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Chapter 1
Introduction
Since many theories in the social sciences deal with processes of socialchange, increasing attention is being given to the collection of longitudi-nal data and to the development of methods for analyzing longitudinaldata. This book discusses techniques for analyzing a particular type oflongitudinal data: event history data. More precisely, it provides a gen-eral framework for dealing with missing data problems in the analysisof event history data. These missing data problems involve unobservedheterogeneity, measurement error, and partial nonresponse. An impor-tant characteristic of the approach that is presented is that it is based onusing models which were originally developed in the �eld of categoricaldata analysis.In this introductory chapter, attention is given to the di�erence be-tween event history data and other types of longitudinal data, to meth-ods for analyzing event history data and their relationship with log-linearmodels, and to the three above-mentioned missing data problems. Inaddition, an outline of the book is presented.
1.1 Types of longitudinal data
Longitudinal data can be classi�ed according to the type of informationthat it provides about change and, as a result, the type of research ques-tions that can be answered using it. The term change refers to a changethat occurs in an individual's scores on the variables of interest. Otherterms which can be used interchangeably with change are transition and



event.The least informative type of longitudinal data is time-series or trenddata. Time series are obtained by collecting the same type of informationat di�erent points in time. But unlike other types of longitudinal data,there is a di�erent sample of individuals at each point in time. As a result,there is no information on individual changes, transitions, or events, butonly on net or aggregate changes in the population to be studied.Panel data is obtained by investigating the same sample units at dif-ferent points in time. Panel data, thus, provides information on the valuesof the variables of interest at particular points in time. What is observedis whether the value of a variable on one occasion equals its value on theprevious occasion. If these values are not equal, it is certain that theindividual concerned experienced at least one transition or event. On theother hand, if the two values are equal, there may or there may not haveoccurred events between the two points in time. As a result, panel datanot only provides information on net changes, but also partial informationon gross or individual changes.Two types of longitudinal data which are more informative than paneldata but still less informative than event history data are event-count dataand event-sequence data (Tuma and Hannan, 1984:19-20). Event-countdata records the number of changes, transitions, or events that occur in aparticular time interval, while event-sequence data records the sequenceof values of the dependent variable of interest for each sample member.Event-count data and event-sequence data can, for instance, be collectedby means of a panel design in which the number and sequence of eventsbetween the previous and the current occasion is requested retrospec-tively.Event history data is even more informative since it contains infor-mation on the timing of changes, transitions, or events. In other words,event history data records the number of events, their sequence, and thetime at which they occur. In experimental settings, it is generally pos-sible to observe the subjects involved in the study continuously, whichmakes recording the timing of events a rather straightforward procedure.In nonexperimental studies, it is more di�cult to collect event historydata. Sometimes, event history data can be obtained from archives. An-other possibility is to gather data on the timing of events retrospectively.The best known method is the life-history calendar which is a one-shotsurvey in which information on di�erent types of life-course events are



collected simultaneously (Freedman et al., 1988). Another method forcollecting event history data retrospectively is by means of a panel de-sign in which individuals are questioned about the timing of events whichoccurred between subsequent occasions.
1.2 Methods for analyzing event history data
The general purpose of the analysis of event history data is to explainwhy certain individuals are at a higher risk of experiencing the event(s)of interest than others. This can be accomplished by using special typesof methods which, depending on the �eld in which they are applied, arecalled failure-time models, life-time models, survival models, transition-rate models, response-time models, event history models, duration mod-els, or hazard models. Here, the terms event history model and hazardmodel are used interchangeably.In hazard models, the risk of experiencing an event within a shorttime interval is regressed on a set of covariates. Two special featuresdistinguish hazard models or event history models from other types ofregression models: they make it possible to include censored observationsin the analysis and to use time-varying explanatory variables. An obser-vation is called censored if the event of interest did not occur before theend of the observation period. Censoring is, in fact, a form of partiallymissing information: On the one hand, it is known that the event did notoccur during a given period of time, but, on the other hand, the time atwhich the event occurred is unknown. Time-varying covariates are co-variates that may change their value during the observation period. Thepossibility of including covariates which may change their value in theregression model makes it possible to perform a truly dynamic analysis.Event history models can be classi�ed according to di�erent typesof dimensions. The �rst distinction that can be made is based on thenature of the dependent variable which is being modelled. The dependentvariable may be either discrete or continuous. While most of the workwhich has been done in the �eld of event history analysis involves modelsfor discrete dependent variables, there are also methods for analyzingchanges in continuous dependent variables (Tuma and Hannan, 1984:Part 3; Allison, 1990). This book deals solely with models for discretedependent variables.



The category of event history models for discrete dependent variablescan be subdivided into two subgroups: continuous-time methods anddiscrete-time methods. As the terms indicate, the time variable is as-sumed to be continuous in continuous-time methods, while in discrete-time methods it is assumed to be discrete. In other words, the formertype of methods assume that events may occur at any point in time, whilethe latter type of methods assume that changes occur at certain discretetime points. The category of continuous-time methods can be subdividedon the basis of whether the time dependence of the process being studiedis parameterized. In parametric models, the time dependence is assumedto have a particular functional form, while in the semi-parametric modelproposed by Cox (1972), the time dependence remains unspeci�ed, whichmeans that it is not restricted at all. In discrete-time models, it is possi-ble to restrict the time dependence as in parametric models or to leave itunspeci�ed as in Cox's model. This does not, however, lead to fundamen-tally di�erent types of models. Therefore, it su�ces to distinguish thefollowing three main types of hazard models: parametric continuous-timemodels, the Cox semi-parametric continuous-time model, and discrete-time models.The simplest situation in the analysis of event history data is that inwhich there is only one type of event and each individual can experienceonly one event, in other words, if there is a single nonrepeatable event.As is demonstrated in Chapter 4, methods for analyzing event historydata can easily be adapted to deal with more complex situations, thatis, situations in which there are di�erent types of events and in whichindividuals may experience more than one event.An important feature in the context of this book is the fact that haz-ard models are strongly related to log-linear models for frequency tables.Both the piecewise exponential survival model, which is a parametriccontinuous-time model in which the risk of experiencing an event is as-sumed to be constant within time intervals, and the Cox semi-parametricmodel can be shown to be equivalent to log-linear models for the anal-ysis of rates, also known as log-rate models (Holford, 1980; Laird andOliver, 1981). In addition, it can be demonstrated that the discrete-timelogit model, which is the most frequently used discrete-time method, isa log-linear model in the form of the modi�ed path model proposed byGoodman (1973).



1.3 Missing data problems
This book deals with three types of missing data problems that may occurin event history analysis: unobserved heterogeneity, measurement error,and partial nonresponse.Unobserved heterogeneity means that particular variables which ex-plain individual di�erences in the risk of experiencing the given event(s)being studied cannot be included as covariates in the hazard model be-cause they are not observed. As is demonstrated in sections 4.6-4.8,unobserved heterogeneity can seriously distort the results of hazard mod-els. It may lead to spurious time dependence, spurious time-covariateinteractions, spurious time-varying covariate e�ects, spurious dependencebetween di�erent types of events, and spurious dependence between theevents experienced by the same observational unit.Measurement error is another problem that is often conceptualized asa missing data problem. In latent structure models, an individual's truescore on a variable which is measured erroneously is treated as a latent orunobserved variable. Measurement error may distort the results obtainedfrom an event history model. Measurement error in the dependent vari-able generally leads to an overestimation of the amount of change that hasoccurred since not only true change but also measurement error is con-tributing to the observed change. Measurement error in the covariatesused in an event history model leads to biased parameter estimates.In the case of unobserved heterogeneity and in the case of measure-ment error, there are one or more variables which are completely unob-served, in other words, which are missing for all subjects involved in thestudy. There are, however, also situations in which information on partic-ular variables is partially missing, that is, observed for some persons andnot observed for others. As was mentioned above, censoring is a form ofpartially missing data on the dependent variable. Although hazard mod-els are well suited for dealing with censored observations, the results areonly valid if the censoring mechanism is independent of the process beingstudied. There may also be partially missing data in the covariates usedin a hazard model. It is well known that excluding the observations withpartially missing covariate values from the analysis may lead to biasedparameter estimates if the missing data are not missing completely atrandom.The best solution to these three missing data problems is to prevent



them from occurring, that is, to observe all relevant explanatory vari-ables, to measure all variables without error, and to prevent partiallymissing variables. If, however, there is missing data, the models whichare used to analyze the data have to be adapted to minimize the distor-tion caused by missing information. In the �eld of event history mod-eling, a great deal of work has been done on methods for dealing withunobserved heterogeneity (Vaupel, Manton, and Stallard, 1979; Manton,Vaupel, and Stallard, 1981, 1986; Vaupel and Yashin, 1985; Heckmanand Singer, 1982, 1984; Flinn and Heckman, 1982; Trussell and Richards,1985; Mare, 1994; Guo and Rodriguez, 1994; Yamaguchi, 1986; Claytonand Cuzick, 1985; Heckman and Honore, 1989). In addition, some workhas been dedicated to covariates which are measured with error (Gong,Whittemore, and Grosser, 1990) and to covariates which are subject topartial nonresponse (Schluchter and Jackson, 1989; Baker, 1994).This book presents a general approach to missing data problems inevent history analysis which is based on the similarities between log-linear models and event history models. Log-linear models which havebeen developed for dealing with unobserved heterogeneity, measurementerror, and partial nonresponse are used to deal with the same kinds ofmissing data problems in event history analysis. The general approachincorporates some of the existing approaches as special cases, extendssome existing approaches by making it possible to relax some of theirbasic assumptions, and leads to some new applications, such as eventhistory models with latent or indirectly measured covariates and discrete-time logit models with measurement error in the dependent variable ofinterest.The general model consists of two parts: a model for the covariatesincluded in the model and a hazard model for the dependent processwhich is to be studied. The hazard model may be either a log-rate modelor a discrete-time logit model. The model for the covariates is a modi�edpath model proposed by Goodman (1973). It has been shown that it ispossible to incorporate latent variables (Hagenaars, 1990) and partiallyobserved variables (Fay, 1986; Baker and Laird, 1988) in a modi�ed pathmodel. Although the approach presented in this book is quite general, ithas one important limitation, which results from it being based on theuse of log-linear models: the missing information must be in categoricalvariables. This implies that a non-parametric approach to unobservedheterogeneity is used, that measurement error is dealt with by means



of latent class models, and that partially missing information may onlyoccur in the dependent variable and in covariates which are categorical.
1.4 An outline of this book
In addition to this introductory chapter, this book consists of four chap-ters. Chapter 2 discusses log-linear models. The main purpose of thischapter is to explain log-rate models, modi�ed path models, and meth-ods for obtaining maximum likelihood estimates of the parameters of log-linear models implemented in the `EM program (Vermunt, 1993), which,in turn, can be used to estimate the general class of models discussedin this book. Chapter 3 shows how to incorporate variables with missinginformation in log-linear models. It presents latent class models, modi�edpath models with latent variables, and log-linear models for nonresponse.Chapter 4 deals with event history models. After the basic conceptsand the main types of hazard models are presented, some more advancedtopics are discussed, such as censoring, the use of time-varying covariates,models for competing risks, and multivariate hazard models. Chapter 5presents the general approach for dealing with missing data problems inevent history analysis. It shows how to combine the log-linear modelswith latent variables and partially missing data discussed in Chapter 3with the log-rate and discrete-time logit models discussed in Chapter 4. Inaddition, it presents a number of applications of models with unobservedheterogeneity, measurement error in the dependent variable, measurementerror in the covariates, partially missing information on the dependentvariable, and partially observed covariate values.





Chapter 2
Log-linear analysis
Log-linear analysis has become a widely used method for the analysisof multivariate frequency tables. There are several excellent textbookswhich give extensive overviews of categorical data analysis by means oflog-linear models (Bishop, Fienberg, and Holland, 1975; Goodman, 1978;Haberman, 1978, 1979; Fienberg, 1980; Agresti, 1990; Hagenaars, 1990).The aim of this chapter is not to provide another overview of the �eld oflog-linear analysis, but to introduce those elements of log-linear modelingthat are necessary to understand the main chapters of this book.Three topics deserve special attention: estimation by means of iter-ative proportional �tting and uni-dimensional Newton, log-rate models,and log-linear path models. Understanding iterative proportional �ttingand uni-dimensional Newton is important because these procedures forobtaining maximum likelihood estimates are implemented in the `EMprogram (Vermunt, 1993), which was used to estimate all models dis-cussed in this book. Log-rate models are important because of theirequivalence to piecewise exponential survival models, which are exten-sively discussed in Chapter 4. Lastly, it is important to thoroughly ex-plain the less known log-linear path model for at least two reasons. First,the discrete-time event history model is a special case of this model. Sec-ond, most of the log-linear models with missing data discussed in thefollowing chapter are log-linear path models.Some standard topics in log-linear modeling are introduced in the �rstfour sections of this chapter. In sections 2.1, 2.2, 2.3, and 2.4, attention ispaid to saturated and non-saturated hierarchical log-linear models, sam-



pling distributions, estimation procedures, and model selection, respec-tively. Non-hierarchical log-linear models are discussed in section 2.5.Log-rate models or models with a weight vector are presented in section2.6. Section 2.7 demonstrates how to incorporate non-linear terms in alog-linear model. `Regression-analytic' variants of the standard log-linearmodel, i.e., the logit model and the multinomial response model, are pre-sented in section 2.8. The �nal section deals with a `path-analytic' causalmodel for categorical data, Goodman's modi�ed path model (Goodman,1973).
2.1 Hierarchical log-linear models
2.1.1 Saturated log-linear modelsSuppose we have a frequency table formed by three categorical variableswhich are denoted by A, B, and C, with indices a, b, and c. The numberof categories of A, B, and C is denoted by A�, B�, and C�, respectively.Let mabc be the expected frequency for the cell belonging to category a ofA, b of B, and c of C. The saturated log-linear model for the three-waytable ABC is given by

logmabc = u+ uAa + uBb + uCc + uABab + uACac + uBCbc + uABCabc : (2.1)
The consequence of specifying a linear model for the log of mabc 1 is thata multiplicative model is obtained for mabc, i.e.,

mabc = exp �u+ uAa + uBb + uCc + uABab + uACac + uBCbc + uABCabc �
= ��Aa �Bb �Cc �ABab �ACac �BCbc �ABCabc : (2.2)

From Equations 2.1 and 2.2, it can be seen that the saturated modelcontains all interactions terms among A, B, and C. That is, no a priorirestrictions are imposed on the data. However, Equations 2.1 and 2.2contain too many parameters to be identi�able. Given the values for the
1It should be noted that the log transformation of mabc is tractable because itrestricts the expected frequencies to remain within the admissible range. However,there are also linear models for the analysis of categorical data (Grizzle, Starmer,and Koch, 1969). In addition, models have been proposed which combine linear andlog-linear constraints on the expected frequencies (Haber and Brown, 1986; Lang andAgresti, 1994).



expected frequencies mabc, there is not a unique solution for the u and� parameters. Therefore, constraints must be imposed on the log-linearparameters to make them identi�able. One option is to use ANOVA-likeconstraints, namely,Xa uAa =X
b uBb =Xc uCc = 0 ;Xa uABab =X
b uABab =Xa uACac =Xc uACac =X

b uBCbc =Xc uBCbc = 0 ;Xa uABCabc =X
b uABCabc =Xc uABCabc = 0 :

This parameterization in which every set of parameters sums to zero overeach of its subscripts is called e�ect coding.2 It is the most often used pa-rameterization in applications of log-linear modeling. In e�ect coding, theu term denotes the grand mean of logmabc. The one-variable parametersuAa , uBb , and uCc indicate the relative number of cases at the various levelsof A, B, and C as deviations from the mean. More precisely, they de-scribe the partial skewness of a variable, that is, the skewness within thecombined categories of the other variables. The two-variable interactionterms uABab , uACac , and uBCbc indicate the strength of the partial associationbetween A and B, A and C, and B and C, respectively. The partial asso-ciation can be interpreted as the mean association between two variableswithin the levels of the third variable. And �nally, the three-factor inter-action parameters uABCabc indicate how much the conditional two-variableinteractions di�er from one another within the categories of the third vari-able. In other words, they describe the size of the discrepancy betweenthe partial and the conditional associations.Another method to identify the log-linear parameters involves �xingthe parameters to zero for one category of A, B, and C, respectively. Thisparameterization, which is called dummy coding,3 is often used in regres-sion models with nominal regressors. Although the expected frequenciesunder both parameterizations are equal, the interpretation of the param-eters is rather di�erent. When e�ect coding is used, the parameters mustbe interpreted in terms of deviations from the mean, while under dummy
2Other terms which are sometimes used for this parameterization are marginal cod-ing and deviation from means parameterization (Willekens, 1994:123).3This parameterization is sometimes also referred to as the partial method or ref-erence cell parameterization (Willekens, 1994:123).



coding, they must interpreted in terms of deviations from the referencecategory (Alba, 1987; Long, 1984).
2.1.2 Non-saturated hierarchical log-linear modelsAs mentioned above, in a saturated log-linear model, all possible interac-tion terms are present. In other words, no a priori restrictions are imposedon the model parameters apart from the identifying restrictions. However,in most applications, the aim is to specify and test more parsimoniousmodels, that is, models in which some a priori restrictions are imposed onthe parameters. Log-linear models in which the parameters are restrictedin some way are called non-saturated models. There are di�erent kindsof restrictions that can be imposed on the log-linear parameters. Oneparticular type of restriction leads to the family of hierarchical log-linearmodels. Hierarchical log-linear models are models in which the log-linearparameters are �xed to zero in such a way that when a particular inter-action e�ect is included in the model, all lower-order e�ects containing asubset of the indices of the e�ect concerned must also be included in themodel. For example, when a model contains the two-variable interactionterm uABab , the one-variable terms uAa and uBb must be included too. Theopposite applies as well. When a particular interaction term is �xed tozero, all higher-order interaction terms containing all its indices must alsobe �xed to zero. For example, if the partial association between A and Bis assumed not to be present, the three-variable interaction uABCabc mustbe �xed to zero as well. Applying this latter restriction to Equation 2.1results in the following hierarchical log-linear model:

logmabc = u+ uAa + uBb + uCc + uACac + uBCbc :
Another example of a hierarchical log-linear model is the independencemodel

logmabc = u+ uAa + uBb + uCc :Hierarchical log-linear models are the most popular log-linear models be-cause, in most applications, it is not meaningful to include higher-orderinteraction terms without including the lower-order interaction terms con-cerned (Agresti, 1990:144). Another reason is that it is relatively easy toestimate the parameters of hierarchical log-linear models because of the



existence of simple su�cient statistics (Bishop, Fienberg, and Holland,1975). The estimation of the parameters of hierarchical log-linear modelswill be discussed in the next subsections.
2.2 Sampling distributions
The above-mentioned log-linear models for the three-way frequency tableABC are population models. However, since generally only a sample ofthe population is observed, the parameters of a log-linear model that ispostulated for the population have to be estimated using the observed cellcounts nabc. The parameters of log-linear models are usually estimatedby means of the maximum likelihood method (ML). Some alternativemethods are weighted least squares (Grizzle, Starmer and Koch (1969),minimum chi-square (Berkson, 1968), and minimum discrimination infor-mation (Berkson, 1972; Darroch and Ratcli�, 1972). A common elementin these methods is that the unknown parameters are found by maxi-mizing (or minimizing) some criterion or object function. The maximumlikelihood method estimates for the expected cell frequencies, m̂, and theparameters of a log-linear model are obtained by maximization of thelikelihood function. To determine the likelihood function, it is necessaryto make assumptions about the sampling distribution of the observed cellcounts of a contingency table. In log-linear analysis, usually a Poissondistribution, a multinomial, or a product-multinomial distribution is as-sumed (Bishop, Fienberg and Holland, 1975:62-64; Agresti, 1990:36-39).The Poisson sampling scheme assumes each observed cell count, nabc,to be an independent Poisson random variable with one single param-eter, the mean mabc. This sampling scheme may be used for countingevents which occur independently of each other in time or in space. Theprobability density function for the observed frequency in cell (a; b; c) is

f (nabc jmabc) = exp (�mabc) (mabc)nabcnabc! :
But, in most applications in social science, it may not be appropriateto use a Poisson sampling scheme because under that sampling scheme,the sample size N is assumed to be a Poisson random variable as well.This is generally not a realistic assumption in social research since thesample size is �xed by the sample design. However, given the total sample



size N , the nabc no longer have a Poisson distribution but a multinomialdistribution with parameters N and �abc, where �abc (mabc=N) denotesthe probability of belonging to cell (a; b; c) (Bishop, Fienberg and Holland,1975:63; Agresti, 1990:37). The multinomial probability density for theobserved cells in table ABC is
f (nabcjN ;�abc) = � N !Qabc nabc

�Y
abc(�abc)nabc ;where the indices a, b, and c of Q indicate that the product is over allcell entries.The multinomial density function can be applied when a simple ran-dom sample is taken from a population with �xed N . However, it isalso possible to condition on the observed marginal distribution of oneor more variables included in the model instead of on the total sam-ple size N . This may be useful when the observed cell counts of tableABC are obtained with a strati�ed sample. For example, when a simplerandom sample is taken within levels of A, it may be assumed that theobserved frequencies in every stratum come from A� independent multi-nomial distributions with parameters Na (= Pbc nabc) and �bcja. Thissampling scheme is called independent multinomial sampling or product-multinomial sampling. In this case, the probability density function forthe observed frequencies in the cells with A = a is

f (nabcjNa;�abc) = � Na!Qbc nabc
�Y

bc (�bcja)nabc :Independent multinomial sampling is especially useful for models in whicha distinction is made between dependent and independent variables, suchas in logit models and multinomial response models. In such cases, in-dependent binomial or multinomial sampling is assumed for each of thejoint categories of the independent variables.The three sampling schemes discussed above are very strongly related:multinomial sampling is equivalent to Poisson sampling with �xed N , andproduct-multinomial sampling is equivalent to Poisson sampling with amarginal distribution which has been �xed by the sampling design or bythe nature of the model to be estimated. The implication of this equiv-alence is that in maximum likelihood estimation, a likelihood function



based on Poisson sampling may also be used in cases in which multino-mial or product-multinomial sampling is assumed. However, when a Pois-son likelihood is used instead of a multinomial or a product-multinomiallikelihood, the log-linear e�ects belonging to the �xed margins have tobe included in the model. For multinomial sampling, this implies includ-ing the u term, the grand mean, in the model. In the above exampleof product-multinomial sampling with �xed margins A, uAa has to be in-cluded. Note that in such situations u and uAa are not random but �xedquantities.
2.3 Maximum likelihood estimation
After de�ning a particular log-linear model, estimates for the model pa-rameters have to be obtained by means of the observed data and theassumptions implied by the model. Here, only maximum likelihood esti-mation will be used. The likelihood function is the `probability' functionof the data, i.e., the observed frequencies nabc, given the postulated sam-pling scheme and the values of the (unknown) parameters. Maximumlikelihood estimates are those estimated parameter values that maximizethe likelihood function, or, in other words, that maximize the `probability'or the likelihood of occurrence of the observed data.
2.3.1 Su�cient statistic and likelihood equationsIn this subsection, it is demonstrated how to obtain maximum likelihoodestimates for the expected frequencies for a speci�c hierarchical log-linearmodel assuming a Poisson sampling scheme, which is the simplest sam-pling scheme. Moreover, it can easily be transformed into a multinomialor product-multinomial sampling scheme by including particular e�ectsin the log-linear model. Assuming Poisson distributed data, the kernel ofthe log-likelihood function islogL = X

abc (nabc logmabc �mabc) ; (2.3)
where the expected frequencies mabc are a function of the unknown uparameters. The kernel of the likelihood function is that part of the like-lihood function that depends on the parameters to be estimated. There-fore, it is the only part that has to be considered. Moreover, the log-



likelihood function is presented instead of the likelihood function, sincefor most probability functions, including the Poisson and the multinomial,it is simpler to maximize the log-likelihood function than the likelihoodfunction itself. Because the log of the likelihood function is a monotonefunction of it, this does not make any di�erence for the estimated param-eters values.Suppose we want to �nd maximum likelihood estimates for the pa-rameters of the hierarchical log-linear modellogmabc = u+ uAa + uBb + uCc + uABab + uBCbc : (2.4)Substitution of Equation 2.4 into Equation 2.3 gives
logL = X

abc nabc
�u+ uAa + uBb + uCc + uABab + uBCbc �

�Xabc exp
�u+ uAa + uBb + uCc + uABab + uBCbc � :

By collapsing the cells which contain the same u parameter, the log-likelihood function simpli�es tologL = n+++u+Xa na++uAa +Xb n+b+uBb +Xc n++cuCc
+Xab nab+uABab +Xbc n+bcuBCbc
�Xabc exp

�u+ uAa + uBb + uCc + uABab + uBCbc � ; (2.5)
where a + is used as a subscript to denote that the observed frequen-cies have to be collapsed over the dimension concerned. It can now beseen that the observed marginals n+++, na++, n+b+, n++c, nab+, andn+bc contain all the information needed to estimate the unknown param-eters. Because knowledge of the bivariate marginals AB and BC impliesknowledge of n+++ and of the univariate marginals A, B, and C, nab+and n+bc are the minimal su�cient statistics for the model given in Equa-tion 2.4. These two marginals AB and BC contain all the informationnecessary for estimating the log-linear parameters of the model describedin Equation 2.4.In hierarchical log-linear models, the minimal su�cient statistics arealways the marginals corresponding to the interaction terms of the highest



order. For this reason, hierarchical log-linear models are mostly denotedby their minimal su�cient statistics (Goodman, 1978; Agresti, 1990:166-167; Hagenaars, 1990:50). The model given in Equation 2.4 may thenbe denoted as fAB;BCg, the independence model as fA;B;Cg, and thesaturated model as fABCg.To obtain maximum likelihood estimates for the model parameters ofEquation 2.4, it is necessary to �nd the parameter values that maximizethe log-likelihood function of Equation 2.5. This can be accomplished bydi�erentiating the log-likelihood function with respect to the unknownparameters and setting the result equal to zero. Di�erentiating the log-likelihood function concerned with respect to the u parameters gives@ logL@u = n+++ �Xabc mabc = n+++ �m+++ ;
@ logL@uAa = na++ �Xbc mabc = na++ �ma++ ;
@ logL@uBb = n+b+ �Xac mabc = n+b+ �m+b+ ;
@ logL@uCc = n++c �Xab mabc = n++c �m++c ;
@ logL@uABab = nab+ �Xc mabc = nab+ �mab+ ;
@ logL@uBCbc = n+bc �Xa mabc = na+c �ma+c :

Setting these derivatives to zero yields likelihood equations
n+++ = m̂+++ ;na++ = m̂a++ ;n+b+ = m̂+b+ ;n++c = m̂++c ;nab+ = m̂ab+ ; (2.6)n+bc = m̂+bc ; (2.7)

where the m̂'s denote estimates for the expected marginal cell count con-cerned. It can easily be seen that if the last two conditions are ful�lled,



the other four are ful�lled as well. Therefore, Equations 2.6 and 2.7 de-termine the maximum likelihood estimates for the expected frequenciesmabc and the corresponding log-linear parameters. In other words, in themaximum likelihood solution, the table containing the estimated expectedfrequencies has the same marginals AB and BC as the table with the ob-served frequencies. The same holds for any other hierarchical log-linearmodel. In hierarchical log-linear models, the minimal su�cient statisticsare equal to the marginals which have to be reproduced according to thespeci�ed model.The other two sampling schemes mentioned above lead to the samelikelihood equations because the additional conditions are automaticallyful�lled. In the case of multinomial sampling, Pabc m̂abc has to be equalto the total sample size N , or n+++. Moreover, when multinomial sam-pling is assumed within the categories of A, Pbc m̂abc has to be equal tona++. Thus, the inclusion of mean e�ect u in a log-linear model makesthe estimates under a Poisson sampling scheme identical to the ones ob-tained under a multinomial sampling scheme. Furthermore, the inclusionof e�ect uAa causes Poisson sampling to be identical to independent multi-nomial sampling within categories of A (Bishop, Fienberg and Holland,1975; Agresti, 1990).
2.3.2 The iterative proportional �tting algorithmFor some models, there are closed form solutions for the estimated ex-pected frequencies m̂abc, that is, the conditions given in the likelihoodfunction can be ful�lled without using an iterative method. Actually, alllog-linear model which are decomposable graphical models have closedform solutions for the estimated expected frequencies (Whittaker, 1990:section 10.4; Wermuth and Lauritzen, 1983, 1990). Model fAB;BCg issuch a model because it implies the conditional independence of A and Cgiven B. The estimated expected frequencies for this model are found by

m̂abc = m̂ab+m̂+bcm̂+b+ = nab+n+bcn+b+ :
In the tradition of graphical modeling, where models have to be formu-lated in terms of conditional independence, it is sometimes also writtenas m̂abc = nab+pcjb = Npab+pcjb ;



where pab+ denotes the observed probability that A = a and B = b, andpcjb the observed probability that C = c given B = b. The independencemodel and the saturated model are other examples of models which haveclosed solutions. In the saturated model, m̂abc = nabc.When no closed form expression exists for m̂abc, maximum likelihoodestimates for the expected cell counts can be found by means of the it-erative proportional �tting algorithm (IPF) (Deming and Stephan, 1940;Fienberg 1970; Darroch and Ratcli� (1972). This a conceptually and com-putationally simple procedure. Its basic principle is that the marginalconstraints from the likelihood equations are satis�ed by adjusting theestimated expected frequencies. Often, this has to be done iterativelybecause there is no guarantee that after ful�lling one set of conditions,the previous restrictions are still satis�ed. The iterations continue untilconvergence is reached, in other words, until the estimated expected fre-quencies do not change more than an arbitrary small constant. The IPFalgorithm can also be applied to models for which closed formed expres-sions exist. In such cases, the algorithm converges after two iterationswhen the table which is being analyzed does not consist of more than sixvariables (Haberman, 1974:197).Let m̂(�)abc denote the estimated expected frequencies after the �th IPFiteration. Before starting the �rst iteration, arbitrary starting valuesare needed for the log-linear parameters that are in the model. In mostcomputer programs based on the IPF algorithm, the iterations are startedwith all the u parameters equal to zero, in other words, with all estimatedexpected frequencies m̂(0)abc equal to 1. It is important to note that them̂(0)abc may not implicitly contain parameters that are not included in themodel. For the model in Equation 2.4, every IPF iteration consists of thefollowing two steps:
m̂(�)0abc = m̂(��1)abc nab+m̂(��1)ab+ ;
m̂(�)abc = m̂(�)0abc n+bcm̂(�)0+bc ;

where the m̂(�)0abc and m̂(�)abc denote the improved estimated expected fre-quencies after imposing the restrictions of Equations 2.6 and 2.7, respec-tively.



Obtaining the log-linear parameters If there are no zero-estimatedexpected frequencies, the log-linear parameters can easily be computed bymeans of the estimated expected frequencies.4 When ANOVA-like con-straints are imposed on the parameters, that is, when e�ect coding is usedto identify the parameters, the log-linear parameters can be computed intwo di�erent ways. One method consists of calculating the average of thelog of the estimated expected frequencies given the values of the variablesappearing in the u parameters concerned and, subsequently, subtractingthe lower other e�ects (Bishop, Fienberg and Holland, 1975:16-17; Hage-naars, 1990:38). In the other method, the parameters are calculated bymeans of mean removal on the logs of the estimated expected frequencies(Laird and Olivier, 1981). The latter method is explained in more detailin Appendix A.1. The di�erence between the two methods is that in theformer, the lower-order e�ects are removed after calculating the mean ofthe log m̂abc's, while in the latter, an e�ect is directly removed from theestimated expected frequencies, or, in other words, before calculating thenext set of parameters. Of course, both methods give identical values forthe parameter estimates.5Although the IPF algorithm is very attractive because of its simplicityand its computational e�ciency, it has two serious disadvantages. In itssimplest form, it can handle only hierarchical log-linear models and itdoes not supply standard errors for the parameter estimates.
4It should be noted that if the observed table contains zero cell counts, maximumlikelihood estimates for the log-linear parameters may not exist (Haberman, 1974;Agresti, 1990:245). Maximum likelihood estimates do not exist if there are zero countsin the su�cient marginal cells. However, even if all su�cient statistics are positive,maximum likelihood estimates may not exist. A well-known example occurs in the caseof the no-three-variable interaction model for a 2-by-2-by-2 table. The parameters ofthis model cannot be estimated if there is more than one zero observed frequency(Santner and Du�y, 1989).5Another method, which is explained in more detail in section 2.6 and in AppendixA.2, is based on using the cumulated multipliers of the IPF iterations rather than theestimated expected frequencies.



2.4 Model selection
2.4.1 Testing goodness of �tThe goodness of �t of a postulated log-linear model can be assessed bycomparing the observed frequencies, n, with the estimated expected fre-quencies, m̂. For this purpose, usually two chi-square statistics are used:the likelihood-ratio statistic and the Pearson statistic. For a three-waytable, the Pearson chi-square statistic equals

X2 = X
abc (nabc � m̂abc)2m̂abc ;

and the likelihood-ratio chi-square statistic is
L2 = 2 Xabc nabc log

� nabcm̂abc
� : (2.8)

The number of degrees of freedom for a particular model is
df = number of cells� number of independent u parameters:

When structural zeros occur in the estimated expected frequencies orwhen some parameters cannot be estimated as a result of zeros in thesu�cient statistics, the calculation of the number of degrees of freedom isa bit more complicated (Clogg and Eliason, 1987). In such cases, df canbe obtained by
df = number of non-zero �tted cells

� number of estimable u parameters:
Both chi-square statistics have asymptotic, or large sample, chi-squaredistributions when the postulated model is true. In the case of smallsample sizes and sparse tables, the chi-square approximation will gener-ally be poor (Read and Cressie, 1988; Agresti, 1990:246). Koehler andLarntz (1980) and Koehler (1986) showed that X2 is valid with smallersample sizes and sparser tables than L2. They showed that the distribu-tion of L2 is usually poor when the sample size divided by the number ofcells is less than 5 (Agresti, 1990:246). Therefore, when sparse tables areanalyzed, it is best to use both chi-square statistics together. When X2



and L2 have almost the same value, it is more likely that both chi-squareapproximations are good. Otherwise, at least one of the two approxima-tions is poor. Haberman (1978: section 5.3) showed that when tables aresparse, both chi-square approximations are not only poor, but they alsohave di�erent distributions.Recently, Read and Cressie (1988) introduced a family of statistics,
2� (�+ 1)Xabc nabc

"� nabcm̂abc
�� � 1# ;

called power divergence statistics. This is equal to X2 for � = 1 and L2as � ! 0. Read and Cressie recommended the statistic with � = 2=3,which they found less susceptible to e�ects of sparseness than X2 and L2(Agresti, 1990:249).
2.4.2 Comparison of modelsThe likelihood-ratio chi-square statistic is actually a conditional test forthe signi�cance of the di�erence in the value of the log-likelihood functionfor two nested models. Two models are nested when the restricted modelhas to be obtained by only linearly restricting some parameters of theunrestricted model. Thus, the likelihood-ratio statistic can be used totest the signi�cance of the additional free parameters in the unrestrictedmodel, given that the unrestricted model is true in the population. As-suming multinomial sampling, L2 can be written more generally as

L2(rju) = ��2 logL(r)�� ��2 logL(u)�= 2nabc log �̂abc(u) � 2nabc log �̂abc(r)
= 2nabc log m̂abc(u)m̂abc(r)

! ;
where the subscript (u) refers to the unrestricted model and the subscript(r) to the restricted model. Note that in Equation 2.8, a particular modelis tested against the completely unrestricted model, the saturated model.Therefore, in Equation 2.8, the estimated expected frequency in the nu-merator is the observed frequency nabc. The L2(rju) statistic has a largesample chi-square distribution if the restricted model is approximatelytrue. The approximation of the chi-square distribution may be good for



conditional L2 tests between non-saturated models even if the test againstthe saturated model is problematic, as in sparse tables (Haberman, 1977,1978:325). The number of degrees of freedom in conditional tests equalsthe number of parameters which are �xed in the restricted model com-pared to the unrestricted model. The L2(rju) statistic can also be computedfrom the unconditional L2 values of two nested models,L2(rju) = L2(r) � L2(u) ;with df(rju) = df(r) � df(u) :Another approach to model selection is based on information theory. Theaim is not to detect the true model but the model that provides the mostinformation about the real world. The best known information criteria arethe Akaike information criterion (AIC) (Akaike, 1987) and the Bayesianinformation criterion (BIC) (Schwarz, 1978; Raftery, 1986, 1993). Thesetwo measures, which can be used to compare both nested and non-nestedmodels, are de�ned asAIC = �2 logL+ 2npar ; (2.9)BIC = �2 logL+ (logN)npar ; (2.10)where npar denotes the number of unknown parameters. The lower theAIC or BIC, the better a particular model, or the more information itcontains. It can be seen that the two information criteria give a di�erentweight to the parsimony of a model. In the context of log-linear modeling,they are most often calculated asAIC� = L2 � 2 df :BIC� = L2 � logN df :These are, in fact, conditional information indices which compare themodel of interest with the saturated model. For example, AIC� can alsobe obtained by subtracting the value of AIC for the saturated model,�2nabc log(nabc=N) + 2(number of cells), from the value of AIC for themodel concerned.For more extended overviews on model testing and model selection inlog-linear analysis, see Read and Cressie (1988), Agresti (1990: Chapter7), and Hagenaars (1990:56-68).



