (Lgbwc = 69.61,df = 3,p = .000). Thus, the conclusion can be
that respondents and their oldest brothers do not have exactly the same
unobserved factors and that, moreover, W and Y have different marginal
distributions.

By means of Models 5a-6¢ it was tested whether the fit of Model 3b
could be improved by relaxing one by one the underlying assumptions of
this model with regard to the nature of the unobserved heterogeneity. The
next set of models (Models 7a-7e) investigate the effect of relaxing these
assumptions simultaneously. The starting-point is Model 6¢: the model
with a quasi-symmetric relation between W and Y, with equal, linear,
and proportional effects of W and Y on the transition probabilities, and
without direct effects of A on W and Y.

Including a direct linear effect of A on W and Y (Model 7a), greatly
improves the fit of Model 6¢ (Lgcwa = 138.17,df = 2,p = .000). If the
relationships AW and AY are assumed to be equal (Model 7b), the fit
does not deteriorate at all (L?bwa = 2.39,df = 1,p > .12). Allowing for
unequal effects of W and Y (Model 7c) and nonproportional effects of W
and Y on the transition probabilities (Model 7d) leads to better fitting
models as well (L3, = 9.76,df = 1,p < .02; and L§ ,, = 5.19,df =
1,p < .03). The improvement of the fit is, however, not so spectacular
as with Models 7a and 7b. Finally, to see whether assuming unequal
effects of W and Y still improves the model fit after including the direct
effects of A on W and Y, both assumptions are relaxed simultaneously
in Model 7e. The test of Model 7b against 7e shows that the assumption
that the hazard parameters for W and Y are equal is no longer violated



after allowing W and Y to depend on A (L$b|7e = 1.54,df =1,p > .21).

Thus, the final model could serve the very well-fitting Model 7b (L? =
29.16,df = 19,p > .06): the model with a quasi-symmetry association
between W and Y, and with equal and linear effects of A on W and
Y. Model 7b is a parsimonious model that can be interpreted easily:
The schooling histories of respondents and their brothers are condition-
ally independent of one another given their fathers’ educational level and
the person-specific unobserved risk factors. These unobserved factors
have equal, linear, and proportional effects on the logit of probability of
dropping out for respondents and their oldest brothers. Moreover, the
unobserved factors W and Y are associated, and are equally and linearly
influenced by the fathers’ schooling.

But, as will be demonstrated below, Model 7b yields are rather strange
effects of fathers’ education on the probability of dropping out. To illus-
trate that the specification of the nature of the unobserved heterogeneity
used in Model 7b is just one of the possible specifications leading to a
well-fitting model, another quite different specification is used in Model
8. Because the strange parameters obtained from Model 7b are probably
the result of the assumed linearity of the relationship between A and Y,
and between A and W, this assumption is relaxed in Model 8. How-
ever, because of the bad experience with models with both unrestricted
indirect effects and unrestricted direct effects of observed covariates of
the transition probabilities (see Example 1), the direct effect of A on the
transition probabilities is excluded from Model 8. To compensate for the
nonproportionality of the effect of A that was found in the other models,
the effects of Y and W are allowed to be nonproportional. So, Model 8
is a model without a direct effect of A on the respondent’s and brother’s
probability of dropping out, with unrestricted but equal AW and AY
interaction terms, and with equal and linear but nonproportional effects
of W and Y. Although its fit is not as good as for Model 7b, Model 8
performs rather well (L% = 50.43,df = 19,p < .0002), especially if the
huge sample size (18,563) is taken into account. As will be shown below,
the parameter estimates for Model 8 can be easily interpreted.

Parameters Table 5.15 reports the parameter estimates for Model 1
and for four different three-class models. It must be noted that, to be
able to compare directly the mean of the logit of the transition proba-



Table 5.15: Parameter estimates for some models for respondents’ and

oldest brothers’ dropping out of school

Model 1  Model 3b  Model 6c  Model 7b  Model 8

discrete-time logit parameters
vEM -1.3380 -2.8414 -2.9064 -6.4816 -6.4736
vEM -0.1418 -0.5958 -0.0862 8.4248 1.8098
vEM -1.5432 -3.1714 -3.0340 -2.1534 -1.6268
v -0.2556 -0.8052 0.1020 8.1972 2.5794
oAl 1.4864 2.2238 2.5466 1.0006
v 0.9422 1.3594 1.3950 1.4210
oAl -0.4236 -0.7714 -0.8682 -3.0442
vyl -0.6620 -1.0210 -1.1274 0.0424
vAL -1.3430 -1.7906 -1.9462 0.5802
v 0.9446 1.8718 2.7056 0.7132
Vs 0.7970 1.5234 1.9754 1.0410
vl 0.2150 0.1988 0.0888 0.1524
VAL -0.6152 -1.1482  -1.5716 -0.4670
vAL -1.3414 -2.4458 -3.1980 -1.4396
BW , BY 3.0788 3.2528 9.6810
Bl E,BYL 8.9530

WL gYL 5.5192
latent proportions
vy 0.0794 0.1776 0.2791 0.1505
%Y 0.0528 0.0260 0.0725
w Y 0.0411 0.0611 0.0354
Y 0.0002 0.0424 0.0426
man Y 0.5548 0.3764 0.1610 0.2455
Y 0.0000 0.1262 0.1489
Y 0.0198 0.0227 0.0042
e Y 0.0000 0.0287 0.0304
oY 0.3658 0.3321 0.2528 0.2699
effect of A on W and Y
BAW, gAY -0.2847
ufW sy -0.7004
ud W, ugy -0.5257
utV, ugy 0.0689
ufW, ugy 0.3831
utW, udy 0.7741
uf W ufy -0.0149
usV  ugy 0.0954
upgWV  ugy 0.2697
ugV  ugy -0.0969
ugV  udy -0.2533
uyy” , uly 0.7153
Uy Uy 0.4303
ufgV  ugy -0.3387
ugV ugy -0.2862
ugWV udY -0.5208




bility for brothers and respondents at the two points in time, the main
effect v} is absorbed in vEM. As can be seen from the v£M parameters
of Model 1, at both school levels the risk of dropping out is somewhat
lower for respondents (M = 2) than for their oldest brothers (M = 1).
Furthermore, as could be expected, the effect of fathers’ schooling shows
a monotonic pattern at both points in time. The nonproportionality of
the effect of A results from the fact that the differences between the tran-
sition probabilities of adjacent categories of A change strongly between
T =t; and T = ty: The distances between the first three categories of A
are much smaller at the second school level, while the distance between
the third and fourth categories of A are much larger at the second school
level.

From the parameters of Model 3b, it can be seen that including an
‘independent’ three-class latent covariate in the discrete-time logit model
leads to more extreme parameters. The differences between respondents
and brothers, between the two time points, and between the categories
of A are larger than in Model 1. It is important to note that these
results are exactly the opposite of the results obtained by Mare (1994).
It was checked whether the differences are caused by the additional latent
class, but this is not the case. Also in the two-class model (Model 2) the
parameters are more extreme than in Model 1. So, the fact that Mare
estimated the bivariate logit model in the complete table instead of using
a modified path model not only leads to a worse model fit, but also to
completely different substantive results.

The latent proportions and effects of W on the transition probabilities
show that there is a group containing 37 percent of the population with
an extremely high risk of dropping out of school.'? Persons belonging to
class two, the modal class, have a low risk of dropping out of school, and
a small group containing 8 percent of the population has an extremely
low risk of dropping out of school.

In the quasi-symmetry model (Model 6¢), the distribution of the un-
observed factors for respondents (W) and brothers (V) was allowed to be
different. This leads to even more extreme differences between the time
categories and among the levels of father’s education. However, the dif-

12The scores that were used for W and Y in the linear effects 8V and B are -1, 0,
and 1. The parameters for categories 1, 2, and 3 of W and Y are 3.0788, 0.0000, and
3.0788, respectively.



ferences between the mean of the logit of the transition probabilities for
respondents and their brothers disappear. At the second point in time,
brothers have an even lower risk of dropping out than respondents. This
is not surprising, because brothers, who, as we saw, have a higher risk
of dropping out of school, more often belong to the high-risk class (class
three) than respondents (0.44 versus 0.30). On the other hand, respon-
dents have a higher probability of belonging to the low-risk class (class
one) than brothers (0.37 versus 0.18). Note that these probabilities can
be calculated from the cell probabilities of the joint latent distribution of
W and Y.

As demonstrated above, by allowing W and Y to depend linearly and
equally on A, the fit of the model improved a great deal. But, as can be
seen from Table 5.14, the parameters of the discrete-time logit model for
Model 7b are rather different from the parameters for Models 1, 3b, and
6¢. Particularly the effect of fathers’ education is very difficult to interpret
since the monotonic pattern disappeared completely. From the covariate
part of Model 7b, it can be seen that the effect of A on W and Y is rather
strong. For instance, the ratio of the odds of belonging to class one rather
than to class three between persons with less and highly educated fathers
is exp(8 * —0.2827) = .1025.'% In other words, individuals with highly
educated fathers will belong to class one more often, while persons with
less educated fathers will belong to class three in more cases.

The latent probabilities show that, as in Model 6¢, brothers belong
more often to the high-risk class than respondents (.44 versus .30). The
difference in belonging to the first class is, however, smaller than in Model
6¢; 37 percent of the respondents and 34 percent of the brothers belong
to the low-risk class. On the basis of the size of the direct effects of W
and Y on the transition probabilities (9.6810), it can be concluded that
persons belonging to class one are stayers, while persons belonging to
class three certainly drop out, where the probability of dropping out at
the first point in time is higher for respondents than for brothers. Note
that the linear effect of 9.6810 means that the effects are —1 % 9.6810 for
class one, 0%9.6810 for class two, and 1x9.6810. for class three. However,
the larger number of brothers in class three is partially compensated by
a lower mean transition probability at the first point in time.

13For the levels of W and Y the scores -1, 0, and 1 were used, and for the levels of
A the scores -2, -1, 0, 1, and 2.



Table 5.16: Estimated probabilities of dropping out of school for respon-
dents’ and oldest brothers’ according to Models 7b and 8

WY A A(tila,y) M(t2]a,y) N(ti]a,w)  N(t2]a,w)

Model 7b
1 1 0.0000 0.3675 0.0000 0.3170
1 2 0.0000 0.4465 0.0000 0.3918
1 3 0.0000 0.2491 0.0000 0.2095
1 4 0.0000 0.1515 0.0000 0.1248
1 5 0.0000 0.0632 0.0000 0.0512
2 1 0.0041 0.9999 0.2400 0.9999
2 2 0.0063 0.9999 0.3247 0.9999
2 3 0.0001 0.9998 0.0055 0.9998
2 4 0.0016 0.9997 0.1080 0.9996
2 5 0.0027 0.9991 0.1718 0.9988
3 1 0.9852 1.0000 0.9998 1.0000
3 2 0.9902 1.0000 0.9999 1.0000
3 3 0.5387 1.0000 0.9888 1.0000
3 4 0.9624 1.0000 0.9995 1.0000
3 5 0.9777 1.0000 0.9997 1.0000
Model 8
1 0.0000 0.0239 0.0000 0.0502
2 0.0015 0.8593 0.1643 0.9295
3 0.9227 0.9993 0.9993 0.9997

Most of the effects of fathers’ education on the risk of dropping out
are weaker than in Model 6¢. This is to be expected when an observed co-
variate is allowed to have an indirect effect on the transition probabilities
via a latent variable. The effects of A are no longer monotonic, however,
with the parameter v{{" (-3.0442) being a real outlier. This problem,
which makes the effect of A difficult to interpret, can be expected to be
caused by the fact that the effect of A on Y and W was restricted to
linear-by-linear. This probably resulted in a too high number of people
with A = 3 in the high-risk classes, which is compensated by an extremely
low direct effect on the transition probability.

The estimated transition probabilities for Model 7b, which are re-
ported in Table 5.16, demonstrate the implication of the extreme values
of the hazard parameters. Although the first class is clearly a low-risk
class, contrary to what would be expected on the basis of the effects of



W and Y on the transition probabilities, it is not a class of stayers. In
the second time interval, both brothers and respondents have a consid-
erable risk of dropping out, where the size of the transition probabilities
also depends on the value of A. The second class surely drops out at
T = t. However, the risk of dropping out at T' = t; differs for brothers
and respondents. Respondents belonging to class two have a much higher
probability of dropping out in the first time interval than their oldest
brothers. The probability of dropping out also depends on A, where per-
sons with A = 3 clearly have the lowest risks. Finally, class three has a
very high risk of dropping out at the first time interval. There is, how-
ever, one exception: For brothers with a father belonging to the middle
educational category, the probability of dropping out is much lower. The
persons of class three that do not drop out at the first point in time surely
drop out at the second point in time. Thus, it can be concluded that the
much lower mean transition probability at T' = ¢; for brothers leads to
significantly lower transition probabilities only for brothers belonging to
class two. Moreover, the extremely low value of v{{ leads to much lower
transition probabilities for brothers belonging to class three and respon-
dents belonging to class two. In fact, the linear-by-linear effects AY and
AW result in too many brothers with A = 3 in class three instead of class
two and too many respondents with A = 3 in class two instead of class
one.

Because of the problems associated with Model 7b, a specification in
which the relationships between A and the unobserved risk factors are
not linearly restricted was tested. In Model 8, the association between
W and Y is similar to that in Model 7b, although fewer persons belong
to class one, and more to class two. The direct effects of A on W and
Y show a quite regular pattern. Persons with less educated fathers more
often belong to class one and persons with highly educated fathers are
more often found in class three. The middle category of A has the highest
probability of belonging to class two. From the hazard parameters, it can
be seen that, as in Model 7b, the larger number of brothers in the high-
risk class is partially compensated by a much lower mean of the logit of
the transition probabilities at T' = ¢;. The effect of the latent variables
W and Y on the risk of dropping out is again very strong. Therefore,
class three could be labeled as certain movers and class one as stayers.
From the estimated probabilities in Table 5.16 it can be seen that class
one is indeed almost a class of stayers. Only at the second point in time,



do persons belonging to class one have a small risk of dropping out. Class
two has a much higher dropout probability, where the risk is higher for
respondents than for their brothers. And finally, all members of class
three drop out, where brothers have a somewhat higher probability of
dropping out at T' = t5 instead of T' = ;.

It will be clear that, although Model 7b fits better, Model 8 is much
easier to interpret. Moreover, the assumption that a background variable
such as fathers’ education has only an indirect effect on the school behav-
ior of sons can be very well defended. It should, however, be noted that
Model 8 differs substantially from the usual way of correcting for unob-
served heterogeneity. But, to correct for selection bias, strong a priori
assumptions about the selection mechanism are needed. As already men-
tioned, such an assumption could be that a particular covariate influences
the unobserved factor but has no direct effect on the risk of dropping out.

This example demonstrated the potentials of the general latent variable
approach to correct for unobserved heterogeneity when analyzing survival
data from dependent observations. The inclusion of a latent covariate in
the model for dropping out of school showed that there is a strong depen-
dence between the dropout risks of respondents and their oldest brothers.
In addition, it was demonstrated how to relax some of the assumptions
which are generally made when correcting for unobserved heterogeneity:
The unobserved heterogeneity was allowed to depend on the observed
covariate, to be partially different for respondents and brothers, and to
have nonproportional effects on the risk of dropping out of school. Tt will
also be clear from the example that it is not a problem to obtain a model
that describes the data well. However, only on the basis of substantive
arguments can it be decided whether a particular specification for the
unobserved heterogeneity makes sense.

5.2.8 Simultaneous modeling of the dependent process and
the covariate process

As explained in 4.6 in the discussion of the problems associated with the
use of time-varying covariates, the effect of a time-varying covariate on
the hazard rate of the event of interest may be partially spurious. If
there are unobserved factors that influence both the covariate process



and the dependent process,'* systematic selection into categories of the
time-varying covariate concerned will occur, and, as a result, the effect of
the covariate concerned will be (partially) spurious.

Here, we will demonstrate how to disentangle true and spurious effects
of time-varying covariates by simultaneously modeling the covariate pro-
cess and the dependent process. Using a multivariate hazard model, the
existence of a latent variable can be postulated which influences both the
transition rates of a time-dependent covariate and the transition rates of
the event(s) under study. Furthermore, by including a direct effect of the
time-varying covariate on the hazard rate, it is possible to check whether
a significant direct effect remains after controlling for the common unob-
served risk factor(s). Note that such a latent variable approach not only
allows us to disentangle true and spurious effects of time-varying covari-
ates, it also makes it possible to detect unobserved factors influencing the
occurrence of the event to be studied.

Example 8: School transitions of brothers with direct effects
between processes

Data and model To demonstrate how to perform a simultaneous anal-
ysis of the covariate and dependent processes, the previous example (Ex-
ample 7) is modified. In this example, the respondent’s schooling is not
only explained by his father’s schooling, but also by his oldest brother’s
schooling. Actually, the schooling of the oldest brother is included in the
model for the respondent as a time-varying covariate having two possible
values: dropped out or not at the school level concerned. It is expected
that if the older brother dropped out at or before a particular school level,
the respondent will have a higher risk of dropping out at that school level.

The time-varying covariate indicating whether a respondent’s oldest
brother dropped out of school is not an exogenous covariate (see section
4.6). As a result of the existence of common unobserved family factors
influencing both school careers, a respondent’s survival in #; will help to
predict the covariate value in ;1. Therefore, the relationship between
brothers’ and respondents’ schooling will at least partially be spurious.
As in the previous example, the latent class approach is used to control

!The terms dependent process and covariate process are used to denote changes
that occur in the value of the dependent variable of interest and changes that occur in
the values of the time-varying covariates, respectively.



for common unobserved risk factors. In fact, the only difference with
the analyses presented in the previous subsection is that the schooling of
the oldest brother is allowed to have a direct effect on the respondent’s
dropout rate.

It must be noted that, although in the data set that is used most
oldest brothers are older than the respondents, in some cases the oldest
brother is younger that the respondent (Mare, 1994). To perform the
analysis correctly, in such cases one should reverse the status of oldest
brother and respondent because, logically, only the schooling of the older
one can influence the schooling of the younger one and not the other
way around. But, there is no information available to determine whether
the brother or the respondent is older. So, in principle, the correctness
of the causal inference is not only threatened by unobserved risk factors
but also by this partial reverse causation. However, for simplicity of
exposition, the analysis is performed as if the oldest brother is always
older than the respondent. Although this may somewhat distort the
substantive conclusions, it does not influence the illustrative relevance of
this example.

Because the main purpose of this example is to show how to disen-
tangle the true and the spurious effects of a time-varying covariate, only
the simplest specification for the nature of the unobserved risk factors is
used. The unobserved risk factors are assumed to be the same for the
respondents and their brothers, which, as was demonstrated in Example
7, is equivalent to using one single latent variable. Moreover, the latent
variable is assumed to be independent of the father’s education.

The discrete-time logit model for the brother’s dropping out is the
same as the one which is used in Example 7. The model for the respon-
dent’s dropping out differs in that a time-varying covariate is included in
the model, i.e., his brother’s dropout status at the time point or school
level concerned. The discrete-time logit models are given by

exp (U{VI + leiM + oM+ UQ%M)
1+ exp (oM + oM + oM + oV M)

exp (03 + vEM + oM + oM + vS)

M(tila,w) =

: (5.22)

>‘2(tl|a7 w, Sll) =

S (5.23)
1+ exp (’Ué\/[ + ’UZLQM + vaM + ’Uu%M + vsllll)

in which vfllll denotes the effect of the dropout status of the oldest brother



at time point #; on the respondent’s probability of dropping out at time
point ¢;. In other words, the effect vfllll describes whether the oldest
brother’s dropping out before finishing secondary school influences the
respondent’s dropout probability at this school level, and the effect vssllj
describes whether the oldest brother’s dropping out before completing
some post-secondary education influences the probability that respon-
dents drop out at this level. Particularly interesting is whether the direct
effect of the time-varying covariate brother’s dropout status on the re-
spondent’s risk of dropping out declines when one controls for unobserved
risk factors influencing both the covariate process and the dependent pro-
cess.

From the model represented in Equations 5.22 and 5.23, it can be seen
that the effect of the latent variable W and of the father’s education (A)
is assumed to be proportional. An additional restriction that is imposed
on the parameters is that the effects of W and A are equal for brothers
and respondents, i.e., v,{M = v M and v}hM = WM,

Note that, as in the previous example, the combined covariate and
hazard model can be written as a modified path model, that is,

Taws11812521822 — 7Ta7rw|a7r511|aw7r312\aw5117r521|aw3117T522\aw521512 .

The only difference with the modified path model described in Equation
5.21 is that here it is assumed that there are also direct effects of S1; on
521 and of 512 on SQQ.

Results The models for which the test results are presented in Table
5.17 differ with respect to the number of latent classes and the specifi-
fllll. Models 1a, 2a, 3a, and 4a have one, two, three, and four
latent classes, but without a direct effect of the brother’s dropout status
on the respondent’s risk of dropping out. In Models 1b, 2b, 3b, and 4b,
a direct effect of the brother’s dropout status on the respondent’s proba-
bility of dropping out is included, but this effect is assumed to be equal
at both school levels, i.e., vssllll = 1)551122. And finally, in Models 1c¢, 2¢, 3c,
and 4c, this effect is allowed to be nonproportional.

The test results show that the model fit can be greatly improved by
including a direct effect of brother’s schooling on respondent’s schooling
in the model. The proportional effect of brother’s schooling remains sig-

nificant after controlling for common unobserved risk factors, irrespective

cation of v



Table 5.17: Test results and parameter estimates for the estimated models
for respondent’s schooling in which oldest brother’s schooling is used as
a time-varying covariate

Model L? df v v

la. 1 class no vssllll 4381.64 28 0.0000 0.0000
1b. 1 class proportional 647.33 27 0.8160 0.8160
lc. 1 class nonproportional  596.90 26 0.8942 0.6922
2a. 2 class no vssllll 689.26 26 0.0000 0.0000
2b. 2 class proportional 219.56 25 0.4928 0.4928
2c. 2 class nonproportional ~ 218.01 24 0.5244 0.4724
3a. 3 class no vfllll 256.07 24 0.0000 0.0000
3b. 3 class proportional 174.86 23 0.3450 0.3450
3c. 3 class nonproportional 154.45 22 04102 0.2014
4a. 4 class no vssllll 186.76 22 0.0000 0.0000
4b. 4 class proportional 156.44 21 0.2574 0.2574

4c. 4 class nonproportional 14499 20 0.3442 0.1756

of the number of latent classes. Moreover, the effect seems to be nonpro-
portional. Including a nonproportional direct effect of brother’s schooling
on respondent’s schooling in the model without unobserved heterogene-
ity decreases the L? value dramatically from 4381.6 (Model 1a) to 596.9
(Model 1c). Although not so extreme, the decrease in the L? value is
significant in the two-, three-, and four-class models as well. Note that
only in the two-class model does the proportionality assumption not need
to be rejected (L%bmC = 1.55,df = 1,p > .21).1

Table 5.17 also provides the estimates for the direct effects of the
brother’s dropout status on the respondent’s risk of dropping out. When
one controls for common unobserved heterogeneity, the size of the effect
decreases considerably. In Model 1c, the time-specific effects are .89 and
.69, which implies that the odds of dropping out rather than not dropping
out are 5.93 (= exp[2 * .89]) and 3.97 (= exp[2 * .69]) times higher if a
respondent’s brother dropped out at or before the school type or the
time point concerned than if the brother did not drop out. In Model 4c,
these effects decline to .34 and .18, or in terms of the odds ratios, to 1.97

'5Because this could be the result of a local maximum, Model 2c was estimated
using different sets of starting values. However, all sets of starting values gave the L>
reported in the table, which indicates that it is not a local solution.



(= exp[2 * .34]) and 1.43 (=exp[2 x .18]). Thus, although an important
direct effect of the oldest brother’s schooling on the respondent’s schooling
remains, the effect is much weaker than if no correction for common
unobserved risk factors is carried out. In other words, the effect found in
Model 1c seems to be partially spurious.

Usually, event histories on different types of life-cycle transitions are
routinely related to each other by using one type of history as a time-
varying covariate in a hazard model in which transitions in another type
of history are explained. For example, a woman’s employment and re-
lational histories are used to explain the timing of the birth of her first
child (Vermunt, 1991a). Like in the brothers’ schooling example, such
a practice may lead to parameter estimates which are at least partially
spurious. This example demonstrated that by modeling simultaneously
the dependent process and the covariate process, it is possible to identify
and to control for common unobserved risk factors influencing both the
covariate process and the dependent process. This makes it possible to
distinguish the true and the spurious effects of a time-varying covariate.

5.3 Measurement error

The previous section demonstrated how to use the event history model
with missing data introduced in section 5.1 to correct for unobserved het-
erogeneity. On the one hand, standard approaches, such as the ‘indepen-
dent’ unobserved heterogeneity models proposed by Heckman and Singer
(1982, 1984), Wrigley (1990), and Mare (1994), were presented as special
cases of the combined log-linear and hazard modeling approach. On the
other hand, it was shown how to extend these ‘independent’ unobserved
heterogeneity models, for instance, by allowing the unobserved factor(s)
to be related to observed covariates and to the initial position. Other ex-
tensions of the usual way of treating unobserved heterogeneity that were
discussed are models with several possibly related latent covariates and
models for the simultaneous analysis of the covariate process and the de-
pendent process. All these models have in common that they concentrate
on the traditional use of models with latent variables in the field of event
history analysis, namely, correcting for unobserved heterogeneity.
Another interesting application of models with latent variables, which,
moreover, has more in common with the latent variable models discussed



in Chapter 3, is correcting for measurement error. In Chapter 3, the latent
class model, which was originally proposed by Lazarsfeld (1950a, 1950b),
was presented as a tool for correcting for measurement error in observed
variables. In addition, some extensions of the standard latent class model
were discussed, with the modified path model with latent variables as the
most general ‘latent class model’ (Hagenaars, 1985, 1990:135-142, 1993;
Vermunt, 1994). As was indicated in Figure 5.1, this section explains
how to apply latent class models and modified path models with latent
variables to correct for measurement error in the observed categorical
covariates which are used in event history models and in the observed
states at the different points in time in discrete-time event history models.

As in the models discussed in the previous section, correcting for mea-
surement error in the observed covariates involves including one or more
latent variables as covariates in a hazard model. There are, however, two
important differences with the use of latent variables to correct for un-
observed heterogeneity. First, when latent variable models are used to
correct for measurement error in observed covariates, the latent variable
must always be related to one or more observed covariates which, more-
over, are generally assumed to be mutually independent given a partic-
ular value of the latent variable. Second, the observed variables serving
as indirect measures for the latent covariate will generally not be used
as regressors in the hazard model. In other words, the ‘indicators’ and
the survival distribution(s) are assumed to be conditionally independent,
that is, independent given the latent variable(s) concerned. Thus, a latent
class model is specified in which a number of unreliable measures are used
to identify one or more latent covariates, which are used as regressors in
a hazard model.

Gong, Whittemore, and Grosser (1990) proposed specifying a latent
class-like model for the covariates in a log-rate model to deal with the
problem of misclassification in covariates. In a model for survival of
breast cancer, they used the stage of the disease at diagnosis as a co-
variate, but it was known that for a part of the sample the stage of the
disease was underestimated by one level. Although Gong, Whittemore,
and Grosser did not call it by that name, they proposed to correct for
the misclassification in the covariate by means of a restricted latent class
model in which only the conditional response probabilities in which the
observed stage equals the true stage or is one stage lower than the true
state were not fixed to zero. This application of a latent class model in



the covariate part of an event history model is a special case of the more
general approach that is presented below.

Latent class models or, more precisely, modified path models with
latent variables can also be used to correct for measurement error in
the observed states occupied at the different points in time when time
is assumed to be a discrete variable. For that purpose, an extension of
the discrete-time latent Markov model proposed by Wiggins (1955, 1973)
is used. In section 4.8, it was shown that the parameterization of the
discrete-time Markov model as a modified path model yields a specifica-
tion which is equivalent to a discrete-time logit model. By parameter-
izing the latent Markov model in a similar way, that is, as a modified
path model with latent variables, a discrete-time logit model is obtained
which can be used to analyze transitions between latent states. In other
words, an event history model is obtained that can be used to correct for
measurement error in the observed states at the different points in time.

Although the methods for correcting for measurement error in the
observed states that are discussed here can only be used if time is a
discrete variable, there are also models which can be used in continuous-
time settings. Coleman (1964) showed how to estimate continuous-time
Markov models with panel data subject to measurement error. The un-
reliable measurements, or uncertain responses, as Coleman called them,
were assumed to be measured at particular time points, while the un-
derlying duration process was assumed to be continuous. Also Lancaster
(1990:59-60) proposed a method to correct for measurement error in ob-
served duration. He demonstrated that in specific situations measurement
error in recorded continuous durations can be dealt with using mixture
models as discussed in the previous section.

Below we will demonstrate how to use the modified path model with
latent variables to correct for measurement error in observed categori-
cal covariates in both discrete-time and continuous-time models, and to
correct for measurement error in observed states in discrete-time event
history models. As in the previous section, a number of applications
based on real-world data sets are used to illustrate these two variants of
the general approach to missing data problems in event history analysis.



5.3.1 Measurement error in covariates

As demonstrated in section 5.1, the general model for dealing with missing
data problems in event history analysis consists of two parts: a part in
which the relationships among the covariates are specified and a part
in which the event history model of interest is specified. Correcting for
measurement error in observed covariates involves specifying a latent class
model in the covariate part of the model, and using the latent indirectly
measured variable as a regressor in the hazard model.

Suppose there is a hazard model with two time-constant covariates
denoted by A and W, where A is observed and W is latent or measured
indirectly. Four observed variables B, C, D, and E serve as indicators for
the latent variable W. Suppose, furthermore, that the latent covariate
(W) is posterior to observed covariate (A). In this case, the covariate
part of the model, specifying the relationships among A, B, C', D, E,
and W, equals'®

Tabedew =  Ta Ty|a Toede|w (5.24)

where, as a result of the local independence assumption,

Thedelw = Tblw Te|w Td|lw Te|w - (5'25)

As shown in section 3.1, all kinds of restricted latent class models can
be specified by parameterizing the conditional response probabilities ap-
pearing in Equation 5.25 as logit models.

Although here only one observed and one latent covariate is used in
the hazard model, it is not a problem to specify models with several ob-
served and several indirectly measured covariates. The only difference is
that in such a case, the modified path model in which the relationships be-
tween observed covariates, indirectly observed covariates, and indicators
are specified becomes a bit more complicated.

The event history part of the model is exactly the same as in models
with unobserved heterogeneity. Again, the hazard model may be either a
discrete-time logit model or a continuous-time log-rate model of the most
general form, that is, a multiple-state model.

'8If no a priori assumption is made about the causal ordering between A and W,
the term 7, 7y, appearing in Equation 5.24 has to be replaced by ., and if W is
assumed to precede A, by Ty Tg|w-



Obtaining maximum likelihood estimates of the parameters of a haz-
ard model with A and W as covariates, and with B, C', D, and E as
indicators for W involves maximizing the following likelihood function:

N

L = Hzmcdewcg‘(h), (5.26)

in which £} (h) denotes the contribution of person ¢ to the complete data
likelihood function for the hazard model, and a, b, ¢, d, and e are the
values of A, B, C, D and E for person i. More information about the
exact form of L£3(h) can be found in section 4.8. Since the likelihood
function described in Equation 5.26 is based on the general density func-
tion represented in Equation 5.1, as already mentioned in section 5.1, the
parameters can be estimated with the EM algorithm. In subsection 5.2.2,
more details were given about the E step and the M step when the hazard
model is a log-rate model.

Example 9: An indirectly measured covariate in the analysis of
the timing of the first, second, and third births

Data and model This example illustrates the use of indirectly ob-
served covariates by means of a hazard model for the timing of the first,
the second, and the third birth. It differs from Example 5 in that, in-
stead of introducing a latent variable to correct for unobserved hetero-
geneity, here an indirectly measured variable is introduced which influ-
ences the hazard rate. This indirectly measured covariate is assumed
to measure a woman’s family and work attitude. It is well known that
work-orientedness and familism are important determinants of fertility
behavior (Bernhardt, 1986; Lesthaege en Meekers, 1986; Vermunt, 1991a,
1991b). In fact, the single familism item which was used as a covariate
in the hazard model is replaced by a latent variable indicating familism
and work-orientedness.!”