2.5 Non-hierarchical log-linear models
So far, attention has been paid to only one special type of log-linearmodels, the hierarchical log-linear models. As demonstrated, hierarchicallog-linear models are based on one particular type of restriction on thelog-linear parameters. But, when the goal is to construct models whichare as parsimonious as possible, the use of hierarchical log-linear modelsis not always appropriate. To be able to impose other kinds of linearrestrictions on the parameters, it is necessary to use more general kindsof log-linear models.As demonstrated in Appendix B, log-linear models can also be de�nedin a much more general way by viewing them as a special case of the gen-eralized linear models (GLM) (Nelder and Wedderburn, 1972; McCullaghand Nelder, 1983: Chapter 6, 1989). In its most general form, a log-linearmodel can be de�ned as

logmi = Xj �jxij ; (2.11)
where i denotes a cell entry, �j is a particular u term, and xij is anelement of the design matrix.The design matrix provides us with a very 
exible tool for specifyinglog-linear models with various restrictions on the parameters. Detaileddiscussions on the use of design matrices in log-linear analysis can befound in, for instance, Evers and Namboodiri (1977), Haberman (1978,1979), and Rindskopf (1990).
2.5.1 Possible speci�cations of the design matrixSuppose we want to specify the design matrix for an hierarchical log-linear model of the form fAB;BCg. Assume that A�, B�, and C�, thenumber of categories of A, B, and C, are equal to 3, 3, and 4, respectively.Because in that case model fAB;BCg has 18 independent parameters tobe estimated, the design matrix will consist of 18 columns: 1 column forthe mean e�ect u, 7 ([A� � 1] + [B� � 1] + [C� � 1]) columns for the one-variable terms uAa , uBb , and uCc , and 10 ([A��1]�[B��1]+[B��1]�[C��1])columns for the two-variable interaction terms uABab and uBCbc . The exactvalues of the cells of the design matrix, the xij , depend on the restrictionswhich are imposed to identify the parameters. Suppose, for instance, that



column j refers to the one-variable term uAa and that the highest level ofA, A�, is used as the (arbitrary) reference category. In e�ect coding,the element of the design matrix corresponding to the ith cell, xij , willequal 1 if A = a, -1 if A = A�, and otherwise 0. On the other hand, indummy coding, xij would be 1 if A = a, and otherwise 0. The columns ofthe design matrix referring to the two-variable interaction terms can beobtained by multiplying the columns for the one-variable terms for thevariables concerned (Evers and Namboodiri, 1977; Haberman, 1978).The design matrix can also be used to specify all kinds of non-hier-archical models. Actually, by means of the design matrix, three kindsof linear restrictions can be imposed on the log-linear parameters: a pa-rameter can be �xed to zero, a parameter can be speci�ed to be equalto another parameter, and a parameter can be speci�ed to be in a �xedratio to another parameter.The �rst kind of restriction, �xing a parameter to zero, can be ac-complished by simply deleting the column of the design matrix referringto the e�ect concerned. Note that, in contrast to hierarchical log-linearmodels, parameters can be �xed to be equal to zero without the necessityof deleting the higher-order e�ects containing the same indices.Imposing equality restrictions among parameters is likewise very sim-ple. Equality restrictions can be imposed by adding up the columns ofthe design matrix which belong to the e�ects which are assumed to beequal. Suppose, for instance, that we want to specify a model with asymmetric association between the variables A and B, each having threecategories. This implies that
uABab = uABba :

When using e�ect coding, the design matrix for the unrestricted e�ectuABab contains four columns, one for each of the parameters uAB11 , uAB12 ,uAB21 , uAB22 . In terms of these four parameters, the symmetric associa-tion between A and B implies that uAB12 is assumed to be equal to uAB21 .This can be accomplished by summing the columns of the design matrixreferring to these two e�ects.6
6Log-linear models with symmetric interaction terms may be used for various pur-poses. In longitudinal research, they may be applied to test the assumption of marginalhomogeneity (Agresti, 1990:387-388; Hagenaars, 1990:156-162). Other application oflog-linear models with symmetric association parameters are Rasch models for dichoto-



As already mentioned above, parameters can also be restricted to bein a �xed ratio to each other. This is especially useful when the variablesconcerned can be assumed to be measured on a interval level scale, withknown scores for the di�erent categories. Suppose, for instance, that wewant to restrict the one-variable e�ect of variable A to be linear. Assumethat the categories scores of A, denoted by a, are equidistant, that is,that they take values 1, 2, and 3. Retaining the e�ect coding scheme, alinear e�ect of A is obtained by
uAa = (a� �a)uA :

Here, �a denotes the mean of the category scores of A, which in this case is2. Moreover, uA denotes the single parameter describing the one-variableterm for A. It can be seen that the distance between the uAa parametersof adjacent categories of A is uA. In terms of the design matrix, sucha speci�cation implies that instead of including A� � 1 columns for theone-variable term for A, one column with scores (a��a) has to be included.These kinds of linear constraints can also be imposed on the bivariateinteraction parameters of a log-linear model. The best known examplesare linear-by-linear interaction terms (Haberman, 1979: Chapter 6) androw- or column-e�ect models (Goodman, 1979, 1984; Clogg, 1982; Cloggand Shihadeh, 1994). When specifying a linear-by-linear interaction term,it is assumed that the scores of the categories of both variables are known.Assuming equidistant scores for the categories of the variables A and Band retaining the e�ect coding scheme, the linear-by-linear interactionbetween A and B is given by
uABab = (a� �a)(b� �b)uAB :

Using this speci�cation, which is sometimes also called uniform associa-tion, the (partial) association between A and B is described by a singleparameter instead of using (A� � 1)(B� � 1) independent uABab param-eters. As a result, the design matrix contains only one column for theinteraction between A and B consisting of the scores (a� �a)(b� �b).A row association structure is obtained by assuming the column vari-able to be linear. When A is the row variable, a row association is de�ned
mous and polytomous items (Agresti, 1993) and for repeated categorical measurements(Conaway, 1989).



as
uABab = (b� �b)uABa :

Note that for every value of A, there is a uABa parameter. Actually, thereare (A� � 1) independent row parameters. Therefore, the design matrixwill contain (A� � 1) columns which are based on the scores (b � �b).The column association model is, in fact, identical to the row associationmodel, only the roles of the column and row variable change.
2.5.2 EstimationFinding maximum likelihood estimates for the parameters of non-hier-archical log-linear models is a bit more complicated than for the hierar-chical log-linear model because the su�cient statistics are no longer equalto particular observed marginals. For GLMs, ML estimates for the modelparameters may be obtained with Fisher's scoring algorithm (McCullaghand Nelder, 1983:31-34, 1989). If, as in the application used here, acanonical link is used, the scoring algorithm is equivalent to the Newton-Raphson algorithm (Agresti, 1990:114). The Newton-Raphson algorithmfor obtaining maximum likelihood estimates for the parameters of thegeneral log-linear model given in Equation 2.11 is explained in AppendixC.1.The Newton-Raphson algorithm, which is implemented in, among oth-ers, the GLIM program and Haberman's FREQ program, has two strongpoints: it converges in a few iterations and it supplies standard deviationsof the parameters as a by-product. However, when a model contains manyparameters, the necessary computation and inversion of the Hessian ma-trix, the matrix of second-order derivatives to all parameters, is verytime consuming. Another weak point of the Newton-Raphson algorithmis that it may become unstable when some estimated expected cell countscome in the neighborhood of zero as a result of the fact that a particularlog-linear parameter goes to minus in�nity.An alternative to the Newton-Raphson algorithm is the uni-dimen-sional Newton algorithm. It di�ers from the multi-dimensional Newtonalgorithm in that it adjusts only one parameter at a time instead of ad-justing them all simultaneously. In that sense, it resembles IPF. Insteadof using the complete Hessian matrix, the uni-dimensional Newton algo-



rithm uses only the diagonal element belonging to the parameter to beupdated (Andersen, 1990; Jensen, Johansen and Lauritzen, 1991).Goodman (1979) presented a slightly di�erent version of the uni-dimensional Newton algorithm, which he used to estimate the uniformassociation models and the row and column association models discussedabove (see also Clogg 1982). Goodman's algorithm, which is discussed inmore detail in Appendix D.1, is also implemented in the `EM program(Vermunt, 1993). There it is used to estimate any log-linear model of thegeneral form of Equation 2.11. Experience with the `EM program showsthat Goodman's algorithm is very stable, even when `bad' starting valuesare used, such as starting values of zero for all � parameters.Generally, the uni-dimensional Newton algorithm needs more itera-tions to converge than the Newton-Raphson algorithm. But the di�erencein number of iterations depends greatly on the magnitude of the corre-lations among the parameters because that is the information which isdisregarded by the uni-dimensional Newton algorithm. Experience with`EM shows that when the parameters are not too highly correlated, ap-proximately two or three times as many iterations are needed by theuni-dimensional Newton algorithm. But, when the correlations withina particular set of parameters are high, many more iterations may beneeded. Because the uni-dimensional Newton algorithm does not requirecomputation and inversion of the complete Hessian matrix, each iterationcosts very little computer time, even with many parameters.In Appendix D.1, it is demonstrated that IPF is a special case ofGoodman's version of the uni-dimensional Newton algorithm. Good-man's uni-dimensional Newton algorithm can be seen as a generalizationof the IPF algorithm discussed in the context of hierarchical log-linearmodels. There is also another generalization of IPF, namely, the wellknown generalized iterative scaling algorithm developed by Darroch andRatcli� (1972). However, the uni-dimensional Newton algorithm is muchmore 
exible in that it does not force the values of the design matrixto be greater than or equal to zero. Moreover, for most problems, theuni-dimensional Newton algorithm converges in far fewer iterations thanthe generalized iterative scaling algorithm (Goodman, 1979).



2.6 Log-rate models or log-linear models with aweight vector
The general log-linear model discussed in the previous section can beextended to include an additional component, viz., a weight for each midenoted by zi (Haberman, 1978:43-61; Laird and Olivier, 1981). Theseweights can be used to specify log-rate models, to perform a weightedanalysis, to �x log-linear parameters to a particular value, and to analyzeincomplete tables.The log-linear model with a weight vector is given by

log�mizi
� = Xj �jxij

which can also written as
logmi = log zi +Xj �jxij ;

where the zi are �xed a priori. Sometimes the vector with elements log ziis also called the o�set matrix.The speci�cation of a zi for every cell of the contingency table canbe used for many di�erent purposes. One possible use of a weight vectoris for specifying Poisson regression models for the number of events miin which one takes into account the population sizes or the length ofthe observation period. This leads to what is called a log-rate model, amodel for rates instead of frequency counts (Haberman, 1978; Willekensand Shah, 1983; Clogg and Eliason, 1987). A rate is a count divided bysome quantity, generally the size of the population exposed to some risk(Fleiss, 1981). As will be demonstrated in Chapter 4, log-rate models areequivalent to piecewise exponential survival models (Holford, 1976, 1980;Laird and Olivier, 1981).The weight vector can also be used to correct for the sample designor for selection resulting from nonresponse (Clogg and Eliason, 1987,Agresti, 1990:198). In that case, the zi must be set equal to the inverse ofthe sampling weights. The o�set matrix may also be used to incorporate�xed e�ects in a log-linear model. This can be accomplished by adding thevalues of the � parameters which attain �xed values to the correspondinglog zi's. Lastly, the vector with weights may be used to analyze tables



with structural zeros, sometimes also called incomplete tables (Fienberg,1972; Haberman, 1979: Chapter 7). This can be accomplished by settingthe zi's for the cells which are structurally zero equal to zero.
Estimation Log-linear models with a weight vector can be estimatedwith the same estimation procedures used for the other log-linear modelsdiscussed so far. The GLIM program and Haberman's FREQ program,which are both based on the Newton-Raphson algorithm, allow the userto specify an o�set matrix, or a weight vector. When using the IPFalgorithm or the uni-dimensional Newton algorithm, the only necessarymodi�cation is that zi must be used as the starting value for the esti-mated expected frequencies instead of starting with all m(0)i equal to one.It should be noted that when using IPF, the log-linear parameters canno longer be calculated by means of the estimated expected frequencies,but rather they must be calculated by means of mi=zi. However, whenparticular zi are equal to zero, an alternative procedure implemented in,for instance, the LOGLIN program (Olivier and Ne�, 1976) and the `EMprogram (Vermunt, 1993) has to be used. This procedure which is basedon using cumulated multipliers rather than estimated expected cell fre-quencies is discussed in Appendix A.2.
2.7 Models with log-multiplicative e�ects
Goodman's row-column associations II The log-linear model is oneof the GLMs, that is, it is a linear model for the logs of the cell counts ina frequency table. However, extensions of the standard log-linear modelhave been proposed which imply the inclusion of non-linear terms, thebest known example being the log-multiplicative row-column associationmodels, also denoted as RC association models type II, developed byGoodman (1979, 1984) and Clogg (1982) (see also Clogg and Shihadeh,1994). These row-column association models di�er from the associationmodels discussed in section 2.5 in that the row and column scores arenot a priori �xed, but are treated as unknown parameters which haveto be estimated as well. More precisely, a linear-by-linear interactionis assumed between two variables, given the unknown column and rowscores.Suppose we have a model for a three-way frequency table ABC con-



taining log-multiplicative terms for the relationships between A and Band B and C. This gives the following log-multiplicative model:logmabc = u+ uAa + uBb + uCc + �ABa �AB�ABb + �BCb �BC�BCc : (2.12)The � parameters describe the strength of the association between thevariables concerned. The �'s are the unknown scores for the categoriesof the variables concerned. As in standard log-linear models, identifyingrestrictions have to be imposed on the parameters �. One possible setof identifying restrictions on the log-multiplicative parameters which wasalso used by Goodman (1979) is:Xa �ABa = X
b �ABb = X

b �BCb = Xc �BCc = 0Xa
��ABa �2 = X

b
��ABb �2 = X

b
��BCb �2 = Xc

��BCc �2 = 1 :
This gives row and column scores with a mean of zero and a sum ofsquares of one. More recently, alternative identifying restrictions havebeen proposed in which the �'s are weighted, for instance, by the observedmargins (Becker and Clogg, 1989; Goodman, 1991).On the basis of the model described in Equation 2.12, both morerestricted models and less restricted models can be obtained. One possiblerestriction is to assume the row and column scores within a particularpartial association to be equal, for instance, �ABa equal �ABb for all a equalto b (Goodman, 1979). Of course, this presupposes that the number ofrows equals the number of columns. Such a restriction is often used in theanalysis of mobility tables (Luijkx, 1994). It is also possible to assumethat the scores for a particular variable are equal for di�erent partialassociations (Clogg, 1982), for example, �ABb = �BCb . Less restrictedmodels may allow for di�erent � and/or � parameters within the levelsof some other variable (Clogg, 1982), for example, di�erent values of�ABa , �ABb , or �AB within levels of C. To test whether the strengthof the association between the variables father's occupation and son'soccupation changes linearly with time, Luijkx (1994) speci�ed models inwhich the � parameters are a linear function of time (see also Wong,1995).
A general class of log-multiplicative e�ects As mentioned above,the RC association models assume a linear-by-linear interaction in which



the row and column scores are unknown. Xie (1992) demonstrated thatthe basic principle behind Goodman's RC association models, i.e., linearlyrestricting log-linear parameters with unknown scores for the linear terms,can be applied to any kind of log-linear parameter. He proposed a generalclass of log-multiplicative models in which higher-order interaction termscan be speci�ed in a parsimonious way.7 An example of such a model islogmabc = u+ uAa + uBb + uCc + uABab �ABc + uACac + uBCbc :This model contains, apart from the one and two-variable interactionparameters for A, B, and C, a three-variable interaction term de�nedby the multiplicative factor �ABc . As can be seen, this three-variableinteraction term has a very speci�c form. Actually, the interaction termuABab is assumed to be equal among levels of C, except for a multiplicativescaling factor. In other words, the structure of the partial association ABis equal among levels of C, but the strength of the partial association ABdi�ers among levels of C. This leads, of course, to a very parsimoniousspeci�cation of higher-order interaction terms. In this case, only C� � 1instead of (A� � 1)(B� � 1)(C� � 1) additional parameters are used forthe three-variable interaction term.For the sake of simplicity, the interaction term uABab was not restricted.However, using Xie's approach, it is possible to restrict uABab as well.Xie (1992) gave examples of a symmetric association, a linear-by-linearassociation, and di�erent kinds of row and column associations. In itsmost general form, the log-multiplicative model proposed by Xie can bewritten as
logmi = X

k
24Xjk �jkxijk

35�kxik ;
where k is the index for the multiplicative terms and jk is the index foran e�ect belonging to the kth multiplicative term. Of course, by setting

7Another type of generalization of the log-multiplicative models discussed aboveinvolves describing the (partial) association between two categorical variables by meansof several sets of row and column scores (Goodman, 1986; Becker, 1989; Becker andClogg, 1989; Clogg and Shihadeh, 1994: Chapter 5). These models are called RC(M)models, where the M refers to the dimensionality of the model, that is, to the numberof sets of row and column scores that is used. RC(M) modeling is strongly related tocorrespondence analysis (Goodman, 1986, 1991; Gilula and Haberman, 1988; Van derHeijden, De Falguerolles, and De Leeuw, 1989).



�k equal to one and also all xik equal to one, one can specify standardlog-linear terms.
Estimation Both the log-multiplicative association models proposedby Goodman (1979) and Clogg (1982) and the log-multiplicative mod-els proposed by Xie can be estimated by means of the `EM program(Vermunt, 1993), in which the version of the uni-dimensional Newton al-gorithm proposed by Goodman (1979) for estimating log-multiplicativemodels is implemented (see Appendix D.2). As explained in section 2.5,in this procedure, only one parameter is adjusted at a time, treating theother parameters as �xed.Of course, log-multiplicative models can also be estimated by meansof the Newton-Raphson algorithm. In that case, the complete matrixof second partial derivatives has to be computed and inverted every it-eration. However, because of the strong dependencies among the pa-rameters appearing in the same interaction term, the Newton-Raphsonalgorithm may have di�culties converging. This is a well known phe-nomenon when applying Newton-Raphson to solve non-linear equations.Recently, Haberman (1995) proposed a stabilized Newton-Raphson algo-rithm for obtaining maximum likelihood estimates in association modelswhich overcomes these convergence problems.It must be noted that, in contrast to standard log-linear models, thelikelihood function for log-multiplicative models often contains local max-ima. It is therefore advisable to estimate each model using di�erent setsof starting values. When di�erent sets of starting values yield the sameparameter estimates, one can be more certain that the global maximumlikelihood solution has been found.
2.8 Logit models and multinomial responsemodels
In the log-linear models discussed so far, the relationships between thecategorical variables are modelled without making a priori assumptionsabout their `causal' ordering: no distinction is made between dependentand independent variables. However, one is often interested in predict-ing the value of a categorical response variable by means of explanatoryvariables. The logit model is such a `regression analytic' model for a



categorical dependent variable. In the standard logit model, a binarydependent variable is related to a set of categorical regressor variables(Goodman, 1972). When the response variable has more than 2 cat-egories, the model is called a multinomial logit model or multinomialresponse model (Haberman, 1979: Chapter 6; Agresti, 1990: Chapter 9).Suppose we have a response variable denoted by C and two categoricalexplanatory variables denoted by A andB. Moreover, assume that both Aand B in
uence C, but that their e�ect is equal within levels of the othervariable. In other words, it is assumed that there is no interaction betweenA and B with respect to their e�ect on C. This gives the following logisticmodel for the conditional probability of C given A and B, �cjab:
�cjab = exp �uCc + uACac + uBCbc �Pc exp �uCc + uACac + uBCbc � : (2.13)

When the response variable C is dichotomous, the logit can also be writ-ten as
log �1jab1� �1jab

! = log �1jab�2jab
!

= (uC1 � uC2 ) + (uACa1 � uACa2 ) + (uBCb1 � uBCb2 )= w + wAa + wBb :
It should be noted that the logistic form of the model guarantees thatthe probabilities remain in the admissible interval between 0 and 1. Al-ternative transformations of �1jab which also ful�ll this requisite lead tothe probit model and the complementary log-log model (McCullagh andNelder, 1983:75-77, 1989; Willekens, 1994:25-32).8
The logit model written as a log-linear model It has been shownthat the logit model given in Equation 2.13 is equivalent to a log-linearmodel which includes the same u terms as the logit model concernedbut also an e�ect that �xes the marginal distribution of the independentvariables (Goodman, 1972, Haberman, 1978, Fienberg, 1980, Agresti,

8In the probit model, the conditional probabilities are transformed using the cumula-tive normal distribution, while in the complementary log-log model, the transformationof �1jab would be log(� log(1� �1jab)).



1990:152-153). More precisely, it can be shown that the likelihood equa-tions based on independent multinomial sampling are equivalent to thelikelihood equations based on a Poisson model, given that conditionXc mabc = Xc nabc (2.14)
is ful�lled. The proof that the product-multinomial likelihood is equiva-lent to the Poisson likelihood can be found in Appendix E.1.Including the same parameters as those in the logit model given inEquation 2.13 and ensuring that the condition given in Equation 2.14 isful�lled leads to the following log-linear modellogmabc = �ABab + uCc + uACac + uBCbc ; (2.15)where

�ABab = u+ uAa + uBb + uABab :In other words, the logit model of Equation 2.13 is equivalent to log-linearmodel fAB;AC;BCg for the frequency table with observed counts nabc.Note that when using this formulation of a logit model, it does not matterwhether the response variables is dichotomous or not. If the responsevariables are polytomous, a log-linear or logit model of the form givenin Equation 2.15 is sometimes also called a multinomial response model(Haberman, 1979: Chapter 6; Agresti, 1990: Chapter 7). According toHaberman (1979), in its most general form, the multinomial responsemodel may be written aslogmik = �k +Xj �jxijk ; (2.16)
where k is used as the index for the joint distribution of the independentvariables and i as an index for the response variable.
Estimation The parameters of the multinomial response model canbe estimated using the same algorithms used for the log-linear mod-els discussed in the previous sections, i.e., IPF, Newton-Raphson, anduni-dimensional Newton. However, Haberman (1979) proposed a moree�cient version of the Newton-Raphson algorithm for estimating multi-nomial response models. This is necessary because the number of �k



can become very large. In fact, Haberman's procedure uses a Newton-Raphson cycle to update the �j parameters, followed by an IPF-like cycleto update the �k parameters. The Newton-Raphson algorithm for multi-nomial response models which is implemented in, among others, Haber-man's FREQ program and in SPSS can be found in Appendix C.2.
Logistic regression Up to now, the independent variables used in thelogit model were assumed to be categorical. However, it is not a prob-lem to generalize the logit model to also allow for continuous regres-sors. A model of the form given in Equation 2.13 containing continu-ous regressors gives the well known logistic regression model. But alsoHaberman's multinomial response model given in Equation 2.16 is equiva-lent to a multinomial logistic regression model (McFadden, 1974; Agresti,1990:313), i.e.,

�ijk = exp �Pj �jxijk�Pi exp �Pj �jxijk� : (2.17)
The index k now denotes a particular observation instead of a cell inthe marginal distribution of the independent variables. So, a particularxijk contains the value of observation k on the independent variable jfor response category i. Note that when k is an individual observation,the expected frequency mik appearing in Equation 2.16 is actually theprobability that observation k gives response i, where the �k parametersguarantee that the estimated response probabilities add up to one forevery observation.The equivalence between logistic regression analysis and logit analysisimplies that programs for log-linear analysis which allow speci�cation ofa design matrix can also be used to estimate logistic regression models.It must, however, be noted that in that case the statistics L2 and X2are not appropriate for testing �t of models. But, conditional likelihoodratio tests to compare models can still be performed (Haberman, 1974;Agresti, 1990).
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Figure 2.1: Modi�ed path model
2.9 Causal log-linear models
2.9.1 Goodman's modi�ed path modelsIn the previous section, a `regression analytic' extension of log-linear anal-ysis, i.e., the logit model, was discussed. This section presents a `path-analytic' extension of the logit model which was proposed by Goodman(1973). He proposed a log-linear model which takes a priori informationon the causal ordering of the variables into account. The model, which hecalled a modi�ed path analysis approach, consists of specifying a seriesof logit models for di�erent marginal tables. As will be demonstrated be-low, this model has some similarities with chain independence graphicalmodels for categorical data (Wermuth and Lauritzen, 1983, 1990).
Specifying a causal order Suppose we want to investigate the causalrelationships between six categorical variables denoted by A, B, C, D, E,and F . Figure 2.1 shows the assumed causal ordering of these variables,and the assumed relationships between these variables, where a pointedarrow indicates that variables are directly related to each other, and a`knot' that there is a higher order interaction. The variables A, B, andC are exogenous variables. This means that neither their mutual causalorder nor their mutual relationships are speci�ed. The other variables areendogenous variables, where D is assumed to be posterior to E, and F is



assumed to be posterior to E. From Figure 2.1, it can be seen that D isassumed to depend on A and on the interaction of B and C. Moreover,E is assumed to depend on A, B, and D, and F on B, C, D, and E.Let �abcdef denote the probability that A = a, B = b, C = c, D = d,E = e, and F = f . the information on the causal ordering of the variablesis used to decompose this joint probability into a product of marginaland conditional probabilities (Goodman, 1973, Wermuth and Lauritzen,1983). In this case, �abcdef can also be written as
�abcdef = �abc �djabc �ejabcd �f jabcdef : (2.18)

This is a straightforward way to indicate that the value on a particularvariable can only depend on the preceding variables and not on the pos-terior ones. For instance, E is assumed to depend only on the precedingvariables A, B, C, and D, but not on the posterior variable F . Therefore,the probability that E = e depends only on the values of A, B, C, andD, and not on the value of F . Note that this representation can only beused to specify recursive models. Recently, Mare and Winship (1991) pre-sented a possible approach to non-recursive models for categorical datawhich requires the use of the latent variables techniques discussed in thenext chapter.Decomposing the joint probability �abcdef into a set of marginal andconditional probabilities is only the �rst step in describing the causalrelationships between the variables under study. Generally, the aim ofan analysis is to reduce the number of parameters in some way, whilethe right-hand side of Equation (2.18) contains as many unknown (con-ditional) probabilities as observed cell frequencies. In other words, themodel given in Equation 2.18 is a saturated model in which it is assumedthat a particular dependent variable depends on all its posterior variables,including all the higher-order interaction terms. Generally, one is inter-ested in more parsimonious speci�cations of the conditional probabilitiesin which it is possible to specify which variables in
uence each other andwhich do not.
Simple restrictions on probabilities The simplest way to specifymore parsimonious models is to restrict directly the conditional proba-bilities appearing in Equation 2.18. Suppose that, as depicted in Figure2.1, E depends on A, B, and D, but not on C. Because in that case



�ejabcd = �ejabd, in Equation 2.18, �ejabcd can be replaced by �ejabd. Thesekinds of restrictions are also applied in, for instance, discrete-time Markovmodels (Bishop, Fienberg and Holland, 1975: Chapter 7; Van de Pol andLangeheine, 1990). On the basis of the relationships depicted in Figure2.1, a more restricted version of the general Equation 2.18 would be�abcdef = �abc �djabc �ejabd �f jbcde : (2.19)However, as is shown below, this model is still not completely in agree-ment with Figure 2.1.The above-mentioned method of restricting the general model givenin Equation 2.18 is similar to the formulation of so-called chain indepen-dence graphical models or block recursive graphical models (Whittaker,1990: section 3.6; Wermuth and Lauritzen, 1983, 1990). In a chain inde-pendence graph, the variables are grouped in blocks which can be com-pletely ordered. The relationships between variables within one blockare assumed to be symmetric, while the relationships between variablesbelonging to di�erent blocks are assumed to be asymmetric. This is de-picted graphically by undirected and direct edges (arrows), respectively.Like any other graphical model, a chain independence graphical modelmust be completely formulated in terms of conditional independence.The restrictions which are imposed on conditional probabilities inEquation 2.19 are in agreement with the conditional independence rulesof chain independence graphical models. For instance, E is assumed tobe independent of C given A, B, and D, whereas the e�ects of A, B, andD on E are not restricted.Specifying more restricted models by means of the procedure appliedin Equation 2.19 has, however, one important disadvantage. The depen-dent variable must always be related to the joint independent variable.The variable E, for instance, depends on the joint variable ABD, thatis, the variable which is obtained by combining the levels of A of B andD. Therefore, for every combination of A, B, and D, a separate param-eter is included to describe the probability that E = e. Thus, when aparticular variable is thought to in
uence the dependent variable con-cerned, all higher-order interactions with the other independent variablesare automatically included in the model as well.
Logit parameterization Goodman's modi�ed path analysis approachconsists of using a log-linear or logit parameterization of the marginal and



conditional probabilities appearing in Equation 2.18 rather than usingthe simple restrictions described above (Goodman, 1973). Since in theselogit models it possible to exclude certain higher-order interactions, suchan approach leads to more parsimonious causal models for categoricaldata. While only simple hierarchical log-linear models will be here used,the results presented apply to other kinds of log-linear models as well,including the log-multiplicative models discussed in section 2.7.A system of logit models consistent with the path model depictedin Figure 2.1 leads to the following parameterization of the conditionalprobabilities appearing in Equation 2.18:
�abc = exp �uAa + uBb + uCc + uABab + uACac + uBCbc + uABCabc �Pabc exp �uAa + uBb + uCc + uABab + uACac + uBCbc + uABCabc � ;

�djabc = exp �uDd + uADad + uBDbd + uCDcd + uBCDbcd �Pd exp �uDd + uADad + uBDbd + uCDcd + uBCDbcd � ;
�ejabcd = exp �uEe + uAEae + uBEbe + uDEde �Pg exp �uEe + uAEae + uBEbe + uDEde � ;
�f jabcde = exp �uFf + uBFbf + uCFcf + uDFdf + uEFef �Pf exp �uFf + uBFbf + uCFcf + uDFdf + uEFef � :It can be seen that the model for the marginal distribution of the exoge-nous variables A, B, and C is a saturated model since it contains all theinteraction terms among A, B, and C. It would also have been possibleto specify a non-saturated model for relationships between the exogenousvariables. In the next three equations, D, E, and F appear as dependentvariables, respectively. Variable D depends on A, B, and C, and there isa three-variable interaction between B, C, and D. Moreover, E dependson A, B, and D, but there are no higher-order interactions between Eand the independent variables. And �nally, F depends on B, C, D, andE. It is clear that this recursive system of logit equations contains farfewer parameters than the restricted model given in Equation 2.19.Since specifying a logit model for conditional probabilities is equiva-lent to specifying a log-linear model for a frequency table in which themarginal distribution of the independent variables is treated as �xed, thelogit equations given above can also be written as log-linear models. For



instance, the logit model for �ejabcd is equivalent to the log-linear logitmodel fABCD;AE;BE;DEg for (marginal) frequency table ABCDE,or logmabcde = �ABCDabcd + uEe + uAEae + uBEbe + uDEde ;where mabcde denotes an expected frequency in marginal table ABCDE.Moreover, �ABCDabcd denotes the e�ect which �xes the marginal distributionof the dependent variables.Thus, specifying a causal log-linear model for a set of categorical vari-ables can be simply accomplished by specifying separate log-linear modelsfor di�erent marginal tables or subtables. The marginal tables are formedby the variables used in the previous marginal table and the variable whichappears as the dependent variable. In this case, log-linear or logit modelshave to be speci�ed for tables ABC, ABCD, ABCDE, and ABCDEF .Goodman (1973) showed how to specify separate log-linear models for dif-ferent marginal tables (see also Hagenaars, 1990:75-82). He subsequentlyshowed how to obtain the overall expected frequencies with an equationsimilar to Equation 2.18. Note that the probabilities in Equation 2.18 caneasily be obtained by means of the expected frequencies. For instance,
�ejabcd = mabcdePemabcde : (2.20)

A remark has to be made with respect to marginal tables for whichthe logit models or the equivalent log-linear models have to be speci-�ed given the assumed causal order among the variables. Suppose that,contrary to what is depicted in Figure 2.1, the variables E and F areassumed to be independent of one another given a person's scores on theposterior variables A, B, C, and D. In other words, it is assumed thatthere is no direct e�ect of E on F . In that case, the modi�ed path modeldescribed above may also be speci�ed in a slightly di�erent manner, thatis, it is possible to combine the logit models for D and E into a singlemodi�ed path step with two dependent variables. This follows from thecollapsibility theorem (Bishop, Fienberg, and Holland, 1975:47, Agresti,1990:151-152) which states that if two variables are assumed to be condi-tionally independent, the sizes of their relationships with the remainingvariables may be estimated in the table in which the other conditionallyindependent variable is included or not. Thus, if two variables are con-ditionally independent of one another, their relationships with the other



variables may be estimated either in the same table or in separate tables.The possibility of specifying the same model in alternative ways as a re-sult of collapsibility is a feature that will be encountered several times inthe next chapter which presents models with latent variables.
Combining the two kinds of restrictions Above, two di�erent waysof restricting the conditional probabilities of a modi�ed path model werepresented, viz., assuming that a variable does not depend on one or moreof the preceding variables and assuming that particular higher-order in-teraction terms are zero. But actually, it is simpler and computationallymore e�cient to combine the two ways of restricting the conditional prob-abilities because it often reduces the dimensionality of the tables one hasto work with. More precisely, the model can be restricted as in Equation2.19, and then the conditional probabilities appearing in this equationcan be restricted via a logit parameterization. This leads to a (small)modi�cation of the procedure proposed by Goodman.Let us look at the model for dependent variable E. Because E does notdepend on C, �ejabcd can be replaced by �ejabd. Therefore, the log-linearrestrictions which were imposed on �ejabcd can now be imposed directly on�ejabc, or equivalently, the log-linear model that was speci�ed for marginaltable ABCDE can now be speci�ed for marginal table ABDE. It shouldbe noted that this result also follows from the collapsibility theorem. SinceC and E are conditionally independent, the e�ects of A, B, and D on Emay be estimated after collapsing the table over C. Specifying log-linearmodel fABD;AE;BE;DEg for marginal table ABDE gives

logmabde = �ABDabd + uEe + uAEae + uBEbe + uDEde ;
wheremabde denotes an expected frequency in the marginal table ABDE.Thus, by imposing restrictions in two steps, the parameters can be esti-mated in the marginal table which includes only the independent vari-ables which are really used. This two-step procedure may not only reducethe size of a problem, but it also has another important advantage: Itprevents �tted zeros when the observed table contains zeros in the �xedmargin ABCD, but not in the margin ABD.
Continuous exogenous variables So far, all variables included inthe modi�ed path model were assumed to be categorical, which is in



agreement with the way Goodman presented his modi�ed path model.However, it is also possible to include continuous exogenous variables inmodi�ed path models. In fact, this extension is analogous to what wasdiscussed in the context of the logit model. When the variables A, B,and C are continuous rather than categorical, and when, as in Figure 2.1,D, E, and F are mutually ordered endogenous variables, a modi�ed pathmodel is obtained:
�def jxdjkxejkxfjk = �djxdjk �ejxejkd �f jxfjkde ;where xdjk, xejk, and xfjk denote the observed value of person k onexogenous variable j for D = d, E = e, and F = f , respectively. Inthis case, the marginal distribution of the exogenous variables cannot berestricted by means of a log-linear model. The conditional probabilitiescan, of course, be restricted via a general logit model or logistic regressionmodel of the form given in Equation 2.17.