The observed covariate educational level will again be denoted by A,
the indicators by B, C, D, and E, and the latent covariate by W. The

" Two labels (work-orientedness and familism) are used for the same latent variable
because originally two types of indicators were used with the intention of identifying two
different dimensions. However, the analysis presented below shows that the indicators
measured the same dimensions.



items B and C serve as indicators for familism, and the items D and E
serve as indicators for work-orientedness. The wording of the four at-
titude items is as follows: B] Marriage is the most unique relationship
in a person’s lifetime (1=fully agree and 3=totally disagree); C] In our
modern world the only place where you can feel completely happy and at
ease is at home, with your own family and children (1=fully agree and
3=totally disagree); D] How positively or negatively do you feel about
financial independence for a conjugal or intimate two-person relation-
ship? (1=negative and 3=positive); E] For a married woman with school
children working outside the home is ... (1=objectionable, 2=not objec-
tionable, and 3=recommendable). Item C is the one that was used as the
covariate indicating ‘familism’ in Examples 1, 4, and 5.

The covariate part of the model is exactly the same as in the model
described in Equations 5.24 and 5.25. So, apart from a measurement
model for W, educational level is assumed to influence a woman’s familism
and work-orientedness. The models to be estimated only differ from one
another with respect to the number of latent classes.

For the hazard model, only one specification is used as well, that is,
a proportional hazard model with unrestricted time dependence. The
effects of W, A, and the time variable Z are assumed to be different for
the first, the second, and the third birth. This gives the following rather
simple transition or event-specific log-rate model:

W (zla,w) = (ol + gl + ol +oZA)
The variable M with index m is used denote the spell number, in this
case the parity of the birth.

Results Table 5.18 shows the test results for the models with one to
five latent classes (Models 1-5). It can be seen that inclusion of each
additional latent class decreases the likelihood function using fifteen ad-
ditional parameters. However, the decrease becomes smaller with each
next latent class. Because on the basis of the log-likelihood function it
is difficult to decide which model performs best, Table 5.18 also reports
the BIC and AIC values for the models concerned.'® It can be seen that

'8The definitions of BIC and AIC which are used here are given in Equations 2.10
and 2.9, respectively. Using these definitions, the smaller the value of BIC and AIC,
the better the model performs.



Table 5.18: Test results for the estimated models for the timing of the
first, second, and third births with an indirectly measured covariate

Model log-likelihood  # parameters BIC AIC
1. 1 class -7241.69 67 14935.0 14617.4
2. 2class -7003.12 82 14559.0 14170.2
3. 3class -6943.13 97 14540.1 14080.3
4. 4 class -6911.18 112 14577.3  14046.4
5. 5 class -6898.90 127 14653.8 14051.8

on the basis of the BIC criterion Model 3 should be preferred, while on
the basis of the AIC criterion it should be decided that Model 4 performs
best.

Table 5.19 reports the parameter estimates for the covariate part of
Model 4. The estimates for the conditional response probabilities 7y,
Tejws Tdjw and Tep,, can be used to label the latent classes with respect to
their familism (items B and C') and work-orientedness (items D and E).
The fact that class one has the highest probability of giving positive an-
swers to the familism items and negative answers to the work-orientedness
items indicates that this class consists of the most familistic and the least
work-oriented women. Class number four is the least familistic and the
most work-oriented group. The other two classes take an intermediate
position, where class two is more familistic and less work-oriented than
class three.

Actually, the classes can be ordered on one single dimension since
the conditional response probabilities are almost consistent with the or-
dinal latent class model proposed by Croon (1990). In an ordinal latent
class model, the cumulative conditional response probabilities for adjacent
classes are not allowed to cross each other. Only three pairs of response
probabilities, which are marked with *, show small discrepancies from the
perfect ordinal latent class model.

From the estimated conditional probabilities that W = w given that
A = a it can be seen that the latent variable is strongly related to ed-
ucational level. Women with a high educational level have the highest
probability of belonging to the non-familistic work-oriented class (class
four), while women with a low educational level have the highest proba-
bility of belonging to the familistic non-work-oriented class (class one).



Table 5.19: Parameter estimates for the covariate part of Model 4 for the
timing of the first, second, and third births with an indirectly measured

covariate
Twla A=1 A=2 A=3 A=4 total
W = 0.5414 0.3580 0.1468 0.0702 0.2247
W = 0.1989 0.3395 0.2412 0.0062 0.2120
W =3 0.2227 0.2333 0.3264 0.4157 0.3111
W =4 0.0371 0.0692 0.2856 0.5079 0.2522

T W=1 W=2 W=3 W=4
B=1 06510 02578 0.1039  0.0266
B=2 02043 06514 08577 04288
B=3 00547 00908 00383 0.5447

T W=1 W=2 W=3 W=4
C=1 06663 01050 0.0283  0.0003
C=2 02331 07305 07597 0.2566
C=3 01006 01645 02120 0.7431

T W=1 W=2 W=3 W=4
D=1 0388 02028 *0.0219 *0.0485
D=2 02553 04767 0.6479 0.1943
D=3 *0.3580 *0.3204 03302 0.7572

Tw ~ W=1 W=2 W=3 W=4
E=1 05678 05105 0.1505 0.0464
E=2 0383 0485 07652 0.6678
E=3 *0.0488 *0.0020 0.0843  0.2859




Table 5.20: Hazard parameters for the model for the timing of the first,
second, and third births with an indirectly observed covariate (Model 4)

M=1 M=2 M=3
v -3.0004 -1.7920 -2.8593

405887 -0.2508 -0.0127
vt 0.5207 -0.0064 -0.3539

4 -0.0009 -0.1315 -0.2581
vy -1.1085 0.3888  0.6247
oV 0.6214  0.1273  0.4800
v -1.1359  0.9399  0.7763
vy 0.6920 -0.5894 -0.4240
vy -0.1776  -0.4779 -0.8322

The estimated hazard parameters for Model 4, which are given in
Table 5.20, indicate that the categories of W are not ordered with respect
to the risk of experiencing subsequent births. Classes one and three have
the highest risk of a first birth, while class two has the lowest risk of a
first birth. So, class two contains the highest proportion of women that
remain childless. Given that a first birth occurred, class three has the
highest risk of a second and a third birth. Classes two and four have the
lowest risk of a second and third birth.

From a substantive point of view, the results of this example are
somewhat disappointing. It would have been nice if the latent classes
had shown some regular pattern with respect to the hazard rates of the
first, second, and third births. That this is not so may be due to the fact
that the hazard regression model itself is very simplistic. For instance,
important time dimensions, such as cohort and age at the previous birth,
were not included in the model and, moreover, the covariate effects were
not allowed to be nonproportional. Nevertheless, it will be clear that the
latent class approach exemplified here provides us with a powerful tool
for correcting for measurement error in observed covariate values.

5.3.2 Measurement error in observed states

When the observed states at the different points in time are subject to
measurement error, the observed transitions are a mixture of true and
spurious transitions resulting from measurement error. Generally, such



unreliable measurements inflate observed changes (Van de Pol and De
Leeuw, 1986). Thus, if a correction for unreliability in the recorded states
takes place, fewer individuals will be found to experience transitions than
if no correction for this type of error takes place (Coleman, 1964; Hage-
naars, 1992). It should, however, be noted that this rule is only valid
if the errors made at the successive points in time are assumed to be
uncorrelated.

Here, a method for correcting for measurement error is presented that
is based on an extension of the discrete-time latent Markov model origi-
nally proposed by Wiggins (1955, 1973). In section 4.8 it was shown that
by parameterizing the manifest discrete-time Markov model as a modified
path model, a model is obtained that is equivalent to a discrete-time logit
model. By parameterizing the latent Markov model in a similar way, that
is, as a modified path model with latent variables, a discrete-time logit
model is obtained which can be used to model transitions between latent
states. In this model, the observed states at the different points in time
are related to the latent states by means of a set of conditional response
probabilities capturing the measurement error in the recorded states.

The discrete-time logit model for latent transitions is similar to the
multiple-group latent Markov model which was proposed by Van de Pol
and Langeheine (1990) to make it possible to take observed heterogene-
ity into account. The multiple-group latent Markov model has, however,
two important limitations (Vermunt, Langeheine, and Bockenholt, 1995).
First, since each level of the joint independent variables has its own set
of parameters, the number of parameters to be estimated may become
very large as the number of explanatory variables increases. A second
limitation is that it cannot be used with time-varying covariates. The
approach to be presented below overcomes these two limitations by al-
lowing the specification of a logit regression model with time-constant
and time-varying covariates for the latent transition probabilities.

In the previous discussions on discrete-time models, the state that
an individual occupies at T' = t; was denoted by S;, where [ denotes a
particular point in time. This notation should be extended to be able to
distinguish true or latent states from observed or manifest states. The
observed states will be denoted by S;, with values s;, and the latent states
by ®;, with values ¢;. Although in this case each latent variable, ®;, has
only one indicator, S;, it is also possible to specify models with several
indicators per occasion (Vermunt and Georg, 1995). Assuming that the



model contains three observed covariates denoted by A, B, and C, the
joint distribution of the observed covariates, the observed states from
T =ty up to T = t7~ and the true states from T = ty up to T = ¢y~ is
given by

L* L*
Tabesgsy...spx po@1...¢px — NabeT ¢glabe H Tr|abedy_q H sy |abegy - (527)
=1 =0

Here, g, forms the covariate part of the model. Although, for the sake
of simplicity, all the covariates are assumed to be time constant and ob-
served, the latent discrete-time model may also contain unobserved, in-
directly observed, and time-varying covariates.

The event history part of the model represented in Equation 5.27
contains three types of parameters: g 45 18 the conditional probability
of a particular true initial state given the categories of A, B, and C,
T |abedy_, 18 the conditional probability of being in the true state ¢ at the
Ith point in time given the values of the observed covariates and the true
state occupied at the [ — 1th point in time, and 7y |pcq, 18 @ conditional
response probability describing the amount of measurement error in ;.

Although generally in latent Markov models 7y 45 is not restricted,
it is possible to restrict the initial latent distribution given the observed
covariates. For instance, by assuming mg|qp. t0 be equal to 7y, for all a,
b, and ¢, a model is obtained in which the latent distribution at T" = tg
is assumed to be equal for all the levels of the joint variable ABC.

If ®; # @1, Tgjabe,_, 1S a transition probability, though now be-
tween latent states instead of observed states. As in the manifest case,
T abedy_, Can be parameterized by means of a logit model. For example,
a possible logit model for the latent transition probabilities is

Ty |abewey—1 — (5.28)
@01 A® Dy B ®_, CP9;_4 We, e,y
exp (%m_l T Vg1 T Vb1 T Veigior T Vweidioy )
PP,y APd; B®®; Co9; Weid, 1\’
Z¢z €xp (v¢l¢171 +U¢l¢>1¢>zf1 +Ub¢>t¢>171 +UC¢!¢171 +Uw¢l¢171 )

where the following identifying restrictions are imposed on the v param-
eters:

Py A®® ,  BYPy _ CPR ;. WP,

Usigrr = Vagiorr = Vbiigr1 = Vetrdr1 = Vwingr, — 0 if @1 =P



In fact, the logit model that is specified for the latent transitions is of the
same form as the discrete-time logit models that were used for manifest
transitions.

From the conditional response probabilities, 7 |apes,, appearing in
Equation 5.27, it can be seen that the observed states are assumed to
be conditionally independent of each other given the joint latent variable
Dy®P; ... Pr+. So, in fact, the latent Markov model is a latent class model
in which the latent distribution is restricted to have a Markovian change
structure (Hagenaars, 1992). Another slightly different and perhaps easier
way to view the latent Markov model is as a model with L* mutually
related latent variables, each with only one indicator.

As in latent class models, it is possible to relax the local independence
assumption by including direct effects between observed states (Hage-
naars, 1988; Bassi et al., 1995). The measurement errors at successive
points in time may, for instance, be assumed to be correlated because
people tend to be consistent with regard to their reported states, irre-
spective of their true states. In such a case, the response probabilities
T labe; a@ppearing in Equation 5.27 have to be replaced by g apes; ;¢
for all T' > t;.

Also the conditional response probabilities describing the measure-
ment part of the model can be parameterized by means of a logit model.
The simplest specification for 7, |gpcq, 1S to assume the measurement error
to be independent of the observed covariates and the point in time, that
is,

exp (¢57)

Tsilabey = Tslg
exp (459

?

where ¢ denotes a log-linear parameter of the measurement model.'® This
gives time-homogeneous and equal reliability for all the values of A, B,
and C. Another possible specification is

SP ASP BS® CS®
exp (qsqb + qas¢ + qbs¢ + qcsqb )

s exp (453 + i+ aB3” + a3

Tsilabeg; =  Ts|abeg

!9The log-linear parameters of the measurement part of the discrete-time model are
denoted by g to be able to distinguish them from the w parameters of the covariate
part of the model and the v parameters of the discrete-time logit model.



Here, the error rates also depend on A, B, and C, but not on higher-order
interactions among the three covariates. For the ¢ parameters, the same
kinds of identifying restrictions are used as for the v parameters, that is,
all the effects in which ®; = 5, are fixed to zero. With such identifying
restrictions, each ¢ parameter indicates the main or covariate effect on
the ‘transition’ from a particular true state to another observed state, in
other words, on the size of the measurement error. It will be clear that
the log-linear parameterization of the measurement model for the latent
states is very flexible. When there are several indicators per occasion, the
logit models may, for instance, be used to specify measurement models
which are discrete approximations of latent trait models (Heinen, 1992;
Vermunt and Georg, 1995).

To be able to identify the model parameters of the model represented
in Equation 5.27, it is necessary to impose certain restrictions on either
the latent transition probabilities or the conditional response probabil-
ities. This is not surprising, especially if one realizes how many latent
variables the model contains. According to Van de Pol and Langeheine
(1990), in a latent Markov model the response probabilities for the first
occasion T' = ty and last occasion T' = ty« are not identified. However,
it is sufficient for identification to assume them to be equal to the re-
sponse probabilities for the nearest occasions, ie., 75, = T4 |p, and
T ldpe = Tspu_ylépe_,- Note that this means that the latent Markov
model can only be identified if there are observations for at least three
points in time. Another procedure to achieve identification, which can be
used if there are at least four occasions, is to impose restrictions on the
first and the last set of transition probabilities, for instance, by assuming
time-homogeneity of the latent Markov chain. But, if one does not want
to impose these kinds of identifying restrictions, the parameters of latent
Markov models can only be identified by using more than one indicator
for the time-specific latent states (Bassi et al., 1995).

Estimation of the latent discrete-time logit model can be performed
by means of the EM algorithm which is implemented in the lem program
(Vermunt, 1993). The contribution to the likelihood function for an indi-
vidual with covariate values a, b, and ¢, and observed states sy, s1,... S+
can be based on the probability density function given in Equation 5.27.
Since this density function is of the form given in Equation 5.2, the pos-
terior probabilities needed in the E step of the EM algorithm are given



in Equation 5.4. In this particular case, they are obtained by

P(¢Oa¢la"'7¢L*

a,b,c, 50581y "SL*) =
Tabesosy ...Spx Pod1...d

Z¢0¢1-“¢L* 7rab680$1...SL* ¢0¢1"'¢L* .

Because the model for latent transitions is a modified path model with
latent variables, the same version of the EM algorithm may be used to
estimate its parameters as was presented in section 3.1.

There is one important limitation with respect to the practical ap-
plicability of the discrete-time logit model for latent transitions. In the
E step of the EM algorithm, for each non-zero observed cell entry, the
corresponding cell entries of the table including the joint latent dimension
®y®P; ... Pr+ have to be computed. Since the number of cell entries of the
joint latent dimension increases exponentially with the number of time
points, computational limitations make it impossible to estimate latent
Markov models with a large number of time points.2’

Another restrictive feature of the event history model for latent tran-
sitions is that it can only be applied if the length of the observation
period is the same for all the individuals involved in the study. This is,
in fact, the same condition as for applying the classical latent Markov
model as implemented in, for instance, the PANMARK program (Van de
Pol, Langeheine, and De Jong, 1988). It must, however, be noted that
this condition can easily be relaxed by using the missing data methods
to be discussed in the next section.

Example 10: A model for latent labor market transitions

Data and models To illustrate the use of models for transitions be-
tween latent states, the example on labor market transitions (Example
6) is extended. As in Example 6, the transitions between the states em-
ployed and not employed are analyzed, but the difference is that now the
measurements of the states occupied at the six different points in time
are no longer assumed to be completely reliable. The covariates which
are used in the model are sex (A), ethnic group (B), and cohort/age (C).

201f the latent variables are dichotomous, it is possible to deal with eight to ten time
points, but if the latent variables have five categories, three or four is the maximum
number of occasions that can be dealt with (Vermunt, Langeheine, and Bockenholt,
1995).



Table 5.21: Test results for the estimated models for latent labor market
transitions

Model L? df P

1. no error 1919.82 980 0.000
2a. saturated heterogeneous 784.68 788 0.527
2b.  simple heterogeneous 1393.49 968 0.000
2c.  2th order heterogeneous 1074.40 938 0.001
2d. 3th order heterogeneous 893.53 908 0.628
3a. saturated homogeneous 1021.15 948 0.049
3b. simple homogeneous 1433.30 978 0.000
3c.  2th order homogeneous 1180.13 973 0.000
3d. 3th order homogeneous 1042.76 968 0.047

4a. 2th order homogeneous correlated 1140.80 972 0.000
4b.  3th order homogeneous correlated  981.46 966 0.358

Because the stationary Markov model performed rather well in the
manifest case, here the transition probabilities are assumed to be time ho-
mogeneous as well. This makes the event history part of the model simple
so that the example can focus on the specification of the measurement
model for the latent states. Another advantage of assuming stationarity
of the transition probabilities is that under this condition identification of
all the parameters is guaranteed, irrespective of the model that is speci-
fied for the conditional response probabilities. The model that is used for
the latent transitions is of the form given in Equation 5.29, with the only
difference that the parameters are assumed not to depend on the point in
time. So, in fact, the model not only assumes the transition probabilities
to be time homogeneous, but that the covariate effects are proportional
as well.

Testing Table 5.21 reports the test results for four types of models:
a model without measurement error (Model 1), heterogeneous models
or models in which the measurement error differs per occasion (Models
2a-2d), homogeneous models or models in which the measurement error
is assumed to be equal for the different points in time (Models 3a-3d),
and homogeneous models with correlated errors or direct effects between
observed states (Models 4a and 4b).

Model 1 and Model 2a give the upper and lower bound L? values for



the stationary latent Markov model with uncorrelated measurement er-
rors. Model 1 is the stationary model without measurement error, while
Model 2a is the model with completely unrestricted my|4pc4,’s. By cor-
recting for (uncorrelated) measurement errors, at maximum the L? value
can go down 1135.14 points using 192 degrees of freedom. The excellent
fit of Model 2a indicates that if, from a substantive point of view, it is
sensible to assume that the true states are not measured completely reli-
able, the lack of fit of the stationary Markov model can, to a large extent,
be attributed to measurement errors in the recorded states.

In Model 2b, labeled as the simple heterogeneous model, the response
probabilities do not depend on the observed covariates A, B, and C,
in other words, 7, 4pe, = Ty |¢,- Model 2b captures almost half of the
difference in L? values between Model 1 and Model 2a using only 12 de-
grees of freedom (L%b|2a = 526.33). Model 2c¢ contains, besides the direct
effect of ®; on S}, the two-variable interactions between the covariates
and the observed states S;, that is, gus;, qbs;, and q.s,. This means that
the covariates are allowed to influence directly the value of the observed
states, irrespective of the true state. These two-variable effects have a
very specific meaning in terms of the state-specific measurement errors.
Suppose, for instance, that g, is negative. In this case, ®; = 1 will be
measured less reliably for A = 1 than for A = 2, while ®; = 2 will be
measured more reliably for A = 1 than for A = 2. In other words, the
covariate concerned is assumed to have exactly the reverse effect on the
measurement error for the states employed and not employed, which is a
rather strong assumption. The fact that Model 2c¢ fits significantly better
than Model 2b (L%b|20 = 310.09,df = 30,p = .000) indicates that the
reliability of the measurements depends on the covariate values. When
the three-variable interactions qus,¢, @bs;¢,» and geg,¢, are included in the
measurement model, in other words, when the covariates are allowed to
influence the state-specific reliabilities in a non-reversed way (Model 2d),
the model greatly improves again (L%de = 180.87,df = 30,p = .000).
Moreover, since Model 2d does not fit significantly worse than Model 2a
(L%d\zd = 97.54,df = 120,p < .93), it seems that it is not necessary to
include higher-order interaction terms in the measurement model.

The heterogeneous models presented above have one important dis-
advantage: They use many parameters to describe the unreliability in
the recorded states. However, often it is realistic to assume the mea-
surement error to be equal across points in time. Models 3a-3d are



time-homogeneous variants of Models 2a-2d. All the conditional L? tests
of the homogeneous models against the matching heterogeneous mod-
els are significant, which implies that the measurement error is not sta-
ble across time points. However, the much more parsimonious homo-
geneous models do not perform that badly if their L? values are com-
pared with heterogeneous models with the same number of degrees of
freedom. Model 3d, for instance, has the same df as Model 2b, but a
much lower L? value. Comparison of the L? values of Models 3¢ and
3d (L§C|3d = 137.87,df = 5,p = .000) indicates again that the covariate
effects on the state-specific measurement errors are not exactly reversed.

Because often it is unrealistic to assume that the measurement errors
at the different points in time are uncorrelated, two models are specified
with a direct effect of S;_1 on S;. Model 4a is the same as Model 3c,
except that it contains the two-variable interaction terms ¢, ,. Model
4b is obtained by including the three-variable interaction terms g5, |4,
into Model 3d. Models 4a and 4b fit significantly better than Models
3c and 3d, respectively: L§C|4a = 39.33,df = 1,p = .000; and Lgd‘% =
81.30,df = 2,p = .000. This indicates that, if from a substantive point
of view it is sensible to assume correlated measurement errors between
successive occasions, it can be an important source of lack of fit of the
manifest Markov model (Model 1) as well.

Parameters The parameter estimates reported in Table 5.22 show that
the parameters of the event history model depend rather strongly on the
specification of the error structure for the true states. Consider first the
parameters of the measurement part of Model 3b. The ¢ parameters
for Model 3b indicate that the measurement error is rather small. The
mean error probabilities for the state employed and not employed are
.027 (= exp(—3.5708) /[1+exp(—3.5708)]) and .013 (= exp(—4.3694)/[1+
exp(—4.3694)]), respectively. But even with this rather small amount
of measurement error, correcting for measurement error decreases the
transition probabilities considerably. The mean probability of a transition
from employed to not employed declines from .097 in Model 1 to .055 in
Model 3b, while the mean of the other transition probability declines from
073 to .032.2! Furthermore, all the covariate effects on the transition

21The mean transition probability within the levels of the covariates can be obtained
from the main effect v. For example, .097 = exp(—2.2322)/[1 + exp(—2.2322)].



Table 5.22: Parameter estimates for some models for latent labor market

transitions

Model 1 Model 3b  Model 3d Model 4b
employed to not employed (®; ; =1 and ®; = 2)
v 222322  -2.8447  -3.1700  -5.9831
oft, —vd -0.1387  -0.1385 -0.2673 -0.3119
P —vB -0.2015  -0.2662  -0.2486  -0.0218
vy’ 0.4350 0.5080 0.9926 3.6790
vs -0.3295  -0.3448 0.0010 2.4338
v§ -0.6525  -0.9758  -0.8830 1.1971
v{ 0.5470 0.8126  -0.1106  -7.3099
not employed to employed (®;_1 =2 and &; = 1)
v -2.5460  -3.4237  -3.7002  -4.6106
vt, —vg 0.2657 0.1180 0.0247 0.0048
vB, —vl 0.2741 0.3334 0.3188 0.7613
vy’ -2.3389 -2.5286 -2.1297  -1.6980
v -0.2172  -0.4197  -0.0898  -0.1745
v§ 1.1196 0.9557 0.9893 0.9205
vf 1.4365 1.9926 1.2303 0.9520
measurement error for employed (®; = 1 and S; = 2)
q -3.5708  -3.3376  -2.3142
at, —qd -0.1600 -0.1937
qB, 4% -0.1089 -0.2256
¢ 0.4044 0.1271
s -0.2431 -0.1149
q -0.4424  -0.4338
@ 0.2811 0.4216
o =gy -0.8876
measurement error for not employed (®; = 2 and S; = 1)

-4.3694  -4.4233  -3.7808

', —q3 0.3579 0.2555
qB,—¢% 0.2560 0.1742
¢ -3.9301 -3.9985
¢« -0.4814  -0.5889
s 1.8321 1.9152
e 2.5794 2.6722
Gt —g 0.5600




probabilities become somewhat stronger, except for the effect of sex (A)
on the transition from not employed to employed. This is in agreement
with what is found most often, that is, that measurement error attenuates
the strength of the relationships between variables.

In Model 3d, the covariates were allowed to influence the error rates.
Since the same identifying restrictions are used for the ¢ parameters as
for the parameters of the discrete-time logit model, they indicate the
influence on the ‘transition’ from a true state to another observed state,
in other words, the influence on the sizes of 9441 and my|qpc2, respectively.
As can be seen from the ¢ parameters for Model 3d, males (A = 1), whites
(B = 1), and persons belonging to the middle two age groups (C = 2 and
C = 3) have the lowest error rates for the state employed, while females,
non-whites, and the two oldest age groups have the lowest error rates for
the state not employed. Moreover, the effect of age on both error rates is
much stronger than the effects of sex and ethnic group.

The event history parameters for Model 3d indicate that when the
structure of the measurement error is specified more precisely, there is
even less change. In Model 3d, the mean probability of becoming not
employed is .040, and the mean probability of finding a job is .024. Fur-
thermore, because of the strong effect of age on the error rates, it is not
surprising that the effects of age are affected most by allowing reliability
to depend on the covariate values. The most striking change occurs in the
effect for the youngest age group (C' = 4) on the transition from employed
to not employed. While in Models 1 and 3b the youngest age group had
the highest risk of becoming not employed, in Model 3d the probability
for this age group is around the mean level. Other differences between
the parameters for Models 3b and 3d are the weaker effects of A and C
on the transition from not employed to employed, and the stronger effect
of A on the transition from employed to not employed.

In Model 4b, the measurement errors were allowed to be correlated
between successive time points. By including direct effects of the pre-
ceding observed states on the error rates, the covariate effects on the
measurement error change most for the true state employed. The error
rates for whites (B = 1) and persons belonging to the oldest age group
(C = 1) become lower, while the error rates for persons belonging to the
youngest age group become higher. Moreover, the effects of sex and eth-
nic group on the measurement errors for the state not employed become
somewhat smaller. The signs of the direct effects of the observed state



on the previous occasion on the state-specific reliabilities indicate that
persons with S;_; = 1 have a lower error rate for the true state employed
and a higher error rate for the true state not employed, while persons
with S;_1 = 2 have a higher error rate for the state employed and a lower
error rate for the state not employed. So, people tend to be consistent in
their reported employment status, irrespective of their true state. This
leads to a more reliable measurement if the true state corresponds with
the observed state, and a less reliable measurement if the true state does
not correspond with the observed state.

The most important change in the event history parameters compared
with the model with uncorrelated errors (Model 3d) is the change in the
probability of becoming not employed for persons with C' = 4. This group
has a probability of nearly zero (exp(—5.98—7.31)/[14+exp(—5.98—7.31)])
of becoming not employed, which indicates that the solution is on or very
close to the boundary of the parameter space. From a substantive point
of view, this implies that all the observed transitions from employed to
not employed of persons belonging to the youngest age group can be at-
tributed to measurement error. Also the effect of ethnic group on the two
transition probabilities changes quite a lot: The difference between whites
and non-whites in the probability of becoming not employed disappears,
while the difference in the probability of becoming employed increases.

Although on the basis of the model fit it can be concluded that Model
4b performs very well, the extremely low probability of becoming not
employed for the youngest age group indicates that it probably overes-
timates the amount of measurement error. It is very implausible that
the youngest age group really has a probability of zero of becoming un-
employed or going out of the labor force. Thus, as always, substantive
arguments must determine the choice from among the many different
possible specifications for the structure of the measurement error. This
example demonstrated the flexibility of approach for dealing with mea-
surement error in the observed states, which was presented in this section.
It can be used to test different types of assumptions about measurement
error, such as whether the measurement error is stable over time, whether
the measurement error depends on an individual’s covariate values, and
whether the measurement error is correlated between successive points in
time.



5.4 Partially missing data

The two previous sections presented event history models with latent vari-
ables, in other words, models in which the information on some variables is
completely missing. This section deals with another type of missing data
problem. Event history models are presented which can be used when
covariate values are partially missing or when event history information
is partially missing. The lack of some information can, for instance, be
the result of nonresponse or panel attrition, but it can also be caused by
the data collection design itself. In clinical trials, sometimes it is very
expensive or even impossible to collect additional covariate information
for the individuals who are already involved in the study. Social surveys
are also often subject to partial nonresponse.

The approach for dealing with partially observed data discussed here
is based on the missing data techniques developed in the field of log-
linear modeling. Schluchter and Jackson (1989) applied the approach of
Fuchs (1982) to use cases with partially observed covariate values in a
log-rate model with categorical covariates. However, as demonstrated in
section 3.2, Fuchs’s approach has the disadvantage that the nonresponse
mechanism must be assumed to be ignorable. Moreover, Schluchter and
Jackson (1989) only specified a saturated model for the covariate part of
the model. Here, Schluchter and Jackson’s method is extended by using
Fay’s approach to nonresponse (Fay, 1986) instead of Fuchs’s approach.
This makes it possible to relax the assumption that the response mecha-
nism is ignorable. Recently, Baker (1994) applied models for nonresponse
in combination with a discrete-time logit model. Furthermore, since the
covariate part of the event history model used is a modified path model,
different kinds of log-linear models can be specified for the covariates, such
as the models with latent variables discussed in the previous two sections.
It should be noted that Schluchter and Jackson already mentioned the
possibility of extending their hazard model with partially observed co-
variates with a more general model for the covariates and with a model
for response mechanism.

Not only the covariate values, but also the event history data may be
partially missing. The best known forms of missing data on the occur-
rence or nonoccurrence of the event(s) under study are, of course, left and
right censoring. As demonstrated in section 4.5, one of the strong points
of hazard rate models is that right-censored observations can be used for



the estimation of the parameters, and that, in specific situations, the same
applies to left-censored observations. However, the standard treatment of
censored observations is only valid if the censoring mechanism is indepen-
dent (Kalbfleisch and Prentice, 1980) or noninformative (Lagakos, 1979),
that is, if the missing data mechanism is ignorable for likelihood-based
inference. By means of the above-mentioned methods for handling miss-
ing data, it is possible to relax this assumption for discrete-time event
history models; more precisely, it is possible to specify models in which
the dependent process and the censoring process are related to each other.
The approach presented here has two other advantages compared to the
standard way of dealing with missing event history information. First, it
can be used with more general patterns of nonresponse than left censoring
and right censoring: Missing data may occur at every point in time, that
is, not only at the beginning or the end of the observation period. Second,
it can also be used for dealing with missing information on time-varying
covariates.

It should be noted that the models for nonresponse can only be used
for dealing with missing event history information if time is treated as a
discrete variable. The reason for this is that the models for nonresponse
are based on defining an event history model as a modified path model
with missing data, which is only possible for a discrete-time logit model.
If time is continuous, other types of methods have to be used to deal with
nonignorable censoring. One method, which was illustrated in Example
4, is treating censoring as a dependent competing risk.

One of the strongest points of the approach to be presented here is
that it is embedded in the general missing data framework introduced in
section 5.1. This makes it possible to use the missing data techniques to be
discussed below in conjunction with unobserved heterogeneity, indirectly
observed covariates, and latent transitions. The next two subsections
demonstrate the way in which to use Fay’s causal models for nonresponse
to deal with partially observed covariates and with partially observed
discrete-time event history data.

5.4.1 Partially observed covariates

In section 3.2, the method proposed by Fay (1986) for handling partially
observed data in log-linear models was discussed. Fay’s method can also
be used for dealing with partially observed covariates in event history



models by simultaneously specifying a causal log-linear model with re-
sponse indicators and a hazard model for the time variable of interest.
Thus, a model consists again of two parts: a part in which the relation-
ships between the covariates and the response mechanism is specified,
and a part in which the dependent process of interest is specified. In fact,
the solution for this type of missing data problem is very similar to the
solution that was applied for completely unobserved covariates in sections
5.2 and 5.3.