2.9.2 Estimation and testingGoodman (1973) demonstrated that the maximum likelihood estimatesfor the log-linear parameters and the expected frequencies in the vari-ous submodels of a modi�ed path model can be estimated separately foreach submodel. This results from the fact that when the parameters ofthe various submodels are distinct, the likelihood can be factorized intosubmodel speci�c parts which may be maximized separately:
logL = X

abcdef nabcdef log (�abcdef ) ;= X
abc nabc+++ log (�abc) +X

abcdnabcd++ log ��cjabc�
+ X

abcdenabcde+ log ��ejabcd�+ X
abcdenabcdef log

��f jabcde� :
In Appendix E.2 it is shown that the likelihood equation for a parameterof a modi�ed path model is identical to the likelihood equation for aparameter of a logit model which has the same structure as the modi�edpath step concerned.The factorization of the likelihood makes it possible to estimate theparameters of a modi�ed path model by means of standard programs for



log-linear or logit analysis. The `EM program (Vermunt, 1993) has extrafacilities for de�ning submodels without actually having to `input' them.In `EM , the model speci�cation consists of de�ning the subtables andthe subtable-speci�c log-linear models. The log-linear models can be ofthe form of the general multinomial response model given in Equation2.16. In addition, log-multiplicative interaction terms can be used in themodi�ed path model. So, in fact, any kind of log-linear model can bespeci�ed for each subtable.
Restrictions across modi�ed path steps As previously mentioned,the parameters of the di�erent submodels can be estimated separatelyas long as they are distinct, but, when equality restrictions are imposedon parameters coming from di�erent submodels, the parameters of themodi�ed path model must be estimated simultaneously. In `EM , twotypes of equality restrictions can be imposed on parameters appearingin di�erent modi�ed path steps: Log-linear or logit parameters can beassumed to be equal, and (conditional) probabilities can be assumed tobe equal. As demonstrated in Appendix E.3, the likelihood equation fora log-linear parameter appearing in di�erent submodels is simply the sumof the contributions of the submodels concerned.Equality restrictions on the (conditional) probabilities can be imposedby means of a rather simple procedure proposed by Goodman in the con-text of latent class analysis (Goodman, 1974b). Van de Pol and Lange-heine (1990) demonstrated that Goodman's procedure can also be appliedto restrict any type of conditional probability appearing in (mixed andlatent) Markov models. They implemented the algorithm in their PAN-MARK program (Van de Pol, Langeheine, and De Jong, 1989). In `EM ,a generalized version of Goodman's algorithm is implemented to makeit possible to restrict conditional probabilities appearing in the same orin di�erent modi�ed path steps to be equal. The procedure proposed byGoodman, which is described in Appendix F, consists of replacing theunrestricted estimated conditional probabilities assumed to be equal bytheir weighted mean. However, this procedure has one drawback: It doesnot guarantee that in all situations the sum of the probabilities equalsone. Recently, Mooijaart and Van der Heijden (1992) demonstrated underwhich conditions Goodman's algorithm works properly, and, moreover,they proposed a modi�cation of Goodman's procedure for situations in



which it does not work properly. Their modi�cation consists of addingLagrange multipliers to the log-likelihood function to be maximized. Itmust, nonetheless, be noted that Goodman's algorithm works in mostcommon situations. Examples of situations in which Goodman's algo-rithm may not work are given in Appendix F.
Testing The factorization of the contribution of the submodels to thelog-likelihood function can also be used for testing. Goodman (1973)proposed testing the models separately by means of the likelihood-ratiochi-square statistic. The overall test for the complete model can be ob-tained by adding up the L2 values and the degrees of freedom of theseparate submodels. This is an important feature if the modi�ed pathmodel is estimated with standard programs for log-linear analysis.This testing procedure can, however, only be applied when the modelis speci�ed in the way Goodman did, that is, when every subtable containsall the variables of the previous subtable and when no restrictions areimposed on the parameters across modi�ed path steps. In other cases,the L2 for the complete model has to be computed by means of theestimated probabilities �̂abcde.
2.9.3 Discrete-time Markov modelsThe modi�ed path model is strongly related to the discrete-time Markovmodel. Actually, the discrete-time Markov model, which can be usedfor the analysis of multi-wave panel data, is a special case of the modi-�ed path model presented above (Vermunt, Langeheine, and B�ockenholt,1995). This can be demonstrated by means of an example. Suppose thatSl denotes the state occupied at time point l and that sl denotes a cat-egory of Sl. For the sake of simplicity, it will be assumed that there areobservations for only four points in time, that is, 1 � l � 4. In a �rst-order Markov model, the state occupied at a L = l is assumed to dependonly on the state occupied at L = l � 1 (Anderson and Goodman, 1957;Bishop, Fienberg and Holland, 1975:261-267; Markus, 1979), or, in termsof our modi�ed path model,

�s1s2s3s4 = �s1 �s2js1 �s3js2 �s4js3 :Especially in Markov models, it is important to be able to restrict theparameters to be equal across modi�ed path steps. The most common



set of restrictions,
�s2js1 = �s3js2 = �s4js3 ;gives rise to a stationary or time-homogeneous Markov model. Theseequality restrictions can also be imposed indirectly by restricting the log-linear parameters of di�erent modi�ed path steps to be equal, that is, byparameterizing

�sljsl�1 = exp �uSlsl + uSl�1Slsl�1sl �Psl exp �uSlsl + uSl�1Slsl�1sl � ;and restricting
uS2s2 = uS3s3 = uS4s4 ;uS1S2s1s2 = uS2S3s2s3 = uS3S4s3s4 :

Equivalently, higher-order Markov chain models can be speci�ed. Theonly di�erence is that in such models, the value of Sl depends not onlyon Sl�1, but also on the state occupied on earlier occasions (Bishop,Fienberg and Holland, 1975:267-270; Van de Pol and Langeheine, 1990).
Covariates In most cases, Markov models are used only for descriptivepurposes. However, with the modi�ed path analysis approach, it is easyto incorporate explanatory variables into a Markov model. Suppose, forinstance, that one has three explanatory variables denoted by A, B, andC. Given a �rst-order Markov chain, the following modi�ed path modelis obtained:

�abcs1s2s3s4 = �abc �s1jabc �s2jabcs1 �s3jabcs2 �s4jabcs3 :This is also the way covariates can be incorporated into a Markov modelusing the PANMARK program (Van der Pol, Langeheine and De Jong,1989). However, as demonstrated above, when using a modi�ed pathmodel, it is possible to use a logit parameterization for the conditionalprobabilities appearing in the Markov model with exogenous variables.Together with the possibility to restrict parameters across points in time,



this results in rather 
exible and parsimonious regression models for thestates occupied at di�erent points in time.9Suppose that the variables A and B in
uence the state occupied at the�rst point in time, but that there is no three-variable interaction betweenA, B, and S1. Furthermore, suppose that B in
uences the value of Sland that C in
uences the size of the association between Sl�1 and Sl.In other words, Sl�1, B, and C have direct e�ects of on Sl, and thereis a three-variable interaction between C, Sl�1, and Sl. This yields thefollowing logit models for �s1jabc and �sljabcsl , respectively:
�s1jabc = exp �uS1s1 + uASlasl + uBSlbsl �Ps1 exp �uS1s1 + uASlasl + uBSlbsl � ;

�sljabcsl�1 = exp �uSlsl + uBSlbsl + uCSlcsl + uSl�1Slsl�1sl + uCSl�1Slcsl�1sl �Psl exp �uSlsl + uBSlbsl + uCSlcsl + uSl�1Slsl�1sl + uCSl�1Slcsl�1sl � ;where �s1jabc may be replaced by �s1jab and �sljabcsl�1 by �sljbcsl�1 . Thismodi�ed path model can be simpli�ed by assuming the log-linear param-eters for the transition probabilities to be time independent or, equiva-lently, by assuming �sljbcsl�1 does not depend on l. As will be demon-strated in section 4.8, parameterizing the discrete-time Markov model asa modi�ed path model yields a model which is equivalent to a speci�ctype of discrete-time event history model.

9Recently, Gilula and Haberman (1994) proposed a similar approach for analyzingcategorical panel data, which they called conditional log-linear models.





Chapter 3
Log-linear analysis with
latent variables and missing
data
In the discussion of the various types of log-linear models in the previouschapter, it was implicitly assumed that the values of all variables usedin the analysis were observed for all subjects being studied. In socialresearch, however, it is often the case that some variables are completelyor partially unobserved. This chapter extends the log-linear models dis-cussed in the previous chapter so that they can be applied even if thereare missing data.Completely unobserved variables occur in latent structure models.These are models which can be used to correct for measurement errorin observed variables (Bartholomew, 1987; Heinen, 1993). The categor-ical variant of the latent structure models, which was �rst proposed byLazarsfeld (1950a, 1950b), is called latent class analysis. Latent struc-ture models for data of di�erent measurement levels have in common thatthey are all based on the assumption of local independence. The manifestvariables which are used as indirect measures for the latent variable(s) areassumed to be mutually independent given the score on the latent variableconcerned. In a latent class model, the existence of a categorical latentvariable is postulated, which accounts for the relationships between a setof categorical manifest, or observed, variables.The latent class model is a member of the family of �nite mixture



models (Everitt and Hand, 1981; Titterington, Smith, and Makov, 1985).In �nite mixtures models, it is assumed that the population being studiedis composed of a number of subpopulations which are not observed. Inother words, the observed data is a mixture of the data of a �nite numberof subgroups, but it is not observed which subgroup a particular personbelongs to. Furthermore, the parameters of the postulated model withinthese subpopulations are assumed to di�er in some respect. The latentclass model is a �nite mixture model in which the observed variables areassumed to be mutually independent within subpopulations and to havedi�erent marginal distributions among subpopulations. Although onlyapplications in the �eld of log-linear modeling are presented here, it mustbe noted that the �nite mixture approach is applicable to any type ofstatistical method.Several important extensions of Lazarsfeld's latent class model havebeen proposed, such as models for more than one latent variable (Good-man, 1974a, 1974b; Haberman, 1979:558-560), models with external orexplanatory variables (Goodman, 1974a, 1974b; Haberman, 1979:542-544), models for multiple-group analysis (Clogg and Goodman, 1984,1985, 1986), and models with direct e�ects among indicators (Hagenaars,1988). The most extended model is, however, Hagenaars's modi�ed Lis-rel model (Hagenaars, 1985, 1990, 1993), in which all of the other latentclass models are viewed as special cases. The modi�ed Lisrel model is alog-linear path model in which some of the variables are unobserved. Itresembles the well-known LISREL model for continuous data (J�oreskogand S�orbom, 1988) in that a measurement model for the latent variablesis speci�ed simultaneously with a structural model for the relationshipsamong the latent variables and the manifest variables used as structuralvariables (Vermunt, 1994, 1996).Correcting for measurement error in observed variables is not, how-ever, the only application of log-linear models with latent categoricalvariables. Another well-known application of such �nite mixture mod-els is correction for unobserved heterogeneity (DeSarbo and Wedel, 1993).The term unobserved heterogeneity refers to a `regression' model in whichspeci�c explanatory variables are not observed. By introducing an un-observed regressor, an attempt can be made to eliminate or decrease thebias caused by not observing important regressors given certain appropri-ate assumptions. Formann (1992) presented a logit model with a latentregressor which was assumed to be independent of the other explanatory



variables. He called the model a mixed logistic regression model. Also,a mixed variant of the discrete-time Markov discussed in the previouschapter has been proposed (Poulsen, 1982; Van de Pol and Langeheine,1990). These 'mixed' models are, likewise, special cases of the modi�edLisrel model (Vermunt, 1996).Apart from measurement error and unobserved heterogeneity, one isoften confronted with another kind of missing data problem in socialresearch, the problem of partially observed variables. The term partiallyobserved or partially unobserved variable denotes that a variable is notobserved for all persons. In survey research, partially observed variablesare generally the result of item nonresponse. However, this kind of missingdata can also be caused by the data collection design itself: it could betoo expensive or impossible to gather all information for all persons.Fuchs (1982) proposed a method which makes it possible to estimatethe parameters of a log-linear model using incomplete data. However, thismethod is based on the assumption that the mechanism causing the miss-ing data can be ignored when estimating the parameters of interest (Littleand Rubin, 1987). More recently, a variant of the log-linear path modelhas been developed which makes it possible to simultaneously model themechanism causing the nonresponse and the relationships among the vari-ables of interest (Fay, 1986, 1989; Baker and Laird, 1988; Vermunt, 1988,1996). Using this approach, it is also possible to estimate parameterswithin the context of nonignorable response mechanisms.From a statistical point of view, partially unobserved variables can behandled in the same fashion as completely unobserved covariates. In fact,a partially observed variable is manifest for some individuals and latentfor others (Winship and Mare, 1989). Therefore, the same estimationprocedures can be used to estimate the parameters of log-linear modelswith unobserved or with partially observed variables. As will be shownin this chapter, there is no di�culty in dealing with both kinds of missingdata simultaneously (Hagenaars, 1985, 1990; Vermunt, 1988, 1994).The remainder of this chapter consists of two sections, the �rst ofwhich focusses on log-linear models with latent variables. It deals with theclassical and log-linear latent class model, the most important extensionsof the standard latent class model, modi�ed Lisrel models, and mixturemodels for dealing with unobserved heterogeneity. Log-linear models withvariables subject to nonresponse are described in section 3.2. Attentionis given to the di�erent kinds of response mechanisms and to Fuchs's and



Fay's methods for dealing with partially observed variables.
3.1 Latent variables
3.1.1 Latent class analysisAs many concepts in the social sciences are di�cult or impossible tomeasure directly, several directly observable variables, or indicators, areoften used as indirect measures of the concept to be measured. The valuesof the indicators are assumed to be determined only by the unobservablevalue of the underlying variable of interest and by measurement error.In latent structure models, this principle is implemented statistically byassuming probabilistic relationships between latent and manifest variablesand by the assumption of local independence. Local independence meansthat the indicators are assumed to be independent of each other given aparticular value of the unobserved or latent variable; in other words, theyare only correlated because of their common cause.Latent structure models can be classi�ed according to the measure-ment level of the latent variable(s) and the measurement level of themanifest variables (Bartholomew, 1987; Heinen, 1993:3-10). In factoranalysis, continuous manifest variables are used as indicators of one ormore continuous latent variables. In latent trait models, a continuouslatent variable is assumed to underlie a set of categorical indicators. Fi-nally, when both the manifest and the latent variables are categorical, alatent class model is obtained. Note that a categorical variable does notneed to be a nominal variable; it can also be an ordinal or a discrete inter-val variable. The latent class model was originally proposed by Lazarsfeld(1950a, 1950b), while its practical applicability is to a large extent theresult of the work by Goodman (1974a, 1974b) and Haberman (1979:Chapter 10). Although all variables are treated as nominal variables inthe unrestricted latent class model, restricted latent class models havebeen proposed which make it possible to make a priori assumptions onthe order and the distances among the categories of the latent and man-ifest variables (Rost, 1988; Croon, 1990; Formann, 1992; Heinen, 1992;Vermunt and Georg 1995).
Unrestricted latent class model The latent class model can be pa-rameterized in two di�erent ways. It is possible to use either the classical
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Figure 3.1: Latent class model

parameterization in terms of (conditional) probabilities introduced byLazarsfeld (Lazarsfeld, 1950a, 1950b; Lazarsfeld and Henry, 1968: Chap-ter 3), which is also used by Goodman (1974a, 1974b), or the log-linearparameterization introduced mainly by Haberman (1979: Chapter 10).Suppose there is, as depicted in Figure 3.1, a latent class model with onelatent variable W with index w and 4 indicators A, B, C, and D withindices a, b, c, and d. Moreover, let W � denote the number of latentclasses. The basic equations of the latent class model are
�abcd = W �Xw=1�wabcd ; (3.1)

in which
�wabcd = �w�abcdjw = �w�ajw �bjw �cjw �djw : (3.2)

Here, �wabcd denotes the probability of being in cell (w; a; b; c; d) of thejoint distributionWABCD. Furthermore, �w is the probability of belong-ing to latent class w and �abcdjw is the probability of having a particularobserved response pattern given W = w. The other � parameters areconditional response probabilities. For instance, �ajw is the probability ofbeing in category a of variable A, given that one belongs to latent classw. As can be seen from Equation 3.1, the latent class model assumes thatthe population can be divided intoW � exhaustive and mutually exclusive



classes. Therefore, the joint probability of the observed variables can beobtained by summation over the latent dimension. The classical parame-terization of the latent class model proposed by Lazarsfeld (1950a, 1950b)is given in Equation 3.2. It can be seen that the observed variables A, B,C, and D are postulated to be mutually independent given a particularscore on the latent variable W .Note that Equation 3.2 is very similar to the modi�ed path modelsdiscussed in the previous chapter. Actually, it is a modi�ed path model inwhich one variable is unobserved. Because the latent class model is com-pletely de�ned in terms of conditional independence, it is also a graphicalmodel (Wermuth and Lauritzen, 1990).Haberman (1979: Chapter 10) demonstrated that the unrestrictedlatent class model given in Equation 3.2 is formally identical to the hier-archical log-linear model fWA;WB;WC;WDg, written as
logmwabcd = u+ uWw + uAa + uBb + uCc + uDd + uWAwa + uWBwb + uWCwc+ uWDwd ; (3.3)

in which mwabcd = N �wabcd. Equation 3.3 contains, in addition to theoverall mean and the one-variable terms, only the two-variable interactionterms between the latent variable W and the manifest variables. As noneof the interactions between the manifest variables are included, it can beseen that they are assumed to be conditionally independent of each other.The relation between the parameters of the two di�erent parameteri-zations of the latent class model, that is, between the conditional proba-bilities appearing in Equation 3.2 and the log-linear parameters appearingin Equations 3.3, is (Haberman, 1979:551; Heinen 1993:13-22)
�ajw = exp �uAa + uWAwa �Pa exp (uAa + uWAwa ) : (3.4)

It should be noted that this is the same type of logit parameterization ofa conditional probability that is used in modi�ed path models. Moreover,since the indicators are assumed to independent of one another givenW , itdoes not matter whether the relationships between W and the indicatorsare estimated by specifying a separate logit model for each indicator orby specifying a log-linear model for the full table mwabcd. This followsfrom the collapsibility theorem (see section 2.9).



Restricted latent class models If it is not necessary to impose fur-ther restrictions on the parameters, the two formulations of the latentclass model are completely equivalent. However, if the model is restrictedin some way, the parameterization choice depends on the type of restric-tions that have to be imposed. Because of the possibility of applyinga reparameterization, particular kinds of restrictions can be used underboth parameterizations though others are speci�c to one of the two pa-rameterizations.It should be noted that in writing the latent class model in termsof conditional probabilities in combination with logit models for theseconditional probabilities, a combined parameterization is obtained whichis similar to the modi�ed path model discussed in the previous chap-ter. Actually, Formann's linear logistic latent class model combines thetwo parameterizations discussed above (Formann, 1982, 1992). Formannspeci�ed the latent class model in terms of latent and conditional prob-abilities, for which the probabilities are parameterized as in Equation3.4. This type of formulation makes it possible to combine restrictionson the probabilities with restrictions on the log-linear, or linear logistic,parameters.Restrictions which are typical of the classical latent class model are�xed-value and equality restrictions on the latent and conditional re-sponse probabilities (Goodman, 1974a, 1974b; Mooijaart and Van derHeijden, 1992). On the other hand, in the log-linear latent class model,it is common to impose linear restrictions on the log-linear parameters,such as equal e�ects of the latent variable among indicators, linear-by-linear interactions, and row and/or column e�ects. Besides these morestandard restrictions, there are many other types of linear and non-linearrestrictions which can be imposed on the probabilities. Croon (1990),for instance, demonstrated the implementation of particular kinds of in-equality restrictions on the conditional response probabilities leading toan ordinal latent class model. Moreover, although not yet implemented inthe context of latent class analysis, the general model developed by Langand Agresti (1994) would make it possible to combine a large variety oflinear and log-linear restrictions on (sums of) probabilities in latent classmodels.Sometimes, it is possible to translate equality restrictions on prob-abilities into equality restrictions on log-linear parameters. As can beseen from Equation 3.4, for instance, equal conditional response prob-



abilities among indicators can also be obtained by specifying both theone-variable terms for the indicators concerned and their two-variable in-teraction terms with the latent variable as equal. Equal conditional prob-abilities are, however, a rather restrictive assumption. Using the log-linearparameterization, it is also possible to impose a weaker type of restrictionon the conditional response probabilities, that is, equal strength of asso-ciation between the latent variable and the various indicators. This canbe accomplished by constraining the two-variable interactions appearingin Equation 3.3 to be equal among indicators. Although there is no exactcorrespondence, the imposition of equality restrictions of this type on theitem parameters is similar to the work by J�oreskog (1971) on parallel andtau-equivalent items in the context of factor analysis (see also Mellen-bergh, 1994). If the conditional response probabilities are equal amongitems, the items may be called parallel, while they may be called tauequivalent if only their two-variable interactions with the latent variableare equal.Another restriction that is often used in classical latent class analysisis the �xing of particular conditional response probabilities to zero. Such arestriction can, among other things, be used to construct latent Guttmanscales (Clogg and Sawyer, 1981; Clogg and Goodman, 1986) and to de�nequasi-latent variables (Hagenaars, 1990:117-119). Fixing a probability tozero is equivalent to setting the log-linear parameters associated with itto minus in�nity. This can be accomplished by incorporating structuralzero-expected frequencies in the log-linear model (Haberman, 1979:554-556).Restrictions speci�c to the log-linear parameterization are linear-by-linear e�ects and row and/or column e�ects. These restrictions are usefulif either the latent variable or the manifest variables or both can be as-sumed to be interval-level variables (Heinen, 1993; Rost, 1988). Heinen(1993) demonstrated that when the latent variable is discretized, mostlatent trait models can be written as latent class models with restric-tions on the log-linear parameters. For instance, a discrete variant ofthe well-known Rasch model for item analysis is obtained by specifyinga latent class model with a certain number of latent classes in which thetwo-variable interaction parameters between the latent variable and theindicators are speci�ed as linear-by-linear and equal among indicators.Within the log-linear modeling framework, it is even possible to spec-ify models with log-multiplicative interaction terms. This option can be



used, for instance, to specify a discrete Rasch model with random scoresfor the categories of the latent variable. Lindsay, Clogg, and Grego (1991)called this model a semi-parametric Rasch model.
3.1.2 Extensions of the standard latent class modelSeveral important extensions of the standard latent class model havebeen developed. Some of these are speci�c for either the classical orthe log-linear formulation of the latent class model, while others can beimplemented under both parameterizations. Below, the most importantextensions developed within the framework of either the classical or thelog-linear latent class model are discussed. Moreover, it is demonstratedthat these extended latent class models can also be formulated as modi-�ed path models, that is, in terms of conditional probabilities which arepossibly subjected to logit restrictions.
Models with several latent variables Goodman (1974a, 1974b) andHaberman (1979:558-560) showed how to specify latent class models withmore than one latent variable. This led to a model which is analogous toa factor analytic model with more than one factor. Latent class modelswith several latent variables can be speci�ed either by imposing equalityrestrictions on the conditional probabilities or by formulating a log-linearmodel.Suppose there is a model with four indicators and two latent vari-ables, in which A and B are indicators of the latent variable W , andC and D of the latent variable Y . Moreover, assume W and Y arerelated to each other. This results in the log-linear latent class modelfWY;WA;WB; Y C; Y Dg which is displayed in Figure 3.2, orlogmwyabcd = u+ uWw + uYy + uAa + uBb + uCc + uDd + uWYwy + uWAwa+ uWBwb + uY Cyc + uY Dyd : (3.5)Just as in the standard latent class model, additional restrictions can beimposed on the log-linear parameters in this model. Note that it is notonly possible to restrict the item parameters but also the relationshipsbetween the latent variables. In a model with three latent variables,for instance, a no-three-variable interaction model can be speci�ed forthe latent variables. Hagenaars (1986) proposed symmetry and quasi-symmetry models for the associations between the latent variables.
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Figure 3.2: Latent class model with 2 latent variables
In terms of conditional probabilities, the latent class model of Equa-tion 3.5 can be written as

�wyabcd = �wy �ajw �bjw �cjy �djy :
Models with external variables Another extension of the ordinarylatent class model is the incorporation of external variables in the model(Hagenaars, 1985, 1990:113-119, 1993). Since external variables are man-ifest variables which are not indicators, the assumption of conditionalindependence does not need to hold for these variables. Clogg (1981), forexample, applied latent class models with external variables to specifymultiple-indicator multiple-cause models (MIMIC) for categorical data.These models resemble the well-known MIMIC models for continuousdata presented by J�oreskog and Goldberger (1975).Clogg (1981) speci�ed the MIMIC model for categorical data usingthe classical parameterization of the latent class model. However, thisparameterization is limited with respect to the models that can be pos-tulated for the relationships among the external variables and the latentvariables: Only a saturated model and particular kinds of independencemodels can be speci�ed for these variables. When using the log-linear pa-rameterization, it is possible to specify any kind of non-saturated modelfor the relationships among the external and the latent variables.Suppose there is a MIMIC model with two external variables I and Jand one latent variable W with three indicators A, B, and C. Moreover,
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Figure 3.3: Latent class model with external variables

assume that the external variables in
uenceW and that there is no three-variable interaction among I, J , and W . The MIMIC model concerned,which is depicted in Figure 3.3, is equivalent to log-linear latent classmodel fIJ; IW; JW;WA;WB;WCg, orlogmwabcij = u+ uIi + uJj + uWw + uAa + uBb + uCc + uIJij + uIWiw + uJWjw+ uWAwa + uWBwb + uWCwc :In terms of conditional probabilities, it can be written as
�wabcij = �ij �wjij �ajw �bjw �cjw ;in which �wjij is restricted by a logit model without a three-variable in-teraction term. Although above the external variables were assumed tobe exogenous variables, it is also possible to use external variables asdependent variables.

Models for several subpopulations Other extensions are latent classmodels for several subpopulations which may di�er with respect to thelatent distribution and the relationships between the latent variables andtheir indicators (Hagenaars, 1990:127-135). This is comparable to simul-taneous factor analysis in several populations (J�oreskog, 1971; S�orbom,1974). Clogg and Goodman (1984, 1985) presented what they called asimultaneous latent structure model using the classic parameterization ofthe latent class model. McCutcheon (1987) applied this model to comparelatent distributions at di�erent points in time.



Simultaneous latent class analysis involves incorporating a group vari-able in the model. This group variable may in
uence the latent distribu-tion and the conditional response probabilities. If G denotes the groupvariable in a latent class model with latent variable W and indicators A,B, and C, the multi-group latent class model can be written as
�wabcg = �g �wjg �ajwg �bjwg �cjwg :Note that this unrestricted multiple-group model is equivalent to log-linear model fGWA;GWB;GWCg. A speci�cation of this kind impliesthat the latent distribution, the distributions of the indicators, and the re-lationships between the latent variable and the indicators are all assumedto be di�erent among subpopulations.However, often one wants to impose restrictions on the parametersacross groups. An example of a restricted model is the log-linear modelfGW;WA;WB;WC;GA;GB;GCg. In this model, it is assumed thatthe latent and manifest distributions di�er among groups, but that thestrengths of the relationships between the latent variable and the indica-tors are the same for all of the subpopulations. An even more restrictivemodel is fGW;WA;WB;WCg. Here, the measurement part of the modelis assumed to be equal for all subgroups. In terms of conditional proba-bilities, this model can also be written as
�wabcg = �g �wjg �ajw �bjw �cjw :Actually, this model tests the assumption of invariance of the latent con-struct (J�oreskog, 1971), which is a vital test if the aim is to compare thelatent distributions of di�erent groups. Latent distributions can only becompared when the latent variable has the same meaning for all subpop-ulations, which often implies that one wants the relationships betweenthe latent variable and the items to be equal among subgroups.

Local dependence models The log-linear latent class model can alsobe used to specify models in which particular indicators are related toone another. Hagenaars (1988) demonstrated how to specify these so-called local dependence models. Figure 3.4 shows an example of a localdependence model, i.e., model fWA;WB;WC;WD;CDg. In this modelwith one latent variable and four indicators, there is a direct association
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between the indicators C and D. In terms of conditional probabilities,the model can be written as
�wabcd = �w �ajw �bjw �cdjw ;where �cdjw is restricted by means of a no-three-variable interaction log-linear model. These local dependence models are analogous to factoranalytic models with correlated error terms (S�orbom, 1975).

3.1.3 Causal log-linear models with latent variablesSome extensions of the standard latent class model were discussed in theprevious subsection. A limitation of these extensions is that they were alldeveloped within the framework of either the classical or the log-linearlatent class model. Therefore, it is not always possible to postulate thedesired a priori causal order among the variables incorporated in themodel. But, as was demonstrated, all these extended latent class modelscan be written as modi�ed path models in which one or more variablesare not observed. This subsection presents the general formulation ofthe modi�ed path model with latent variables which was proposed byHagenaars (1985, 1990:135-142, 1993). Because of the analogy with theLISREL model for continuous variables (J�oreskog and S�orbom, 1988),Hagenaars called it a modi�ed Lisrel approach.
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Figure 3.5: Modi�ed Lisrel model
Suppose we want to investigate the causal relationships between sixcategorical variables denoted by E, F , G, H, W , and Y , where W and Yare latent variables. Figure 3.5 shows the assumed causal order and theassumed direct relations of the variables. It can be seen that the variablesE, F , and G are exogenous variables. The others are endogenous, whereH is assumed to be posterior to W , and Y is assumed to be posterior toH. Moreover, A and B serve as indicators for the latent variable W , andC and D serve as indicators for Y .The probability of belonging to cell (e; f; g; w; h; y; a; b; c; d) of thejoint distribution of all the variables included in the model is denotedas �efgwhyabcd. As demonstrated in section 2.9, the a priori informationon the causal order of the variables can be used to decompose �efgwhyabcdas follows:

�efgwhyabcd = �efg �wjefg �hjefgw �yjefgwh �abcdjwy : (3.6)The only di�erence between a modi�ed path model containing only ob-served variables and the modi�ed Lisrel model described in Equation 3.6is that the latter contains an additional component in which the rela-tionships between the latent variables and their indicators are speci�ed(Hagenaars, 1993; Vermunt, 1994, 1996), in this case �abcdjwy. This partwill be called the measurement part of the model, while the other part willbe called the structural part of the model. On the basis of the relation-



ships between the variables depicted in Figure 3.5, the model representedin Equation 3.6 can be written in a more restricted form as
�efgwhyabcd = �efg �wjefg �hjefw �yjfgwh �ajw �bjw �cjy �djy : (3.7)

As in a modi�ed path model containing only observed variables, the prob-abilities appearing in Equation 3.7 can be restricted further by means ofa logit parameterization or by the equivalent log-linear parameterizationproposed by Goodman (1973). For instance, in accordance with the rela-tionships depicted in Figure 3.5, �wjefg has to be restricted as follows:
�wjefg = exp �uWw + uWEwe + uWFwf + uWGwg + uWFGwfg �

Pw exp �uWw + uWEwe + uWFwf + uWGwg + uWFGwfg � ;
or equivalently, by means of log-linear model

logmefgw = �efg + uWw + uWEwe + uWFwf + uWGwg + uWFGwfg :
This model contains direct e�ects of E and F and G on W , where thereis an interaction between F and G with respect to their e�ects on W .
Some other special cases As was shown in the previous subsection,all extensions which have been proposed for the standard latent classmodel are special cases of the modi�ed Lisrel model. There are, however,other models which are special cases of the modi�ed Lisrel model.Hagenaars (1988) speci�ed a local dependence model in which he as-sumed the relationships between indicators to be asymmetrical. Supposewe want to specify a local dependence model like the one depicted in Fig-ure 3.4, but now with a direct e�ect of C on D instead of a symmetricalrelationship. Such a model is equivalent to a modi�ed path model of theform

�wabcd = �w �ajw �bjw �cjw �djwc ;where �djwc is restricted by a no-three-variable interaction model. Al-though in this case the model with an asymmetrical direct relationshipbetween indicators gives the same model �t as the symmetrical speci�-cation used in Equation 3.6, this is not always the case. Moreover, even



though the model �t is the same, the estimated e�ect of W on C will bedi�erent in the two speci�cations.Another special case of the modi�ed Lisrel model is the latent budgetmodel which was proposed by Van der Heijden, Mooijaart, and De Leeuw(1992). A latent budget model is a kind of MIMIC model in which oneset of variables is used as a joint explanatory variable and another set ofvariables is used as a joint response variable or observed budget. When Adenotes the joint explanatory variable, B, the observed budget, and W ,the latent budget, the latent budget model is given by
�awb = �a �wja �bjw ;where the marginal distribution of A, �a, is not restricted, and where�wja and �bjw can be restricted via �xed-value or equality restrictions onthe conditional probabilities or via a logit parameterization.In the previous chapter, it was shown that the discrete-time Markovmodel is a special case of the modi�ed path model. Therefore, it is notsurprising that the discrete-time latent Markov model is a special caseof the modi�ed Lisrel model. The discrete-time latent Markov modelwas originally proposed by Wiggins (1955, 1973), while more recentlyPoulsen (1982), Van de Pol and De Leeuw (1986), and Van de Pol andLangeheine (1990) proposed estimation methods for the latent Markovmodel. Suppose that Sl denotes the observed state at time point l andthat sl denotes a category of Sl. Moreover, let �l denote the true state attime point l with values �l. For the sake of simplicity, it will be assumedthat there are observations for only 3 points in time, 1 � l � 3. In thatcase, a �rst-order latent Markov model can be represented as follows:

�s1s2s3�1�2�3 = ��1 ��2j�1 ��3j�2 �s1j�1 �s2j�2 �s3j�3 ;where some restrictions have to be imposed on either the transition prob-abilities ��lj�l�1 or the conditional response probabilities �slj�l to makethe model identi�able (Van de Pol and Langeheine, 1990). Explanatoryvariables can be incorporated in the model in the same way as in man-ifest Markov models (Vermunt and Georg, 1995; Vermunt, Langeheine,and B�ockenholt, 1995).As in modi�ed path models, every conditional probability in modi�edLisrel models may be parameterized by means of a multinomial logit



model of the general form
�ijk = exp �Pj �jxijk�Pi exp �Pj �jxijk� ; (3.8)

where i denotes a level of the response variable, k, a level of the jointexplanatory variable, and j, a particular e�ect. This implies that, aswas demonstrated for modi�ed path models, modi�ed Lisrel models canalso be used with continuous exogenous variables. Dayton and Macready(1988) and Van der Heijden and Dessens (1994) proposed a latent classmodel with continuous covariates. In their model, the latent proportionsare regressed on one or more continuous explanatory variables using alogistic regression model. Assuming that the latent variable W has 3indicators A, B, and C, in our notation, such a model can be written as
�abcdwjk = �wjxwjk �ajwxajk �bjwxbjk �cjwxcjk ;where xwjk, xajk, xbjk, and xcjk denote the observed value for person kon the exogenous variable j for W = w, A = a, B = b, and C = c,respectively. These conditional probabilities can, of course, be restrictedusing the multinomial logit model or the logistic regression model given inEquation 3.8. Note that this modi�ed path model with a latent variable is,in fact, more general than the model proposed by Dayton and Macreadybecause the conditional response probabilities may also depend on thecontinuous covariates.

3.1.4 Unobserved heterogeneityAbove, one particular application of log-linear models with latent vari-ables models was discussed, i.e., correcting for measurement error in ob-served variables. However, log-linear models with latent variables can alsobe used to correct for unobserved heterogeneity. The term unobservedheterogeneity is generally used in the context of regression models.1 Itmeans that particular variables that in
uence the dependent variable arenot measured and can therefore not be used as covariates in the regres-sion model (Heckman and Singer, 1982, 1984). One possible solution in
1Other terms that are sometimes used to describe this phenomenon are omittedvariable bias (Chamberlain, 1985) and overdispersion (MCCullagh and Nelder, 1983).



such situations is to include in the regression model a latent unobservedcovariate which is assumed to capture (part of) the unobserved causes ofthe phenomenon under study (DeSarbo and Wedel, 1993).From a technical point of view, the main di�erence between the latentclass models discussed in the previous subsections and the �nite mixturemodels which are used to correct for unobserved heterogeneity is that inthe latter, the latent variable incorporated in the model does not haveindicators. Since this makes the models more di�cult to identify, modelswith unobserved heterogeneity will generally be rather restrictive. More-over, the results obtained from mixture models may be sensitive to thechoice of the identifying restrictions.Follman and Lambert (1989) and Formann (1992) proposed a logitmodel with a non-parametric unobserved heterogeneity component. For-mann called this model a mixed logistic regression model. In this model,the existence of a categorical latent variable is assumed which may in-
uence not only the dependent variable but also the e�ect of the otherindependent variables on the dependent variable. An important assump-tion of the model is that the mixture distribution is independent of theother explanatory variables.2Suppose we want to explain C using the observed variables A and Band the unobserved variable W as regressors. In that case, the mixedlogit model is given by
�wabc = �w �ab �cjabw ; (3.9)

where the probability �cjabw has to be restricted in some way because,otherwise, the model is not identi�ed. One possibility is to postulate alogit model in which all regressors in
uence C through the two-variablee�ects, but in which all higher-order interaction terms are absent.Another model for categorical data in which a latent variable is usedto correct for unobserved heterogeneity is the discrete-time mixed Markovmodel (Poulsen, 1982, Langeheine and Van de Pol, 1990, 1994). In thismodel, it is assumed that the observed transition probabilities are actually
2These models are sometimes also called random-e�ects logistic regression models(Willekens, 1994). The approach that is used here is a non-parametric random-e�ectsapproach because the distribution of the latent variable which is included in the re-gression model is not parameterized. Sections 4.8 and 5.2 explain the di�erent waysof handling unobserved heterogeneity in the context of event history analysis in moredetail.



a mixture of the transition probabilities of several unobserved groups.This is equivalent to assuming that there is an unobserved variable whichin
uences the transition probabilities. The mixed Markov model can beidenti�ed without further restrictions when a �rst-order Markov model ispostulated within the unobserved subgroups. Suppose that Sl denotes thestate occupied at time point l, that sl denotes a category of Sl, and that1 � l � 4. Assuming that W is the latent variable, the mixed Markovcan be written as
�ws1s2s3s4 = �w �s1jw �s2jws1 �s3jws2 �s4jws3 : (3.10)It should be noted that the well-known mover-stayer model (Goodman,1961) is a special case of the mixed Markov model. It is obtained byrestricting the probabilities �sljwsl�1 to be equal to zero if Sl 6= Sl�1 forone latent class.Van de Pol and Langeheine (1990) extended the mixed Markov byincorporating observed covariates. Moreover, they combined the mixedMarkov model and the latent Markov model into one general model whichthey called the mixed Markov latent class model.From Equations 3.9 and 3.10, it can easily be seen that both the mixedlogistic regression model and the mixed Markov model are also specialcases of the modi�ed Lisrel model. The same applies to Van de Pol andLangeheine's extensions of the mixed Markov model. Other examples ofmixture models that can be dealt with within the context of modi�edpath analysis with latent variables are the mixed Rasch model proposedby Rost (1990) and models for analyzing ranking data (Croon, 1989) andother types of choice data (Kamakura, Wedel, and Agrawal, 1992).