Suppose there is a hazard model for one single type of event with
four observed covariates A, B, C, and D. Furthermore, suppose that the
scores on D are missing for some persons, and that the indicator variable
R indicates whether D is observed (R = 1) or not (R = 2). Using the
terminology introduced in section 3.2, there are two subgroups of persons
on whom the same kind of information is available. For subgroup ABCD,
all covariates are observed, while for subgroup ABC, only A, B, and C
are observed. In addition, for all persons there is information on the
survival time and on whether one experienced an event or not.

The covariate part of the model is a causal model for nonresponse as
proposed by Fay (1986), i.e.,

Tabedr =  Tabcd Tr|abed - (5.29)

Although, for the sake of simplicity, mgpeq Will not be restricted, it is
possible to postulate a model for the covariates as well.

The mechanism causing the missing data can be specified by means of
a logit model for conditional probability 7, pcq- It should be noted that it
is even necessary to impose some restrictions on m,,4.q because otherwise
the model is not identified. It is not possible to include the effects of all
completely and partially observed covariates, including all their higher-
order interaction terms, in the model for the response mechanism. The
simplest response model is obtained by the following logit model:

exp (uﬁ) (5.30)
s =T, = ——5%5+. .
sl =TS e ()
From the fact that the model for |44 does not contain interaction terms
of R and the covariates, it can be seen that the probability of nonresponse
is assumed to be independent of all the covariates included in the model.
Using the missing data terminology introduced in section 3.2, the missing



data is assumed to be missing completely at random (MCAR). Another
possible specification is

exp (uf2 + uf;f‘ + uﬁB + ufcc)

> exp (uff +ufit +ulf +ufi)

(5.31)

Ty |abed = Tr|abe —

Here, R is assumed to depend on A, B, and C, but not the higher-order
interactions between these variables. Since R depends only on variables
which are observed for all individuals, the response model represented in
Equation 5.31 assumes the missing data to be missing at random (MAR).
Note that it is a ‘non-saturated” MAR model because the higher-order
interaction terms are not included in the model.

The response models described in Equations 5.30 and 5.31 both as-
sume the response mechanism to be ignorable because the value of the
response indicator R does not depend on the variable which is missing
for some persons. A simple nonignorable nonresponse model would be

o (uﬁ . uﬁlD) (5.32)
s = T = . .
r|abed r|d Zr exp (uﬁ T uﬁdD)

This is a nonignorable response model because the probability of nonre-

sponse depends on a variable which is not observed for all individuals.
The second part of the model can be either a log-rate model or a

discrete-time logit model. The log-rate model may be of the form

h(zla,b,c,d) = exp (U + o +vf +of +0f +sz) . (5.33)

which is a proportional hazard model. It should be noted that the re-
sponse indicator can be included as a regressor in the hazard model as
well. Although in most applications it is not very sensible, in some situ-
ations it may be of interest to test whether the nonresponse is related to
the dependent process.

Estimation of the parameters of the log-linear model for the covariates,
the response model, and the hazard model can again be performed by
means of the EM algorithm. Since the model described in Equations 5.29
and 5.33 is a special case of the general model defined in Equation 5.1, the
posterior probabilities which are needed in the E step of the EM algorithm
for obtaining the complete data are of the form given in Equation 5.3.



In this particular example, the E step involves computing the probability
that D = d given the observed covariate and survival information and
the current parameter estimates for individuals with a missing value on
D. This posterior probability can be obtained by

7Tabcd2£;'k (h)
Zd ’/TabchE;'k(h) ’
where a, b, and ¢ are the observed covariate values of person 4, and L} (h)

is the contribution of person i to the complete data likelihood function
for the event history part of model.

P(d|i)

Example 11: A hazard model for the incidence of high blood
pressure with partially observed covariates

Data and model Schluchter and Jackson (1989) illustrated their ap-
proach to partially observed covariates in log-rate models by means of an
example on the incidence of high blood pressure. Example 11, which is
based on the same data set, demonstrates some of the possible extensions
of their method when using the general missing data approach presented
above. After repeating a part of Schluchter and Jackson’s analysis, we
will show how to specify nonignorable response models and models in
which the relationships between the covariates are restricted by means of
a latent class model.

The data concern 6,942 men who enrolled in the Institute for Aerobic
Fitness in Dallas, Texas, between 1970 and 1982 (Blair et al., 1984). At
the initial visit, the men were examined, and baseline data were collected.
In 1982, data was collected on the incidence of high blood pressure during
the period between the initial visit and the moment of the interview.
Schluchter and Jackson defined the time variable for their hazard model
as the time between the year of the initial visit to the center and the
year a person was diagnosed to have high blood pressure. As covariates
they used age (< 40, > 40), systolic blood pressure (< 120 mm Hg, > 120
mm Hg), treadmill stress test time (< 11 minutes, > 11 minutes), and
percentage body fat as determined by hydrostatic weighing (< 16, > 16),
which will here be denoted by A, B, C, and D, respectively. The variable
percentage of body fat (D) was the only variable with partially missing
information. It was not observed in 53 percent of the men enrolled in the
study.



Table 5.23: Test results for the estimated models for the incidence of high
blood pressure with missing data on one of the covariates

Model log-lik.  # par.
simple hazard model

1. MCAR {ABCD, R} -16839.38 24
2. saturated MAR {ABCD, ABCR} -16766.16 31
3. second order MAR {ABCD, AR, BR,CR} -16768.58 27
4. nonignorable {ABCD, DR} -16779.57 25

latent class hazard model
5. 2 class nonignorable {AW, BW,CW,DW,RW} -16869.51 16
6. 3 class nonignorable { AW, BW,CW,DW,RW} -16775.94 23

The model for the covariates and the response model are of the form
given in Equation 5.29. For the time of being, a saturated model is as-
sumed for the relationships between the covariates. To test different as-
sumptions about the response mechanism different specifications are used
for response probability 7,444, Such as the ones described in Equations
5.30-5.32.

For the hazard part of the model only one specification is used, that is,
a piecewise constant proportional hazard model with three time intervals:
0-3 years, 4-6 years, and 7-12 years. The log-rate model concerned is
equivalent to the model described in Equation 5.33. From the analyses
performed by Schluchter and Jackson, it is known that this simple model
fits very well. So, the only part that is varied is the model for the response
mechanism.

Results Table 5.23 shows the test results for the models that are pre-
sented below. Model 1, which is Schluchter and Jackson’s final model,
is of the form given in Equation 5.30; in other words, it assumes the
missing data to be MCAR. Models 2 and 3 are two other ignorable re-
sponse models. Model 2 is the ‘saturated” MAR model; in other words,
the model in which R depends on all completely observed covariates, in-
cluding all their higher-order interaction terms.?? From the conditional
likelihood-ratio test of Model 1 against Model 2, it can be seen that

221n this particular case, a log-linear model for nonresponse can be specified which
is equivalent to the ‘saturated’ ignorable response mechanism because of the nested
pattern of nonresponse (see also section 3.2).



the missing data is clearly not MCAR: L%‘Q = 145.44,df = 7,p = .000.
Model 3 is the ‘non-saturated’ ignorable response model described in
Equation 5.31: It contains only the two-variable terms of R and A, B,
and C, respectively. Since Model 3 does not fit worse than Model 2
(Lg‘2 =4.84,df = 4,p > .31), the higher-order interaction terms are not
significant. Although not presented in Table 5.23, separate tests show
that all two-variable effects are significant.

In Model 4, the response mechanism is of the form described in Equa-
tion 5.32, which is a nonignorable model since it contains a direct effect
of D on R. As can be seen from the difference in values of the log-
likelihood functions, Model 4 fits much better than Model 1, using only
one additional parameter (L%|4 = 119.62,df = 1,p = .000). Moreover,

it fits almost as well as Model 3.22 Of course, substantive arguments
have to determine the choice between an ignorable and a nonignorable
response model. It will be clear, however, that, using Fay’s approach, it
is relatively easy to specify nonignorable models for nonresponse. And,
in terms of fit, this model performs rather well in this example. Often
one does not know whether the missing data mechanism is ignorable or
not. In such cases, it is advisable to investigate whether the structural
parameters of interest are sensitive to the specification which is used for
the mechanism causing the missing data.

Table 5.24 reports the parameter estimates for some of the models
for nonresponse. The first column gives the estimates of the hazard pa-
rameters which are obtained when only complete cases are used. The
second column presents the parameter estimates for Model 3, the ‘non-
saturated” MAR model. But, since any ignorable response model gives
the same hazard parameters, the reported hazard parameters for Model
3 are at the same time the hazard parameters for Models 1 and 2. It can
be seen that the parameter estimates change when using incomplete data
in the analysis. The effect of age (A) on the risk of high blood pressure
becomes weaker, whereas the effects of systolic blood pressure (B) and
treadmill stress test time (C') become stronger. The effect of percentage
of body fat (D), the variable with missing data, remains almost equal.
And finally, the negative time dependence becomes weaker.

From the parameter estimates for the response model of Model 3, it

Z3Models 3 and 4 cannot be tested against each other by means of a likelihood-ratio
test because they are not nested.



Table 5.24: Parameter estimates for the models for the incidence of high
blood pressure under different assumptions about the response mechanism

Complete data Model 3 Model 4 Model 6
log-rate parameters
v -5.2503  -5.2805  -5.2292  -5.1498
vt -vg! -0.2044  -0.1237  -0.1223
v8 vl -0.7678  -0.8307  -0.8280
0§ S 0.2062  0.2953  0.3085
vP vl -0.1947  -0.1964  -0.1557
v}V -0.7896
vy -0.5264
vl 1.3159
vZ 0.1871  0.0798  0.0821  0.0772
vZ 0.1675  0.1317  0.1234  0.1202
vZ -0.3546  -0.2115  -0.2055  -0.1974
response parameters
uft -0.1277  -0.0749  -0.0698
ufid -0.0650
uftB -0.0739
ufl 0.1042
uftb -0.3619
uftW -0.2459
uftV 0.0310
uftV 0.2148

can be seen that the high-risk groups (A = 2, B = 2, and C = 1) have
the highest probability of nonresponse. Although the effects are weak,
the nonresponse is clearly selective in the sense that it is related to the
dependent process under study.

The parameters for the response model of Model 4 indicate that there
is a rather strong relationship between D and the probability of observing
or not observing D. Nevertheless, the hazard parameters for this nonig-
norable model are very similar to the ones for the ignorable models. Only
the effect of D becomes somewhat weaker when a nonignorable response
mechanism is postulated instead of an ignorable one. Thus, in this par-
ticular case, it is more important to use the partially observed data than
to specify correctly the mechanism causing the missing data.



To show that the approach for dealing with incompletely observed co-
variates can easily be applied together with the latent variable models
discussed in the previous two sections, two additional models are formu-
lated which, from a substantive point of view, seem to be interesting as
well. Suppose that the variables A, B, C', and D are indicators for the la-
tent variable ‘physical condition’, denoted by W. In this case, the model
for the joint distribution of A, B, C, D, W, and R may be:

Tabedwr = Ta Mayla Tblw Te|w Td|jw Tr|w -

This is, in fact, a latent class model in which B, C, and D serve as in-
dicators for W, and in which A (age) is used as an exogenous variable.
Moreover, W is assumed to determine the probability of observing D.
Note that such a response model gives a nonignorable response mecha-
nism because the response indicator depends on a variable which is not
observed for all persons. The hazard rate is assumed to depend only on
W, where the effect is assumed to be proportional.

As can be seen from the test results reported in Table 5.23, the model
with a two-class latent variable (Model 5) performs very badly. However,
the three-class model performs very well (Model 6). The value of the log-
likelihood function is very near to the ones for Models 2 and 4. Model 6
has, however, less parameters than these two models and, moreover, the
parameter estimates can be interpreted very easily.

The hazard parameters for Model 4, which are reported in Table 5.24,
show that the latent class model identified three groups with clearly differ-
ent risks of being diagnosed as having high blood pressure. The hazard
rate for persons belonging to the third class is more than eight times
higher than for the persons belonging to the first class. Moreover, the
parameter estimates for the response model show that the group with
the highest hazard rate also has the highest probability of missing data
on D. This is, of course, consistent with the findings from Models 3 and
4.

Table 5.25 gives the parameter estimates for the covariate part of
Model 6. The estimated marginal distribution of W shows that almost
40 percent of the persons belong to the high-risk class. Furthermore,
it can be seen that there is a rather strong relationship between age
and W. Almost 50 percent of the individuals who are older than 40
years of age belong to high-risk class three, while only 26 percent of



Table 5.25: Parameter estimates for the covariate part of the latent class
model for the incidence of high blood pressure with a nonignorable re-
sponse mechanism (Model 6)

Twla A= A= Tw
W=1 05076 0.1990 0.3284
W =2 02304 03208 0.2829
W =3 02620 04802 0.3887

T W=1 W=2 W=3
B=1 05406 0.9999 0.0018
B=2 04594 0.0001 0.9982

Tew W=1 W=2 W=3
C= 0.3831 0.9640 0.9330
C=2 06169 0.0360 0.0670

Taw @ W=1 W=2 W=3
D=1 08084 0.1479 0.1370
D=2 0.1916 08521 0.8630

the youngest age group belongs to the high-risk class. The conditional
‘response’ probabilities 7|y, Tepy, and mg),, show that W is most strongly
related to B. Almost all persons belonging to class three have a high
systolic blood pressure (B = 2), which is quite different from the two
low-risk classes. The relationships between W and the other two observed
variables, C' and D, are less clear. Although most persons belonging
to class three have a low treadmill stress time (C' = 1), most persons
belonging to class two have a low treadmill stress time as well. The
same applies to the risk factor high percentage of body fat (D = 2).
Actually, high systolic blood pressure, short treadmill stress time, and
high percentage of body fat seem to be risk factors only if, as in class
three, they occur in combination with each other.

5.4.2 Partially observed event history data

The missing data methods developed in the field of log-linear modeling
can be used not only for dealing with partially observed covariates, but
also for dealing with partially missing discrete-time event history data.



This is not surprising, since the discrete-time logit model is, in fact, a
modified path model.

Event history models are very well suited for using one particular
type of missing data in the analysis, i.e., censored observations (see sec-
tion 4.5). However, the models with response indicators proposed by Fay
(1986) have a number of advantages over the usual way of dealing with
censored observations. The most important one is that they make it possi-
ble to relax the assumption that the censoring mechanism is independent
of the process under study. Nonignorable missing data mechanisms, or
dependent censoring mechanisms, can be specified by allowing the re-
sponse indicators to depend on the variables with missing data, that is,
on the states occupied at the different points in time. A second advantage
of Fay’s approach is that partially observed data can be used for param-
eter estimation, irrespective of the pattern of the missing data. In other
words, non-nested patterns of missing data can be handled without any
problem. A third important feature is that the procedure can be used not
only with missing data on the dependent process, but also with missing
data on time-varying covariates.

Although Fay’s procedure has not yet been applied in order to deal
with partially observed event history data,?* causal models for nonre-
sponse have been applied many times in the context of longitudinal analy-
sis of categorical data, that is, in combination with modified path models.
Hagenaars (1990:181-200) demonstrated the usefulness of these methods
for the analysis of panel data; Vermunt (1988, 1994, 1996) applied causal
models for nonresponse to a long-term panel study on social mobility,
while Conaway (1992, 1993) used these models for analyzing partially
missing longitudinal labor market data and longitudinal data on victim-
ization.

Suppose there is a discrete-time logit model with three observed co-
variates A, B, and C. Let, as in the other applications on discrete-time
models, S; be the state that a person occupies at T' = ¢;, where [ indicates
a particular point in time. Furthermore, let R; be a response indicator
denoting whether S; is observed (R; = 1) or missing (R; = 2). No a
priori assumptions are made about the pattern of the missing data: For

2" Baker, Wax, and Patterson (1993) used a similar procedure for dealing with infor-
mative censoring. The difference is, however, that they used additional information on
censored observations obtained by double sampling.



each individual, any S5; may be either observed or missing. The simulta-
neous model for the covariates, the dependent process, and the response
mechanism is given by

T ABCSOS1 5 veyS L* TOT LyeeesT L — (5.34)
L*
TabcT sg|abcTrg|abeso H (Trsl|abcsl,17rrl\abcso,...,slr07...,m,1) .
=1

For simplicity of exposition, the covariate part of the model, 7., is not re-
stricted, and, moreover, it is assumed that all covariates are time constant.
The only difference between Equation 5.35 and a standard discrete-time
logit model is the inclusion of a set of conditional probabilities in which
the response indicators appear as dependent variables: . |45 denotes the
conditional probability of observing or not observing the initial state Sy,
while 7, apeso,....sim0,...,r_, denotes the conditional probability of observing
or not observing S;. It can be seen that the value of R; may depend on
the covariates, the previous states, the current state, and the previous
values of the response indicators. As recommended by Fay (1986), it will
be assumed that the values of response indicators do not influence the
values of other variables included in the model.?® Although, from a sub-
stantive point of view, this seems rather logical, technically it is not a
problem to change the structure of Equation 5.35 in such a way that each
response indicator influences, for instance, the state occupied at the next
point in time.

Like the other probabilities appearing in Equation 5.35, the nonre-
sponse probabilities, 7, qpeso,....sir0,...,r_ 1 » Call be restricted by means of a
logit parameterization. It is even necessary to impose some restrictions
on these probabilities because not all effects can be identified at the same
time. More precisely, if the model includes a direct effect of S; on Ry,
some of the other effects must be left out of the model.

Because of the non-nested pattern of the missing data, it is not possi-
ble to specify a causal log-linear model for nonresponse which is equivalent
to the ‘saturated” MAR model. The ‘saturated’ MAR model is the ignor-
able response model which uses all degrees of freedom which are gained

%5 According to Fay (1986), a response indicator appearing in a model for nonresponse
may only be used either as a dependent variable or as an independent variable in a logit
model for another response indicator. In other words, response indicators may not be
used as explanatory variables in a logit model for a variable which is not a response
indicator.



by incorporating the incomplete tables in the analysis. However, as al-
ready demonstrated in section 3.2, the L? value under a ‘saturated’ MAR
model can be obtained in an indirect way (Fuchs, 1982). By specifying
a saturated log-linear model for the covariates and the states occupied
between T' = ty and T' = 7+ in combination with an MCAR response
model, the L? and df are obtained for the MCAR response model. Note
that an MCAR response model is obtained by restricting the nonresponse
probabilities to depend only on the preceding response indicators. Sub-
tracting the L? and df of this MCAR model from the L? and df that
are obtained from an event history model which is also estimated under
the MCAR assumption gives a conditional test for the estimated model
under a ‘saturated’ MAR nonresponse model. The parameter estimates
for the discrete-time logit model are the same for any ignorable response
mechanism, which is exactly the definition of ignorability.

When a log-linear model is specified for the response mechanism, it
will very quickly become a nonignorable response model. A nonignorable
response model — in other words, a response model that influences the es-
timates of the structural parameters of interest — is obtained by allowing
the response indicators to depend on variables which are missing for some
persons. In this case, a nonignorable response model is obtained if the
model contains direct effects of the S;’s on the R;’s, for instance, if S;_4
is assumed to influence R;. Thus, contrary to what perhaps would be ex-
pected on the basis of the term ‘nonignorable nonresponse’, a log-linear
response model may yield a nonignorable response mechanism even if the
response indicators are not directly influenced by the variables which lack
of information they indicate. An exception to this rule occurs when the
nonresponse has a nested pattern. In that case, the response mechanism
will be ignorable as long as the response model does not contain direct ef-
fects on the response indicators of the variables which lack of information
they indicate (see also section 3.2).

Because the model given in Equation 5.35 is a modified path model,
the same version of the EM algorithm can be used for obtaining maxi-
mum likelihood estimates of its parameters as the version described in the
section 3.2. Model testing can be performed by means of the L? statistic.



Example 12: A discrete-time logit model for partially observed
labor market transitions

Data and models This example illustrates the use of the log-linear
models for nonresponse when data is missing on the states that persons
occupy at the different points in time. For this purpose, the SIPP data on
labor market transitions which was introduced in Example 3 is used. Both
complete and incomplete data is used in the analysis, and the mechanism
causing the missing data is investigated.

The SIPP rotation group from which the data was also used in some
of the previous examples consists of 6,754 persons. For 4,597 persons
there is complete information on the states occupied from T = ¢ty to
T = t5. Thus, by using only complete cases, the available information
for 32 percent of the cases is not used. Since there are observations for
six points in time, theoretically there are 64 (2°) distinct patterns of
nonresponse. In the data set, 52 of these 64 pattern occur. This means
that there is clearly no nested pattern in the missing data. From the
2,157 persons with missing data, 964 persons have missing data on all the
S; after the first occurrence of nonresponse. These 964 persons do not
include the 17 persons who have missing data on all S;. Another group
of 582 respondents starts participating in the study after T' = {g, and
continues to participate until the end of the study. The remaining 504
persons have less regular missing data patterns.

The model that is used is of the form given in Equation 5.35. For the
sake of simplicity, only one specification is used for the discrete-time logit
model. As in Example 11, the transition probabilities are assumed to be
constant over time and the effects of the covariates sex (A4), race (B), and
age (C) are assumed to be proportional; in other words, the model is a
stationary Markov model. The example focuses on the specification of
the model for nonresponse rather than the event history model itself.

Results Table 5.26 reports the test results for the models that are es-
timated using the complete and incomplete SIPP data. Models 1 and
2 are two reference models in which the missing data is assumed to be
MCAR. In Model 1, a saturated model is specified for the event history
part of the model, while Model 2 is the stationary Markov of interest. As
mentioned above, the L? value for the stationary Markov model assuming
‘saturated’ MAR missing data (Model 3) can be obtained by subtracting



Table 5.26: Test results for the estimated models for labor market tran-
sitions with missing data on the dependent process

Model L? df
saturated model

1. MCAR 2689.02 10577
hazard model with ignorable response mechanisms

2. MCAR or {Ry..R;} 4770.68 11557
3. ‘saturated’ MAR 2081.66 980
4. {Ry..R/ABC} 3690.41 10612
5. {Ro..R;,,RiA,R/B,R,C} 4255.29 11527
6. {Ro..R;,,RiR, 1A ,RiR, 1B,RiR; 1C} 4221.70 11502
7.  {Ro..R;,RjABC} 4195.53 11467
8. {Ro..R;, RyC} 4310.07 11554
9. {Ro..R;,RA,RB,RC} 4592.20 11552
hazard model with nonignorable response mechanisms

10. {Ro..R;,RiA, R B,R,C,R;S; 1} 4250.18 11522
11. {Ro..R;,RjA,R;B, R/C, R;S;} 4237.45 11521
12. {Ro..R;, RjA,R;B, RiC, R;S;_15;} 4212.53 11511

the L? value of Model 1 from the L? value of Model 2. Thus, 2081.66 is the
lower bound value for L? that can be obtained by specifying a model for
the response mechanism, while 4770.68 is the upper bound value, that is,
the value for the most restrictive missing data mechanism, MCAR. The
difference between the two, 2689.02, can be bridged using 10,577 degrees
of freedom.

Model 4 is the most extended ignorable model that can be specified
with the log-linear models for nonresponse. The values of the response
indicators R; are assumed to depend on the values of all previous response
indicators and the values of the three covariates A, B, and C, including
all their higher-order interaction terms. Model 4 has an L? value which
is 1080.27 lower than for Model 2 using 945 additional parameters (p <
.002). Model 5 includes only the two-variable terms between R; and A,
B, and C, respectively. Comparison of this rather parsimonious ignorable
model with the ‘saturated” MAR model (Model 2) shows that Model 5
captures an important part of the process causing nonresponse: L§|2 =
515.39,df = 30,p = .000. In Models 6 and 7, an attempt is made to
improve the fit of Model 5 in two different ways. Model 6 contains the



three-variable interactions among R;, R;_1, and the covariates, which
means that the effect of responding or not on the previous occasion is
assumed to depend on covariate values. Model 7 contains all the higher-
order interaction terms among R; and the covariates. Conditional tests
show that neither Model 6 nor Model 7 fits better than Model 5: L§|6 =
33.59,df = 25,p > .11; and ng = 59.76,df = 60,p > .48.

Since the parameter estimates for Model 5 indicate that, except for
the effect of age (C') on Ry, all the covariate effects on the nonresponse
probabilities are very weak, a response model is specified that, apart from
the interactions among the response indicators, only contains a direct
effect of C on Ry (Model 8). The strong decrease in L? compared to
Model 2 (L%\s = 460.61) indicates that indeed 4/ is the most important
covariate effect in the model for the nonresponse. However, the other
effects included in Model 5 are still significant: L§|5 =54.78,df =27,p <
.002. And lastly, another ignorable model more parsimonious than Model
5 is tested, namely, a response model in which the effects of the covariates
on the response indicators are assumed to be equal for all points in time
(Model 9). Model 9 fits much worse than Model 5 (L3|5 = 363.91,df =
25,p = .000), which means that the probability of nonresponse is not
time-homogeneous.

Taking Model 5 as a starting-point, some nonignorable response mod-
els are tested. Model 10 contains the direct effects of the state occupied
at T' = t;_1 on the probability of responding or not at 1" = ¢;. The condi-
tional test against Model 5 indicates that these effects are not significant:
Lg\lo =5.11,df = 5,p > .40. In Model 11, the response probabilities are
allowed to depend on the state occupied at the same moment in time.
These effects are significant: Lg\ll = 17.84,df = 6,p < .001. And fi-
nally, Model 12 contains the three-variable interactions among R;, Sj,
and S;_1, which implies that the nonresponse probabilities are assumed
to depend on whether a transition took place or not, and also on the
type of transition.?6 Model 12 fits significantly better than Model 11:
L%1\12 =24.92,df = 10,p < .006.

Because most of the parameters of the log-linear models for nonre-

26Gince nonignorable response models may not be identified, different sets of starting
values have been used for Models 10-12 to check the identifiability of all their parame-
ters. All these different sets of starting values gave the same solution, which indicates
that the models are identified.



Table 5.27: Parameter estimates for the models for labor market transi-
tions under different assumptions about the nonresponse mechanism

Complete cases Models 2-9  Model 12
employed to not employed (S;—1 =1 and S; = 2)

v -2.2322 22,1368  -2.1570
v, —vg -0.1387 -0.1130  -0.1149
T -0.2015 -0.1912 -0.1837
v’ 0.4350 0.5030 0.5113
v§ -0.3295 -0.4264  -0.4171
v§ -0.6525 -0.6517  -0.6517
vy 0.5470 0.5751 0.5575
not employed to employed (S;_; =2 and S; = 1)

v -2.5460 -2.5358  -2.5116
oft, —vi 0.2657 0.2562 0.2524
T 0.2741 0.2465 0.2418
v’ -2.3389 -2.3304  -2.3318
v§ -0.2172 -0.1440  -0.1397
v§ 1.1196 1.1652 1.1696
vf 1.4365 1.3092 1.3019

sponse are very small, only the parameters of the event history part of
the model are considered. These parameters are obtained using only com-
plete cases, assuming ignorable nonresponse (Model 2-9), and assuming
nonignorable nonresponse (Model 12) are given in Table 5.27. It can be
seen that in this particular case the parameter estimates are rather in-
variant under the different assumptions about the response mechanism.
The only parameters that change somewhat by including the partially
observed data in the analysis are the effects of age (C') on both transition
probabilities. The main effect for the transition from employed to not
employed also increases slightly. Apparently, persons with missing data
have a higher risk of becoming not employed than persons without miss-
ing data. Comparison of the parameters of the ignorable models with
those of the nonignorable model demonstrates that in this particular case
it does not matter which model is specified for the response mechanism.
This is, of course, important to know.



5.5 Conclusions

This chapter presented a general approach to missing data problems in
event history analysis which can be used to correct for unobserved hetero-
geneity, to correct for measurement error in observed covariate values and
in the observed states, and to deal with partially missing information on
covariate values and on the states occupied at the different points in time.
This very flexible approach was based on the use of log-linear models or,
more precisely stated, on the simultaneous specification of a modified
path model with latent or partially missing variables for the covariates
and an event history model for the dependent process of interest.

Several existing models, such as Heckman and Singer’s non-parametric
unobserved heterogeneity model and hazard models with partially ob-
served covariates, are special cases of the general model presented in this
chapter. In addition, the general approach makes it possible to extend
particular existing approaches by relaxing some of their basic assump-
tions. Some extensions of the standard methods for dealing with unob-
served heterogeneity that were proposed are models in which the unob-
served heterogeneity is related to the observed covariates, models with
several mutually related latent covariates, and models in which the latent
variable capturing the unobserved heterogeneity is time varying. With
respect to partially missing covariate values, it was shown that it is possi-
ble to relax the assumption that the data are missing at random; in other
words, the response mechanism may also be nonignorable.

New missing data applications that were developed on the basis of the
general model are models with indirectly measured covariates, event his-
tory models which correct for measurement error in the observed states,
and models for dealing with general missing data patterns in the depen-
dent variable of interest assuming either an ignorable or nonignorable
response mechanism. Event history models with indirectly measured co-
variates, that is, with covariates which are subject to measurement error,
were formulated by defining a latent class model for the latent covariates.
In addition, models which correct for measurement error in the states
occupied at the different points in time were obtained by using modified
path models with latent variables as discrete-time event history models.
And finally, models for ignorable and nonignorable ‘nonresponse’ on the
dependent variable were based on the use of a modified path model with
partially observed data as a discrete-time event history model together



with a log-linear model for the response or censoring mechanism.

On the one hand, the generality and flexibility of the approach that
was presented may be problematic since, as was demonstrated by the
examples, the results may be rather sensitive to the specification which
is used. When correcting for unobserved heterogeneity, the results are
strongly influenced by whether the latent variable is related to the ob-
served variables or not. In the latent class models which were used to
correct for measurement error in the observed covariates, it was often
difficult to decide how many latent classes were needed to sufficiently de-
scribe the data. When using latent Markov models with one indicator per
occasion to correct for measurement error in the observed states, the re-
sults may be influenced by the identifying restrictions which are used and
by whether the measurement errors in the observed states are assumed to
be correlated. In addition, when using partially observed data, it is diffi-
cult to decide whether to assume an ignorable or nonignorable response
mechanism, though the examples showed that it is often more important
to use the partially observed data in the analysis than to correctly specify
the response mechanism.

On the other hand, existing approaches, in which assumptions are
often made that are not tested at all, may lead to misspecified models
as well. The great advantage of the approach presented in this chap-
ter is that it makes it possible to test the underlying assumptions on
which standard missing data approaches are based. It is thus possible
to test whether the unobserved heterogeneity is independent of the ob-
served covariates, whether covariates and states are measured without
error, whether the measurement errors are uncorrelated between time
points, whether covariate values are missing at random, whether the cen-
soring mechanism is ignorable, etc. Consequently, it is possible to use
that particular specification which seems to be the most realistic from a
substantive point of view, without the necessity of making too strong a
priori assumptions. Moreover, it is possible to investigate the sensitivity
of the results for the specification of the unobserved heterogeneity, the
measurement error, and the response mechanism.



Appendix A

Computation of the
log-linear parameters when
using the IPF algorithm

A.1 Removing parameters from the estimated
expected frequencies

The IPF algorithm can be used for obtaining maximum likelihood esti-
mates for the expected cell frequencies according to a particular log-linear
model. Since the IPF algorithm does not provide estimates for the log-
linear parameters, they must be calculated separately. One of the meth-
ods that can be used to obtain the log-linear parameters is calculating a
particular set of parameters and subsequently removing them from the
estimated expected frequencies.

Suppose the log-linear model for which the estimated expected fre-
quencies Mgy are computed by means of IPF is of the form {AB, BC}.
Assume, moreover, that we want to obtain effect-coded log-linear parame-
ters, that is, parameters which are identified by ANOVA-like restrictions.
To obtain these parameters, first the overall mean has to be calculated
by

log Mgpe
A*B*C*’

abc



and removed from 14, by

Mhpe = Mapeexp (=) .
Here, A*, B*, and C* denote the number of categories of the variables A,
B, and C, respectively.

The one-variable effects can be computed by means of 72}, as follows:

!

logm
~A g€ Mabe
Uy = Z )

B*C*
be
B log !,
ab = * ‘:(C ’
—~ A*C
c log m!
i — abc
c A*B*
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These effects have to be removed from 702/, to obtain 7!, = by

1 Y ~ A ~ B ~C
Mebe = Mgpe €XP (_ua — Uy _uc) .

n

And finally, the two-variable effects can be obtained by means of the 7,

as follows:

~ 1
AB log 71,
Ugp - Z C* ’
C
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As can be seen from the above equations, effect-coded log-linear parame-

ters can be simply obtained by calculating the mean of the log of the ex-

pected frequencies from which the lower-order effects are removed within

the categories of the variables which are not involved in the effect con-

cerned.