3.1.5 Estimation and testingObtaining maximum likelihood estimates of the parameters of latent classmodels, log-linear models with latent variables, and modi�ed Lisrel mod-els is a bit more complicated than for log-linear models in which allvariables are observed. Several estimation methods can be used to esti-mate the parameters of the models discussed in the previous subsections.The best known methods are the Newton-Raphson algorithm, includ-ing variants such as Fisher's scoring algorithm and other quasi-Newtonalgorithms, and the Expectation-Maximization (EM) algorithm. Lazars-feld and Henry (1968:101-105) have already demonstrated how to apply



Fisher's scoring method to estimate latent class models, while Goodman(1974a, 1974b) was the �rst to use the EM algorithm for estimating latentclass models.
Computer programs Fisher's scoring algorithm is implemented in theLAT program which was developed by Haberman (1979: Appendix A.2),while Haberman's NEWTON program is based on the Newton-Raphsonalgorithm (Haberman, 1988). These programs were developed to esti-mate latent class models using a log-linear parameterization. Mare andWinship (1989) showed that with a complicated reparameterization, it isalso possible to estimate modi�ed path models by means of NEWTON.The other widely available programs for latent class analysis are all basedon the EM algorithm. Clogg's MLLSA program can be used to estimatethe classical latent class model, including some of its extensions discussedabove (Clogg, 1977). Hagenaars and Luijkx' LCAG program can be usedto estimate classical latent class models and modi�ed Lisrel models withhierarchical log-linear models (Hagenaars and Luijkx, 1990). The DIL-TRAN program can be used to estimate latent class models with di�erenttypes of linear restrictions on the log-linear parameters or, more precisely,discrete latent trait models (Heinen and Vermaseren, 1992). The PAN-MARK program was especially developed for estimating latent and mixedMarkov models, but it can also be used to estimate classical latent classmodels (Van de Pol, Langeheine and De Jong, 1989).The `EM program is the most general program for estimating log-linear models with latent variables (Vermunt, 1993) since it combinesall the features of the above-mentioned programs. It can be used toestimate modi�ed Lisrel models which, as was shown in the previoussection, are the most general models of which all other models are specialcases. By means of `EM , equality restrictions, �xed value restrictions,and particular kinds of inequality restrictions can be imposed on the(conditional) probabilities appearing in a modi�ed path model with latentvariables. Moreover, a general multinomial logit parameterization of theconditional probabilities can be used in which log-multiplicative e�ectscan be included. A weak point of `EM is, however, that it does notsupply standard errors of the parameter estimates.



Newton-Raphson and Fisher's scoring The Newton-Raphson algo-rithm and Fisher's scoring algorithm are strongly related gradient searchmethods. The di�erence between them is that Fisher's scoring algorithmuses the expected information matrix, or Fisher's information matrix,while Newton-Raphson uses the observed information matrix to deter-mine the optimal step size to improve the parameter estimates. When allvariables of a log-linear model are observed, the procedures are equivalentbecause, in that case, the observed and the expected information matrixare identical (Agresti, 1990:114; Heinen, 1993:287). The main advantageof using Fisher's scoring algorithm rather than Newton-Raphson to esti-mate the parameters of models with latent variables is that the expectedinformation matrix can be obtained from the �rst-order derivatives of thelog-likelihood function. Therefore, it is no longer necessary to computethe second-order derivatives. Appendix G explains how to obtain theexpected information matrix for modi�ed path models with latent vari-ables. It must be noted that this version of Fisher's scoring algorithm forestimating modi�ed path models with latent variables has not yet beenimplemented in a computer program.The main advantage of using Newton Raphson or Fisher's scoring incomparison with the EM algorithm is that they converge very fast whenthe model does not contain too many parameters, and, moreover, theyprovide standard deviations of the parameter estimates as a by-product.A major disadvantage is that they need starting values which are closeto the �nal solution to converge to the maximum likelihood solution (Ha-genaars, 1988; Heinen, 1993:65). Therefore, Haberman (1988) proposeda so-called stabilized Newton-Raphson algorithm, which he implementedin his NEWTON program (Haberman, 1988). Although in most kinds oflatent class models this algorithm performs better, in particular types ofrestricted latent class models, convergence is still problematic (Heinen,1993:65). Another disadvantage of the Newton algorithms is that when amodel contains many parameters, they may become very time consumingbecause of the necessity to compute and to invert the Hessian matrix orthe expected information matrix at every iteration. And �nally, numeri-cal problems may occur when some estimated cell counts go to zero, thatis, when some log-linear parameters go to minus in�nity.



The EM algorithm The EM algorithm appears to be a good alterna-tive (Dempster, Laird, and Rubin, 1977). The main advantage of the EMalgorithm compared with the Newton methods is that it does convergeto at least a local maximum under relatively weak conditions, even withbad starting values (Wu, 1983). Generally, random starting values aregood enough. Furthermore, the EM algorithm is both conceptually andcomputationally very simple. The main disadvantages are that it mayneed many iterations to converge and that it does not give estimates ofthe standard deviations of the parameter estimates. However, since everyEM iteration is performed relatively fast, it is not problematic that manymore iterations are needed than with the Newton methods. Moreover,standard errors for the parameter estimates can be computed afterwards,for instance, by computing the inverse of the negative of the expectedinformation matrix (see Appendix G). The ideal algorithm would be acomposite algorithm which starts with a number of EM iterations andwhich, when it is close enough to the �nal solution, at which point theEM becomes slow and Newton methods become more stable, switches toone of the Newton algorithms (Titterington, Smith, and Makov, 1985;Guo and Rodriguez, 1992).The EM algorithm is a general iterative estimation procedure whichcan be used when there are missing data (Dempster, Laird, and Ru-bin, 1979). In log-linear models with latent variables, the scores on thelatent variables are missing. Each EM iteration consists of two steps.The E(xpectation) step involves computing the expected complete data,given the observed data and the `current' parameter estimates. In theM(aximization) step, the complete data likelihood function is maximized.This implies computing updated estimates of the model parameters as ifthere were no missing data. These EM iterations continue until conver-gence is reached.Suppose one wants to obtain maximum likelihood estimates for themodel parameters of the modi�ed Lisrel model presented in Equations3.6 and 3.7. Assuming multinomial sampling, this involves maximizingthe following incomplete data log-likelihood functionlogL(�) = X
efghabcdnefghabcd logXwy �̂efgwhyabcd : (3.11)

Here, �̂efgwhyabcd denotes the estimated probability of belonging to cell(e; f; g; w; h; y; a; b; c; d) in joint distribution of the observed and unob-



served variables. Note that in Equation 3.11, the estimated probabilitiesare collapsed over the dimensions that are missing, i.e., the dimensionspertaining to the latent variables W and Y .In the E step of the EM algorithm, the expectation of the completedata log-likelihood, given the incompletely observed data and the `cur-rent' parameter estimates is computed, i.e.,
logL�(�) = X

efgwhyabcd̂nefgwhyabcd log �̂efgwhyabcd :This log-likelihood function is sometimes also called the complete datalikelihood. In this equation, n̂efgwhyabcd denotes an estimated cell countin the frequency table including the latent dimensions. Thus, the E stepinvolves computing estimates for the unobserved frequencies of the tableincluding the latent dimensions, i.e.,
n̂efgwhyabcd = nefghabcd �̂wyjefghabcd ; (3.12)

in which �̂wyjefghabcd is the estimated probability thatW = w and Y = y,given A = a, B = b, C = c, D = d, E = e, F = f , and G = g, in otherwords, the probability of the missing data given the observed data, eval-uated using the estimated probabilities resulting from the previous EMiteration. The quantity �̂wyjefghabcd is sometimes also called the posteriorprobability.In theM step, the complete data log-likelihood function given in Equa-tion 3.12 is maximized to obtain improved parameter estimates, or equiv-alently, improved estimated probabilities �̂efgwhyabcd. In fact, the modelparameters are updated using the n̂efgwhyabcd's as if they were observedcell counts. For that purpose, the estimation procedures are the same asthose used in the case of log-linear models without missing data. In theM of the EM algorithm as implemented in the `EM program (Vermunt,1993), it is possible to use IPF, uni-dimensional Newton, and the meth-ods proposed by Goodman (1974b) to estimate unrestricted and restrictedconditional probabilities. For more information about these estimationprocedures, see the subsections on IPF and uni-dimensional Newton inChapter 2 and the Appendices E and F.The new estimates for the estimated probabilities �̂efgwhyabcd are againused in a new E step to obtain new estimates for the frequencies in thecomplete table. The EM iterations continue until convergence is reached,



for instance, until the log-likelihood function given in Equation 3.11 in-creases less than a speci�ed minimum value or until the parameters nolonger change signi�cantly.It has been proven that the EM algorithm converges to a local max-imum under rather weak conditions (Wu, 1983). However, there is noguarantee that the global maximum of the likelihood function will actu-ally be found. Therefore, it is recommended that the model of interestbe estimated using di�erent sets of starting values (Hagenaars, 1990:112;Formann, 1992). When all runs lead to the same value of the likelihoodfunction, it is more certain that the global maximum has been found.On the other hand, if di�erent solutions are found using di�erent setsof starting values, the solution with the highest likelihood value is to bepreferred. But, as with any kind of model which is known to have localmaxima, one can never be completely sure that the global maximum ofthe likelihood function has been found.
Modi�cations of EM The algorithm used in `EM is a modi�ed versionof the true EM algorithm because the M step consists of only one iteration.Generally, therefore, the complete data likelihood is not maximized butonly improved within a particular M step. This is a special case of theGEM algorithm which states that every increase in the complete datalikelihood also leads to an increase of the incomplete data likelihood thatactually has to be maximized (Dempster, Laird, and Rubin, 1977; Littleand Rubin, 1987). Rai and Matthews (1993) called this version of theEM algorithm the EM1 algorithm.The algorithm which is used in `EM is also a special case of the ECMalgorithm (Meng and Rubin, 1993), in which the M step is replaced bya conditional maximization (CM) step. Conditional maximization meansthat instead of improving all the parameters simultaneously, subsets ofparameters are updated �xing the others at their previous values. Thisis exactly what is done using IPF and the uni-dimensional Newton algo-rithm. Meng and Rubin (1993) state that such simple and stable linearconvergence methods are often more suitable for the M (or CM) step ofthe EM (or ECM) algorithm than superlinear converging but less stablealgorithms as Newton-Raphson.In most situations, this GEM, EM1 or ECM algorithm converges inabout the same number of (EM) iterations as the true EM algorithm.



This means that when the M step needs more than one (M) iterationto converge, the modi�ed EM algorithm is faster than the true EM al-gorithm. However, experience with `EM has shown that sometimes itis more e�cient to perform more than one M iteration. This is true inmodels in which the uni-dimensional Newton algorithm takes numerousiterations in order to converge. As was mentioned in the previous chap-ter, if the parameters are highly correlated, this algorithm requires a largenumber of iterations in order to converge. In such cases, it is better toperform between 5 and 25 M iterations when using `EM .
Identi�ability It is well known that the parameters in models withlatent variables cannot always be uniquely determined. Of course, as inlog-linear models without latent variables, it is necessary that the numberof independent parameters does not exceed the number of observed fre-quencies. In models with latent variables this is not a su�cient conditionfor identi�ability. According to Goodman (1974b), a su�cient condi-tion for local identi�ability is that the expected value of the matrix ofsecond-order derivatives with respect to all parameters is negative def-inite (see also Formann, 1992). Therefore, when using Fisher's scoringmethod or Newton-Raphson to estimate the parameters of a log-linearmodel with latent variables, the identi�ability of a model is automati-cally checked. Some programs which are based on the EM algorithm,such as PANMARK (Van de Pol, Langeheine, and De Jong, 1988) andMLLSA (Clogg, 1977), also make it possible to check the identi�cation ofthe parameters. Another way of checking identi�ability when using theEM algorithm is to estimate the given model using di�erent sets of start-ing values. If di�erent sets of starting values result in the same value forthe log-likelihood function but di�erent parameter estimates, the modelis not identi�able (Hagenaars, 1990:112).
Testing Log-linear models with latent variables can be tested in thesame fashion as the log-linear models discussed in the previous chap-ter. Both the likelihood-ratio chi-square statistic L2 and the Pearsonchi-square statistic X2 may be used to compare the observed frequencieswith the estimates of the expected manifest frequencies. The estimatedexpected frequencies m̂efgwhyabcd can be obtained by multiplying the esti-mated probabilities �̂efgwhyabcd by the sample size N. The likelihood-ratio



chi-square statistic can be obtained by
L2 = 2 X

efghabcdnefghabcd log nefghabcdPwy m̂efgwhyabcd :
Note that the m̂efgwhyabcd have to be collapsed over the latent dimen-sions to obtain the estimated expected frequencies in the observed tableEFGHABCD.As in the case of log-linear models without latent variables, conditionaltests may be used to compare nested models. However, it should be notedthat although latent class models with di�erent numbers of latent classesare nested, they cannot be tested against each other using conditional L2tests. The reason for this is that the more parsimonious model, the modelwith fewer latent classes, can only be expressed as a restricted version ofthe less parsimonious model by �xing one or more latent proportionsto zero. The asymptotic theory no longer holds because these latentproportions are on the boundary of the parameter space (Titterington,Smith, and Makov, 1985; Formann, 1992).3 Everitt (1988) examined thedistribution of the conditional L2 statistic for pairs of nested latent classmodels and found that L2 was not distributed as �2. The use of theAIC and BIC information criteria does not resolve the testing problembecause they rely on the same regularity conditions as the chi-squarestatistics (Heinen, 1993:73).
3.2 Nonresponse
The previous section discussed one type of missing data problem in log-linear analysis, that is, how to formulate models when one or more vari-ables are completely unobserved. In this section, attention is given toanother type of missing data problem. Log-linear models are presentedwhich can be used when the scores on particular variables are partiallymissing.In most studies, the values of one or more variables are missing forsubsets of the original sample. It is common practice in such cases to useonly the complete observations in the analysis. This leads to less powerful

3It should be noted that this does not only hold for the latent proportions, but forany probability appearing in the models discussed so far. It is never allowed to use aconditional L2 test to investigate whether a probability equals zero.



statistical tests and, if the nonresponse is selective, to biased parameterestimates. However, methods have been developed which can also makeuse of partially observed information in �tting log-linear models. Thesemethods are analogous to methods developed to deal with partially ob-served continuous data (Marini, Olsen, and Rubin, 1979; Allison, 1987;Muth�en, Kaplan, and Hollis, 1987).Suppose there is a four-way contingency table composed of the vari-ables A, B, C, and D, for which the values of C, D, or both are missingfor a part of the sample. On the basis of the nonresponse patterns, itis possible to divide the observations into four subgroups. Subgroup ABconsists of the subjects for which only the values of A and B are known;for subgroup ABC, only A, B, and C are observed; for subgroup ABD,C is missing; and �nally, for subgroup ABCD, all variables are observed.The observed frequencies for these four subgroups will be denoted as nab,nabc, nabd, and nabcd, respectively. The sizes of the subgroups will bedenoted as NAB, NABC , NABD, and NABCD, respectively.
3.2.1 Assumptions about the response mechanismDi�erent kinds of assumptions can be made with regard to the mechanismcausing the missing data. Generally, three basic types of mechanisms aredistinguished: missing completely at random (MCAR), missing at ran-dom (MAR), and not missing at random (NMAR) (Rubin, 1976; Little,1982; Little and Rubin, 1987). MCAR means that the nonresponse isindependent of the variables included in the analysis. In other words,when the missing data is MCAR, the probability of having a particularpattern of nonresponse is assumed to be equal for each cell of the `hy-pothetical' complete table. The much less restrictive MAR assumptionimplies that the probability of having a particular pattern of nonresponsedepends only on the observed variables in the nonresponse pattern or sub-group concerned. For example, MAR means that for a given individualwho only has a missing value on D (subgroup ABC), the probability ofnonresponse on D may depend on A, B, and C, but not on D. For anindividual who has missing values on both C and D (subgroup AB), theprobability of not observing C andD may only depend on A and B. If themissing data are not MAR or MCAR, they are NMAR. This occurs whenthe probability of having a particular pattern of nonresponse depends onthe variables with missing values in the nonresponse pattern concerned.



For example, the response mechanism is MCAR if for subgroup ABC theprobability of nonresponse on D also depends on D, or if for subgroupAB the probability of nonresponse on both C and D also depends on C,D, or both.Besides the distinction between MCAR, MAR, and NMAR responsemechanisms, there is another strongly related distinction when dealingwith partially observed data, that is, whether the missing data mechanismis ignorable or nonignorable for likelihood-based inference. According toRubin (1976), the missing data mechanism is ignorable for likelihood-based inference if two conditions are ful�lled, namely, if the missing dataare MAR and if the parameters of the structural model4 and the pa-rameters associated with the response mechanism are distinct (see alsoLittle, 1982, and Little and Rubin, 1987). The condition that the twosets of parameters must be distinct means that no restrictions may beimposed between the parameters of the structural model and the param-eters describing the response mechanism. As is demonstrated below, thiscondition is almost always ful�lled. Therefore, for practical applications,ignorability can be equated to MAR.The consequence of ignorability is that the parameter estimates areidentical regardless of the precise ignorable mechanism causing the miss-ing data, and that, therefore, the response mechanism can be ignoredwhen estimating the structural parameters. This is possible because inthat case, the likelihood can be factored into a part containing the struc-tural parameters and a part containing the information on the missingdata mechanism. On the other hand, such a factorization is impossi-ble when the response mechanism is NMAR or when the two sets ofparameters are not distinct, and, therefore, the response mechanism isnonignorable.Assuming a multinomial sampling scheme for the same variables andsubgroups as above, estimation of a log-linear model with partially ob-served data involves maximizing the following incomplete data likelihood
logL(�;�) = X

abcdnabcd log �abcd �ABCDjabcd4The term structural model is used to denote the model for the variables whichrelationships we are interested in. In the context of this section, the structural modelwill be a (causal) log-linear model.



+Xabcnabc logXd �abcd �ABCjabcd
+Xabdnabd logXc �abcd �ABDjabcd
+Xab nab logXcd �abcd �ABjabcd ;

where �ABCDjabcd + �ABCjabcd + �ABDjabcd + �ABjabcd = 1 :Here, �ABCjabcd, �ABCjabcd, �ABDjabcd, and �ABjabcd denote the conditionalprobability of belonging to subgroup ABCD, ABC, ADC, and AB, re-spectively, given that A = a, B = b, C = c, and D = d. The �'s, orthe response probabilities, contain the parameters associated with the re-sponse mechanism. The missing data are MAR if the �'s are independentof the missing variables in the subgroup concerned, that is, if�ABCjabcd = �ABCjabc ; (3.13)�ABDjabcd = �ABDjabd ; (3.14)�ABjabcd = �ABjab ; (3.15)�ABCDjabcd = 1� �ABCjabc � �ABDjabd � �ABjab : (3.16)In that case, the likelihood function can be factored into a componentwhich depends solely on the log-linear parameters and a component whichdepends solely on the response mechanism:logL(�;�) = logL(�) + logL(�) ;where logL(�) = X
abcdnabcd log �abcd +Xabcnabc logXd �abcd
+Xabdnabd logXc �abcd +Xab nab logXcd �abcd ;

and logL(�) = X
abcdnabcd log �ABCDjabcd +Xabcnabc log �ABCjabc+Xabdnabd log �ABDjabd +Xab nab log �ABjab :



If, in addition, no restrictions are imposed across the parameters deter-mining the �'s and the parameters determining the �'s, the two partsmay be maximized separately. This means that the structural parame-ters can be estimated without estimating the parameters of the responsemechanism. For this reason, the response mechanism is called ignorablefor likelihood-based inference.The constraints imposed on the �'s in Equations 3.13-3.16 to make theresponse mechanism ignorable are the least restrictive ones. There are asmany free �'s as observed frequencies in the subgroups with partiallyobserved data. Actually, a `saturated' MAR model is assumed for theresponse mechanism. In other words, it is a model which uses all theadditional degrees of freedom obtained by using the partially observeddata. Of course, it is also possible to impose more restrictive constraintson the �'s. Assuming the �'s to be equal for every value of A, B, C, andD, for instance, provides MCAR missing data. There are several `non-saturated' MAR models which are less restrictive than the MCAR modelbut more restrictive than the `saturated' MAR model. All of these MARmodels lead to the same parameter estimates for the structural model.
3.2.2 Fuchs's approachExtending earlier work by Chen and Fienberg (1974), Hocking and Ox-spring (1971, 1974), and Chen (1979) on the treatment of missing datain the analysis of categorical data, Fuchs (1982) demonstrated how toestimate the parameters of a log-linear model by means of the EM algo-rithm in cases in which the nonresponse is ignorable (Dempster, Laird,and Rubin, 1977). As always, the E step of the EM algorithm involvescomputing the conditional expected complete data likelihood. Because ofthe ignorability of the response mechanism, only the part depending onthe log-linear parameters needs to be considered, or

logL�(�) = X
abcdn̂abcd log �̂abcd :This involves obtaining estimates for the frequencies in the complete tableABCD by

n̂abcd = nabcd + nabc �̂djabc + nabd �̂cjabd + nab �̂cdjab :



In the M step, improved estimates for the probabilities �̂abcd are obtainedby maximizing the complete data likelihood using n̂abcd as if you weredealing with observed frequencies.It should be noted that when applying the above-mentioned proce-dure, caution should be exercised if there are observed zeros in the suf-�cient statistics for the subgroup for which all variables are observed.In such cases, the starting values may determine the �nal estimates ofparticular parameters (Fuchs, 1982).To test the �t of a postulated log-linear model, Fuchs proposed ob-taining the �'s as follows:
�ABCD = NABCD=N ;�ABC = NABC=N ;�ABD = NABD=N ;�AB = NAB=N

which is, in fact, equivalent to assuming that the missing data is MCAR.This leads to the following likelihood chi-square statistic,
L2 = 2 Xabcdnabcd log nabcdm̂abcd �ABCD + 2 Xabc nabc log nabcPd m̂abcd �ABC+ 2 Xabd nabd log nabdPc m̂abcd �ABD + 2 Xab nab log nabPcd m̂abcd �AB :
It can be seen that the estimated expected frequencies for the completetable, m̂abcd, are proportionally divided over the subgroups. Since thisamounts to assuming that the missing data are MCAR, this L2 statisticsimultaneously tests the �t of the postulated log-linear model and thevalidity of the MCAR assumption. This is, however, not a problem be-cause the �t of the log-linear model of interest can be tested indirectly bymeans of a conditional L2 test. For that purpose, the saturated model,model fABCDg, has to be estimated. Since the saturated model itself�ts perfectly, the L2 that is obtained for this log-linear model only teststhe validity of the MCAR assumption. By subtracting the L2 value of thesaturated log-linear model from the L2 value of the model of interest, oneobtains a test for the model of interest. This is a test under the weakestignorable type of missing data, that is, MAR nonresponse.



3.2.3 Fay's approachSometimes one is interested in testing assumptions about the ignorableresponse mechanism itself. Also, it is possible that one wants to spec-ify a nonignorable response mechanism. In such cases, the method pro-posed by Fuchs is not appropriate. Chen and Fienberg (1974) proposeda method for relaxing the MCAR assumption by simultaneously model-ing and testing the log-linear model for the variables of interest and theresponse model. They demonstrated how to estimate the � parametersunder di�erent types of ignorable response mechanisms. Nordheim (1984)considered nonignorable response mechanisms, or NMAR missing data,for a partially observed binary response variable. By �xing the �'s toparticular values, he evaluated the sensitivity of the parameters of thestructural model to the assumptions about the response mechanism.
Causal models for nonresponse using indicator variables Little(1985), Fay (1986), and Baker and Laird (1988) presented methods basedon de�ning response indicators for the variables which are partially ob-served. Using these methods, it is possible to specify either ignorable ornonignorable response mechanisms. Little (1985) used hierarchical log-linear models for the joint distribution of two ordinary variables and tworesponse indicators (see also Winship and Mare, 1989). Fay (1986) andBaker and Laird (1988) used recursive causal log-linear models, or modi-�ed path models, in which the response indicators are treated as depen-dent variables. Below, the procedure which was proposed independentlyby Fay and by Baker and Laird is presented using the same example asabove.Let R and S denote two response indicators, in which R indicateswhether C is observed or not observed and S indicates whether D isobserved or not observed. If variable C is observed, R takes the value 1,otherwise R takes the value 2. If variable D is observed, S equals 1, andif D is missing, S equals 2. It is clear that the di�erent subgroups can beidenti�ed by the levels of R and S. If a given individual has R = 1 andS = 2, then C is observed and D is missing, which means that individualbelongs to subgroup ABC.The procedure proposed by Fay (1986, 1989) consists of using theseresponse indicators together which the other variables in a modi�ed pathmodel. More precisely, a log-linear path model is used to specify both



a model for the structural variables and a model for the response mech-anism. According to Fay, the response indicators may never appear asindependent variables in a logit equation in which a structural variableor a research variable is explained. This can easily be accomplished byspecifying the model for the structural variables in the �rst modi�ed pathsteps and the response model in the last steps. The modi�ed path modelfor the joint distribution of the structural variables A, B, C, and D, andthe response indicators R and S could, for instance, be
�abcdrs = �abcd �rsjabcd ; (3.17)where �rsjabcd denotes the probability that R = r and S = s, given anindividual's scores on A, B, C, and D. In fact, these �'s have the samemeaning as the �'s. Note that it is also possible to split �rsjabcd into twoseparate modi�ed path steps: �rjabcd and �sjabcdr. This is necessary ifR and S are time ordered, for instance, if R and S indicate whether arespondent participated in the �rst or the second wave of a panel study,respectively. Of course, the structural model may also be in the form ofa modi�ed path model.The conditional probability �rsjabcd may be restricted by means ofa logit model. Suppose that the probability of responding on C (thescore on R) depends on D and that the probability of responding onD (the score on S) depends on C. Moreover, as in the case of MCARnonresponse, assume that R and S are related. This leads to the followinglogit model for the joint distribution of R and S

�rsjabcd = �rsjcd = exp �uRr + uSs + uRSrs + uRDrd + uSCsc �Prs exp �uRr + uSs + uRSrs + uRDrd + uSCsc � : (3.18)
It can be seen that the dependence of R on D and of S on C involvesincluding the interaction terms uRDrd and uSCsc in the model for the responsemechanism. Note that the inclusion of the interaction term uRSrs in theresponse model �xes the margin RS, or equivalently, the sizes of thesubgroups.
Ignorable versus nonignorable response mechanisms It shouldbe noted that there is not always a simple one-to-one correspondencebetween the log-linear models for the response mechanism and the clas-si�cation of types of missing data discussed above. For instance, in the



case of the log-linear model for nonresponse speci�ed in Equation 3.18one would perhaps expect that the missing data are assumed to be MAR,which would imply that the response mechanism is ignorable, since thevariables with missing data do not in
uence their own response indica-tors. Nonetheless, the missing data are assumed to be NMAR. This canbe seen by writing down the response probabilities for the di�erent valuesof R and S in the terms of log-linear parameters, i.e.,
�ABCDjabcd = �11jcd = exp �uR1 + uS1 + uRS11 + uRD1d + uSC1c �Prs exp �uRr + uSs + uRSrs + uRDrd + uSCsc � ;
�ABCjabcd = �12jcd = exp �uR1 + uS2 + uRS12 + uRD1d + uSC2c �Prs exp �uRr + uSs + uRSrs + uRDrd + uSCsc � ;
�ABDjabcd = �21jcd = exp �uR2 + uS1 + uRS21 + uRD2d + uSC1c �Prs exp �uRr + uSs + uRSrs + uRDrd + uSCsc � ;
�ABjabcd = �22jcd = exp �uR2 + uS2 + uRS22 + uRD2d + uSC2c �Prs exp �uRr + uSs + uRSrs + uRDrd + uSCsc � :Because of the appearance of the parameter uRDrd in its logit expression,�ABCjabcd is not independent of the value of D. The same argument ap-plies to �ABDjabcd and �ABjabcd which both depend on C and D as well.Actually, all the response probabilities are in
uenced by both C and Dbecause the response probabilities must sum to unity within every levelof the joint variable CD, which is accomplished by the scaling factor ap-pearing in the denominator of the logit equations. As a result, the missingdata are NMAR. This phenomenon, which is also mentioned by Winshipand Mare (1989), occurs because the response probabilities depend onvariables with missing data. Even if the variables C and D do not havea direct e�ect on their own response indicators, the parameter estimatesfor the structural model di�er from the estimates under an ignorable re-sponse model. This means that the response mechanism is nonignorable.So, it is necessary to be cautious when labeling log-linear response mod-els as MAR or ignorable. These terms refer only to the fact that theresponse mechanism can be ignored for likelihood based inference aboutthe structural parameters, and, consequently, they do not always havethe expected substantive meaning.The most restrictive ignorable response mechanism is obtained when



the log-linear response model does not incorporate interaction e�ects be-tween the structural variables and the response indicators, that is, whenthe data are postulated to be MCAR. In the example, this would implythat �rsjabcd = �rs. On the other hand, the least restrictive mechanismwhich is still ignorable is obtained when the response indicators dependon all variables which are observed for all persons, including all theirhigher order interaction terms. In this case, the most extended ignorablelog-linear response model is obtained by assuming that �rsjabcd = �rsjab,which is equivalent to a 'non-saturated' MAR mechanism. A `saturated'MAR model cannot be speci�ed with a log-linear model for �rsjabcd. Sucha model can only be obtained by imposing the restrictions described inEquations 3.13-3.16 directly on the response probabilities.
Monotone patterns of nonresponse When the nonresponse followsa monotone pattern, is it possible to formulate a log-linear path model forthe response mechanism which is equivalent to a `saturated' MAR model,or, in other words, a response model which uses all the additional degreesof freedom obtained by using the partially observed data. A monotonepattern of nonresponse means that the variables can be ordered in such away that a missing score on one particular variable implies having missingscores on all subsequent variables too. Such patterns of nonresponse occuroften in social research, especially in panel studies, where nonresponse atone point in time often implies nonresponse at the next points in time.Suppose we have data from a panel study in which A, B, C, and Dare measurements of the same variable at four points in time. Moreover,assume that there are four subgroups: A, AB, ABC, and ABCD. Sub-group A only participated on the �rst occasion, subgroup AB on the �rstand the second occasion, subgroup ABC on the �rst three occasions, andsubgroup ABCD on all four occasions. This yields a monotone or nestedmissing data pattern since if B is missing, C and D are missing as well,and if C is missing, D is missing as well. Let R, S, and T be the responseindicators for B, C, and D, respectively. In this case, a `saturated' MARmodel is obtained when

�rstjabcd = �rja �sjabr �tjabcrs :As a result of the monotone pattern of the missing data, certain probabil-ities are structurally equal to one. More precisely, if R = 2, S = 2 as well,



and if S = 2, T = 2 too. Therefore, �S2jab2 = 1 and �T2jab12 = �T2jab22 = 1.Using this additional information, the �'s are given by
�ABCDjabcd = �111jabcd = �R1ja �S1jab1�T1jabc11 ;�ABCjabcd = �112jabcd = �R1ja �S1jab1�T2jabc11 ;�ABjabcd = �122jabcd = �R1ja �S2jab1 ;�Ajabcd = �222jabcd = �R2ja :It can easily be seen that the missing data are MAR, since the probabil-ity of belonging to a particular subgroup depends only on the observedvariables in the subgroup concerned.

Estimation via the EM algorithm Let us return to the model rep-resented in Equations 3.17 and 3.18. Maximum likelihood estimation ofthe parameters of this model involves maximizing the following incom-plete data log-likelihood function,
logL(�) = X

abcdnabcd log �abcd�11jabcd +Xabcnabc logXd �abcd�12jabcd
+Xabdnabd logXc �abcd�21jabcd +Xab nab logXcd �abcd�22jabcd :

The simultaneous estimation of the model for the relationships betweenA, B, C, and D and the model for the response mechanism can be accom-plished via the EM algorithm. In the E step, the conditional expectationof the complete data, that is, the unobserved frequencies n̂abcdrs, have tobe computed by means of
n̂abcd11 = nabcd ;n̂abcd12 = nabc �̂djabc12 ;n̂abcd21 = nabd �̂cjabd21 ;n̂abcd22 = nab �̂cdjab22 :Note that unlike the E step for models with latent variables (see Equation3.12), here the posterior probabilities are subgroup speci�c because eachsubgroup has di�erent missing data to be estimated.



In the M step, improved estimates for the parameters of the modi�edpath model are obtained by maximizing the complete data log-likelihoodlogL�(�) = X
abcdrsn̂abcdrs log �abcd �rsjabcd :

Testing The model can be tested by means of the likelihood-ratio statis-tic
L2 = 2 Xabcdnabcd log

� nabcdm̂abcd11
�+ 2 Xabc nabc log

� nabcPd m̂abcd12
�

+ 2 Xabd nabd log
� nabdPc m̂abcd21

�+ 2 Xab nab log
� nabPcd m̂abcd22

� :
This is a simultaneous test for the structural model and the responsemodel. The assumptions regarding the response mechanism and thestructural model can be tested separately by means of conditional tests.The number of degrees of freedom is

df = number of cells� number of independent u parameters ;where the number of cells is the sum of the number of cells of all sub-groups, and the number of independent u parameters is the sum of thenumber of independent parameters of the structural model and the re-sponse model.
Latent variables and nonresponse As demonstrated by Hagenaars(1985, 1990:257), Fuchs's method can also be used to deal with nonre-sponse in latent class models and other types of log-linear models withlatent variables. In that case, there is a double missing data problem,namely: partially unobserved and completely unobserved variables. Thesame kind of solution was used by Vermunt (1988, 1994, 1996) to makeFay's method applicable to log-linear path models with latent variables(see also Hagenaars, 1990:260).Suppose we want to estimate a model which apart from the completelyand partially observed variables A, B, C, and D contains the latent vari-ables W and Y . In that case, the E step of the EM algorithm changesinto

n̂wyabcd11 = nabcd �̂wyjabcd11 ;



n̂wyabcd12 = nabc �̂wydjabc12 ;n̂wyabcd21 = nabd �̂wycjabd21 ;n̂wyabcd22 = nab �̂wycdjab22 :Note that for each subgroup, both the values of the missing variables andthe values of the latent variable are estimated. The M step proceeds inthe same way as discussed above.
Computer programs Several programs have been developed whichcan be used to estimate log-linear models with partially observed vari-ables. In the LCAG program (Hagenaars and Luijkx, 1990), the methoddeveloped by Fuchs is implemented, including Hagenaars's extension formodels with latent variables. Although it is rather complicated, LCAGcan also be used to specify models with response indicators (Vermunt,1988). In the `EM program (Vermunt, 1993), Fay's method is the stan-dard way to treat partially observed data. Moreover, models which con-tain both partially and completely unobserved variables can be handledby the extension of Fay's method presented above. In addition, Haber-man's NEWTON program, which uses a Newton algorithm instead of EM,can be used to estimate models with partially observed data (Haberman,1988).



Chapter 4
Event history analysis
The main characteristic of event history data is that it provides infor-mation on the times at which individual transitions between a numberof discrete states occurred. Because of the growing availability of eventhistory data, techniques for analyzing this kind of data are becomingincreasingly popular in the social sciences. There are many textbookswhich describe the fundamentals of this type of model (Kalb
eisch andPrentice, 1980; Cox and Oakes, 1984; Lawless, 1982; Tuma and Hannan,1984; Blossfeld, Hamerle, and Mayer, 1989; Lancaster, 1990; Yamaguchi,1991; Courgeau and Leli�evre, 1992). The aim of this chapter is to give anoverview of event history models, to investigate the relationship betweenevent history models and the log-linear models discussed in Chapter 2,and to discuss all kinds of problems associated with the analysis of eventhistory data.The �rst section discusses the characteristics of event history dataand explains the necessity of special techniques for analyzing this kindof data. Section 4.2 deals with the basic statistical concepts. Modelsfor the analysis of event history data, or hazard models, are introducedin section 4.3. After discussing the choice of the dependent variable andpresenting a classi�cation of hazard models, attention is given to the threemain types of hazard models: parametric models, Cox's semi-parametricmodel, and discrete-time models.Section 4.4 discusses the relationship between event history modelsand the log-linear models presented in Chapter 2. More precisely, itshows that particular kinds of event history models are equivalent to the



log-rate model which was presented in section 2.6.While sections 4.3 and 4.4 deal strictly with the simplest kinds ofhazard models, that is, models for a single non-repeatable event withtime-constant covariates, the last four sections of this chapter illustratehow the main principles of hazard modeling can be generalized to morecomplex situations. Furthermore, a number of problems associated withthe analysis of event history data are discussed, some of which can besolved by means of the event history models with latent variables andmissing data which are discussed in the next chapter.Section 4.5 discusses the issue of censoring. Censoring is a form ofmissing data which is inherent to event history data. Section 4.6 dealswith the potentials and pitfalls of dynamic modeling. Event history mod-els are dynamic models because of the possibility of regressing the hazardrate on di�erent kinds of time variables, on time-varying covariates, andon interactions between time and covariates. It is shown that the prob-lems of selection bias, unobserved heterogeneity, and reverse causationcan hamper the causal interpretation of e�ects.Section 4.7 presents models which can be used when there are di�erenttypes of events. These models are often called competing risks models.The most general class of event history models, i.e., multivariate hazardmodels, are presented in section 4.8. Included in the family of multi-variate hazard models are models for repeatable events, multiple-statemodels, models for clustered observations, and models for di�erent typesof life-course events. Special attention is given to the relationship be-tween discrete-time multiple-state models and the modi�ed path modelsdiscussed in Chapter 2, and to the problem of dependence among events.It should be noted that in this chapter it is assumed that all covari-ates are fully observed. Event history models with partially or totallymissing covariates are presented in Chapter 5. However, when discussingparticular problems associated with event history modeling, the use ofmodels with unobserved variables are sometimes mentioned as a possiblesolution.
4.1 Why event history analysis?
In order to understand the nature of event history data and the purposeof event history analysis, it is important to understand the following four



elementary concepts: state, event, duration, and risk period (Yamaguchi,1991:1-3). These concepts are illustrated below using an example fromthe analyses of marital histories.The �rst step in the analysis of event histories is to de�ne the rele-vant states which are distinguished. The states are the categories of the`dependent' variable the dynamics of which we want to explain. At everyparticular point in time, each person occupies exactly one state. In theanalysis of marital histories, four states are generally distinguished: nevermarried, married, divorced, and widow(er). The set of possible states issometimes also called the state space (Tuma and Hannan, 1984:45).An event is a transition from one state to another, that is, from anorigin state to a destination state. In this context, a possible event is `�rstmarriage', which can be de�ned as the transition from the origin state,never married, to the destination state, married. Other possible eventsare: a divorce, becoming a widow(er), and a non-�rst marriage. It isimportant to note that the states which are distinguished determine thede�nition of possible events. If only the states married and not marriedwere distinguished, none of the above-mentioned events could have beende�ned. In that case, the only events that could be de�ned would bemarriage and marriage dissolution.Another important concept is the risk period. Clearly, not all personscan experience each of the events under study at every point in time. Tobe able to experience a particular event, one must occupy the origin statede�ning the event, that is, one must be at risk of the event concerned.The period that someone is at risk of a particular event, or exposed toa particular risk, is called the risk period. For example, someone canonly experience a divorce when he or she is married. Thus, only marriedpersons are at risk of a divorce. Furthermore, the risk period(s) for adivorce are the period(s) that a subject is married. A strongly relatedconcept is the risk set. The risk set at a particular point in time is formedby all subjects who are at risk of experiencing the event concerned at thatpoint in time.Using these concepts, event history analysis can be de�ned as theanalysis of the duration of the nonoccurrence of an event1 during the riskperiod (Yamaguchi, 1991:3). When the event of interest is `�rst marriage',
1Other terms which are used instead of duration are waiting time, sojourn time,and failure time.



the analysis concerns the duration of nonoccurrence of a �rst marriage,in other words, the time that individuals remained in the state of neverbeing married. In practice, as will be demonstrated in section 4.3, thedependent variable in event history models is not duration or time itselfbut a rate. Therefore, event history analysis can also be de�ned as theanalysis of rates of occurrence of the event during the risk period. Inthe �rst marriage example, an event history model concerns a person'smarriage rate during the period that he/she is in the state of never havingbeen married.2
Why is it necessary to use a special type of technique for analyzing eventhistory data? Why is it impossible to relate the incidence of an eventwithin the period of the study to a set of covariates simply by means of, forinstance, a logit model, in which the binary dependent variable indicateswhether a particular event occurred within the observation period or not?This is, in fact, what is generally done in the analysis of categorical datacollected by means of a two-wave panel. If using such a logit modelingapproach were a good strategy, it would not be necessary to use specialtypes of methods for analyzing event history data. However, as will bedemonstrated below, such an approach has some signi�cant drawbacks.Suppose there are data on intra-�rm job changes of the employeesworking at company `C' which have to be used to explain individual dif-ferences with regards to the timing of the �rst promotion. In other words,the aim of the study is to explain why certain individuals in company `C'remained in their �rst job longer than others. A single binary dependentvariable could be de�ned indicating whether a given individual receiveda promotion within, for instance, the �rst �ve years after gaining em-ployment in the company concerned. This dependent variable could berelated to a set of covariates, such as age, work experience, job level, edu-cational level, family characteristics, and work-related attitudes by meansof a logit model.Although such a simple logit approach can be quite valuable, it hasfour important drawbacks (Yamaguchi, 1991:9). All of them result fromthe fact that the choice of the period in which the event may have occurredor not is arbitrary. The �rst problem is that it leads to a severe loss of

2While the aim of event history analysis is explaining the occurrence of events,recently, Allison (1994) proposed methods for estimating the e�ects of events.



information since the information on the timing of a promotion within the�ve-year period, on the promotions that occur after the �ve-year period,and on the duration of the nonoccurrence of promotions after the �ve-yearperiod is not used.The second problem of the approach with a single binary dependentvariable is that it does not allow the covariate e�ects to vary with time;in other words, it cannot contain covariate-time interactions. Supposethat the e�ect of the variable educational level changes with time, ormore precisely, that highly-educated employees have a higher probabilityof being promoted in the �rst three years that they work at company `C',while less educated individuals have a higher probability after three years.In that case, the results will heavily depend on the choice of the length ofthe time interval. If a short time interval is used, a strong positive e�ectof the educational level will be found, while longer intervals will lead toa smaller positive e�ect or perhaps even to a negative e�ect of the sameexplanatory variable.The third disadvantage to the logit approach is that it cannot dealwith time-varying covariates. An example of a covariate that can changeits value during the �ve-year period is the number of children that some-one has. It may be of interest to test whether the number of children awoman has in
uences the probability of getting promoted. It is clear thatin a real dynamic analysis, it must be possible to use covariates whichchange their value over time.The last problem of the simple logit model is that is cannot deal withobservations which are censored within the �ve-year period. In this case,there may be two types of censored observations: individuals who leavebefore working �ve years at the company concerned and before gettinga �rst promotion, and individuals who had worked less than �ve yearsat company `C' and had not yet been promoted at the time that thedata were collected. These two types of observations have in commonthat they provide the information that the event of interest did not occurduring a given period of time, but they do not provide information onwhether the event does occur during the remaining part of the �ve-yearperiod. Actually, censoring is a form of partially missing data. Whenusing the logit approach, it is not clear what should be done with suchcensored observations. Ignoring the censored observations implies thatthe information on non-promotion during a given period of time is notused. On the other hand, incorporating the censored observations in the



analysis as observations on individuals that did not experience an eventadds information, namely, that they would not have experienced an eventif they had worked for at least �ve years at company `C'.Clearly, special techniques are needed which overcome these disad-vantages of the simple logit approach discussed above and which fully usethe richness of event history data. Before presenting these models, somebasic concepts have to be introduced.
4.2 Basic statistical concepts
The manner in which the basic statistical concepts of event history mod-els are de�ned depends on whether the time variable T , indicating theduration of nonoccurrence of an event, is assumed to be continuous ordiscrete. Of course, it seems logical to assume T to be a continuous vari-able. However, in many situations this assumption is not realistic for tworeasons. Firstly, in many cases, T is not measured accurately enough tobe treated as strictly continuous. An example of this is measuring theduration variable age of the mother in completed years instead of monthsor days in a study on the timing of the �rst birth. This will result inmany women having the same score on T , which is sometimes also calledgrouped `survival' times.Secondly, the events of interest can sometimes only occur at particularpoints in time. Such an intrinsically discrete T occurs, for example, instudies on voting behavior. Since elections take place at particular pointsin time, changes in voting behavior can only occur at particular points intime. Therefore, when analyzing individual changes in voting behavior,the time variable must be treated as a discrete variable. However, if wewant to explain changes in political preference rather than in voting be-havior, we again have a continuous time variable since political preferencemay change at any point in time.
4.2.1 Continuous timeSuppose T is a continuous non-negative random variable indicating theduration of nonoccurrence of the event under study, in other words, thetime that the event under study occurred. Let f(t) be the probabilitydensity function of T , and F (t) the distribution function of T . As always,



the following relationships exist between these two quantities,
f(t) = lim�t!0 P (t � T < t+�t)�t = @F (t)@t ;
F (t) = P (T � t) = Z t0 f(u)d(u) :

The survival probability or survival function, indicating the probabilityof nonoccurrence of an event until time t, is de�ned as
S(t) = 1� F (t) = P (T � t) = Z 1t f(u)d(u) :

Another important concept is the hazard rate or hazard function, h(t),expressing the instantaneous risk of experiencing an event at T = t, giventhat the event did not occur before t. The hazard rate is de�ned as
h(t) = lim�t!0 P (t � T < t+�tjT � t)�t = f(t)S(t) ; (4.1)

in which P (t � T < t+�tjT � t) indicates the probability that the eventwill occur during [t � T < t + �t], given that the event did not occurbefore t. The hazard rate is equal to the unconditional instantaneousprobability of having an event at T = t, f(t), divided by the probabilityof not having an event before T = t, S(t). It should be noted thatthe hazard rate itself cannot be interpreted as a conditional probability.Although its value is always non-negative, it can take values greater thanone. However, for small �t, the quantity h(t)�t can be interpreted as theapproximate conditional probability that the event will occur between tand t+�t.Because the functions f(t), F (t), S(t), and h(t) give mathematicallyequivalent speci�cations of the distributions of T , it is possible to expressboth S(t) and f(t) in terms of h(t). Since f(t) = �@S(t)=@t, Equation4.1 implies that
h(t) = �@ logS(t)@t :

By integrating and using S(0) = 1, that is, no individual experienced anevent before T = 0, the important relationship
S(t) = exp�� Z t0 h(u)d(u)� ; (4.2)



is obtained. From Equations 4.1 and 4.2, it can be seen that the densityf(t) can also be written as a function of the hazard rate:
f(t) = h(t)S(t) = h(t) exp�� Z t0 h(u)d(u)� : (4.3)

Thus, both the survival function and the density function of T can bewritten in terms of the hazard function.
4.2.2 Discrete timeSuppose T is a discrete random variable indicating the time of occurrenceof an event, and tl is the lth discrete time point, where 0 < t1 < t2 <: : : < tL� , with L� indicating the total number of time points. If theevent occurs at tl, this means that the event did not occur before tl, inother words, that the duration of nonoccurrence of an event equals tl�1.It should be noted that this is slightly di�erent from the continuous-timesituation in which T indicates both the time that an event occurs and theduration of nonoccurrence of an event.The probability of experiencing an event at T = tl is given as

f(tl) = P (T = tl) :The survivor function, which indicates the probability of having an eventneither before nor at T = tl,3 is
S(tl) = P (T > tl) = L�X

k=l+1 f(tk) :An important quantity in the discrete-time situation is the conditionalprobability that the event occurs at T = tl, given that the event did notoccur prior to T = tl. It is de�ned as
�(tl) = P (T = tljT � tl) = f(tl)S(tl�1) :Similar to the way f(t) and S(t) are expressed in terms of h(t) in con-tinuous time, f(tl) and S(tl) can be expressed in terms of �(tl). Since

3It should be noted that some authors de�ne the survival probability in discrete-timesituations as the probability of not having an event before tl: S(tl) = P (T � tl).



f(tl) = S(tl�1)� S(tl),
�(tl) = S(tl�1)� S(tl)S(tl�1) = 1� S(tl)S(tl�1) : (4.4)

Rearrangement of this equation results in
S(tl) = S(tl�1) [1� �(tl)] :Once again, using S(0) = 1 leads to the following expressions for S(tl)and f(tl):

S(tl) = lY
k=1 [1� �(tk)] ; (4.5)

f(tl) = �(tl)S(tl�1) = �(tl) l�1Yk=1 [1� �(tk)] : (4.6)
Because �(tl) is de�ned in much the same way as the continuous-time haz-ard rate h(t), it is sometimes called a hazard rate (Yamaguchi, 1990:17;Blossfeld, Hamerle, and Mayer, 1989:106). This is, however, not com-pletely correct since a hazard rate is an instantaneous (conditional) prob-ability, and therefore a continuous-time quantity. Nevertheless, it is pos-sible to calculate the hazard rate h(t) from �(tl) and vice versa. As canbe seen from Equation 4.4, the conditional probability of experiencing anevent at tl equals one minus the probability of surviving between tl�1 andtl. Using h(t), this can also be expressed as follows:

�(tl) = 1� exp � Z tltl�1 h(u)d(u)
! : (4.7)

If the hazard rate is assumed to be constant in time interval tl and ifthe length of time interval tl is 1, the expression in Equation 4.7 can besimpli�ed to
�(tl) = 1� exp (�h(tl)) :This gives the following hazard rate in time interval tl:
h(tl) = � log (1� � (tl)) (4.8)



The quantity h(tl) could be called a discrete-time hazard rate, or anapproximation of the hazard rate in the lth discrete time interval. Notethat the relationship between h(t) and �(tl) as expressed in Equation 4.7is only meaningful if the event can occur at any point in time, that is, iftime is a continuous variable which is measured discretely.
4.3 Hazard rate models
4.3.1 The form of the dependent variableAs de�ned above, the duration of nonoccurrence of the event under studyin an event history model is related to a set of covariates. However, tobe able to formulate a regression analytic model for event history data, it�rst has to be decided which is the best form of the dependent variable.There are at least four candidates for this purpose, namely, duration ortime (T ), the density of T (f(t) or f(tl)), the survival function (S(t) orS(tl)), and the hazard rate (h(t)) or, in discrete time, the conditionalprobability �(tl). It is clear that the best candidate is the one whichovercomes all the problems associated with the simple logit approachdiscussed in section 4.1. This means that an event history model mustmake it possible to1. use all the information on the duration of the nonoccurrence of anevent,2. specify time dependent e�ects of covariates (covariate-time interac-tions),3. use time-varying covariates,4. use censored observations.The simplest solution seems to be to use T or some transformation ofT , such as log T , as the dependent variable in an ordinary regressionmodel. Models in which log T is linearly regressed on a set of covari-ates are known as accelerated failure-time models (Cox and Oakes, 1984:section 6.3; Lancaster, 1990:40). Accelerated failure-time models use allthe information on the duration of nonoccurrence of an event. Moreover,censored observations can be dealt with by estimating the models using



maximum likelihood with missing data. In accelerated failure-time mod-els, it is, however, not possible to let the e�ects of covariates change withtime nor to use time-varying covariates.As was demonstrated in the previous section, the remaining candi-dates give equivalent descriptions of the information on the duration ofnonoccurrence of an event. Like T or log T , the density function, thesurvival function, and the hazard rate ful�ll the �rst and last requisite.As in accelerated failure-time models, the censoring problem is solved byusing maximum likelihood methods for obtaining estimates of the modelparameters. With respect to the second and third requisite, that is, withrespect to the dynamic character of event history analysis, the most natu-ral dependent variable seems to be the hazard rate. Modeling the hazardrate is a logical dynamic extension of the simple logit approach presentedabove in which the probability of occurrence of an event in a period of �veyears was modelled. By modeling the hazard rate, it becomes possible toregress it both on covariates and on time. When time is entered as anindependent variable in the model, it is a rather straightforward proce-dure to include time-covariate interactions, that is, to allow the covariatee�ects to be time dependent. Moreover, the hazard rate at T = t can berelated to the covariate values at T = t, which means that the covariatesmay be time-varying.Besides the hazard rate, f(t) and S(t) can also be used as dependentvariables in an event history model. However, contrary to the hazardrate, it is prohibitively complicated to take the dynamic character of theprocess under study into account when modeling either the unconditional(instantaneous) probability of experiencing an event at T = t or thesurvival probability. As was mentioned above, the hazard rate at T = tdepends only on the conditions at T = t, that is, on the covariate e�ectsand covariate values at T = t. On the other hand, both S(t) and f(t)depend on the circumstances encountered between T = 0 to T = t or,more precisely, on the covariate e�ects and covariate values on the hazardrates between T = 0 and T = t. This can be seen in Equations 4.2 and4.3, which describe the relationships between the survival, density, andhazard function.Because of the necessity of cumulating the covariate e�ects betweenT = 0 and T = t if the covariate e�ects change with time or if thereare time-varying covariates, it is, compared to h(t), relatively di�cult toregress S(t) or f(t) on a set of covariates. It is for this reason that the



hazard rate is generally used as the dependent variable in event historymodels. Sometimes, S(t) is used for this purpose when there are onlytime-constant covariates which e�ects do not change with time. Thesame arguments in favor of using h(t) as the dependent variable in thecontinuous-time case do also apply for �(tl) in the discrete-time case.Here, attention is focussed solely on event history models in whichh(t) or �(tl) is used as the dependent variable. These regression modelsare also called hazard rate models or simply hazard models.4
4.3.2 Types of hazard modelsThe classi�cation which is used in most textbook on hazard modeling isthe distinction between parametric models, Cox's semi-parametric model,and discrete-time models (see, for example, Kalb
eisch and Prentice,1980; Blossfeld, Hamerle, and Mayer, 1989; Yamaguchi, 1991). Paramet-ric models and Cox's semi-parametric model are used for continuous-timeevent history data.The two continuous-time methods di�er from each other with respectto the treatment of the time dependence of the hazard rate. In parametricmodels, the time dependence is assumed to have some known functionalform. Well-known parametric models are the exponential model, theWeibull model, the Gompertz model, and the log-logistic model (Lawless,1982; Blossfeld, Hamerle, and Mayer, 1989:50-55). On the other hand,if the time dependence is not parameterized, i.e., if no model is speci�edfor the time dependence, a semi-parametric hazard model is obtained.Because the semi-parametric hazard model was �rst proposed by Cox(1972), it is often called the Cox semi-parametric hazard model or theCox proportional hazard model; the meaning of the term proportionalwill be explained below.The distinction between parametric and semi-parametric models isnot as relevant when dealing with discrete-time models. The reason forthis is that both the parametric and semi-parametric models can be spec-i�ed with the same discrete-time methods. More precisely, by specifyingone time parameter for every discrete time point, a model is obtained thatis similar to the semi-parametric hazard model, while more parsimonious

4It should be noted that the term hazard model is not always correct in discrete-time situations because there we often model the conditional probability �(tl) insteadof the hazard rate.



speci�cations of the time dependence, such as polynomials, lead to mod-els similar to the parametric hazard models (Allison, 1982; Yamaguchi,1991:17).Another related approach to the analysis of event history data is theuse of non-parametric methods. These methods, such as demographiclife-table methods (Elandt-Johnson and Jonhson, 1980; Namboodiri andSuchindran, 1987) and Kaplan-Mayer's (1958) product-limit estimates forthe hazard rates, have in common that the dependence of the hazard rateon covariates is not parameterized. In that sense, they are not real modelsbut tools for the description of event history data. Since these methodsfall outside the scope of this book, they will not be discussed in furtherdetail.
Two special families In addition to the three above-mentioned typesof hazard models, two special families can be distinguished: proportionalhazard models and log-linear hazard models (Lancaster 1990:42-43).Let h(tjx) be the hazard rate at T = t for an individual with covariatevector x. When all regressors are time-invariant, a model of the form

h(tjx) = k1(t)k2(x) ; (4.9)
in which k1(t) and k2(x) are the same functions for all individuals is calleda proportional hazard model. The reason for this is that the hazard ratesfor two persons with regressor vectors x1 and x2 are in the same ratio,k2(x1)=k2(x2), for all t. Proportional hazard models can be de�ned asmodels in which the e�ect of T and the total e�ect ofX on the hazard rateare multiplicative and in which there are no interaction e�ects betweenT and X.The concept of proportional hazard rates is especially relevant forCox's semi-parametric model. The development of this model is based onthe feature that if the hazard rate can be assumed to be proportional, alarge simpli�cation of inference in event history models is achieved. Moreprecisely, the proportionality assumption makes it possible to estimate theunknown parameters of k2(x) without the necessity of specifying k1(t).Although Cox's regression model is the best-known proportional haz-ard model, some of the parametric hazard models also lead to proportionalhazard rates. Parametric models in which the e�ect of T and X is mul-tiplicative, such as the Weibull model, are proportional hazard models if



the e�ect of T is assumed to be the same for all values of X. As the timevariable is treated in the same way as any other time-varying covariate indiscrete-time models, it depends on the inclusion of interaction terms be-tween T andX whether a particular discrete-time model is a proportionalhazard model or not.Another special family of hazard models include the log-linear type.They have the form
log h(tjx) = JXj=1�jkj [t;x(t)] : (4.10)

Here, kj [t;x(t)] denotes some known function either of T or of the time-varying or time-constant covariates X(t). The �js are the log-linear pa-rameters which can be e�ects of T , X, or both. Thus, a hazard ratemodel is called log-linear if the log of the hazard rate is a linear functionof time e�ects and covariate e�ects.It should be noted that these two special families are not exclusivecategories. A proportional hazard model may also be a log-linear hazardmodel, namely, if k2(x) = exp(Pj �jx). On the other hand, if there areno time-covariate interaction e�ects, a log-linear hazard model will alsobe a proportional hazard model.Some parametric models, such as the exponential, the piecewise ex-ponential, and the Weibull models, are log-linear or can be reparameter-ized to be log-linear. Cox's regression model is, likewise, log-linear. Indiscrete-time methods, either a log-linear speci�cation for the hazard rateor a logit speci�cation for the conditional probability of experiencing anevent at a particular point in time is used. While the concept of propor-tional hazard rates was especially relevant for the development of Cox'ssemi-parametric model, the special family of log-linear hazard models isparticularly relevant in the context of this book because it deals withevent history analysis by means of log-linear analysis techniques. As willbe demonstrated in section 4.4, log-linear hazard models are, to a greatdegree, related to the standard log-linear models which were discussed inChapter 2.
In summary, three fundamentally di�erent types of hazard models weredistinguished: parametric hazard models, Cox's semi-parametric propor-tional hazard model, and discrete-time models. These models will be



presented in the next subsections. It was also shown that two specialfamilies can be distinguished which contain models belonging to thesethree main types.
4.3.3 Parametric hazard modelsLet h(tjx) be the value of the hazard rate at T = t for an individualwith covariate values x. As mentioned above, parametric hazard modelsassume a particular functional form for the relationship between T andthe value of the hazard rate. There are many parametric models, suchas exponential, piecewise exponential, Weibull, Gompertz-Makeham, log-logistic, log-normal, gamma, and inverse Gaussian models, the names ofwhich refer to the functional form which is chosen for one of the basicfunctions h(t), f(t) or F (t). In most textbooks on hazard models, a greatdeal of attention is given to parametric hazard models (Elandt-Johnsonand Johnson, 1980; Kalb
eisch and Prentice, 1980; Cox and Oakes, 1984;Lawless, 1982; Blossfeld, Hamerle, and Mayer, 1989; Lancaster, 1990).Here, a few of the best known parametric models are presented to illus-trate the main principles underlying parametric methods, and to showsome of the parameterizations which belong to the special families ofproportional hazard and log-linear hazard models. For the simplicity ofexposition, it will be assumed that the covariates are time-invariant. Insection 4.6, it will be demonstrated how to apply the hazard models whichare presented below when some of the covariates are time-varying.The exponential survival model is the simplest parametric hazardmodel. It assumes exponential survival, or a time-constant hazard rate,i.e.,

h(tjx) = exp0@ JXj=0�jxij
1A :

Here, �j is an unknown parameter and xij is the value of covariate jfor subject i. Thus, the hazard rate depends only on the values of thecovariates X. Note that �0 is the intercept which implies that xi0 mustbe one for all persons.One possible extension of the rather restrictive exponential survivalmodel leads to the piecewise exponential survival model, in which thehazard rate is assumed to be constant within time periods. In other words,



the hazard rate is a step function of T . Suppose the time axis is splitinto L� time periods with upper limits tl, such that 0 < t1 < t2 : : : < tL� .Moreover, let dl denote one of the L� indicator variables taking the value1 if tl�1 < t � tl, and otherwise the value 0. This gives the followinghazard model:
h(tjx) = exp0@ JXj=1�jxij +

L�X
l=1 �ldl

1A : (4.11)
Note that the intercept �0 is not included in the model in order to identifyall �l parameters. As a result, the �l parameters can be interpreted as thelog hazard rate of an individual for which all covariates are equal to zero.When the number of time intervals increases, it makes less sense to treatthis model as parametric (Lancaster, 1990:43). As will be demonstratedin section 4.4, when the number of time intervals equals the number ofdistinct times that events occur, a piecewise exponential survival modelis equivalent to a semi-parametric hazard model.Another popular extension of the exponential model is the Weibullmodel, which describes the monotonous time dependence of the hazardrate by means of one additional parameter. It parameterizes the hazardrate as

h(tjx) = exp0@ JXj=0�jxij
1A�t��1 ;

for � > 0. Sometimes it is reparameterized as
h(tjx) = exp0@ JXj=0�0jxij + �0 log t1A ;

in which �0 = � � 1, �00 = ln� + �0, and, for j = 1 to J , �0j = �j . As isshown in the last equation, the hazard rate depends on T in the Weibullmodel, or equivalently, the log hazard rate on log T . If � equals 1, theWeibull model becomes an exponential model. Values for � smaller than1 indicate that the hazard rate declines as T increases, while values largerthan 1 indicate that the hazard rate increases as T increases.In the Gompertz-Makeham model, the hazard rate is given as
h(tjx) = �1 + exp0@ JXj=0�jxij + �2t1A ;



with �1 � 0. The di�erence with the Weibull model is that the loghazard rate depends on T instead of log T . The �1 parameter denotes alower boundary of the hazard rate. By �xing �1 = 0, a simpler modelis obtained which is called the Gompertz model, in which the log of thehazard rate is simply a linear function T .A possible extension of the Gompertz model is a model in which thetime dependence of the hazard rate is parameterized by a higher orderpolynomial function of T . Such models can be used when there is a non-monotonous time dependence of the hazard rate. A polynomial model ofdegree K is
h(tjx) = exp0@ JXj=0�jxij +

KX
k=1�ktk

1A ;
in which the �k's are the parameters associated with the time dependenceof the hazard rate. Instead of T , it also possible to use a polynomialfunction of lnT (Clayton, 1983). In that case, an extension of the Weibullmodel is obtained.It can be seen that all parametric hazard models presented so far,except for the Gompertz-Makeham model, are both proportional and log-linear hazard models. They are proportional because the total e�ect of thecovariates in
uences the hazard rate multiplicatively and, moreover, thereare no time-covariate interaction e�ects. Note that the proportionalityassumption can be relaxed by allowing the � parameters to depend onthe values of particular covariates. The models are log-linear because thelog of the hazard rate is a linear function of time e�ects and covariatee�ects.An example of a hazard model which is neither proportional nor log-linear is the log-logistic model. This is de�ned as

h(tjx) = � hexp �PJ0 �jxij�i� t��11 + hexp �PJ0 �jxij� ti� ;
for � > 0. The log-logistic function can be used to describe non-monoton-ous hazard rates, or more precisely, hazard rates that �rst increase thensubsequently decrease with time. The model is nonproportional becausethe size of the hazard rate does not simply result from a multiplication ofthe total covariate e�ect and the time e�ect. It is likewise not log-linear



because the log of the hazard rate is not a simple linear function of timeand covariate e�ects.
Estimation The parameters of parametric hazard models are generallyestimated by means of the maximum likelihood method. Let ti be eitherthe time that individual i experienced an event or the time that individuali was censored, that is, either individual i's survival or censoring time. Let�i be a censoring indicator taking the value 0 if case i is censored and thevalue 1 if case i experienced an event. When the censoring mechanism canbe assumed to be independent (Lagakos, 1979; Kalb
eisch and Prentice,1980:119-122), in other words, when the missing data can be assumed tobe ignorable for likelihood-based inference, the likelihood function to bemaximized can be written as

L = NYi=1 f(tijxi)�iS(tijxi)1��i = NYi=1h(tijxi)�iS(tijxi)
= NYi=1h(tijxi)�i exp

�� Z ti0 h(ujxi)du� ; (4.12)
In section 4.5, which deals with censoring, it will be explained underwhich conditions this likelihood function is correct. When these condi-tions are ful�lled, the contribution to the likelihood function of a personwho experienced an event is f(tijxi). Since only information on survivaluntil ti is available for censored observations, their contribution to thelikelihood function is S(tijxi).For most parametric models, there is a tractable expression for thesurvival function appearing in the likelihood function. With regard to themodels presented above, numerical integration in order to compute thelikelihood equations is only necessary for the polynomial model (Rohwer,1993). The likelihood equations can be solved by the Newton-Raphsonalgorithm or one of its variants (Petersen, 1986). In the case of log-linearhazard models, it is also possible to use a simpler conditional maximiza-tion method which is discussed in section 4.4 (Aitkin and Clayton, 1980).The parametric models discussed above can be estimated by meansof standard programs for event history analysis. The best known pro-gram is Tuma's RATE program (Tuma, 1979). Recently, Rohwer (1993)introduced his TDA program which at this moment is probably the most



complete for estimating parametric hazard models. In a series of work-ing papers accompanying the TDA program, Rohwer gave an excellentoverview of the di�erent parametric models and of the technical details onobtaining maximum likelihood estimates of their parameters by means ofthe Newton-Raphson algorithm. Using either RATE or TDA, it is possi-ble to specify models in which the duration parameters (the �'s) dependon the covariate values.
4.3.4 Cox's semi-parametric hazard modelThe use of the parametric models discussed above requires that the dis-tributional form of T is known. However, in many situations, there is noa priori information on the time dependence of the process under study.That is the main reason that Cox's semi-parametric hazard model, whichdoes not parameterize the time dependence of the process, is so popularin many research �elds. More precisely, it involves an unspeci�ed functionof T in the form of an arbitrary baseline hazard function. The relation-ship between the covariates and the hazard rate is parameterized using alog-linear model, which leads to

h(tjx) = h0(t) exp0@ JXj=1�jxij
1A ; (4.13)

in which h0(t) is the unspeci�ed baseline function. Note that the e�ectof T , h0(t), is not allowed to depend on the covariate values as a resultof the proportionality assumption. Although the model represented inEquation 4.13 seems to be very simple, the main problem associated withit is how to estimate the � parameters without the necessity of specifyingh0(t). Cox (1972, 1975) proposed solving this problem by means of whathe called partial likelihood estimation.5
Estimation Assume that all events occur at distinct times, in otherwords, that there are no tied durations.6 To compute the partial likeli-5The procedure is called partial likelihood because some information in the datais not used for parameter estimation. More precisely, only the order in which eventsoccur is used, which means that the length of the time intervals between events isdisregarded (Cox and Oakes, 1984: section 8.4).6Two durations are called tied if the two people concerned experienced the event ofinterest at the same point in time. Ties are problematic in the partial likelihood method



hood function, the observations must be ordered on the basis of the lengthof the duration ti, that is, t1 < t2 < t3 : : : < tN . The partial likelihoodfunction is formulated as
LPL = NYi=1

" h(tijxi)PNk=i h(tijxk)
#�i = NYi=1

24 h0(ti) exp �Pj �jxij�PNk=i h0(ti) exp �Pj �jxkj�
35�i

= NYi=1
24 exp �Pj �jxij�PNk=i exp �Pj �jxkj�

35�i ; (4.14)
in which h(tijxk) is the hazard rate for subject k at T = ti, ti is either thesurvival or censoring time of subject i, and �i is a censoring indicator.The partial likelihood is a product of conditional probabilities. Giventhat an event occurred at ti, the ith conditional probability represents thelikelihood that the event will occur for the particular subject who actuallyhad the event at T = ti rather than for any other subject who was at riskT = ti (Yamaguchi, 1991:106). Note that the individuals who are at riskat ti are those with a survival or censoring time which is greater than orequal to ti. Since the partial likelihood is a�ected only by the relativeorder of durations, information about the exact time that the events andcensorings occur is lost. It can be seen that the unspeci�ed baselinehazard h0(t) cancels out from the partial likelihood function described inEquation 4.14.By maximizing the partial likelihood as if it were an ordinary likeli-hood function, maximum partial likelihood estimates for the � parametersare obtained without the necessity of estimating the unspeci�ed baselinehazard function. Although particular information is lost when using thismethod, it has been proven that it has all the essential properties, suchas consistency and asymptotic normality, under quite broad conditions(Tsiatis, 1981; Andersen and Gill, 1982).By using only the order in which the events occurred and by assumingthe hazard rate to be proportional, the partial likelihood provides a sim-ple estimation procedure for the covariate e�ects without the necessity ofspecifying the time dependence of the hazard rate. The semi-parametric
because it is based on the observed order between events and the order between tiedobservations cannot be determined. Note that if T is strictly continuous, ties cannotoccur.



hazard model does, however, have two weak points: the proportionalityassumption is unrealistic in most applications and the non-availability oftime e�ects is problematic if one is interested in the duration dependenceof the hazard rate. A simple solution for these two problems is the inclu-sion of a time-varying covariate indicating time or duration in the model(Cox and Oakes, 1984:73; Yamaguchi, 1991:107-108). The time depen-dence of the hazard rate can be detected by estimating the e�ect of thistime-varying covariate on the hazard rate. The proportionality assump-tion can be relaxed by specifying models with interactions between `time'and other covariates.Because time changes continuously, in practice, time can only be usedas a time-varying covariate if it is treated as discrete. This means thatif time is included as a covariate in a semi-parametric hazard model, amodel is obtained that is very similar to both the piecewise exponentialsurvival model described in Equation 4.11, in which the hazard rate isassumed to be constant within time intervals (see also section 4.4), andthe discrete-time methods which are presented in the next section.
Ties Above, the possibility that two persons have the same survivaltimes, or in other words, that there are ties in the data, was disregarded.However, since duration is always measured discretely, in practice, equaldurations frequently occur. Several modi�cations of the partial likelihoodmethod have been proposed to deal with ties. The solution proposed byPeto (1972) and Breslow (1974) on somewhat di�erent grounds is the onewhich is used most often. In the case of ties, the data must be orderedsuch that t1 � t2 � t3 : : : � tN . Because some ti are equal, the summationover the risk set in the denominator of Equation 4.14 has to be changed.Instead of starting from k = i, it must start from the smallest k for whichtk = ti: Everyone with either the same or a greater value of T than ibelongs to the risk set at T = ti. This principle can be formulated inseveral equivalent fashions, such as

LPL = NYi=1
24 exp �Pj �jxij�Pk2(tk�ti) exp �Pj �jxkj�

35�i ; (4.15)



or
LPL = N�Yi�=1

exp �Pj �jsi�j�hPk2(tk�ti� ) exp �Pj �jxkj�ini� : (4.16)
Compared to Equation 4.14, in the �rst expression (4.15), only the indexof the summation in the denominator is changed to include all cases inthe risk set for which tk � ti. The second, somewhat more complicatedexpression (4.16) is the one which is used most often. There, N� denotesthe number of distinct times at which one or more events occurred, t�i aparticular time at which one or more events occurred, si�j is the sum ofthe values of the jth covariate for all individuals who experience an eventat T = ti� , and �nally, ni� is the number of events at T = ti� .In section 4.4, the solution for ties as proposed by Breslow (1974)is discussed in more detail. The resulting proportional hazard model isshown to be equivalent to a proportional piecewise exponential survivalmodel with as many time categories as di�erent observed times at whichevents occurred.
4.3.5 Discrete-time modelsWhen the time variable is measured rather crudely, which leads to manyties in the data, or when the process under study is intrinsically discrete, itis more appropriate to use one of the discrete-time event history models.7These models involve regressing the conditional probability of occurrenceof an event in the lth time interval, given that the event did not occurbefore this period, denoted by �(tl), on a set of covariates. It must benoted that when these probabilities are relatively small for all values ofT and X, the parameters of discrete-time models and continuous-timemodels are very similar. The reason for this is that the hazard rate h(t)and �(tl) have almost the same value if the hazard rate is small. Onthe basis of the relationship between h(t) and �(tl) given in Equation4.8, it can be seen that values of :1, :2, and :5 for �(tl) correspond withvalues of :105, :223, and :693 for h(t). This means that if all �(tl) are7For applications of discrete-time event history models in situations in which thetime dimensions is intrinsically discrete see, for example, Mare (1994) and Van Reesand Vermunt (1996).



smaller than :1, discrete-time methods provide good approximations ofcontinuous-time methods.There are several ways to parameterize the dependence of the condi-tional probability of experiencing an event on time and on covariates. Themost popular choice is the logistic regression function (Cox, 1972; Myers,Hankley, and Mantel, 1973; Brown 1975; Thompson 1977; Allison, 1982)
�(tljx) = exp ��l +Pj �jxij�1 + exp ��l +Pj �jxij� ;which leads to the well-known discrete-time logit model
log � �(tljx)1� �(tljx)

� = �l +Xj �jxij :
Although the logistic regression model is a somewhat arbitrary choice, ithas several advantages: It constrains �(tljx) to between 0 and 1, and it iscomputationally convenient because of the existence of su�cient statis-tics.On the other hand, as is demonstrated below, if one assumes that thedata are generated by a continuous-time proportional hazard model, itis preferable to use the complementary log-log transformation for �(tl)(Allison, 1982). It can be derived from Equation 4.7, that the conditionalprobability of experiencing an event in tl can be written in terms of thehazard rate as

�(tljx) = 1� exp � Z tltl�1 h(ujx)d(u)
! :