When using dummy coding, a similar procedure can be followed. The
difference is, however, that in dummy coding, the parameters are obtained
in the reference categories of the variables which are not involved in the
effect concerned rather than by calculating the mean within the categories
of these variables.



A.2 Removing parameters from the cumulated
multipliers

An alternative procedure for calculating the log-linear parameters in com-
bination with IPF is based on the use of the cumulated multipliers of the
IPF iterations rather than of the estimated expected frequencies. In the
LOGLIN program (Olivier and Neff, 1976), the parameters are obtained
by using the cumulated multipliers for all cell entries. Removing param-
eters from the logs of these multipliers proceeds in the same way as was
discussed in the previous section. A slightly modified version of this pro-
cedure has been implemented in the EM program (Vermunt, 1993). The
parameters are computed by means of the cumulated multipliers for the
marginal cell entries which have to be reproduced according to the postu-
lated log-linear model. In the case of log-linear model {AB, BC}, these
cumulated multipliers of the IPF cycles, denoted by c¢mg;, and cmg,, are
obtained by

Nab+

CMap = H ~(v—1)7
v My
1 be

CMpe = H ()

v My

where the product is over all IPF iterations. Moreover, mg’{:) denotes

the estimated expected marginal frequency for A = a and B = b after
(:b); the estimated expected marginal frequency for
B = b and C = c after adjusting the marginal AB in iteration v.

When using effect coding, the parameters can be obtained by remov-
ing the mean of the logs of ¢mg, and cmy.. For each log-linear parameter,
the multipliers have to be used which contain the indices of the effect
concerned as a subset. First, the overall mean is computed using cmy;

and cmype,

iteration v — 1, and m

ﬁ(l) _ logcmab
N A*B* '
ab
log cm
£ — ZM
’ be BCr ,

o = oV 4a®,



Then, (! and 42 are removed from c¢my, and emy,, respectively
emly = cmgpexp (—ﬂ(l)) ,
cmy, = CMpeexp (—a@)) .

The one-variable effects are obtained by

!
A log em/,
Ug = Z B* ’

b
WO = T,

a

!
_B(2) log cmy,
Uy - Z C* C’
C
al = o ral®,
iC log emy,
¢ 7 A*B*
a

Note that af is based on both multipliers because index b appears in
both ¢mg, and cmyp.. After removing the components belonging to the
one-variable effects, the two-variable effects remain, i.e.,

ﬁbe = log (cm'ab exp (—ﬂf — '&5(1))) ,
ﬁfcc = log (cmgc exp (—ﬁf@) — af)) .

This procedure can easily be modified to obtain parameter estimates un-
der other kinds of identifying restrictions. In dummy coding, for instance,
the parameters are obtained from the logs of the cumulated multipliers
within the reference categories of the variables not involved in the effect
concerned. Removing the parameters proceeds in the same manner as
discussed above.

Two final remarks have to be made. First, when using the above-
mentioned procedure for obtaining the estimates for the log-linear pa-
rameters, the starting values for the log-linear parameters must not ounly
be implemented in the estimated expected frequencies, but also in the cu-
mulated multipliers because otherwise the parameters estimates will not
be correct. Second, this procedure can also be applied when a model con-
tains structural zeros as long as no zeros (sampling or structural) occur
in the minimal sufficient statistics.



Appendix B

The log-linear model as one
of the generalized linear
models

It can be demonstrated that the log-linear model is a member of the
family of generalized linear models (GLMs) (Nelder and Wedderburn,
1972; McCullagh and Nelder, 1983, 1989). GLMs are characterized by
three components: a random component, a systematic component, and a
link between the random component and the systematic component.

Models belong to the family of generalized linear models when the
random component of each of n independent observations y;, or, in other
words, the probability density function of the data, has a distribution in
the exponential family taking the form

[ (Wi 0i,¢) = exp{[yifi —b(0;)] /a(d) + c(yi,d)}

for some specific functions a(.), b(.), and ¢(.). The term 6; is called the
natural parameter of the distribution. Assuming a Poisson distribution,
the probability density function for an observed cell count n; is
n;
fnimy) = w
ng:
= exp [n;log(m;) —m; —log(n;!)] .

This implies that 6; = log(m;), b(6;) = exp(6;) = m;, a(¢) = 1, and
c(yi, @) = —log(ng!).



The systematic component of a GLM relates the linear predictor 7;
to a set of j explanatory variables z;;,

o= Y Bizij,
J

where 3; are the model parameters.

The third component is a link between the random component and
the systematic component. The expected values of the observations, u; =
E(y;), are linked to the linear predictor n; by a function g(u;),

o= gw) = > Bz
7

When the link transforms the expected value of an observation to the
natural parameter 6;, it is called a canonical link. Using a canonical link
has the advantage that j sufficient statistics exist which equal

> wijyi -
g

Since the natural parameter of the Poisson distribution is logm,;, the
canonical link function is 7; = logm,;. So, in its most general form, the
log-linear model can be written as

logm; = Y Bjzy,
J

in which f; is a log-linear parameter and z;; is an element of the design
matrix. It can be formulated shorter in matrix notation as
logm = Xg.

Moreover, the sufficient statistics are given by

> i
i



Appendix C

The Newton-Raphson
algorithm

C.1 Log-linear models

Suppose we want to obtain maximum likelihood estimates for the 3; pa-
rameters of log-linear model

logm; = Zﬁjxij.
J

Assuming a Poisson distribution, the kernel of the log-likelihood function
to be maximized to find the ML estimates for the 8; parameters of the
above log-linear model is

logl = an (Zﬁja%) — Zexp (Z Bjxi]) .

Differentiation with respect to §; yields
Odlog L

i o= B = Snay - Smiy = X (- mi) i
J 7 7

i

A particular element of the matrix of second-order partial derivatives used
by the Newton-Raphson algorithm can be obtained by
0?log L

H; = = — TG L35 T -
j aﬁjﬁk ; iLgjdlg




Let 8(*) denote the vector containing the vth approximation for the pa-
rameter estimates and m{) the vth approximation for the estimated
expected frequencies, where m(*) = exp (X,B(” )). Iteration v of the
Newton-Raphson algorithm involves finding improved estimates of the
[ parameters as follows

The vector ') denotes the gradient vector containing the partial deriva-
tives of the log-likelihood function with respect to the parameters to be
estimated. Matrix H®) is the matrix of the second partial derivatives,
also called the Hessian matrix. Both are evaluated at the parameter
estimates from the (v — 1)th iteration,

qj(y) = > (nz - mE”‘”) Tij

1
H](Z) = — Z ml(y_l).’ljijl’ik .
1

The Newton-Raphson algorithm, which starts with an initial guess of
the B parameters, involves calculating the gradient vector and the Hes-
sian matrix every iteration. In addition, the Hessian matrix has to be
inverted every iteration, which implies that it must be nonsingular; in
other words, there may be no linear dependencies between the parame-

. N\ —1
ters. The estimated large-sample covariance matrix of 3 is (—H) .

C.2 Multinomial response models

According to Haberman (1979), in its most general form, the multinomial
response model can be written as

logmge = ag+ Y BTk,
J

where k is the index for the joint distribution of the independent variables
and ¢ is the index for the (joint) response variable. Haberman (1979) de-
veloped a special variant of the Newton-Raphson algorithm for estimating
the multinomial response model. This is necessary because the number



of a can become very large. In Haberman’s algorithm, the elements of
the gradient vector and the Hessian matrix are obtained by

¢ = 3 (nae—miy ) (on— 0)
ik
Hj(]l;) = Zmz('/:_l) (wijk — Ojk) (Tink — Onk)
ik
where
ejk = injkmz(zfl)/ Z mg;il) .

(v)

The updated parameter estimates ﬂy(-”) and o’ are found by

W = g _ (H("))_l q”

NON. log > Mk
k . ) :
>_i €xp Z] 53 Lijk

In fact, Haberman’s procedure consists of applying a Newton-Raphson
cycle to update the 8; parameters, followed by an IPF-like cycle to update
the ay parameters. Note that the calculation of the oy, parameters is such
that ) ,m;; = >_;nik, in other words, that the marginals belonging to
the joint independent variable are reproduced exactly. The asymptotic

o\ —1
variance-covariance matrix of the § parameters is given by (—H) .






Appendix D

The uni-dimensional
Newton algorithm

D.1 Log-linear models

An alternative for the Newton-Raphson algorithm is the uni-dimensional
Newton algorithm. It differs from the multi-dimensional Newton algo-
rithm discussed in Appendix C in that it adjusts only one parameter at
a time instead of adjusting all parameters simultaneously. In that sense,
it resembles IPF. Instead of using the complete Hessian matrix, the uni-
dimensional Newton algorithm only uses the diagonal element belonging
to the parameter to be updated (Andersen, 1990; Jensen, Johansen, and
Lauritzen, 1991).

Suppose we want to obtain maximum likelihood estimates for the (;
parameters of log-linear model

log m; = Z Bjxij .
J
Successive approximations of ; involve

v v—1
(v _ qj(‘ ) _ ﬂ(uq) n 2 (”z - mz(' )) Tij
A HY - Z~m(1j71)x~-x~
77 Rt ) LYl ¥}

. (D.1)

Of course, these adjustments can be performed much faster than an iter-
ation with the Newton-Raphson algorithm because it is not necessary to



invert the complete Hessian matrix. This is especially true when a model
contains many parameters.

Goodman (1979, 1984) presented a slightly different version of the uni-
dimensional Newton algorithm. The main difference with the algorithm
given in Equation D.1 is that his formulas involve the adjustment of the
multiplicative parameters instead of the log-linear parameters, i.e.,

i (ni—mi" )y

1+
yymd Ny

exp,@’](”) = expﬁj(-yfl)

| oo
which in terms of the log-linear parameters can also be written as

Zi (”i_mgrl))xij] . (D3)

Z.m(’ffl)x. Y
) LY k%)

g = B +log

J 1+

It can easily be demonstrated that the two versions of the uni-dimensional
Newton algorithm described in Equations D.1 and D.3 are almost equiv-

alent. Let 6§-V) denote qj(-y) /H J(j) This term appears at the right-hand
side of both Equation D.1 and Equation D.3. In Equation D.1, 6\ is
added to the current trial value of ,5’]- to obtain a new trial value. On

the other hand, Equation D.3 involves adding log(1 + (5j(”)) to the old
guess to improve the estimated value for ;. Thus, the main differences
between the two versions of the uni-dimensional Newton algorithm occur
when (5](”) is large. This will generally be the case in the first iterations,
especially if the starting values for the parameters are far from the final
solution. In that case, Goodman’s algorithm will use smaller approxi-
mation steps because ‘log(l + 53(-1/))‘ < ‘5;-”‘. However, if 5](-1/) — 0, the
difference between the two algorithms becomes negligible because in that

case log(1 + 6§V)) — (5](”).

It can be demonstrated that IPF is a special case of Goodman’s version
of the uni-dimensional Newton algorithm. Suppose the model of interest
is a hierarchical log-linear model of the form {AB,BC}. Fitting this
model by means of IPF is equivalent to using a design matrix which
contains one parameter for each of the marginal cells of the margins AB
and BC, without imposing identifying restrictions on these parameters.
More precisely, the design matrix consists of A*B* + B*C* columns, in

which a particular z;; equals 1 if cell < contributes to effect j, in other



words, to the minimal sufficient statistic concerned. Otherwise z;; is
equal to 0. The adjustment of the jth log-linear parameter by means of
Equation D.2 is equivalent to the following adjustment of the estimated
expected frequencies:

(v=1)

m; 1

Bl

Z~m<y71)x~x“
) 13

If, as in this case, the z;; take only the values 0 or 1, this equation is
simplified to

v) (v-1)

1 Tij
1+Einixij_z'imz('y )xz‘j] ’

v—1
>mVay
Tiq
- mgul)[ Ez(mxlz)a ] "
2my @i

This is just an IPF adjustment in which the term ; n;z;; is an observed
marginal cell count, or a minimal sufficient statistic, and ), mgyfl)xij
is the current estimate for the same marginal cell count. The new es-
()

i

timated expected frequencies m

iy i,

will satisfy the condition }_; n;z;; =

D.2 Log-multiplicative models

Goodman (1979) proposed estimating the parameters of the log-multipli-
cative RC association models by means of the uni-dimensional Newton
algorithm. As mentioned above, this procedure adjusts only one param-
eter at a time, treating the other parameters as fixed. Clogg (1982) and
Eliason (1995) used the same algorithm for more extended RC association
models.

Suppose there is an RC association model of the form

logmape = u+uy +up +ud + g PP plP + O pPOuge

The estimation of, for instance, the log-multiplicative parameters of the
association between A and B involves solving the following set of likeli-



hood functions:
Olog L

9AB = Z (Mabe — Nabe) NfBMAB =0,
abc
Odlog L
P %B = Z (mabc - nabc) ¢AB,U;)4B = 0,
Ha, be
Jdlog L
9 %B = Z (mabc - nabc) /‘:14B¢AB = 0.
M ac

The second partial derivatives needed by the uni-dimensional Newton
algorithm are

dlog L 2
W = Xb:mabc( ;4 b ) )
Olog L 2

Gusoun ~ o (#17)
C
OdlogL AB ;AB\?
W = % Mabe (,Ua ¢ )

Consequently, the ()th uni-dimensional Newton iteration equals

(v—1) _ AB(v—1) AB(v—1)
¢AB(V) — ¢AB(1/—1) + Zabc (mabc nabc) Ha Ky

AB(v—1) AB(v—1)\2 ’
Zabcmabc (:U'a (V ))ub (V ))

) AB(v), AB(v—1)
AB(v) AB(v-1) | ZbC( Mabe _n“"c) P

Hq = Hq (¢AB(V)HAB(V71))2 ’

Zb Mgpe

A
AB(v) AB(v—1) i Zac ( abc - nabc) Ha gb B(v

" o Zac mabc (Na BW) AB(v )) ’

()

in which m,,. denote the updated estimated expected frequen-
cies after updating and pZ'P, respectively. The necessary rescaling
to identify the parameters can be performed after every iteration cycle.

As demonstrated by Becker (1990), the same version of the uni-di-
mensional Newton algorithm can be used for estimating RC(M) models.
The only difference is that in that case the parameters of the different
dimensions have to be orthogonalized after the last iteration by means of
a singular-value decomposition (Goodman, 1991).

()"

and m,,;.
¢AB



Appendix E

Likelihood equations for
modified path models

Below, it is shown that if the parameters of the various modified path
steps are distinct, the parameters of a modified path model can be esti-
mated using the observed frequencies in the separate subtables. More-
over, it is demonstrated that the likelihood equation for a parameter that
appears in different modified path steps can be simply obtained by sum-
ming the contributions of the modified path steps concerned. Although
the derivations concern the likelihood equations for the case of completely
observed data, the results can, of course, also be used in the M-step of the
EM algorithm if there are missing data. The next three sections derive
the likelihood equations for a parameter of an ordinary multinomial logit
model, for a parameter of a modified path model, and for a parameter
which appears in different steps of a modified path model.

E.1 Multinomial logit model

Consider a multinomial logit model in which C' is the dependent variable
and A and B are the independent variables:

exp (Zj «Tabcjﬁj)
Zc €xp (Z] mabcjﬁj) .

(E.1)

Telab



Here, 3; denotes a log-linear or logit parameter and x4, is an element
of the design matrix.
Given the kernel of (product) multinomial likelihood

log L = Z Nabe 10g Telab »

abc

the first derivative with respect to f3; is

810g L _ Nabe a7rc|ab (E 2)
aﬁj abe Telab aﬁ]
When using € as an abbreviation of exp (Zj Tabej ﬁj),
a7Tc|ab 1

= — € P ETgpei — € € Tabei
aﬁj (ZC . )2 XC: abcj ZC: abcj

_ E[xb._chfﬂabcj _ . b[xb._zce%bcj]

Zce abcj Zce cla abej ZCE

Te|ab [xabcj - E$abcjﬂcab] .
c

Substituting into Equation E.2 and setting the result equal to zero yields
the likelihood equation

Nabce
Z - Telab [$abcj - Z xabcjﬂc|ab] = 0,
c

abe 'clab

or simplified

Znabc lxabcj - Zwabcjﬂcab] = 0, (E.3)
c

abc

which is the well-known likelihood equation for a parameter of a multi-
nomial logit model. Note that

Z Nabe Z LabejTelab = Z Tab+ Z LabejTe|ab
ab c

abc c

= Z LabejTe|abTab+
abc

= Z TabejMabe

abc



of course, given that
Z Nabe = Z Mabe (E4)
c c

which is always the case in a logit model because of the normalization
taking place by the denominator of logit model described in Equation
E.1. Substitution into Equation E.3 gives

Z Zabcj [nabc - mabc] = 0. (E5)

abc

This expression is equivalent to the likelihood equation derived from the
Poisson likelihood function for a parameter of the log-linear model of the
form

Magpe = €EXP (aab + Zxabcj/@j) y (E6)

J

which demonstrates the well-known equivalence of logit models and log-
linear models.

In the {EM program (Vermunt, 1993), the log-linear model described
in Equation E.6 is estimated rather than the logit model described in
Equation E.1. This results from the fact that the likelihood function rep-
resented in Equation E.5 is used instead of Equation E.3, of course, under
the condition given in Equation E.4. This condition is automatically ful-
filled by including the intercept cyp in the model.

E.2 Modified path model

Suppose that the logit model for 7., is now a step in a modified path
model of the form

Tabed =  TabTclabTd|abe (E.7)

where the other 7’s may be restricted by a logit parameterization as well.
In that case, the kernel of likelihood equation changes into

IOg L = Z Nabed log Tabed -
abed



The first derivative with respect to ; is now

dlog L _ Nabed OTabed
- — T aan
9B, o Tabed OB
where
OT abed 871-11177"'0\abﬂ'd|abc - a71—c\ab
= = TabTd|abed
9B, 9p; labed "3,

= TabTd|abedTc|ab lxabcj - ZxaijWcab]
(&
=  Tabed [mabcj - Zxabcjﬂ-cab] . (E.8)
c

This yields the following likelihood equation:

Nabed
Z Tabed lxabcj - Z xabcjﬂc|ab] = 0,
c

abed 7Tabcd

or simplified

Z Nabe+ [$abcj - Z xabcjﬂc|ab] = 0,
c

abc

which is equivalent to Equation E.3, the likelihood equation for an ordi-
nary multinomial logit model. This shows that the parameters of each
modified path step may be estimated separately, with the observed cell
counts of the marginal table formed by the dependent and independent
variables appearing in the modified path step concerned serving as data.

E.3 Restricted modified path model

Suppose there is a model of the form given in Equation E.7 in which two
log-linear parameters appearing in two different modified path steps are
postulated to be equal. Suppose that the 3; parameter concerned appears
in both 7|4, and mgjgp.. In that case,

OT abed o 871—11177rc| abTd|abe

0p; 0B,




aﬂ'c\ab I 877—d|abc
abe ab?clab
9B, " 0p;

= Tabed { lxabcj - Z xabcjﬂc|ab]
c
Tabedj — Zxabcdjﬂ-dabc‘| } :
d

This yields the following likelihood equation for 3;:

Nabed
Z Tabed { |f%bcj - Z mabcj'”dab]
c

abed 7r(led
Labedj — Z xabcdjﬂd|abc] } = 0,
d

TabTq|

_l’_

_l’_

or simplified

Z Nabc+ lxabcj - Z $abcjﬁcab]
abc c
+ ) Ngbed [Iabcdj =) TabedsT dabc] = 0.

abed d

Note that the first part of this equation is identical to the left-hand side of
Equation E.3. Moreover, the second part is the derivative with respect to
pB; that would have been obtained if ; would have appeared only in 7g|gp-
This implies that the likelihood equation for a parameter that appears
in different modified path steps can easily be obtained by summing the
contributions of the modified path steps in which the parameter concerned
appears.

As mentioned in section E.1, the EM program (Vermunt, 1993) uses
the log-linear equivalent of the likelihood equations, which in this case is

Z Zabcj [nabc+ - mabc] + Z Zabedj [nabcd - mabcd] = 0 5
abc abed

with the additional restrictions that

Z Nabe = Z Mabe 5
c c
Z Nabed = Z Mabed »
d d



to reproduce the marginal distributions of the independent variables.
Here, mgp. and mgpeq denote the expected cell frequencies in the marginal
tables ABC and ABCD, respectively.



Appendix F

The estimation of
conditional probabilities
under restrictions

Suppose there is modified path model of the form

Tabed = TabTc|labTd|abe -

In contrast to the models presented in the previous appendices, the (con-
ditional) probabilities of this model are not restricted by a log-linear pa-
rameterization. Unrestricted estimates for map, ¢ qp, and mgjqpe, denoted
by Tap Tejap, and 7gjqpe, can be obtained by

. Nab++
Tab = )
Tt
o _ Napet
Telab = b ’
ab++
~ Nabed
Td|abe b ’
abc+

respectively. However, it is sometimes necessary to restrict some (condi-
tional) probabilities to be equal to one another or to be equal to some fixed
value. Suppose we want to restrict three arbitrary conditional probabili-
ties, my|99, 13, and 73213, to have the same value. According to Good-
man (1974b), maximum likelihood estimates for these restricted proba-



bilities, denoted by 7%71"|22, frgm, and frg‘zls, can be obtained by

N2244T1j22 + N1344+T213 + N213+T3(213

AT AT AT —
Ti22 = To)13 = 73213 — )

Nn2244 + N1344 + N213+
in other words, by calculating the weighted average of the unrestricted
probabilities, where the weights are the observed cell counts of the mar-
ginal distributions of the independent variables concerned.

After imposing these equality restrictions, the estimated probabilities
for m 29, 713, and mg213 will generally no longer sum to 1 within each
level of the joint independent variable. Therefore, the unrestricted prob-
abilities must be rescaled to again fulfill the requirement that the prob-
abilities sum to unity. The rescaling of, for instance, the unrestricted
probability that C = ¢ given A = 2 and B = 2, 7“rg|22, is accomplished by

al
o I_Zcﬁcm
Te22 = 7Tc|2272 ~u )
¢ "cl22

where frg{ab denotes the value of a particular unrestricted probability af-
ter rescaling it. Note that in this case, >, ﬁgm = ﬂl?? because only
one probability was restricted for A = 2 and B = 2. The unrestricted
probabilities 7Arg|13 and frg‘glg have to be rescaled in a similar manner.

Any set of conditional probabilities can be restricted in this way, irre-
spective of whether they belong to the same or to different modified path
steps. Moreover, fixed-value restrictions can be imposed by replacing the
unrestricted probabilities concerned by the values to which they have to
be fixed.

However, in specific situations, Goodman’s algorithm does work prop-
erly (Mooijaart and Van der Heijden, 1992). The reason is, in fact, very
simple. Sometimes, the rescaling which has to take place to satisfy the
condition that the probabilities must sum to unity within every level
of the joint independent variable is not possible. This may happen in
three types of situations, namely, when within one of the levels of the
joint independent variable: 1] all the probabilities are restricted, 2] dur-
ing a particular iteration, the sum of the restricted probabilities becomes
greater than 1, 3] all the unrestricted probabilities become fitted zeroes.
Situation 1 cannot occur when at least one probability is left free within



every level of the joint independent variable. The occurrence of situation
3 depends on the data.

Situation 2 may occur when restrictions are imposed in an ‘asym-
metric’ way. This can be illustrated by means of two simple examples.
Suppose restrictions are imposed within one modified step with depen-
dent variable D and (joint) independent variable I, each having three
categories. The conditional probabilities are denoted by ;. For the
sake of simplicity, it is assumed that all n; are equal and that there are
no fixed-value restrictions. Suppose that |y, mo, and my are restricted
to be equal, and that their unrestricted estimates are .40, .50, and .70,
respectively. This yields restricted estimates equal to .53 and, as a result,
a sum of the restricted probabilities for I = 1 greater than 1.

Another example is the following. Suppose we want to restrict m|
to be equal to Ty and mo to be equal to 73 . Let their unrestricted
estimates be .70, .50, .30, and .70, respectively. This yields restricted
estimates for these conditional probabilities of .60, .60, .50, and .50. Now
the sum of the restricted probabilities for I = 2 is greater than 1.

The two examples demonstrate that situation 2 may occur when a
particular ¢ with restricted parameters contains more restricted param-
eters than the other 4’s which have at least one restricted parameter in
common. In the first example, I = 1 had two restricted parameters, while
I = 2 had only one restricted parameter. In the second example, I = 2
had two restricted parameters, while I = 1 and I = 3, which both had
one restricted parameter in common with I = 2, had only one restricted
parameter. It is, however, not necessary that the sum of sets of restricted
probabilities is greater than one in such cases. Whether it really occurs
depends on the data and on the initial parameter estimates. The simplest
way to find out whether situation 2 occurs is to check it every iteration
cycle. This is exactly what is done in the /EM program (Vermunt, 1993).

Mooijaart and Van der Heijden (1992) proposed using an alternative,
more complex procedure for obtaining maximum likelihood estimates for
the parameters of latent class models with equality and fixed-value con-
straints on the probabilities. Their procedure cousists of adding Lagrange
multipliers to the log-likelihood function to be maximized. They showed
that in specific situations, such as situation 2, the estimates for the condi-
tional probabilities must be obtained iteratively. Mooijaart and Van der
Heijden’s procedure for restricted latent class models is so general that it
is not a problem to translate it to modified path models.






Appendix G

Fisher’s scoring algorithm
for modified path models
with missing data

This appendix shows how to obtain estimates for the log-linear param-
eters of a modified path model with missing data using Fisher’s scoring
algorithm. The expected information matrix determining the step size of
the adjustments of the parameters can also be used to obtain the stan-
dard deviations of the parameters and to check the identifiability of the
model concerned when using the EM algorithm.

Suppose there is a modified path model consisting of S* steps, where
index s denotes a particular step. In its most general form, the logit
model for step s is given by

exp (5, B isji)
> i, €Xp (st B ivzak) '

Tis|ks

Here, i; denotes the value of the joint dependent variable; k4 is the value
of the joint independent variable; and j; is the jth parameter of modified
path step s.

Let [ be the index for the joint distribution of the latent variables and
o the index for the joint distribution of the observed variables. This means
that an observed cell count can be denoted by n,, an expected probability
in the incomplete table by 7,, and a probability in the complete table by



. In its most general form, a modified path model with latent variables
can be written as

Tlo = Hﬂ'is|k5
S

Assuming a multinomial sampling scheme, obtaining maximum likelihood
estimates for parameters 3;, involves maximizing

logl = Znologwo.
o

The first-order derivative with respect to 3;, is
Odlog L B n, 0T,
9B, o ™o 0B,
and the expected value of the second-order derivative with respect to ;,
and S, equals

0?log L _ N i or, 0m,
0,00, ~ o OB, WPn,
To solve these derivatives, it is necessary to calculate
on, 0o oy,
— = = 7Tl w.S ‘Sk“S - x.s ISkSW'S kS
9Bj. 9Pj zl: 9B;, zl: o ; tedake T

Except for the summation over the joint latent dimension, this expression
is the same as the expression for modified path models without latent
variables, which is given in Equation E.8.

Iteration v of Fisher’s scoring algorithm involves finding improved
estimates of the § parameters as follows:

BV = g4 (Inf(u>)‘1 q |
in which
(I/) . alogﬁ
op—1"

2
Inf) = —E 9 log £ .
816(1/71)8131(1/71)




oy —1
Matrix (Inf (v )) is the estimated variance-covariance matrix of the
parameter estimates, where v* denotes the last iteration. Moreover, if
matrix Inf") is positive definite, all model parameters can be identified.
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Samenvatting

Omdat een belangrijk deel van de theorien in de sociale wetenschappen
betrekking heeft op processen van sociale verandering, wordt er in dit
vakgebied hoe langer hoe meer aandacht besteed aan het verzamelen
van longitudinale gegevens en aan het ontwikkeling van technieken voor
de analyse van dit type gegevens. Dit boek beschrijft analysetechnie-
ken voor een bepaald type longitudinale gegevens, namelijk event-history
data. Het presenteert een algemeen kader voor het aanpakken van prob-
lemen die samenhangen met het feit dat bepaalde gegevens ontbreken.
Dit kan gaan om het niet observeren van belangrijke verklarende variabe-
len, om meetfouten in de afhankelijke of onafhankelijke variabelen, of om
partieel ontbrekende waarnemingen in de afhankelijke of onafhankelijke
variabelen.

Event-history data — in het Nederlands ook wel aangeduid als le-
vensloopgegevens — zijn gegevens over het aantal en het type veran-
deringen of gebeurtenissen dat respondenten meemaken gedurende een
bepaalde waarnemingsperiode en over de precieze tijdstippen waarop deze
gebeurtenissen zich voordoen. Voorbeelden van event-history data zijn
arbeids- en schoolloopbaangegevens, gegevens over demografische transi-
ties zoals de geboorte van kinderen en veranderingen van samenlevings-
vorm, gegevens over het ziekteverzuim van werknemers, gegevens over
de aankoop van bepaalde producten door consumenten en gegevens over
veranderingen die zich voordoen in organisaties.

Er zijn verschillen typen technieken ontwikkeld voor het analyseren
van event-history data. Het meest gebruikt worden modellen waarin de
hazard rate — ofwel het risico om een gebeurtenis mee te maken in een
klein tijdsinterval — wordt geregresseerd op een aantal verklarende vari-
abelen. Interessant in de context van dit boek is dat deze hazard mod-
ellen nauw verwant zijn aan bepaalde loglineaire modellen voor de analyse



van categorische data. Zo zijn bijvoorbeeld de veel gebruikte exponen-
tile, piecewise exponentile en Cox hazard modellen voor continue-duur
gegevens in feite equivalent aan het log-rate model, en is — zoals wordt
aangetoond in hoofdstuk 4 — het discrete-duur logit model equivalent aan
het causale loglineaire model.

De belangrijkste bijdrage van dit boek is dat het laat zien dat tech-
nieken die zijn ontwikkeld voor het behandelen van ontbrekende gegevens
bij de analyse van categorische gegevens ook kunnen worden toegepast bij
de analyse van levensloopgegevens. Zo kunnen loglineaire modellen met
latente variabelen worden gebruikt voor het specificeren van event-history
modellen met niet-geobserveerde heterogeniteit en met meetfouten in de
afhankelijke en onafhankelijke variabelen. Loglineaire modellen voor non-
respons kunnen worden toegepast wanneer gegevens ontbreken over de
afhankelijke of onafhankelijke variabelen voor bepaalde respondenten.

Hoofdstuk 2 geeft een introductie in de loglineaire analyse van fre-
quentie tabellen. Daarbij wordt speciale aandacht besteed aan het log-
rate model, het causale loglineaire model en aan de schattingsprocedures
zoals gemplementeerd in het computerprogramma (e dat is ontwikkeld
voor het verkrijgen van meest aannemelijke schatters voor de in dit boek
beschreven modellen. Loglineaire modellen met latente variabelen — in-
clusief het latente-klasse model — en loglineaire modellen voor nonrespons
komen aan bod in het derde hoofdstuk. Deze twee modellen vormen
de basis voor de in dit boek gepresenteerde missing data benadering bij
event-history analyse.

Hoofdstuk 4 geeft een uitvoerige beschrijving van technieken voor
het analyseren van levensloopgegevens. Daarbij wordt speciale aandacht
besteed aan de overeenkomsten met loglineaire modellen voor de anal-
yse van categorische data en aan specifieke problemen die zich kunnen
voordoen bij event-history analyse, zoals linkse en rechtse censurering,
endogeniteit van tijdsvarirende covariaten, niet-geobserveerde heterogen-
iteit, afthankelijke competing risks en afhankelijke waarnemingen. Som-
mige van deze problemen kunnen worden gezien als missing data proble-
men en kunnen dan ook worden aangepakt met de technieken die worden
beschreven in hoofdstuk 5. Dit laatste hoofdstuk laat aan de hand van
vele voorbeelden met rele data zien hoe omgegaan kan worden met niet-
geobserveerde heterogeniteit en met meetfouten en partieel ontbrekende
waarnemingen in zowel de afhankelijke als onafhankelijke variabelen. De
belangrijkste conclusie die kan worden getrokken op basis van de in het



laatste hoofdstuk beschreven analyses, is dat de nieuwe benadering al-
gemener en flexibeler is dan de meeste bestaande benaderingen. Keuzes
met betrekking tot de modelspecificatie die enkel op inhoudelijke gron-
den kunnen worden gemaakt, blijven belangrijk voor de kwaliteit van de
onderzoeksresultaten.