If there is no information on the variation of the hazard rate within thetime intervals, it seems reasonable to assume that the hazard rate isconstant within each interval tl, or that�(tljx) = 1� exp (�h(tljx)�tl) ; (4.17)in which �tl denotes the length of the lth time interval. This amountsto assuming exponential survival within every particular time interval.Suppose the following log-linear and proportional hazard model is postu-lated:
h(tljx)�tl = exp0@�l +Xj �jxij1A : (4.18)



Substitution of Equation 4.18 into Equation 4.17 yields
�(tljx) = 1� exp24� exp0@�l +Xj �jxij1A35 :

Rearrangement of this equation yields what is known as the complemen-tary log-log transformation of the conditional probability of experiencingan event at tl, log [� log (1� �(tljx))] = �l +Xj �jxij :
The � parameters can now be interpreted as the covariate e�ects on thehazard rate under the assumption that h(tl) is constant within each ofthe L� time intervals. Since h(tljx)�tl appears at the left-hand side ofEquation 4.18 instead of h(tljx), the estimates for the baseline hazardrates or the time parameters must be corrected for the interval lengths�tl. The correct time parameter for the lth time interval equals �l �ln(�tl).If the model is a proportional hazard model, that is, if there are notime-covariate interactions, the � parameters of a complementary log-logmodel are not sensitive to the choice of the interval lengths since �tl iscompletely absorbed into �l. This is the main advantage of this approachcompared to the discrete-time logit model, which is not only sensitiveto the choice of the length of the intervals, but also requires that theintervals be of equal length (Allison, 1982). The reason for this is thatthe interval length in
uences the probability that an event will occur inthe interval concerned, and therefore also the logit of �(tl). Althoughthe complementary log-log model can handle unequal interval lengths inproportional hazard models with one parameter for each time interval,unequal time intervals are problematic when the time dependence is pa-rameterized or when the model is nonproportional (Allison, 1982). Thus,as long as the duration parameters are treated as nuisance parameters, asin a Cox regression model, unequal interval lengths are allowed. If, how-ever, the time dependence itself becomes the object of study, the timeintervals must be of equal length.
Estimation Cox (1972) proposed a partial likelihood estimator for thediscrete-time logit model which is analogous to the partial likelihood es-



timator for continuous-time data (see Equation 4.14). However, discrete-time models are generally estimated by means of maximum likelihoodmethods (Allison, 1982). From Equations 4.5 and 4.6, it is known that
f(tljx) = �(tljx) l�1Yk=1 [1� �(tkjx)] = �(tljx)1� �(tljx) lY

k=1 [1� �(tkjx)] ;
S(tljx) = lY

k=1 [1� �(tkjx)] :
Just as in continuous-time models, f(tljx) is the contribution to the likeli-hood function for an individual who experienced an event and S(tljx) foran individual who was censored. Let N denote the sample size, and letli denote the time interval in which the ith person experienced an eventor was censored. In that case, the likelihood function can be written as

L = NYi=1
24� �(tli jxi)1� �(tli jxi)

��i liY
k=1 (1� �(tkjxi))35 :

Let yi be a vector of li indicator variables taking the value 1 if person iexperienced an event in T = tl, and otherwise taking the value 0. In fact,the �rst li � 1 elements of yi are zero and the last one is equal to thecensoring indicator �i. Using this vector yi instead of �i, the likelihoodfunction becomes
L = NYi=1

liY
k=1

�� �(tkjxi)1� �(tkjxi)
�yik (1� �(tkjxi))� :

This is, actually, the likelihood function for regression models for binaryresponse variables (Brown, 1975; Allison, 1982). The only di�erence isthat there is not one observation per individual but li observations perindividual, that is, one observation for each time interval in which theindividual concerned belongs to the risk set. Therefore, discrete-timelogit models can be estimated by means of standard software for logis-tic regression analysis. The input should not consist of one record perindividual but one record for every period that an individual belongs tothe risk set. These records are sometimes called person-period records.When all covariates are categorical, discrete-time logit models can alsobe estimated using standard log-linear analysis programs, such as ECTA



(Fay and Goodman, 1975), FREQ (Haberman, 1988), GLIM (Baker andNelder, 1978), and `EM (Vermunt, 1993). In `EM , a special option isimplemented which makes it possible to use person or episode recordsas input instead of person-period records. The program generates thecontingency table which is used to obtain the parameter estimates. Thecomplementary log-log model can be estimated by means of GLIM (Bakerand Nelder, 1978).
4.4 Event history analysis using log-linearmodels
Particular parametric hazard models as well as Cox's semi-parametrichazard model are based on a log-linear parameterization of the time andcovariate dependence of the hazard rate. This section discusses the re-lationship between the log-linear models for frequency tables discussedin Chapter 2 and log-linear hazard models. It is shown that log-linearhazard models can also be written as ordinary log-linear models.The piecewise exponential survival model (see Equation 4.11) is oneof the hazard models which belongs to the log-linear family. In thiscontinuous-time hazard model, the hazard rate is assumed to be constantwithin time intervals. Holford (1980) demonstrated that the likelihoodfunction for a piecewise exponential survival model is proportional toboth a Poisson and a multinomial likelihood function. The consequenceis that when all covariates are categorical, the same estimation and test-ing procedures can be used as in log-linear models for contingency tablesor, more precisely, as in log-rate models (see section 2.6) (Holford, 1976,1980; Laird and Olivier, 1981). Laird and Olivier (1981) demonstratedhow to apply the log-rate model using grouped event history data. Thus,log-rate models, like the discrete-time methods discussed above, can beused to approximate the results of continuous-time models.In addition to the piecewise exponential survival model, Cox's semi-parametric model (see Equation 4.13) can also be written as an ordinarylog-linear model. Holford (1976) demonstrated that Breslow's maximumlikelihood procedure for Cox's model (Breslow, 1972, 1974) is equivalentto a piecewise exponential survival model with as many time categories asdistinct observed times at which events occur. Laird and Olivier (1981)and Whitehead (1980) showed how to estimate Cox's semi-parametric



hazard model using standard log-linear analysis programs.Aitkin and Clayton (1980) and Clayton and Cuzick (1985) demon-strated how to estimate a general class of log-linear hazard models bya two-step conditional-maximization procedure which they implementedin GLIM (Baker and Nelder, 1978). This conditional maximization pro-cedure makes use of the fact that, given the values of the parametersdescribing the duration dependence of the hazard rate, the likelihoodfunction for any log-linear hazard model is equivalent to the Poisson like-lihood function.Below, piecewise exponential survival models, Breslow's maximumlikelihood approach to Cox's semi-parametric model, and the estimationof a general class of log-linear hazard models by means of log-linear Pois-son models are discussed.
4.4.1 Piecewise exponential survival modelsThe piecewise exponential survival model, or piecewise constant hazardmodel, described in Equation 4.11 can also be written down using thenotation introduced in Chapter 2. Let Z denote the time variable, z aparticular value of Z, and Z� the number of categories of Z. The startingand end points of the Z� time intervals are (0; t1]; (t1; t2]; : : : ; (tZ��1;1],in which the round brackets `(' express that the starting points are ex-cluded from the intervals and the square brackets `]' express that theend points are included. The end point of the last interval may alsobe assumed to be equal to the longest observed duration or the longestduration to be used in the analysis instead of 1.Suppose there is a hazard model with 2 categorical covariates A andB. Let habz denote the constant hazard rate in the zth time interval foran individual with A = a and B = b. The saturated log-linear modelfor the hazard rate habz, or the saturated piecewise exponential survivalmodel, islog habz = u+ uAa + uBb + uZz + uABab + uAZaz + uBZbz + uABZabz ; (4.19)in which the u terms are log-linear parameters which are constrained bymeans of ANOVA-like restrictions. A proportional variant of the piece-wise exponential survival model is obtained by assuming the two-variableand higher-variable interaction terms involving Z to be equal to zero, i.e.,log habz = u+ uAa + uBb + uZz + uABab : (4.20)



As demonstrated in the previous section (see Equation 4.12), maxi-mum likelihood estimates for the parameters of parametric continuous-time models can be obtained by maximizing
L = NYi=1h(tijxi)�i exp

�� Z ti0 h(ujxi)du� :
If the hazard rate is constant within each of the Z� time intervals, thelikelihood function can also be written as

L = NYi=1
Z�Yz=1h(zjxi)�iz exp (�h(zjxi)eiz) ;in which eiz denotes the total time that individual i belongs to the riskset in time interval z. It is also called the exposure time. Generally, eizis equal to tz � tz�1 for the time intervals before individual i experiencedan event or was censored, equal to ti� tz�1 for the time interval in whichan event or censoring occurred, and equal to zero for the other timeintervals. Furthermore, �iz is an indicator variable taking the value 1 ifperson i experienced an event in time interval z, and otherwise 0.Since A, B, and Z are categorical variables, the number of events andthe total exposure times can be represented in a cross-tabulation. Letnabz denote the number of events and Eabz the total exposure time intime interval z for A = a and B = b. The tables with observed numbersof events nabz and with the total exposure times Eabz are generally calledthe occurrence matrix and the exposure matrix. They are obtained by
nabz = NXi=1 �iz 
iab
Eabz = NXi=1 eiz 
iabin which 
iab is an indicator variable taking the value 1 if person i hasA = a and B = b, and otherwise 0. When cross-tabulated events andexposure times are used rather than the individual data, the likelihoodfunction for a piecewise exponential survival model with covariates A andB can be written as

L = Y
abz hnabzabz exp (�habzEabz) : (4.21)



As will be demonstrated below, this likelihood function (4.21) is propor-tional to a Poisson likelihood function.Suppose there is a frequency table for the variables A, B, and Zwith observed cell counts nabz which, conditional on Eabz, are Poissondistributed with means mabz. In other words, there is a Poisson modelfor the rates mabz=Eabz, which is a log-rate model as discussed in sec-tion 2.6. Under the Poisson sampling scheme, the likelihood function isproportional to
Lp = Y

abzmnabzabz exp (�mabz)
= Y

abz (habzEabz)nabz exp (�habzEabz) ;
in which habz denotes the Poisson rate mabz=Eabz. It can now be seenthat the likelihood function for the observed Poisson counts nabz givenEabz is proportional to the likelihood function described in Equation 4.21,i.e.,

Lp = LYabzEnabzabz :
Since Enabzabz is a constant that does not depend on the unknown parame-ters which are to be estimated, piecewise exponential survival models withcategorical covariates can be estimated with the same estimation methodsas are used for the log-rate models discussed in section 2.6. Moreover,piecewise exponential survival models can be written as log-rate models.For instance, the proportional piecewise constant hazard model describedin Equation 4.20 can also be formulated as

log�mabzEabz
� = u+ uAa + uBb + uZz + uABab ;or logmabz = logEabz + u+ uAa + uBb + uZz + uABab ; (4.22)where mabz is the expected number of events in time interval z amongpersons with A = a and B = b. From Equation 4.22, it can easily beseen that the piecewise exponential survival model is equivalent to thelog-rate model discussed in section 2.6. As in a log-rate model, the log ofthe expected cell frequency is a linear function of a cell-speci�c constantand a set of log-linear parameters.



Grouped duration data The log-rate model can also be used withgrouped duration data, which occur when there is only information onthe discrete time interval in which events and censorings occurred, inother words, when the exact value of ti is not known, but only thattz�1 < ti < tz. This implies that there is no exact information on thelength of the individual exposure times in the interval in which censoringor an event occurs. This makes it necessary to approximate a person'sexposure time in this interval. Generally, it is assumed that on averagecensorings and events occur in the middle of the time interval concerned(Laird and Olivier, 1981; Yamaguchi, 1991:81 ; Xie, 1994). Thus, theonly modi�cation that is necessary in situations in which the observeddurations are grouped is that when computing the exposure matrix E forthe interval in which an event or censoring occurred, eiz is not equal toti � tz�1, but equal to (tz � tz�1)=2.This simple approximation procedure amounts to assuming that bothevents and censorings are uniformly distributed within the discrete timeinterval in which they occur. It is equivalent to assuming linear survivalwithin time intervals for events, which is not completely in accordancewith the postulated piecewise exponential survival model. However, ifthe hazard rates are not too high, the resulting bias will be small.8 Ofcourse, when there is additional information on the timing of events andcensorings within particular time intervals, this information can be usedto get better approximations of the true exposure times (Yamaguchi,1991:84).As mentioned in the previous section, discrete-time logit models anddiscrete-time complementary log-log models can also be used to approx-imate continuous-time hazard models when there are grouped durationdata. However, the logit speci�cation is an arbitrary one which, more-over, is sensitive to the choice of the length of the time intervals. Thecomplementary log-log transformation approximates the continuous-time
8Suppose that we know that the event of interest occurred in a time interval oflength �z and that h(tz) is the size of the constant hazard rate in this interval. In thatcase, the mean fraction of �z that an individual is exposed to the event of interestequals 1 + 1=(�zh(tz))� 1=[1� exp(��zh(tz))] (Chiang, 1984:139; Willekens, 1990).This quantity is close to .5 for almost all relevant values of h(tz) and �z. For instance, if� = 1, it ranges from .492 when h(tz) = :1 to .459 when h(tz) = :5. Therefore, Petersen(1991) concluded with respect to the approximation of exposure times: `Thus, a goodrule of thumb is to assign the duration that lies at the midpoint of the window withinwhich the true duration lies.'



proportional hazard model in that it assumes exponential survival withintime categories, and the occurrence of censorings at the end of the timeintervals. However, unequal time intervals are problematic when the timedependence is restricted in some way or when the hazard rate is assumedto be nonproportional. The main advantage of the log-rate model com-pared to the complementary log-log model is that unequal time intervalsare never problematic. Another advantage is that log-rate models can beestimated using widely available programs for log-linear analysis.
Non-hierarchical models Until now, only hierarchical log-rate mod-els have been given consideration. However, by using a more generalformulation, it is also possible to specify non-hierarchical models. In itsmost general form, the log-rate model can be written aslogmiz = logEiz +Xj �jxizj ; (4.23)
in which xizj denotes an element of the design matrix and �j a particularlog-linear parameter. The index i refers to a category of the joint variableformed by all the independent variables, and z to a category of the timevariable. From the appearance of the index z in xizj , it follows that thedesign matrix also includes the time variable and that covariate e�ectsmay be time dependent.Perhaps the most interesting kinds of restrictions that can be imposedwith the design matrix appearing in the general model given in Equation4.23 are restrictions on the time parameters. Yamaguchi (1991:75-77)proposed approximating the Gompertz and Weibull models by means ofa step-functional characterization of t and ln(t). Suppose that the �rstparameter in Equation 4.23, �1, is the intercept and that the secondparameter, �2, is the restricted time e�ect. Furthermore, let �z denote themiddle of the zth time interval, �z = (tz�1 + tz)=2. An approximation ofthe Gompertz model is obtained by specifying the elements xiz2 of thedesign matrix to be equal to �z. In a Weibull model, we would replace�z by log �z. It is also possible to use higher-order polynomials of �z or(log �z) to describe the time dependence of the hazard rate. Moreover,these restricted time e�ects can also be used in time-covariate interactionterms.Recently, Xie (1994) presented another parsimonious method of spec-ifying time-covariate interactions in log-rate models. He proposed using



a log-multiplicative parameterization of time-covariate interaction terms.In fact, it is an application of the row and column e�ects model type IIdiscussed in section 2.7 (Goodman, 1979; Clogg, 1982).Contrary to what is stated by Holford (1980) and Laird and Olivier(1991), log-rate models can also be used when particular covariates arecontinuous. In the same fashion that a logistic regression model is ob-tained from a logit model by including continuous covariates (see section2.8), the log-rate model given in Equation 4.23 can be used with continu-ous covariates. In that case, individual data have to be analyzed insteadof cross-tabulated data, which implies that the index i appearing in Equa-tion 4.23 denotes a particular observation rather than a level of the jointindependent variables, which also means that Eiz = eiz and niz = �iz.
Testing In addition to the estimation procedures available for log-linearmodeling, the testing procedures can also be used in log-rate models. Theestimated expected number of events, mabz, can be compared with theobserved number of events, nabz, using either the Pearson's chi-squaredstatistic or the likelihood-ratio chi-squared statistic (see section 2.4). Asin logistic regression models, the �t of hazard models with continuouscovariates cannot be tested because of sparseness of the `table' which isanalyzed. Nevertheless, it is possible to test the signi�cance of particu-lar e�ects by means of conditional likelihood-ratio chi-squared tests (seesection 2.4).
Computer programs Hierarchical log-rate models, such as the onerepresented in Equation 4.22, can be estimated using log-linear analysisprograms which are based on the IPF algorithm. However, the programmust calculate the parameters using mean removal on the cumulated mul-tipliers of the IPF cycles in order to get correct parameter estimates (seeAppendix A.1). The LOGLIN (Olivier and Ne�, 1976) and `EM (Ver-munt, 1993) programs use this procedure. Log-rate models of the generalform described in Equation 4.23 can be estimated using programs forlog-linear analysis which use a Newton algorithm, such as FREQ (Haber-man, 1979) and SPSS Log-linear. In `EM , such models are estimatedby means of the uni-dimensional Newton algorithm. A special feature of`EM is that, as opposed to standard programs for log-linear analysis, theuser does not need to supply the occurrence and exposure matrices as



input since these are generated by the program itself, where the exposuretime within the time interval in which censorings or events occur can bespeci�ed by the user. Moreover, it is possible within `EM to estimatemodels which contain the log-multiplicative interaction terms proposedby Xie (1994).
4.4.2 Estimation of Cox's semi-parametric modelBreslow (1972, 1974) proposed estimating the � parameters and the base-line hazard rate h0(t) of the Cox semi-parametric model (see Equation4.13) simultaneously by means of maximum likelihood. Holford (1976)and Laird and Olivier (1981) demonstrated that Breslow's approach wasa special case of the piecewise exponential survival model, that is, a pro-portional model with as many time intervals as distinct observed timesat which events occurred.Breslow's approach is as follows. First, as in the partial likelihoodapproach, the N cases must be ordered according to their observed du-rations ti. Then, the time axis has to be divided into Z� intervals, whereZ� equals the number of distinct times that events occurred. The endpoints of the time intervals, denoted by tz, correspond with the durationsat which events occur. Each censoring is assumed to have occurred atthe nearest preceding event and the hazard rate is assumed to be con-stant within time intervals just as it would be in a piecewise exponentialsurvival model. An equivalent approach is to assume the hazard rate tobe zero everywhere except at the observed times at which events occur(Cox, 1972; Holford, 1976; Laird and Olivier, 1981). The latter approachdoes not require shifting the censored observation to the nearest previousevent.Suppose there is a semi-parametric hazard model, or equivalently, apiecewise exponential survival model of the form

h(zjx) = h0(z) exp0@ JXj=1�jxij
1A ; (4.24)

in which h0(z) denotes the baseline hazard rate in time interval z. Notethat the hazard rate is assumed to be proportional since the model doesnot contain interactions between the covariates and time.



The likelihood function for the model described in Equation 4.24 canbe obtained by substituting h(zjx) into Equation 4.21, i.e.,
L = NYi=1

Z�Yz=1h(zjxi)�iz exp (�h(zjxi)eiz)
= NYi=1

Z�Yz=1
8><>:
24h0(z) exp0@Xj �jxij1A35�iz

exp24h0(z) exp0@Xj �jxij1A eiz35
9=; ; (4.25)

in which eiz equals tz � tz�1 if subject i neither experienced an event norwas censored before tz, in other words, if subject i belongs to the risk setat Z = z. Setting the �rst order derivatives of the log likelihood withrespect to h0(z) equal to zero yields the following maximum likelihoodestimate for h0(z):
h0(z) = PNi=1 �izPNi=1 exp �Pj �jxij� eiz : (4.26)

Substitution of this estimate of h0(z) into Equation 4.25 yields
L = NYi=1

Z�Yz=1
 NXi=1 �iz

!�iz exp NXi=1 �iz
!24 exp �Pj �jxij�PNi=1 exp �Pj �jxij� eiz

35�iz :
As only one �iz is 1 for each i, the product over z is redundant. Becauseeiz = 0 for all persons who are not at risk, the sum over i in the denom-inator consists of the persons at risk at Z = z. Note that eiz takes thesame value for every person at risk, tz � tz�1. This leads to the followingsimpli�cation:

L = NYi=1
24 exp �Pj �jxij�Pk2(tk�ti) exp �Pj �jxkj�

35�i C ; (4.27)
where

C = NYi=1
Z�Yz=1
 NXi=1 �iz

!�iz exp NXi=1 �iz
!� 1tz � tz�1

��iz :



It can be seen that, with the exception of the constant C, Equation 4.27is equivalent to both Equation 4.14 and Equation 4.15. This implies thatif the data contains no ties, a proportional piecewise exponential survivalmodel in which the end points of the time intervals are de�ned by theevent times and in which the censorings are assumed to occur at the near-est preceding event time is equivalent to Cox's semi-parametric model. Ifthe data contains ties, the maximum likelihood approach leads to thesolution for ties proposed by Breslow (1972, 1974), which is described inEquation 4.15.The consequence of the equivalence with the exponential survivalmodel, and therefore with the log-rate model, is that Cox's semi-para-metric model can be estimated using standard programs for log-linearanalysis. Whitehead (1980), for instance, showed how to estimate theCox model with the GLIM program using a log-linear Poisson model.
4.4.3 Estimating log-linear hazard models with log-linearPoisson modelsAbove, it was demonstrated that both the piecewise exponential sur-vival model and the Cox model can be estimated by means of log-linearanalysis techniques. Aitkin and Clayton (1980) proposed estimating theparameters of a general class of continuous-time log-linear hazard modelsusing the equivalence between the Poisson likelihood and the likelihoodfor log-linear hazard rate models.Let h(t) denote the baseline hazard and H(t) denote the cumulativebaseline hazard, R t0 h(u)d(u), belonging to a particular parametric hazardmodel. If the hazard model is log-linear, the likelihood function can bewritten down as
L = NYi=1

24h(t) exp0@Xj �jxij1A35�i exp24�H(ti) exp0@Xj �jxij1A35
= NYi=1

hm�ii exp (�mi)i [h(ti)=H(ti)]�i ;
in which

mi = H(ti) exp0@Xj �jxij1A :



The �rst term in the likelihood function, m�ii exp (�mi), is equivalent tothe kernel of the likelihood function for N independent Poisson variates�i with means mi. The second term does not contain � parameters. It de-pends only on the � parameters associated with the duration dependenceof the process.Aitkin and Clayton (1980) proposed estimating the � and � param-eters by means of a simple two-step conditional maximization method.First, the � parameters can be estimated using the log-linear Poisson, orlog-rate, model given the current estimates for the unknown parametersdetermining H(ti), i.e.,logmi = logH(ti) +Xj �jxij ; (4.28)
in which H(ti) is treated as a weight vector, or in the GLIM terminol-ogy used by the authors, logH(ti) is an o�set. In the second step, newestimates for the � parameters must be obtained. Of course, the exactrelationship between H(t) and � depends on the parametric model that ischosen (see below). This two step algorithm continues until convergenceis reached.Although the hazard rate is assumed to be proportional in the modelgiven in Equation 4.28, it is also possible to make the � parameters de-pendent on covariate values. However, then h(ti) and H(ti) are subgroupspeci�c. If y is used as an index for the variable interacting with the timedependence, h(ti) and H(ti) have to be replaced by hy(ti) and Hy(ti) inall of the given formulas.The simplest log-linear hazard model is the exponential model inwhich the cumulated baseline hazard, H(t), equals t. As a result, theestimates for the � parameters can be obtained by using log ti as a �xede�ect in a log-linear model in which the censoring indicator �i is treated asan observed Poisson count. The second step is not necessary because thesecond part of the likelihood function presented above does not containunknown parameters. More precisely, it equals 1=ti.As h(t) = �t��1 and H(t) = t� in Weibull models, � log t must beused as an o�set when obtaining new �j 's in the �rst step of a particulariteration. In the second step, a new � is obtained by

� = NPNi=1 (mi � �i) log ti :



Although the expressions for H(ti) and the � parameters may becomemore complicated, the same principles apply to any parametric hazardmodel which belongs to the log-linear family.Clayton and Cuzick (1985) demonstrated that a similar two step max-imization method can be used to obtain maximum likelihood estimatesfor the parameters of Cox's semi-parametric proportional hazard model.Suppose that there are N� distinct times that events occur, which are de-noted by ti� . As demonstrated above, the maximum likelihood estimatesfor the baseline hazard parameters can be obtained using Equation 4.26.If, as Cox did, it is assumed that the hazard rate is zero everywhere ex-cept where an event occurs, the formula for the baseline parameters canbe simpli�ed to
h0(ti�) = ni�Ptk�ti� exp �Pj �jxij� ; (4.29)

in which ni� indicates the number of events in ti� . The cumulated haz-ard function for person k with observed survival time tk, H(tk), equalsPti��tk h0(ti�). Again, the algorithm consists of two conditional maxi-mization steps. First, new estimates of the � parameters are obtainedby means of a log-linear Poisson model for the censoring indicator �k inwhich logH(tk) is used as a �xed e�ect. In the second step, new h0(ti�)are calculated by means of Equation 4.29. These quantities are used toobtain a new H(tk) for each person. Contrary to the procedure presentedabove, Clayton and Cuzick (1985) called this two step procedure an EMalgorithm, in which the computation of h0(ti�) and H(tk) form the Estep. The reason for this is that the cumulated hazard rate H(tk) can beseen as an unobservable quantity in the semi-parametric hazard model.
4.5 Censoring
Event history techniques are used to explain individual di�erences in theduration of nonoccurrence of a particular event. For that purpose, itis necessary that there be, in addition to information on the covariatesdetermining the process under study, information on the calendar timeof entry into the risk set (�b) and on the calendar time of occurrence ofthe event (�e). The duration of nonoccurrence of an event, T , is de�nedas �e � �b. It often occurs that information is missing on �b, �e, or both
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Figure 4.1: Six di�erent types of observations
for some of the subjects involved in the study. This means that T isalso unknown. Observations with this type of missing data are calledcensored observations. One of the strong points of hazard models is thatthey can deal with several kinds of censored observations. As in thelog-linear models for nonresponse discussed in Chapter 3, hazard modelsmake it possible to include particular types of partially observed data inthe analysis under certain plausible assumptions.It is possible to illustrate the di�erent kinds of (missing) observationsthat can occur by giving a hypothetical example. Suppose the aim of astudy is to explain the duration preceding the �rst promotion of employeesof a particular company. For that purpose, data are collected from �0 to�1, in which � again denotes calendar time. The period from �0 to �1is called the observation period. Figure 4.1 depicts six di�erent types ofobservations. A solid line indicates the risk period, an `*' at the right handside of a line indicates that risk period ended because of the occurrenceof the event under study, and an `o' indicates that a person has beenremoved from the risk set as a result of the occurrence of an event otherthan the event of interest.Person A started working at the company after �0 and experienced



the event, the �rst promotion, before �1. Therefore, the complete dura-tion of nonoccurrence of the event of interest is known for observation A.Observations B and C are examples of right-censored cases. It is knownfor observations B and C when they entered into the risk set, but it is notknown when they will experience their �rst promotion. Although bothcases are right-censored, their censoring has di�erent causes. ObservationC is censored because the observation period ended, while observation Bis censored as a result of the occurrence of another event which removedit from the risk set, for example, a voluntary job change to another em-ployer. Case D is (fully) right-censored, since neither the time of entryinto the risk set nor the time of occurrence of an event is known. Thiscase represents a future employee of the company. Case E is an individ-ual who was given his �rst promotion before the start of the observationperiod. It is a (fully) left-censored case. Like case D, both the time ofentry into the risk set and the time of experiencing an event are unknown.Finally, case F is a left-censored observation. It represents an individualwho started working at the company before �0 and who experienced anevent during the observation period. Since the time of entry into the riskset is unknown, it is also unknown how long it took for an event to occur.It must be noted that for cases like F, information on the time of entryinto the risk set is sometimes collected retrospectively.Hazard models can deal with right-censored observations under quitemild conditions. Left censoring is a more complicated matter. However,when �b is known, there is a simple solution for left censoring which iscomparable to the way in which right-censored observations are dealtwith. It is important that the procedures which are used for handlingright- and left-censored observations satisfy two conditions: they must useas much of the available information as possible, and they must preventsample selection bias as much as possible. Selection bias means thatindividuals with certain values of the dependent variable, in this case theduration of nonoccurrence of an event, have a higher or lower probabilityof being included in the sample than other persons.
4.5.1 Right censoringThere are at least three possible approaches to right censoring problem(Tuma and Hannan, 1984:119): 1] ignoring censored observations andanalyzing only the cases who experienced an event; 2] treating censored



observations as though events occurred at the censoring times; 3] usingmethods of estimation that make use of the partially observed informationwhile making certain assumptions with regards to censoring mechanismwhich are analogous to response mechanisms.The �rst solution may lead to a considerable loss of information, sinceit neglects the information that a particular person did not experience anevent during a particular period. Moreover, deleting the censored ob-servation from the analysis may lead to sample selection bias, becausecensored observations generally have longer durations than noncensoredobservations. In other words, the hazard rate for censored cases dur-ing the risk period will be lower than the hazard rate for noncensoredcases. Thus, by deleting the censored cases, the estimated hazard ratesfor groups with large numbers of censored cases will be biased upwards.The second solution, in which the times at which the event of interestoccurred are treated as censoring times is even worse because nonexistentor wrong information is added to the data. Therefore, recoding non-eventsas events will generally make the results of the analysis meaningless.The best way to deal with right-censored cases is to use estimationmethods which use this type of partially observed data under certainplausible assumptions. As is shown below, it is relatively easy to useright-censored observations for parameter estimation as long as the miss-ing data mechanism can be assumed to be ignorable for likelihood-basedinference (see also section 3.2).
Censoring mechanisms In the �elds of engineering, medicine, andthe biological sciences, a great deal of attention has been given to rightcensoring (Kalb
eisch and Prentice, 1980:39-41; Lawless, 1982). In these�elds, hazard models are often used to analyze data collected by means ofexperimental designs. Experimental studies in which, for instance, a newtype of apparatus or a new lung cancer medication are tested, generallyprevent the occurrence of left-censored data, but right-censored data areunavoidable for two reasons. First, the experiment is generally endedbefore all of the apparatus fail or all of the subjects die. Second, otherevents may occur which remove machines or persons from the risk set.A machine may fail as a result of another cause than the one of interest,and an individual's cause of death may not be lung cancer.If there are right-censored observations, it is relatively easy to derive



the likelihood function if, at each t given the covariate values x, the cen-soring rate is independent of the rate of occurrence of the event understudy, in other words, if individuals are not censored because they ap-pear to have high or low risks of experiencing an event. Actually, this isanalogous to assuming MAR (missing at random) nonresponse in a panelstudy with a monotonous missing data pattern. In the context of panelanalysis, nonresponse is said to be MAR if, for someone who respondedat T = t � 1, the probability of nonresponse at T = t is independent ofthe values of the variables at T = t, though it may depend on the valuesof the variables before T = t (see section 3.2). The same formulation canbe applied to right censoring, which is, likewise, a monotonous missingdata pattern. The data are MAR if, for someone who is at risk at T = t,the probability of censoring in the interval [t; t + �t] is independent ofthe state occupied at t + �t, given the observed covariate values. Sincethe state occupied at t+�t is determined by the hazard rate at T = t forsomeone who is at risk at T = t, it can also be said that the censoring ratemust be conditionally independent of the hazard rate. In the biometricalliterature, this form of censoring is most often referred to as independentright censoring (Kalb
eisch and Prentice, 1980:120) or non-informativeright censoring (Lagakos, 1979).In experimental settings, conditional independence between the haz-ard rate and the censoring rate is usually ful�lled. Two well-known specialcases of independent censoring which often occur in experimental studiesare Type I censoring and Type II censoring (Kalb
eisch and Prentice,1980:39-41; Lawless, 1982). Type I occurs when a study is stopped aftera �xed time period, while Type II entails that a study continues until aparticular number of events have occurred. In both cases, all censoredobservations are censored at the same value of T . It is clear that in nei-ther of these cases is the censoring rate related to the hazard rate of theevent under study since all persons at risk have the same probability ofbeing censored, that is, a probability of zero before the point in time thatcensoring occurs and a probability of one at the point in time that censor-ing occurs. However, one cannot be sure that the censoring mechanismis independent of the process under study if observations are censored asa result of other kinds of events, such as other causes of failure or othercauses of death.The mechanism causing the censoring of observation C in Figure 4.1is very similar to Type I censoring since observation C is censored as a



result of the cessation of the observation period. However, contrary tothe experimental context on which Type I censoring is based, observationslike C enter into the risk set at the di�erent points in calendar time (�b)in a survey context. As a result, both the duration in which censoringoccurs (t = �1 � �b) and the censoring rate will depend on �b. Moreprecisely, there is, depending on �b, a probability of one or zero that agiven individual will be censored at a particular t. The implication ofthis is that the censoring mechanism is not MAR if the hazard rate alsodepends on �b.This can be illustrated by means of an example. Suppose that, as aresult of an increase in the labor supply of young people, the companybeing studied changed its promotion policy. More precisely, it made itmore di�cult to obtain a promotion during the �rst three years of em-ployment. The result would be that the hazard rate of being promotedat the beginning of an individual's career would depend on �b, that is,on whether a given individual's employment started before or after themoment that the policy changed. Because the censoring times of caseslike C (�1 � �b) depend on �b as well, this leads to a dependency betweenthe censoring rate and the hazard rate. The solution to this problem is,however, very simple. The only thing that has to be done is to include �bas one of the regressors in the hazard model. By controlling for the cal-endar time of entry into the risk set, a form Type I censoring is obtainedwithin the subgroups of persons who enter into the risk set at the same�b. In general terms it can be stated that if censoring occurs at a partic-ular calendar time, which is the most common type of censoring in socialscience research, the censoring mechanism and the process under studywill have one potential common cause, i.e., the calendar time of entryinto the risk set or the causes associated with that calendar time, such asthe altered policy in the example. In demography, such an e�ect is calleda cohort e�ect (see also section 4.6). Controlling for the calendar time ofentry into the risk set or the causes associated with it makes the censoringmechanism (conditionally) independent of the duration distribution. Inother words, it makes the missing data MAR.The right censoring of observation D is the result of the same censoringmechanism applied to case C: The time at which the event of interestoccurs is unknown because of the cessation of the observation period.Therefore, the same solution applies to this type of censored observations.



However, it should be noted that if the time of entry into the risk setin
uences the hazard rate, the results of the study cannot be generalizedto other observation periods. If, for example, an e�ect is found of thevariable birth cohort on the hazard rate in a study on fertility behavior,the results cannot be generalized to future birth cohorts. Moreover, ifan interaction e�ect is found between the time variable and cohort, theresults cannot even be generalized to the same cohorts beyond the age atwhich they have been censored. In fact, this is a type of selection biaswhich is inherent in the study of social change.Observation B is also right-censored but by a very di�erent mecha-nism. It is removed from the risk set because an event other than theevent of interest occurred during the observation period. In this case,the validity of the assumption of (conditionally) independent censoringdepends on whether the event that led to censoring and the event understudy have common causes which are not controlled, for instance, becausethey are not observed. If person B was removed from the risk set becausehe died as result of an accident, it can safely be assumed that censoringis independent of the event of getting promoted. If, however, person Bstopped working at the company because of health problems, the inde-pendence of the censoring rate and the hazard rate of getting promotedis less clear. It is probable that less healthy individuals not only havea higher risk of losing their jobs, but also have a lower risk of gettingpromoted. If it is possible to control for health, again a (conditionally)independent censoring mechanism can be obtained, assuming that healthis the only common cause of the two types of events. There are manyother events that can lead to the type B censoring, such as a voluntaryor involuntary move to another employer or retirement. The same argu-ments apply to these events. It is necessary to identify all of the causesthat these `censoring events' have in common with getting a promotionin order to be able to assume that the missing data are MAR.The problems associated with the type B censoring are the same whichoccur when analyzing competing-risks data. Actually, the various kindsof events leading to censoring can be seen as risks which compete withthe event under study. Section 4.7 discusses models for competing risksin more detail, including the problem of unobserved common risk factorsleading to dependent risks.



Estimation Let T denote the time that an event or censoring occurred,and let � denote a censoring indicator taking the value 1 if an event oc-curred and 0 if an observation was censored. If censoring can be assumedto be conditionally independent of the occurrence of an event, the jointprobability density of the observed data, T and �, is
P (T = t; � = 1jx) = f(tjx) [1�G(tjx)]for non-censored cases, and
P (T = t; � = 0jx) = g(tjx) [1� F (tjx)]for censored cases (Lagakos, 1979). Here, f(tjx) and F (tjx) are the den-sity and the distribution function of the time that an event occurs (dura-tion), given x, and g(tjx) and G(tjx) are the density and the distributionfunction of the censoring time, given x. The fact that censoring is in-dependent, or equivalently, that the missing data are MAR, makes itpossible to obtain the joint density of T and � by multiplying the con-tributions of the censoring and duration distributions. For instance, theprobability of experiencing an event at T = t and observing this is ob-tained by multiplying the probability of an event taking place at T = tand the probability of not being censored before T = t.Using the joint density of T and � given above yields the followinglikelihood function:

L = NYi=1 ff(tijxi) [1�G(tijxi)]g�i fg(tijxi) [1� F (tijxi)]g1��i : (4.30)
Here, f(tijxi) [1�G(tijxi)] is the contribution to the likelihood functionof case i if the event was experienced. It denotes the product of theinstantaneous probability of experiencing an event at ti, given x, and theprobability of not being censored before ti, given x. The contribution ofa censored observation to the likelihood function is g(tijxi) [1� F (tijxi)].The likelihood function represented in Equation 4.30 can be brokendown into a segment which depends on the determinants of the dura-tion process of interest, and a segment which depends on the censoringmechanism, i.e.,
L = NYi=1

nf(tijxi)�i [1� F (tijxi)]1��iong(tijxi)1��i [1�G(tijxi)]�io :



In order to be able to ignore the censoring mechanism when estimating theparameter of the hazard model an additional assumption has to be made,that is, that the parameters of the censoring model are distinct from theparameters of the hazard rate model. In other words, it must not be nec-essary to place restrictions between the time and covariate e�ects on thehazard rate and the time and covariate e�ects on the censoring rate. Notethat the same assumption is made in the case of ignorable nonresponse,which was previously de�ned as the missing data being MAR and theparameters of the response mechanism and the parameters of the modelof interest being distinct (see section 3.2).If the parameters determining the duration distribution and the pa-rameters determining the censoring distribution are distinct, maximumlikelihood estimates for the parameters of the postulated hazard modelcan be obtained by maximizing the �rst part of the likelihood function
L = NYi=1 f(tijxi)�i [1� F (tijxi)]1��i ;

which can also be written completely in terms of the hazard rate h(tijxi)
L = NYi=1h(tijxi)�i exp

�� Z ti0 h(ujxi)du� :
Using the missing data terminology introduced in Chapter 3, the miss-ing data mechanism is ignored for likelihood-based inference about theparameters of interest. Instead of using the term independent censor-ing, it would be possible to use the term ignorable censoring mechanism.Analogous to the case of nonresponse, the censoring mechanism is non-ignorable if the censoring times and the survival times are correlated, inother words, if the probability of missing data depends on the value of thevariable for which the scores are missing, or if the censoring mechanismand the process under study have common parameters (Rubin, 1976). Ifthe censoring mechanism is nonignorable, the censoring and the eventunder study have to be analyzed simultaneously. This will be discussedin the next chapter.
4.5.2 Left censoringLeft censoring is a more complicated problem than right censoring. Thereare at least three possible strategies for dealing with left-censored obser-



vations: 1] deleting all left-censored observations; 2] treating �0 as �b, and3] using estimation methods which make it possible to use left-censoredobservations.The �rst strategy, deleting the left-censored observations (Allison,1984), is the simplest of the three. Unlike the deletion of right-censoredobservations, this procedure does not result in biased parameter estimates(Yamaguchi 1991:7; Guo, 1993). The reason for this is that ignoring left-censored cases does not introduce selection with regards to T (Ridder,1984). On the contrary, it prevents selection bias as will be demon-strated below. However, there is one important disadvantage to deletingthe left-censored observations. It can lead to a huge loss of information,especially if the observation period is relatively short in comparison tothe average survival time. In such cases, there will not only be a largenumber of left-censored observations, but they will also provide uniqueinformation on the hazard rates for durations which are longer than theobservation period �1 � �0. Thus, the procedure is only recommendableif a small proportion of the sample is left-censored, even though deletionof left-censored cases does not introduce bias.The second option is to assume that left-censored cases entered intothe risk set at �0, that is, to assume that �b = �0. This amounts toassuming that the duration of nonoccurrence of an event, T , is equal to�e � �0. Clearly, this solution is only correct if the hazard rate is timeindependent. Unfortunately, the assumption of a constant hazard rate,or exponential survival, is often unrealistic while erroneously assumingan exponential survival distribution may lead to severe bias in parameterestimates (Heckman and Singer, 1985, 1986; Guo, 1993).The third alternative is to use left-censored observations in the anal-ysis as was done in the case of right-censored cases. There are, however,two problems associated with using left-censored observations for param-eter estimation: It may introduce selection bias and it can prove di�cultwhen the times of entry into the risk set are unknown.Sample selection bias occurs whenever a sample is selected on thebasis of the values of an endogenous variable (Heckman, 1979). Actually,left-censored cases are a selective sample of the individuals who enteredinto the risk set before �0. They form the group with lower hazard ratesbetween �b and �0, the group with longer survival times T . For example,a sample of individuals who are unemployed at �0 will contain a relativelylarge proportion of persons who have a low probability of getting a job



at short unemployment durations. This phenomenon is sometimes calledlength-bias sampling (Cox 1962, Flinn and Heckman, 1982). Using left-censored observations in the analysis may lead to a downwards bias ofthe duration e�ect for short durations. Therefore the deletion of all left-censored cases from the analysis prevents sample selection bias.In left-censored cases, the exact time of entry into the risk set, �b, isoften unknown. Sometimes, however, �b is known but there is no infor-mation on the values of the time-varying covariates between �b and �0.The latter situation is most likely to occur when the data are collectedby means of a panel design in which an individual's time of entry intothe state occupied at �0 is requested retrospectively. In the promotion-duration example, it would certainly be possible to obtain information onthe date that employees started working at the company. On the otherhand, collecting information on time-varying covariates may not be pos-sible. Of course, if it were possible to collect all necessary information forboth E and F, there would no longer be any left-censored cases.It is clear that the solution to the left censoring problem depends onwhat is known about �b. In order to prevent biased estimates, moreover,the solution has to take into account that left-censored observations mayhave lower hazard rates or higher survival probabilities in the preobserva-tion period than persons who entered into the risk set at the same pointin time and who experienced the event before the start of the observationperiod.
Unknown �b Left-censored observations are more di�cult to deal withwhen their time of entry into the risk set is unknown. Heckman andSinger discussed extensively what they call the `problem of initial con-ditions' (Heckman and Singer, 1985, 1986). Ridder's work on the distri-bution of survival data also provided an important contribution to thetreatment of left-censored observations (Ridder, 1984). More recently,Hamerle (1991) gave a comprehensive overview of methods for handlingleft-censored data.Let R denote the length of the risk period before �0, R = �0� �b, andlet S denote the length of the risk period after �0, S = �e � �0. The totalsurvival time T is R + S. According to Ridder (1984), the joint density



of function of R and S is given by
f(r; sjx; s > 0) = g(�0 � rjx)f(r + sjx)R10 g(�0 � rjx)S(rjx)dr : (4.31)

Here, g(�0 � rjx) denotes the probability that someone with covariatevalues x will enter into the risk set at �0�r, that is, at �b. S(rjx) denotesthe probability of surviving until T = r and f(r + sjx) is equivalentto f(tjx), that is, the density of T . In the denominator of Equation4.31, the probability of entering into the risk set at �0 � r and survivinguntil �0 is integrated over all possible r. This results in the marginalprobability of entering into the risk set before �0 and surviving to �0. Thenumerator expresses the probability of entering into the risk set at �0� rand experiencing an event at r + s which is t.The density of S, given x, the density of a left-censored survival time,is obtained by integrating f(r; sjx; s > 0) over r, the unobserved part ofT ,
f(sjx; s > 0) = R10 g(�0 � rjx)f(r + sjx)drR10 g(�0 � rjx)S(rjx)dr : (4.32)

Thus, the marginal density of S equals the probability of entering intothe risk set before �0 and experiencing an event at T = t = r+ s, dividedby the probability of entering into the risk set before �0 and survivinguntil �0. This density no longer depends on the unknown values of R.Unfortunately, the likelihood contribution on the basis of f(sjx; s > 0)not only involves the survival distribution of interest, but also dependson g(�0� rjx), i.e., the distribution of the calendar time of entry into therisk set (�b). Therefore, the parameters of interest cannot be estimatedwithout making additional assumptions with regard to entry rates g(�0�rjx), except if there is some external information by which to estimate theentry rates empirically (Tuma and Hannan, 1984:132). In the analysis ofthe timing of divorces, for example, statistics on marriage rates may beused to estimate the rates of entry into the risk set for the event divorce.One possible simplifying restriction is to assume that T is exponen-tially distributed. In that case, Equation 4.32 simpli�es to h(sjx)e�h(sjx)s,which is the same result obtained by the second solution for left censor-ing discussed above. This involves setting the time of entry into the riskset arbitrarily equal to �0 for all left-censored cases, and, moreover, as-suming exponential survival. As was mentioned previously, erroneously



assuming an exponential distribution, which is a quite common `solution'to the left censoring problem, may lead to severe bias in the parameterestimates (Heckman and Singer, 1985, 1986).Another possibility is to assume that the rate of entry is time invari-ant, i.e., that g(�0 � rjx) = g(x). In that case, Equation 4.32 simpli�esto
f(sjx; s > 0) = R10 f(r + sjx)drR10 S(rjx)dr = R10 f(r + sjx)drE(T jx) :

After making further parametric assumptions on the distribution of T (seesection 4.3), this yields a likelihood function for estimating the parametersrelated to T which can be solved without too many problems. However,the validity of the results depends to a large degree on the validity of theassumption of a constant entry rate, given x (Guo, 1993).
Known �b If there is information on the time of entry into the risk setof left-censored observations, things are much less complicated. But, asmentioned above, treating left-censored observation in the same fashionas the other cases leads to an underestimation of the hazard rates forshort durations. The only way to prevent this form of selection bias is totake the selection mechanism into account when estimating the model'sparameters. In this case, we must take into account that a person canonly belong to the sample if he/she did not experience the event of in-terest before �0. This can simply be accomplished by constructing thelikelihood function with the conditional density of T given survival up toR rather than with the unconditional density of T (Tuma and Hannan,1984:130-131). When R is known, this leads to the conditional maximiza-tion approach which was �rst proposed by Lancaster (Lancaster, 1979;Hamerle, 1991; Guo, 1993). The result is that only the information ona given individual which is not selective, that is, the survival informa-tion between r and t (or between �0 and �e), is used for estimating theparameters.The conditional density of a left-censored case which, as in the case ofF in Figure 4.1, experiences an event in the observation period is de�nedas (Lancaster, 1979; Tuma and Hannan, 1984; Guo, 1993)

f(tjT > r;x) = h(tjx)S(tjx)S(rjx) = h(tjx) exp �� R t0 h(ujx)du�exp (� R r0 h(ujx)du)



= h(tjx) exp�� Z tr h(ujx)du� : (4.33)
This conditional density is almost equal to the density for a noncensoredobservation. The only di�erence is that the ordinary survival probabilityis replaced by a conditional survival probability: The hazard rate is notintegrated from 0 to t, but from r to t.Apart from preventing selection bias, this procedure has the furtheradvantage that no information is needed on the values of time-varyingcovariates between T = 0 and T = r. Since the conditional density func-tion depends only on the covariate values in the observation period, therequired data corresponds exactly to the data collected during the obser-vation period. In that sense, the conditional density approach resemblesthe way in which period life tables are constructed (Guo, 1993).Hamerle (1991) showed that the conditional density function used inthe conditional likelihood method (Equation 4.33) can be also obtainedby conditioning the joint density of R and S (Equation 4.31) on themarginal density of R without making additional assumptions with regardto g(�0� rjx). Nevertheless, Ridder (1984) and Hamerle (1991) criticizedthe conditional likelihood approach. It would lead to considerable loss ofe�ciency because the information on R would only be used for eliminat-ing selection bias and not for estimating the parameters of interest. Moreprecisely, by conditioning on R and X, the information in the joint distri-bution of (R;X) is neglected. On the other hand, Guo (1993) states thatthere are two important disadvantages to using the joint density of R andS when R is known: The results may depend on the time-homogeneityassumption about g(�0 � rjx) and the procedure can only be used whenall covariates are time-invariant. Thus, if it is taken into account that noassumptions need to be made on the distribution of �b, that the methodcan be used for estimating models with time-varying covariates, and thatobtaining maximum likelihood estimates only requires a small modi�ca-tion of the standard procedures, it seems reasonable to state that when�b is known, the conditional likelihood method is preferable.
Computer programs The conditional maximization method for left-censored observations can be implemented using standard computer pro-grams for estimating hazard models. It can be applied in continuous-timehazard models if the program concerned can deal with episode records.



An episode record has a starting time that does not need to be equal tozero and an end time which does not need to be equal to t. Rohwer'sTDA program is one such example (Rohwer, 1993). Since discrete-timemethods always use episode records, that is, one record for every discretetime interval that a person is at risk, the conditional maximization pro-cedure can easily be implemented in discrete-time hazard models. Theonly thing that has to be done is deleting all person-period records fromT = 0 to T = r for all left-censored observations.In section 4.4, it was shown that the likelihood function for piecewiseexponential survival models equals
L = NYi=1

Z�Yz=1h(zjxi)�iz exp (�h(zjxi)eiz)= Y
abz �nabzabz exp (�abzEabz) ;

where eiz denotes the total time that person i belongs to the risk set intime interval z, and Eabz denotes the total exposure time in time intervalz for persons with covariates values A = a and B = b. When applyingthe conditional likelihood approach in combination with a piecewise ex-ponential survival model, the exposure times eiz are equal to zero untilthe time interval containing r, that is, until tz�1 < r � tz. Of course,the changes in eiz will also in
uence the cross-tabulated exposure timesin Eabz. The only di�erence between the ordinary maximum likelihoodmethod and the conditional maximum likelihood is that left-censored ob-servations do not contribute to the total exposure times before T = r.In the `EM program (Vermunt, 1993), this procedure is implemented byallowing the user to specify the time of entry into the risk set.
4.6 Time-varying covariates, time, and time-covariateinteractions
Until this point it was assumed, for the sake of simplicity, that the valuesof the explanatory variables used in hazard models do not change theirvalues during the observation period. The only variable that was allowedto change its value was the time variable itself. However, dynamic analysisby means of event history analysis techniques not only implies that the



hazard rates may change over time, but also that the values and thee�ects of covariates may change over time.This section explains how to use time-varying covariates in hazardmodels. Special attention is paid to two special types of time-varying co-variates: time and time-covariate interactions. Furthermore, some of theproblems associated with the use of time-varying covariates are discussed.
4.6.1 Time-varying covariatesThe chance to include explanatory variables which may change their val-ues during the observation period is one of the great advantages of eventhistory models. It is also one of the most di�cult aspects of event historymodeling since various mistakes can be made in the causal interpretationof the e�ects of time-varying covariates (Chamberlain, 1985; Lancaster,1990:23-31; Yamaguchi, 1991:130-134).Of course, as is true in all nonexperimental research, the initial distri-bution of the time-varying covariates may introduce selection bias whenimportant covariates are not included in the model. However, selectionbiasmay occur even if persons are randomized into the di�erent categoriesof a time-varying covariate at T = 0, that is, if the covariate concernedis not correlated at T = 0 with possibly unobserved confounding factors.During the observation period, people may take on particular covariatevalues more often than other values as a result of unmeasured risk factorswhich are common for the covariate process and the dependent process.9More precisely, there may be unobserved factors that in
uence both thetransitions in the time-varying covariates and the hazard rate of the eventof interest. As a result, a part of the sample has both a higher proba-bility of occupying a particular covariate state and a higher hazard rate.In such cases, the e�ect of a time-varying covariate on the hazard rate ofthe event under study is, at least partially, spurious.Another possible pitfall with respect to the causal interpretation ofthe e�ects of time-varying covariates is the problem of reverse causation.One would expect that determining the causal order between covariatesand the dependent process under study would be simpler in the case of

9Following Yamaguchi (1991:133), the term covariate process will be used to denotethe changes which occur in the values of the time-varying covariates, and the termdependent process to denote the transitions in the dependent variable in the studyconcerned.



dynamic analysis of event history data than in the case of static analysis.However, this is only true for the covariates that do not change their valueduring the observation period. Time-dependent covariates may be subjectto reverse causation, that is, the process under study may in
uence thecovariate process. The covariate process may be either in
uenced by thestate occupied at the di�erent points in time or by the size of the hazardrate. The former is called state dependence, the latter, rate dependence(Tuma and Hannan, 1984:268; Yamaguchi, 1991:137-139). Both forms ofreverse causation may severely bias the results obtained from an eventhistory analysis.
Exogenous versus endogenous covariates The problems of selec-tion bias (or spuriousness) and reverse causation which are associatedwith the use of time-dependent covariates can be clari�ed using the dis-tinction between exogenous and endogenous (time-varying) covariatesproposed by Lancaster (1990:23-31). Endogenous covariates may be sub-ject to spuriousness and reverse causation, while exogenous covariates donot have these problems. Lancaster derived the distinction between en-dogenous and exogenous covariates by writing down the joint probabilitydistribution of the covariate process and the dependent process understudy. Assume, for the sake of simplicity, that an event or censoring canonly occur at discrete points in time and that there is only one time-varying covariate. Let tl be the lth from L� discrete time points, x(tl) avalue on the time-varying covariate at the lth time interval, and x(0; tl)a complete covariate path from T = 0 through T = tl. The joint prob-ability of surviving through T = tl and having observed covariate valuesx(0; tl) can be written as

P (x(0; tl); T > tl) = ( lY
k=1P (x(tk)jT > tk�1; x(0; tk�1))
lY

k=1 [1� �(tkjx(0; tk))]) ; (4.34)
and the joint probability of experiencing an event at T = tl and havingcovariate values x(0; tl)

P (x(0; tl); T = tl) = ( lY
k=1P (x(tk)jT > tk�1; x(0; tk�1))



�(tljx(0; tl)) l�1Yk=1 [1� �(tkjx(0; tk))]) :(4.35)
According to Lancaster (1990:28), the nature of a time-varying covariateis determined by the factor

P (x(tl)jT > tl�1; x(0; tl�1)) ; (4.36)
which describes the probability of having a particular covariate value atT = tl, given survival through T = tl�1 and the covariate path betweenT = 0 and T = tl�1. Now, a covariate is exogenous if and only if

P (x(tl)jT > tl�1; x(0; tl�1)) = P (x(tl)jx(0; tl�1)) (4.37)
for all tl. Thus, a covariate is exogenous if the covariate process is inde-pendent of the process under study, that is, if the probability of having aparticular value on a time-dependent covariate at time point tl does notdepend on the condition T > tl�1, given the covariate history throughT = tl�1. In other words, an individual who did not experience an eventat or before T = tl�1 must have the same probability of having a par-ticular value on a time-dependent covariate in T = tl as an individualwho experienced an event at or before T = tl�1, even after controlling forthe covariate path through T = tl�1. Note that the condition that x(tl)is independent of survival through T = tl�1 is equivalent to stating thatx(tl) is independent of the state occupied at T = tl�1.As can be expected, a covariate that is not exogenous is endogenous.This occurs whenever the covariate process is in some way related tothe dependent process under study, that is, whenever experiencing of theevent at or before tl�1 helps to predict an individual's covariate value atT = tl, even after controlling for the complete covariate path up to tl�1,x(0; tl�1).Chamberlain (1985) and Croughley and Pickles (1989) de�ned exo-geneity in slightly di�erent terms as

f(s(tl)jx(0; tL�)) = f(s(tl)jx(0; tl)) ;where s(tl) denotes the state that a person occupies at the lth time point.Thus, exogeneity implies that the state occupied at a particular momentin time depends only on current and past covariate scores. On the other



hand, if future covariate values possess additional predictive power, theexogeneity condition is not ful�lled. Note that this formulation of exo-geneity is an inversion of Lancaster's formulation. While Equation 4.37shows that survival up to tl does not predict future covariate values, Equa-tion 4.38 states that future covariate values do not predict survival up totl. Of course, these two seemingly di�erent formulations are completelyequivalent.
Covariates which take their values independently of whether a person sur-vived or not are always exogenous. Kalb
eisch and Prentice (1980:121-122) called these covariates external covariates. They distinguished threetypes of external covariates, namely, time-constant covariates, de�ned co-variates, and ancillary covariates. Time-constant covariates do not changetheir values during the observation period. De�ned covariates are time-varying covariates for which the values are determined in advance for eachsubject at the di�erent points in time. Examples of de�ned covariates aretime variables, such as age and duration, factors which are under controlin an experimental setting, and interaction terms between time variablesand time-constant covariates. Ancillary covariates are the output of astochastic process that is external to the individuals under study, suchas macro-level variables which in
uence the individual risk of becomingunemployed. Time-constant, de�ned, and ancillary covariates have incommon that their values are not in
uenced by whether a person sur-vives up to T = tl�1. Moreover, external covariates have in common thatthey are de�ned, that is, that they have a value, irrespective of whetheran event occurred or not.
Covariates which are de�ned only if the event under study does not occur,that is, the values can only be determined as long as a person survives,are by de�nition endogenous because the expression P (x(tl)jx(0; tl�1)) atthe right-hand side of Equation 4.37 is a probability that cannot be eval-uated at all values of T (Lancaster, 1990). Examples are an individual'swage in a study of the length of employment spells or an individual's gen-eral condition in a clinical trial. After all, upon becoming unemployed aperson has no wage and after dying no general condition measure is avail-able. Kalb
eisch and Prentice (1980:122-124) referred to such covariatesas internal covariates. They de�ned an internal covariate as a time mea-



surement taken on an individual that, as a result, requires survival ofthe individual for its existence. According to Kalb
eisch and Prentice(1980:124), internal covariates often act as intermediate variables. Forinstance, a medical treatment or another type of intervention may havean e�ect on the hazard rate of dying from a particular disease. How-ever, after controlling for the time-varying covariate general condition,the e�ect may disappear. This may result from an indirect e�ect of thetreatment on the risk of dying, that is, the treatment may improve thegeneral condition and thus lower the risk of dying. The use of inter-nal covariates can help to understand the process more precisely, but tounderstand the ongoing process completely the changes in the internalcovariates themselves also have to be studied. For this reason, Manton,Woodbury, and Stallard (1988) strongly advocated models in which notonly the process of interest { in their case mortality from di�erent causes{ is modelled, but in which also the evolution of risk factors is modelled.This makes it possible to improve the prediction of the e�ects of inter-vention in risk factors on the size of the hazard rate.
There are also covariates which are not de�ned externally to an individ-ual subject, but which are not necessarily endogenous. For instance, ina study of unemployment, a person's marital status may be either anexogenous or endogenous covariate. The marital status is not internalaccording to the de�nition by Kalb
eisch en Prentice (1980) because itis still de�ned after an individual becomes unemployed. Whether maritalstatus is endogenous or exogenous depends on whether the employmenthistory up to T = tl�1 helps us to predict an individual's marital statusat tl or not. Endogeneity can either be the result of reverse causationbetween employment and marital status, for instance because being em-ployed makes the probability of a divorce smaller, or be the result ofsome common unobserved covariates which in
uence both the hazard ofbecoming unemployed and the hazard of divorce, such as, for instance,the stability of an individual's lifestyle.Another example of a covariate that can be either exogenous or en-dogenous is the time-varying covariate of pregnancy in an analysis of theevent marriage. The relationship between pregnancy and marriage maybe the result of one of the following causal processes: pregnancy may bea reason to marry, women with a higher likelihood of marriage may have



a higher risk of becoming pregnant, or the decision to marry and becomepregnant may be taken simultaneously. In the �rst case, there is a directe�ect of pregnancy on the hazard rate of marriage, which means that in-dividuals with a high risk of premarital pregnancy at a young age will, asa result, have a higher risk of marrying young. In the second case, theremay be reverse causation. More precisely, the rate of becoming pregnantmay depend on the size of the rate of getting married. The latter caseinvolves a spurious e�ect resulting from the fact that the rate of gettingpregnant and the marriage rate are in
uenced by the same unobservedfactors. It is not only di�cult to determine which kind of process is atwork, but an additional problem is that the three kinds of processes mayeach be valid for di�erent subgroups.
4.6.2 Di�erent dimensions of timeThe previous sections discussed various methods for modeling the timedependency of the process under study. However, no attention was givento the operationalization of the variable time or to the interpretation ofits e�ect. The operationalization of the time dependency of the haz-ard rate depends on the substantive research question which is to be an-swered. Hazard rates may be related to di�erent kinds of time dimensions,such as age, calendar time, duration, and experience (Tuma and Hannan,1984:189-197). However, normally, it is not correct to assume that thetime variable has a direct causal e�ect on the hazard rate. Time depen-dence will generally be the result of unobserved factors which change insome systematic way together with the time dimension involved.A time variable which is very often used, particularly in demographicresearch, is age. Age is, for instance, related to marriage, birth, and deathrates. It seems plausible to explain the age dependence of marriage ratesfrom social norms about the best age to marry. Birth rates are related toage both as a result of social norms and due to the physiological capacityto reproduce. In that case, there is a mixture of two types of age e�ectswhich can only be separated when at least one of them is operationalizedin di�erent fashion. And �nally, death rates are related to age as a resultof changing physiological conditions as individuals grow older.Another time variable is calendar time or period. This variable gen-erally indicates changing unmeasured macro conditions which in
uencethe individual hazard rates. Divorce rates may be correlated to calendar



time because of changed laws or changing social norms. In addition, theperiod dependence of the rate of becoming unemployed may be causedby 
uctuations in the economy.The time spent in the risk set, or duration, is also a useful time di-mension. In the analysis of unemployment spells, a negative durationdependence is often found. This is explained by the fact that employersprefer to employ individuals who have only been unemployed for a shortperiod of time. Duration is equivalent to the stigmatization of unem-ployment by society. The dependence of, for instance, divorce rates onthe duration of marriage may be the result of a number of psychologicalaspects which in
uence the strength of a relationship.Tuma and Hannan (1984:195) mentioned experience as another possi-ble time variable. Experience is the total time spent in a particular state.Generally, it di�ers from duration only for the second and subsequentspells. In the analysis of employment spells, experience is the total timethat an individual has been employed.The last time dimension mentioned by Tuma and Hannan (1984:191)is cohort. Contrary to the above-mentioned time variables, cohort is nota time-varying variable. It is a variable that is constant during each par-ticular spell. The variable cohort is often used in demographic research,but is useful in other �elds as well. Cohort is generally de�ned as theperiod of entry into the risk set. Therefore, it is sometimes also calledperiod-cohort. In the case of some speci�c life-course events, such as �rstmarriage and �rst birth, it is simply someone's birth date or birth year.In the analysis of divorce, cohort may be the year of marriage, also re-ferred to as a marriage-cohort. In the analysis of the length of the �rstjob search after leaving school, cohort may be either the date of leavingschool or the individual's year of birth. Generally, the variable cohortis used as an indicator for cumulated circumstances or experiences thatparticular subgroups of persons have in common.Another constant time variable which is similar to cohort is the ageat the entry into the risk set. It is also called the age cohort. The ageat which an individual becomes unemployed may in
uence the hazardrate of becoming employed. The age that a women has her �rst childmay in
uence the hazard rate of the second birth. Like the other timevariables that were mentioned, this variable also serves as a correlate forparticular unobserved factors.Often, several time dependencies are at work simultaneously. For



instance, divorce rates may depend on age, period, age at marriage, yearof marriage, and duration of marriage. Unemployment rates may dependon age, experience, duration, and period. However, the number of timedependencies that can be included in a model is limited as a result ofthe well-known collinearity which also occurs in age-period-cohort models(Tuma and Hannan, 1984:196-197; Mason and Fienberg, 1985; Hagenaars,1990:326-332).
A serious problem associated with the interpretation of the e�ects oftime variables is that the observed time dependence may not only be theresult of unobserved factors which change simultaneously with the timedimension being used in a particular model, but may also be in
uencedby unobserved factors which do not change with time. This is generallyreferred to as unobserved heterogeneity (Vaupel, Manton, and Stallard,1979; Heckman and Singer, 1982, 1984; Trussell and Richards, 1985)and can easily be demonstrated. Suppose there are two subgroups withconstant but di�erent hazard rates. In that case, the relative size of thegroup with a lower hazard rate will increase with time. As a result, themean hazard rate will decrease with time. This means that if this sourceof heterogeneity remains unobserved, there will be spurious negative timedependence (Ridders and Elbers, 1982).The negative duration dependence of the hazard rate of becoming em-ployed may result from the fact that those who are more capable �nd a jobmore easily, rather than from the fact that stigmatization by employerstakes place. In addition, divorce rates may go down because individualswho know each other for a longer period before marrying have lower di-vorce rates, rather than because the quality of the relationship improveswith the duration of marriage.In general, unobserved heterogeneity leads to either an underestima-tion of positive time dependence or an overestimation of negative timedependence. An important di�erence with static regression models is,however, that in event history models unobserved factors in
uence theresults even if they are uncorrelated with the observed variables at thetime of entry into the risk set, that is, at T = 0. Although unobservedheterogeneity has the strongest impact on the duration e�ect, it may alsoin
uence the e�ects of observed covariates on the hazard rate.



4.6.3 Time-varying covariate e�ectsA strong point of event history models is that the e�ects of covariatesmay change with time, or equivalently, that the time e�ects may de-pend on covariate values. Such models, which are obtained by includinginteraction terms between time variables and covariates, are called non-proportional hazard models. Note that time-covariate interactions arealso time-varying covariates.These time-covariate interaction e�ects can be interpreted in di�erentmanners. The simplest interpretation is that the time dependence di�ersfor subgroups. In other words, the unobserved factors which are associ-ated with the time dimension concerned di�er or function in a di�erentmanner for di�erent observed subpopulations. For instance, women withdi�erent educational levels have their �rst child at di�erent ages. Thiscan occur because the social norm explanation for the e�ect of age onlyapplies to less educated women. Highly educated woman may postponethe birth of their �rst child because they want to participate in the laborforce and are subsequently confronted with both norms and physiologi-cal factors which determine the maximum age for starting a reproductivecareer.On the other hand, time-covariate interaction e�ects can be inter-preted as covariate e�ects that change with time. For instance, the inter-action e�ect between age and educational level on the rate of �rst birthalso means that the e�ect of the educational level on the rate of �rst birthchanges with age. Suppose that at younger ages a higher educational levelis a barrier to starting the reproductive career because the costs of havinga child are too high. As time goes on, the relative costs for better edu-cated women will go down in comparison to the costs for less educatedwomen who have not yet had children. This phenomenon may lead tohigher �rst-birth rates for less educated women than for highly educatedwomen, but only at younger ages. At older ages, the birth rates maybe equal for both groups, or may actually be higher for better educatedwomen.
As is the case with time dependence itself, the interpretation of time-covariate interactions is not always straightforward: a signi�cant inter-action term between time and a time-constant covariate may also be theresult of unobserved heterogeneity. Spurious time-covariate interaction



e�ects occur when there is an unobserved variable which is correlatedwith the observed covariate concerned. This is the classic form of selec-tion bias. In that case, the di�erences between the hazard rates for thecategories of the observed covariate decline with time. The problem iseven more complicated, since di�erences may still increase, but it is lessso than if there is no selection bias.For example, the interaction term between educational level and agediscussed above will at least partially be the result of unobserved fac-tors which are correlated with educational level. Suppose that the ethnicgroup that a woman belongs to in
uences her educational level: womenfrom ethnic minorities, on average, have lower educational levels thanwomen from the ethnic majority. This implies that at age 18, the pro-portion of childless women from an ethnic minority will be higher in theless educated group than in the more educated group. In addition, sup-pose that the variable `ethnic group' is not observed and that womenfrom ethnic minorities have higher �rst-birth rates than women from theethnic majority. As a result, the proportion of women belonging to anethnic minority in the risk set, thus without children, will decrease withage. However, since the less educated group contains more women be-longing to an ethnic minority, the hazard rate for those with lower levelsof education group will decrease faster than the hazard rate for the bettereducated group. This leads to a spurious age-education interaction.Another example could be the interaction e�ect found between type ofunion (married/unmarried) and the duration of the union in the analysisof union dissolution. What is found is that at short durations unmarriedcouples have a much higher risk on separating than married couples, butat longer durations the di�erence between married and unmarried couplesdisappears (Manting, 1994). It is almost certain that this interactione�ect is caused by unobserved factors which are strongly associated withthe type of union such as, for instance, the stability of the relationshipwhich could be operationalized as `how long a couple has known eachother at the start of the union'. If it were possible to control for such afactor, the di�erence in the duration of union between cohabiting couplesand married couples might become much smaller.



4.6.4 Unobserved heterogeneity, selection bias, and spuri-ous relationshipsAbove it was shown that the presence of unobserved heterogeneity mayintroduce bias in the parameters of hazard models in a number of di�erentways. In summary, unobserved heterogeneity usually has a downwardse�ect on the time dependence, even if the unobserved factors are uncorre-lated with the values of covariates included in the model at T = 0. More-over, covariate e�ects will be biased as well since the unobserved variablesand the observed variable become correlated after T = 0. When the unob-served variable is related to other covariates at T = 0, that is, when thereis some form of selection bias, spurious interaction e�ects between T andX will be found. Finally, the e�ect of (endogenous) time-varying covari-ates may be spurious as a result of the presence of unobserved risk factorswhich in
uence both the covariate process and the dependent process.Of course, it is important to be aware of these phenomena. However,it would be even more useful to have instruments which could be usedto minimize the distortion resulting from this type of problem. Variousauthors (Heckman and Singer, 1982, 1984; Vaupel, Manton, and Stal-lard, 1979) have proposed including a latent variable or a random e�ectin the hazard model to tackle the problem of unobserved heterogeneity.Normally, a latent variable with either a parametric or non-parametricdistribution function is assumed to exist which is uncorrelated with theobserved covariate values at T = 0. Under weak conditions, such a latentvariable makes it possible to separate spurious from true time dependence(Elbers and Ridder, 1982; Heckman and Singer, 1984).Spurious time dependence is, however, only one source of bias intro-duced by unobserved factors. The above-mentioned approach is limitedbecause it does not allow the latent variable to be related to observedcovariates. Therefore, it cannot be used to eliminate selection bias ingeneral. Chapter 5 presents a more general approach which makes itpossible to model the relationships between unobserved categorical ornon-parametric covariates and observed covariates, including the initialstates of the time-dependent covariates and the dependent process. Thisapproach also makes possible the elimination of speci�c forms of selectionbias.Spurious e�ects of time-varying covariates, or selection bias in time-varying covariates, can be tackled by simultaneously analyzing the de-



pendent process and the covariate process by means of the multivariatehazard models, which are discussed in section 2.7. By incorporating alatent variable which in
uences both the covariate process and the de-pendent process, it is possible to identify common unobserved risk factorsand to recover the true e�ect of a time-varying covariate. This is onlypossible, of course, if the correlation between the dependent process andthe covariate process does not result from reverse causation. In Chapter5, these latent variable approaches are discussed more extensively.
4.6.5 Reverse causationAs mentioned previously, the causal interpretation of the e�ects of en-dogenous time-varying variables can be hampered by the existence ofone of two forms of reverse causation, namely, state dependence or ratedependence (Tuma and Hannan, 1984:268).State dependence occurs whenever the transition rates of the covariateprocess depend on the state occupied in the dependent process of interest.It leads to a correlation of the duration in the risk period with the statedependent covariate (Yamaguchi, 1991:137-139). In these circumstances,the time dependence and the e�ect of the covariate concerned can easilybe confused. In other words, bias will be introduced in the covariate e�ectwhenever the duration dependence is not modelled correctly. The onlysolution to this problem is a careful speci�cation of the duration depen-dence of the process. The bias caused by state dependence is di�cult toprevent because in many situations the time dependence is unknown.Suppose employment status is used as a time-varying covariate in ananalysis of the risk of divorce, and additionally it is known that marriedindividuals have a lower risk of becoming unemployed than individualswho are not married. The result will be that the risk set will containmore employed people at longer durations than at shorter durations, notonly because employed individuals have a lower risk of divorce, but alsobecause married people have a higher probability of being employed. Thisleads to a correlation between duration and the time-varying covariateemployment status.Rate dependence, which means that the hazard rate of the covariateprocess depends on the value of the hazard rate of the dependent pro-cess, is an even more di�cult form of reverse causation to tackle. Ratedependence can be illustrated by means of an example. In hazard models



for the �rst birth, the employment status of a women is often used as atime-dependent covariate (Vermunt, 1991). What is generally found isthat employed women have lower hazard rates of having children, whilewomen who are not in the labor force have much higher rates. This ef-fect may, however, be partially caused by the fact that some women stopworking some time before the birth of their �rst child. They stop work-ing because having children is seen as incompatible with a career. Thus,when a woman decides to have children, the hazard rate of �rst birthincreases and, as a result of rate dependence, the risk of leaving the stateof employment increases as well.Yamaguchi (1991:138-139) mentioned a similar case. He found thatpeople tended to stop using marijuana some time before they got marriedbecause of the perceived incompatibility of marijuana use and marriage.The consequence is that if using marijuana is used as a time-varyingcovariate for marriage, the e�ect will be, at least partially, the result ofreverse causation: The hazard rate of abstinence from marijuana smokingincreases as the hazard rate of getting married increases.Actually, rate dependence results from a person's capacity to antic-ipate future or desired situations. When there is rate dependence, thecausal order of events will no longer be in agreement with their time or-der (Marini and Singer, 1988). According to Yamaguchi (1991:139), apossible solution for rate dependence is to use a time-lag large enough fora possible rate dependent time-dependent covariate to make anticipationless probable. The main disadvantage of such an approach is that a truee�ect may disappear as a result of a too large time-lag. In fact, the onlyreal solution is to perform additional research on the decision-making pro-cess governing the covariate value and the value of the dependent variablein order to understand the nature of the reverse causation. Do womenstop working because they plan to have a baby? Do marijuana usersstop using marijuana because they plan to marry? Such questions canonly be answered by asking the actors concerned about their behavioralintentions (Marini and Singer, 1988:378; Willekens, 1991).
4.6.6 Estimation of hazard models with time-varying co-variatesAs demonstrated by Lancaster (1990:29-31), the estimation of hazardmodels with time-varying covariates is straightforward if the condition



of exogeneity is ful�lled. In that case, Equation 4.36, which describesthe dependence of the covariate process on the dependent process, doesnot contain information on the hazard parameters. More precisely, itis simply the marginal probability of the observed covariate path x(tl).Therefore, the individual contribution to the likelihood function can bebased on the second part of Equations 4.34 and 4.35, i.e.,lY
k=1 [1� �(tkjx(tk))] ; (4.38)

�(tljx(tl)) l�1Yk=1 [1� �(tkjx(tk))] : (4.39)
These are probabilities given covariate values, which is the same inter-pretation as if all of the covariates are time-constant. However, if sometime-dependent covariates are endogenous, this is not true. In that case,the expressions given in Equations 4.38 and 4.39 are factors in the jointprobability of T and x(tl), and are not probabilities conditional on the co-variate path. According to Lancaster (1990:30), neglecting the last termof Equations 4.34 and 4.35 when the covariates are endogenous leads to apartial likelihood solution which can be seriously ine�cient. In addition,if the endogeneity of time-varying covariates results from selection biasor reverse causation, the e�ects of these covariates will be biased.
Continuous time For continuous time, the likelihood function for ahazard model with time-varying covariates is given by

L = NYi=1h(tijx(ti))�i exp
�� Z ti0 h(ujx(ui))du� : (4.40)

Equation 4.40 can also be written down in terms of episodes in which thecovariates do not change their values. Let Ki be the number of episodes,Ki�1 the number of times that a change occurs in the covariate values ofperson i, and tki the time point at with the kth change occurs. Moreover,t0i is the time point at which the �rst episode starts and tKi is the survivalor censoring time. The censoring indicators �ki are equal to 0 for allki < Ki and have the usual meaning for ki = Ki, that is, all episodesexcept the last one are always treated as censored. In terms of these Ki



episodes for subjects i, the likelihood equals
L = NYi=1

KiY
k=1h(tki jxki)�ki exp

 
� Z tkitki�1 h(ujxki)du

! : (4.41)
The advantage of splitting each record into Ki episodes is that theseN� = PNi=1Ki episodes can be analyzed as if all of the covariates aretime-constant. If each episode is treated as a left-censored case with aknown starting time R = rj for episode j, Equation 4.41 can be simpli�edto

L = N�Yj=1h(tj jxj)�j exp
 
� Z tjrj h(ujxj)du! :

Maximizing this likelihood function is equivalent to the conditional max-imization method for left-censored observations which was presented insection 4.5.
Log-rate model Like Equation 4.41, the likelihood for the piecewiseexponential survival or log-rate model can be adjusted to allow for time-varying covariates (Trussell and Hammerslough, 1983). Suppose there isa model with two covariates A and B which may now be time-varying.This leads to

L = NYi=1
KiY
k=1

ZYz=1h(zjxki)�kiz exp (�h(zjxki)ekiz)= Y
abz hnabzabz exp (�habzEabz) ;

in which ekiz denotes the total time that person i in episode k belongsto the risk set in time interval z. Although the likelihood in terms of thecross-tabulated number of events, nabz, and the cross-tabulated exposuretimes, Eabz, seems to be equivalent to the situation in which there are notime-varying covariates (see Equation 4.21), it should be noted that inthis case nabz and Eabz are obtained in a di�erent fashion:
nabz = NXi=1

KiX
k=1 �kiz
kiab

Eabz = NXi=1
KiX
k=1 ekiz
kiab :



Here, 
kiab is an indicator variable taking the value 1 if person i has A = aand B = b in the kth episode and otherwise it takes the value 0.
Computer programs The estimation of the parameters of continuous-time hazard models with time-dependent covariates can easily performedby means of programs which permit the use of episode records as input.The TDA program which was developed by Rohwer (1993) can be usedfor that purpose.The `EM program (Vermunt, 1993) can be used to estimate log-ratemodels with time-varying covariates. It allows the user to enter episoderecords as input. However, changing values of time-varying covariatescan also be speci�ed by de�ning the di�erent covariate values as di�erentstates and utilizing the possibility of de�ning several transitions withinone record. In that case, it is not necessary to perform episode splitting.This makes it relatively easy to analyze the covariate process simultane-ously with the dependent process. The multivariate hazard models whichcan be used for this purpose are discussed more extensively in section 4.8.Of course, the log-rate model with time-varying covariates can also beestimated by means of standard programs for log-linear analysis. In thatcase, the occurrence and the exposure matrix must be given as input.
4.7 Di�erent types of events
Thus far, only hazard rate models for situations in which there is only onedestination state were considered. In many applications it may, however,prove necessary to distinguish between di�erent types of events or risks.In the analysis of the �rst-union formation, for instance, it may be relevantto make a distinction between marriage and cohabitation. In the analysisof death rates, one may want to distinguish di�erent causes of death. Andin the analysis of the length of employment spells, it may be of interest tomake a distinction between the events voluntary job change, involuntaryjob change, redundancy, and leaving the labor force.Before arguing the need for special models for analyzing event historydata with more than one possible type event, a classi�cation of multiple-risk situations is presented below. Then, the statistical concepts and thespecial types of models used in multiple-risk cases are presented. And�nally, attention is given to the assumption of conditional independence



of the survival times for the di�erent types of events which can occur.
4.7.1 Classi�cation of multiple-risk situationsIn the sociological literature on competing risks, it is quite common todistinguish two ideal situations in which competing events can be ana-lyzed with little methodological di�culty (Allison, 1984:42-44; Hachen,1988; and Yamaguchi, 1991:169-171). Following Allison and Yamaguchi,they will be labeled as Type I and Type II situations. It is attractive toassume one of the two situations to be valid because in that case the sametypes of methods can be applied as are applied in the single-destinationcase. However, as will be argued below, it is almost always advisable touse a competing-risk model because none of the two situations is valid.While the distinction between the above Type I and Type II situ-ation is an important issue in the sociological literature on competingrisks, in other �elds, such as biometrics and demography, another prob-lem associated with the analysis of di�erent types of events is given agreat deal of attention: the problem of dependence among competingrisks (Tiatsis, 1975; Prentice and Kalb
eisch, 1979; Vaupel and Yashin,1985; Yashin, Manton, and Stallard, 1986; Heckman and Honore, 1989).As is demonstrated below, the dependence or independence of competingrisks strongly in
uences the range of interpretation of the results.
Type I and Type II situation In the Type I situation, the occurrenceof one of the possible events is dominated by two separate independentsteps. According to Allison (1984:42), such a situation occurs wheneverthe occurrence or nonoccurrence of an event, irrespective of its type, isdetermined by one causal process and, given that an event occurs, asecond causal process determines which type of event occurs. The twosteps are independent and governed by their own set of parameters.The assumption of a Type I process can be valid, for instance, inconsumer behavior research. One causal process determines whether anindividual buys a particular product in T = t and a second process deter-mines the brand of the product. The aim of commercials may be eitherto in
uence the second step or to distort this two-step pattern. Likewise,the process leading to the �rst-union formation can be interpreted as be-ing the outcome of such a two-step process. This is correct wheneverone causal process determines the timing of the �rst-union formation and



another determines the decision to marry or to cohabit, given that the�rst union will be formed.If this Type I situation is valid, the two steps can be analyzed sepa-rately. The causal structure determining the occurrence or nonoccurrenceof an event can be analyzed by means of a hazard model for one destina-tion state. The second step can be analyzed using a discrete choice model,such as a logit or probit model, in which the kind of event is explained.These two separate models may contain common covariates.A second ideal situation, which is called Type II by Allison (1984:43-44) and Yamaguchi (1991:171), occurs whenever the occurrence of eachevent type has a di�erent causal structure. In that sense, it is the oppositeof the Type I situation, in which it is assumed that the occurrence ofan event, irrespective of its type, can be explained by a single causalprocess. Although the same covariates may be relevant, each event hasan independent set of parameters, that is, the parameters for the di�erentevents are assumed to be distinct. Type II multiple-risk situations areoften called competing risks (Kalb
eisch and Prentice, 1980: Chapter7; Cox and Oakes, 1984: Chapter 9), since the occurrence of one typeof event removes an individual not only from the risk set for the eventconcerned, but also from the risk set for the other events. This perceptionof situations in which there are di�erent types of events is especiallypopular in biostatistics and demography.The classical competing-risk example is death from competing causes.For instance, it is plausible to assume that di�erent causal processes leadto death from heart disease and to death from cancer. In that case, a per-son dying of heart disease can be treated as being free of risk for dying ofcancer. The same arguments could be applied in the analysis of employ-ment spells if a distinction is made between voluntary and involuntaryjob changes. Di�erent causal processes could be assumed to determinevoluntary and involuntary job changes since di�erent actors are involvedin these two modes of leaving employment.The process leading to a �rst-union formation could likewise be viewedas a competing-risk situation rather than a Type I situation. In theType II situation, it would be assumed that there were no factors whichin
uenced a �rst-union formation by marriage and a �rst-union formationby cohabitation in the same fashion. In other words, the two processeswould be assumed to have no parameters in common.If the process being studied takes place within a Type II situation, the



di�erent types of events can be analyzed separately, and the occurrence ofone of the other possible events can be treated as a censored observation.There is, however, one exception: if a discrete-time logit model is used,the competing events must always be analyzed simultaneously (Allison,1982). The reason for this is demonstrated below.It appears attractive to assume one of the two ideal situations dis-cussed above to be valid. In that case, it is not necessary to apply specialinstruments to the analysis of data on di�erent types of events. Theanalysis can be performed in the same fashion as was discussed in thepreceding sections of this chapter: in the Type I situation no distinctionis made between the events and in the Type II situation the di�erent kindsof events are analyzed separately. In social science research, however, nei-ther of these two ideal situation is normally plausible. Most often, theoccurrence of the events being studied is partially in
uenced in the samefashion by the same factors, and is partially in
uenced by unique factorsor in a di�erent fashion by the same factors. In other words, the processdetermining the occurrence of the events of interest is a mixture of TypeI and Type II situations.In the �rst-union example, it seems reasonable to assume that speci�cfactors in
uence the timing of the �rst-union formation, regardless ofthe type of union, while other factors in
uence the risk of marriage andcohabitation is a di�erent manner. Suppose that education is a factor ofthe former type and religion a factor of the latter type. This would implythat education determines the age at which a �rst union is formed andperhaps also in
uences the decision to marry or to cohabit, regardless ofthe age at which the union is formed. Thus, there is an e�ect of educationon the overall hazard rate and possibly age-education and risk-educationinteraction e�ects as well. On the other hand, religion is assumed tohave a di�erent e�ect on the age-speci�c hazard rates of marriage andunmarried cohabitation. This implies that the model contains an age-risk-religion interaction.A mixture of the two types is often the result of a Type I or TypeII process being valid for di�erent subpopulations. For instance, someindividuals embark upon one type of union without the other type beinga salient alternative, while others choose between marriage and cohabi-tation after deciding to form a �rst union.Clearly, it is dangerous to choose the method of analyzing the dataon the basis of a priori assumptions with regard to the mechanism which



determines the occurrence of the events being studied. Therefore, it isrecommended that a simultaneous analysis of the di�erent events be per-formed using hazard models which are suited to that purpose. Thesetechniques not only make it possible to specify models without the neces-sity of making assumptions on the type of multiple-risk situation, theycan also be used to test these assumptions. Thus, even if it seems plau-sible to assume either Type I or Type II to be valid, it is not sensibleto choose a particular way of analyzing the data without checking thevalidity of the assumption concerned.When a simultaneous analysis is performed, the occurrence of a TypeI or Type II situation can be detected on the basis of interaction e�ectswhich are included in the hazard model. If no interaction e�ect involvingboth duration and risk is signi�cant, there is a Type I situation. If theinteraction between duration and risk is signi�cant and all covariate-riskinteractions are signi�cant as well, there is a Type II situation. In allother cases, there is a mixture of the two ideal situations.
Conditionally (in)dependent risks While the distinction betweenthe Type I and Type II multiple-risk situations is especially relevant to thechoice of the method for analyzing multiple-risk data, another distinctioncan be made on the basis of the range of interpretation of the resultsobtained from an analysis, namely, the distinction between independentand dependent competing risks.In discussing the censoring problem in section 4.5, it was claimed thatthe estimation and interpretation of the parameters of hazard models wasstraightforward only if the censoring rate and the hazard rate could beassumed to be conditionally independent, given the covariates includedin the model, of the event under study. This condition is ful�lled whenthere are no unobserved factors which in
uence both the hazard rate andthe censoring rate. The independence of censoring and the occurrenceof an event is so important because otherwise estimates of the hazardparameters would depend on which observations were censored.The same argumentation can be applied to multiple-risk situations,particularly as it should be realized that censoring can be seen as a com-peting risk. When competing events are not independent, the size of theestimated hazard parameters for one type of event will be in
uenced bywhich cases experience which of the competing events, or in other words,



the results will only be valid under current study conditions (Prenticeand Kalb
eisch, 1979). However, it is often useful to be able to inter-pret the hazard rate of a particular event without having to take thesizes of the other risks into account. This makes it possible to predictthe number of occurrences of each of the possible events under di�erentassumptions about the values of the other hazard rates. For instance, itis possible to predict the substitution e�ect of the interest event whenit becomes impossible for one of the other events to occur. A classicapplication of conditionally independent risks in the study of mortalityis cause removal, or the estimation of overall mortality rates assumingthat one cause of death could be eliminated (Manton and Stallard, 1987).But this is only allowable if the survival times are independent giventhe covariates included in the model, that is, when we have an indepen-dent competing-risk situation. Yashin, Manton, and Stallard (1986), forexample, demonstrated that the e�ect of eliminating cancer and heartdisease on survival is overestimated if the hazard model does not takedependencies between causes of death into account.Hill, Axinn, and Thornton (1993) applied the principle of `cause re-moval' to estimate the number of cohabiting couples if the probabilityof marriage would decrease as a result of changes in the law. Supposethat marriage rates and cohabitation rates are positively correlated, andthat this correlation is completely captured by the covariates includedin the model. This would imply that if marriage became less attractive,for example, because of changed legislation, cohabitation rates would risesince it could be expected that a segment of the individuals who wouldhave married would now choose to cohabit. What happens is that mar-riage is partially substituted by cohabitation. On the other hand, if thedependence between the two events is not captured by the covariates in-cluded in the model, it is not possible to estimate this substitution e�ectcorrectly.One major problem, however, is that although the conditional inde-pendence assumption is very attractive from a substantive point of view,it is di�cult to test because only one of the possible durations, i.e., theshortest one, can be observed (Tiatsis, 1975; Heckman and Honore, 1989).Below, the (in)dependence among di�erent types of events is discussed inmore detail.



4.7.2 Statistical concepts in multiple-risk situationsAs in the single destination situation, assume that for each individualthere is a random survival time T . Suppose that, in addition, there is arandom variable D indicating which of the possible events occurred. Ofcourse, censored observations are also allowed. For the moment, covariatedependencies will not be taken into account. The multiple-risk equivalentof the hazard rate is given by
hd(t) = lim�t!0 P (t � T < t+�t;D = djT � t)�t :

It denotes the instantaneous risks of experiencing an event of type d inthe time interval [t � T < t + �t], given that no event occurs beforeT = t. Econometricians generally use the term transition intensity ortransition rate for hd(t) (Lancaster, 1990:99-108), while biometricians usethe terms crude hazard rate or cause-speci�c hazard rate (Cox and Oakes,1984:143-145). The overall hazard rate can be obtained by summing theevent-speci�c hazard rates, that is,
h(t) = X

d hd(t) :
The usual relationships between h(t), f(t), and S(t) described in section4.2) also apply in the multiple-risk situation.The joint density of T and D, or the instantaneous probability thatan event of type d will occur at T = t, is given by

f(T = t;D = d) = hd(t)S(t) = hd(t) exp�� Z t0 h(u)d(u)� :
The marginal probability that the event is of type d is given by

P (D = d) = Z 10 hd(t) exp�� Z t0 h(u)d(u)� d(t) :
Moreover, given that an event occurs at time t, the conditional probabilitythat the event is of type d is

P (D = djT = t) = f(D = d; T = t)=f(T = t) = hd(t)=h(t) :An important special case occurs if
P (D = djT = t) = P (D = d) ;



that is, if the type of event is independent of the time that an event occurs.In that case, the transition intensities for all d and t can be written ashd(t) = h(t)P (D = d) :In fact, this is the formal de�nition of the Type I situation presentedabove: there is no interaction between T and D, and T and D are inde-pendent of each other. Note that it is also a variant of the assumption ofproportional hazard rates because the hazard rates of the various risks arein the same ratio for all t (Cox and Oakes, 1984:143). It is for this reasonthat Lancaster (1990:103-104) termed models of this type proportionalintensity models.
Competing risks A slightly di�erent treatment of situations includ-ing di�erent types of events is what Cox and Oakes (1984:144) call thecompeting-risk approach. This approach assumes the existence of D�random variables T (1); : : : ; T (D�) denoting an individual's latent survivaltimes, that is, one survival time for each of the D� possible destinationstates assuming that the other types of events cannot occur. These sur-vival times are called latent because the shortest one is the only one whichis observed while the other ones remain unobserved. The relationship be-tween the observable random variables T and D and the latent survivaltimes is T = min(T (1); : : : ; T (D�)) ;D = argmin(T (1); : : : ; T (D�)) :Thus, T is the minimum risk-speci�c survival time and D is the argumentof the shortest T (d). In the competing-risk approach, the observable orcrude hazard function is de�ned as

hd(t) = lim�t!0 P
�t � T (d) < t+�tjT (w) � t; w = 1; : : : ; D���t ;that is, as the instantaneous probability of occurrence of event d in theinterval [t � T < t + �t], given that all the latent survival times aregreater than or equal to t.Another important concept is the hazard function of the latent sur-vival time T (d),

h(d)(t) = lim�t!0 P
�t � T (d) < t+�tjT (d) � t��t



This hazard rate is sometimes also called the net hazard function (Moon,1991). Note that the net hazard rate is de�ned in exactly the same fashionas the hazard rate for a single destination state. According to Cox andOakes (1984:145),
hd(t) = h(d)(t) ;

if the latent survival times T (1); : : : ; T (D�) are mutually independent. Thisis, in fact, the formal de�nition of the independent competing-risk situa-tion presented above. Thus, if the survival times for the various destina-tion states are independent, the crude hazard rate hd(t) can be interpretedas a net hazard rate h(d)(t), that is, in the same fashion as a hazard ratefor a single event. This means that removal from the risk set that is notcaused by the event under study may be treated in the same fashion asindependent censoring.Note that both the Type I situation and the independent competing-risk situation, as de�ned here, are more restrictive than presented earlier.The reason for this is that the basic concepts are de�ned without usingcovariates. When covariates are introduced, the Type I situation occursif
P (D = djT = t;x) = P (D = djx) ;

and
hd(tjx) = h(tjx)P (D = djx) :

Furthermore, competing risks are conditionally independent if
hd(tjx) = h(d)(tjx) ;

that is, if crude and net hazard rates are equal, given covariate values.
4.7.3 Multiple-risk models and their estimationContinuous-time models Continuous-time hazard rate models fordi�erent types of events have the same form as hazard rate models for asingle type of event. Actually, a multiple-risk model consists of a hazard



model for each destination state. For instance, a proportional log-linearhazard model for an event of type d is given by
hd(tjx) = hd(t) exp0@Xj �djxdij

1A :
Nonproportional models can be obtained by allowing hd(t) to depend onparticular covariates.Maximum likelihood estimates for the parameters of a continuous-time hazard model for multiple destination states can be obtained bymaximizing

L = NYi=1
 D�Y
d=1hd(tijxi)�di

! exp � Z ti0 D�X
d=1hd(ujxi)du

!
= NYi=1

D�Y
d=1hd(tijxi)�di exp

�� Z ti0 hd(ujxi)du� ;
in which �di is an indicator variable taking the value 1 if the event forperson i is of type d, and otherwise taking the value 0. It can now easilybe seen why the parameters of the risk-speci�c hazard models can beestimated separately in the Type II situation. Since hd(t) and �dj areunequal for all d's in the Type II situation, the likelihood function canbe factored into separate components for the di�erent d's. Thus, if theparameters for the di�erent types of event are distinct, each

Ld = NYi=1hd(tijxi)�di exp
�� Z ti0 hd(ujxi)du� ;

can be maximized separately. Various standard computer programs existwhich can be used to estimate parametric multiple-risk models with re-strictions between the parameters across destination states. An exampleis the very 
exible TDA program (Rohwer, 1993).
Discrete-time logit models Discrete-time models can also be adaptedfor analyzing data on di�erent types of events (Allison, 1982). The proba-bility that event d occurs in time interval tl, given that no event occurred



before tl, can be related to a set of covariates by means of a multinomiallogit model. A proportional hazard model would take the form
�d(tljx) = exp ��dl +Pj �djxdij�1 +Pg exp ��gl +Pj �gjxgij� :The likelihood function which is to be maximized equals

L = NYi=1
24(D�Y

d=1
� �d(tli jxi)1� �(tli jxi)

��di) liY
k=1 (1� �(tkjxi))35 ;

in which the overall conditional probability of experiencing an event attk, �(tkjxi), is de�ned as
�(tkjxi) = D�X

d=1�d(tkjxi) :Contrary to the continuous-time likelihood function, this likelihood can-not be factored into separate components for each of the D� events (Alli-son, 1982). This is the result of the di�erence in de�nition of the survivalprobability,
S(tl) = liY

k=1 (1� �(tkjxi)) = liY
k=1

 1� D�X
d=1�d(tkjxi)

! :
The summation over d makes factorization impossible. Just as the singletype of event model can be estimated by means of standard binomiallogit programs, the multiple-risk model can be estimated by means ofmultinomial logit programs, which include programs for the log-linearanalysis of frequency tables.
Log-rate models The log-rate model can also be adapted for analyzingdata on di�erent types of events (Larson, 1984). The extension to themultiple-risk case consists of including the type of event as an additionaldimension to the tables with observed and expected number of events.Assuming that there is a model with two covariates denoted by A and



B, and that Z and D denote the time variable and the type of event,respectively, the log-rate model for competing risks can be written as
logmabzd = logEabz +Xj �djxabdj :

As in the single-event case, the data consists of a frequency table con-taining the number of events per level of A, B, Z and D, nabzd, and atable with total exposure times, Eabz. It should be noted that, in mostsituations, the exposure matrix does not need to have an index for D,since the number of persons at risks is equal for each d: an individualwho is at risk for one event will generally also be at risk for the otherpossible events.As already mentioned above, a model is of the Type I form if it doesnot contain interaction terms involving both Z and D, that is, if the typeof event that occurs does not depend on the time that an event occurs.An example of such a model is
logmabzd = logEabz + u+ uAa + uBb + uZz + uDd + uBZbz + uADad : (4.42)

Here, A, B, and Z in
uence the overall hazard rate, in which the e�ectof B is nonproportional. Moreover, A also in
uences the `choice' betweenthe di�erent types of events. The log-rate model described in Equation4.42 can also be written asmabzdEabz = exp(u+ uAa + uBb + uZz + uBZbz ) exp(uDd + uADad ) : (4.43)
The �rst part, at the right-hand side of Equation 4.43, de�nes the rateof occurrence of an event, irrespective of its type, at Z = z, given A = aand B = b. The second part de�nes the probability of experiencing anevent of type d. It can be seen that this probability is independent of thevalue of Z, which is simply the de�nition of the Type I situation.A log-rate model is of the Type II form if it at least contains all ofthe two-variable interaction terms involving D. The reason for this isthat the risk-speci�c models have no parameters in common and can, inprinciple, be estimated separately. An example of a model of the Type IIform is
logmabzd = logEabz + u+ uAa + uBb + uZz + uDd + uADad + uBDbd + uZDzd :



Clearly, the 
exibility of the log-rate model with respect to the inclusionof interaction terms can be used to test whether the process under studyis in agreement with one of the above-mentioned special types, or whetherit is a mixture of the two types. This means that it is not necessary tomake a priori assumptions about the nature of the process in order tosimplify the analysis.The log-rate model for multiple risks presented here can be estimatedusing standard programs for log-linear analysis. The `EM program (Ver-munt, 1993) is, however, relatively easy to use because it does not requirethe occurrence and exposure matrices as input. These matrices are madeby the program itself on the basis of information on covariate values,survival time, and type of event.
4.7.4 Conditionally (in)dependent risksIn presenting the di�erent types of multiple-risk situations, some atten-tion was given to the distinction between dependent and independentcompeting risks. Below, following the work of Vaupel and Yashin (1985),the implication of dependencies between risk-speci�c latent survival times,or equivalently, between risk-speci�c hazard rates is demonstrated.Suppose that one of two types of events D can occur and that thelatent survival times denoted by T (1) and T (2) have a common correlateX which has two categories. Let h1(tj1) and h2(tj1) denote the risk-speci�c hazard rates for X = 1, and h1(tj2) and h2(tj2) the risk-speci�chazard rates for X = 2. Suppose, furthermore, that0 > h1(tj1) > h1(tj2) for all t ;and 0 > h2(tj1) > h2(tj2) for all t :Since the �rst group has higher hazard rates for both event 1 and event2, the latent survival times T (1) and T (2), that is, the survival times thatwould be observed if the other event could not occur, will be positivelycorrelated: individuals with X = 1 have shorter survival times for bothevents than individuals with X = 2.The mean risk-speci�c hazard rates at T = t are equal to

h1(t) = �(t)h1(tj1) + [1� �(t)]h1(tj2) ;



and
h2(t) = �(t)h2(tj1) + [1� �(t)]h2(tj2) ;in which �(t) denotes the proportion of the population at risk at T = twith X = 1.Furthermore, suppose that the hazard rate of the second event be-comes very small (or perhaps even 0) and equal for both groups. Thiscan be the result of, for example, a changed law in the analysis of unionformation, a changed economic conjuncture in the analysis of employ-ment, or the invention of a new medicine in the analysis of death. Notsurprisingly, this will lead to a decrease in the mean hazard rate of thesecond event. However, it will also lead to an increase of the mean haz-ard of the �rst event. Since the decrease of h2(tj1) is greater than thedecrease of h2(tj2), relatively more persons belonging to the �rst groupwill survive, in other words, �(t) will increase. But, if �(t) increases, h1(t)will also increase since h1(tj1) > h1(tj2) (Vaupel and Yashin, 1985).This is a general phenomenon. If the latent survival times of compet-ing risks are correlated as a result of common risks factors, a change inone risk-speci�c hazard rate will in
uence the other risk-speci�c hazardrates as well (Hill, Axinn, and Thornton, 1993). If, as in the example,two risk-speci�c hazard rates are positively correlated, a decrease in onehazard rate will lead to an increase in the other hazard rate. On theother hand, if two events are not correlated, that is, if they do not havecommon risk factors, a change in the hazard rate of one event will notin
uence the mean hazard rate of the other event.The implications of this phenomenon for the interpretation range ofthe results obtained from a particular analysis are considerable. If it isnot possible to observe one or more of the common factors causing thecorrelation between the risk-speci�c hazard rates, the results obtainedfor one type of event will be only valid given the observed occurrenceof the other events, or, as Prentice and Kalb
eisch (1979) state it, therisk-speci�c regression coe�cients describe covariate e�ects on the risk-speci�c hazard rates under current study conditions (see also Hachen,1988). Often, however, researchers want to answer questions about theimplication of changes in the occurrence of one type of event for the occur-rence of another type of event. For instance, to what extent would othercauses of death increase if one cause could be eliminated? Will the rate



of voluntary job changes increase if the rate of involuntary job changesdecreases? To what extent will unmarried cohabitation substitute an ex-pected decrease in the hazard rate of married cohabitation? Of course,if the dependencies between the hazard rates are captured by includingthe right covariates in the model, if the hazard rates are conditionallyindependent, these kinds of questions can be answered quite adequately(see, for example, Manton, Woodbury, and Stallard, 1988).The above-mentioned example also illustrates the importance of theindependent censoring assumption. Censoring can be considered one ofthe possible events. If the censoring mechanism is not conditionally in-dependent of the causal process underlying the event(s) under study, theresults from a particular study are only valid given the observed censor-ing rates. In other words, di�erent results will be obtained with otherobserved censoring rates. This would, of course, enormously devaluatethe results of an analysis.
Common unobserved risk factors In section 4.6, the implicationof unobserved heterogeneity for the parameter estimates of hazard ratemodels was discussed for one kind of event. But, as demonstrated above,the implications of unobserved heterogeneity may be even larger in mod-els for competing risks since there may be unobserved factors which areshared by the di�erent risks.Two strategies have been proposed to identify possible common un-observed risk factors: the inclusion of one or more unobserved variableswhich in
uence the risk-speci�c hazard rates (Vaupel and Yashin, 1985;Heckman and Honore, 1989) in the hazard model and the use of nestedlogit models (Hill, Axinn, and Thornton, 1993). The former strategy canbe used with both continuous-time and discrete-time data, the latter onlywith discrete-time data.Actually, including unobserved covariates, or random terms, in amultiple-risk hazard model is the same type of solution for unobservedheterogeneity as the one presented in section 4.6 for the situation inwhich there is only one type of event. A di�erence is, however, thatnow it is necessary to specify a model for the joint distribution of therisk-speci�c unobserved latent variables since these variables may be cor-related. The simplest speci�cation is to assume the same unobservedfactor to be relevant for all events, in other words, to assume that the



risks-speci�c unobserved factors are perfectly correlated. Vaupel andYashin (1985) proposed using a general unobserved factor together withrisk-speci�c unobserved factors. They assumed these latent variables tobe gamma-distributed and mutually independent. Moon (1991) showedhow to include non-parametric unobserved heterogeneity in a competing-risk model, including a mover-stayer speci�cation. However, he did notconsider dependencies among the latent variables. Butler, Andersonand Burkhauser (1988) presented a competing-risk model with semi-parametric unobserved heterogeneity: A discrete bivariate distributionwas used as a numerical approximation of an underlying continuous jointdistribution of two unobserved factors. The general non-parametric la-tent variables approach presented in Chapter 5 makes it possible to specifythe relationships between the latent variables in
uencing the risk-speci�chazard rates in many di�erent ways, including the speci�cations proposedby Vaupel and Yashin (1985) and by Butler, Anderson, and Burkhauser(1988).The second method for handling shared unobserved risk factors amongcompeting risks has recently been proposed by Hill, Axinn and Thornton(1993). Their solution consists of a modi�cation of the discrete-time logitmodel which is based on using a nested logit model developed in the �eldof discrete choice modeling (McFadden, 1981) rather than an ordinary(multinomial) logit model. In nested logit models, it is assumed that thechoice alternatives can be grouped into stochastically independent sets,the individual members of which may be correlated with each other. Inother words, nested logit models allow relaxation of the IIA (Indepen-dence of Irrelevant Alternatives) assumption which underlies ordinary(multinomial) logit models. The di�erence with the ordinary discrete-time logit model is the inclusion of an additional parameter called theindex of dissimilarity for each subset of alternatives. This parameter,which is denoted by � and which takes values between 0 and 1, capturesthe unmeasured dependence among the di�erent kinds of events. Moreprecisely, the unmeasured correlation among alternatives within the sub-set concerned equals (1� �2).Suppose there is a nested discrete-time logit model in which the de-pendent competing risks belong to the same subset. In that case, theregression model for the overall conditional probability of experiencing



an event at tl is speci�ed as
�(tljx) = Pd hexp �Pj �dj=�xdij�i�1 +Pd hexp �Pj �dj=�xdij�i� ;in which, for simplicity of notation, the time parameters are incorporatedin the �'s. The probability that the event that occurred at tl is of type dequals

P (D = djT = t;x) = exp �Pj �dj=�xdij�Pg exp �Pj �gj=�xgij� :The conditional probability of experiencing an event of type d at tl canbe simply obtained by combining the two above equations, i.e.,
�d(tljx) = �(tljx)P (D = djT = t;x) :In an application on union formation, with marriage and unmarried co-habitation as competing events, Hill, Axinn, and Thornton (1993) founda value of 0:44 for �. They demonstrated that when the event marriage isless likely to occur, a model including the dependence parameter leads toconsiderably more substitution of marriage by cohabitation than a modelthat does not take the dependence between the alternatives into account.

4.8 Multivariate hazard models
Up to now, it was assumed that each individual experiences no more thanone event. The information that was used to estimate a hazard modelconsisted, besides the covariate information, of one survival time and anindicator variable indicating whether censoring or an event occurred. Inthe case of multiple risks, information on the type of event that occurredwas also needed. This section presents models for simultaneously an-alyzing several events per unit of analysis, that is, for analyzing eventhistories.First, the di�erent kinds of multivariate event history data are pre-sented. Then an explanation is given on how to analyze repeatable eventsof one type. After that, the multiple-state model is presented, includingthe Markov and the semi-Markov chain model which are special cases



of it. It is shown that the multiple-state generalization of the discrete-time logit model (Allison, 1982) leads to a model that is equivalent tothe discrete-time Markov model introduced in section 2.9. Subsequently,hazard models for some other kinds of multivariate survival data are pre-sented. And �nally, attention is given to methods that can be used totake dependencies among survival times into account.
4.8.1 Multivariate event history dataMost events studied in social sciences are repeatable, and most eventhistory data contains information on repeated events for each individual.This is in contrast to biomedical research, where the event of greatestinterest is death. Examples of repeatable events are job changes, havingchildren, arrests, accidents, promotions, and residential moves. It is notsurprising that most of the work on methods for simultaneous analysis ofrepeatable events is done by sociologists, economists, and demographers(Tuma and Hannan, 1984; Hamerle, 1989; Lancaster, 1990; Heckmannand Singer, 1982, 1985; Hoem and Jensen, 1982).Often events are not only repeatable but also of di�erent types, thatis, we have a multiple-state situation. When people can move through asequence of states, events cannot only be characterized by their destina-tion state, as in competing risks models, but they may also di�er withrespect to their origin state. An example is an individual's employmenthistory: an individual can move through the states of employment, un-employment, and out of the labor force. In that case, six di�erent kindsof transitions can be distinguished which di�er with regard to their originand destination states. Of course, all types of transitions can occur morethan once. Other examples are people's union histories with the statesliving with parents, living alone, unmarried cohabitation, and marriedcohabitation (Manting, 1994), or people's residential histories with dif-ferent regions as states (Mulder, 1993). Special multiple-state models arethe well-known Markov and semi-Markov chain models (Coleman, 1981;Tuma and Hannan, 1984:91-115, Hoem and Jensen, 1982).Hazard models for analyzing data on repeatable events and multiple-state data are special cases of the general family of multivariate hazardrate models. Another application of these multivariate hazard models isthe simultaneous analysis of di�erent life-course events, or as Willekens(1989) calls it, parallel careers. For instance, it can be of interest to in-



vestigate the relationships between women's reproductive, relational, andemployment careers, not only by means of the inclusion of time-varyingcovariates in the hazard model, but also by explicitly modeling their mu-tual interdependence. Manton, Woodbury, and Stallard (1988) stressedthe importance of simultaneously modeling the process of interest andthe evolution of risk factors to be able to predict the e�ect of interven-tion in risk factors on survival. Multivariate hazard models which makeit possible to simultaneously model changes in the value of the depen-dent variable and changes in the values of the time-varying covariatescan also be used to detect spurious e�ects of time-varying covariates andparticular forms of reverse causation.Another application of multivariate hazard models is the analysis ofdependent or clustered observations. Observations are clustered, or de-pendent, when there are observations from individuals belonging to thesame group or when there are several similar observations per individual.Examples are the occupational careers of spouses, educational careersof brothers (Mare, 1994), child mortality of children in the same family(Guo and Rodriguez, 1991), or in medical experiments, measures of thesense of sight of both eyes or measures of the presence of cancer cells indi�erent parts of the body. In fact, data on repeatable events can alsobe classi�ed under this type of multivariate event history data, since inthat case there is more than one observation of the same type for eachobservational unit as well.The di�erent types of multivariate event history data have in commonthat there are dependencies among the observed survival times. Thesedependencies may take several forms. The occurrence of one event mayin
uence the occurrence of another event. Events may be dependentas a result of common antecedents. And, survival times may be corre-lated because they are the result of the same causal process, with thesame antecedents and the same parameters determining the occurrenceor nonoccurrence of an event.Multivariate event history data can also be viewed as a form of multi-level data (Goldstein, 1987). It is always possible to distinguish at leasttwo levels. This can either be an individual and the di�erent observationson an individual, or a group and the di�erent observations on individualsbelonging to a group.



4.8.2 Analyzing repeated eventsThere are three approaches for analyzing data on repeated events, mul-tiple spells, or multiple cycles as Lancaster (1990:108) called it, namely:1] performing separate analyses of subsequent events, 2] performing apooled analysis in which every spell is treated as a separate observation,and 3] analyzing the events simultaneously taking dependencies amongthe separate events into account.The �rst strategy, analyzing each subsequent event separately, is arather simple one. For employment spells, it would imply that a separateanalysis is performed for the �rst employment spell, for the second em-ployment spell, and so on. Such an approach requires no special assump-tions, and is especially useful when the events are actually of a di�erenttype, in other words, when each spell-speci�c hazard model has its ownset of parameters. However, when the causal process is essentially thesame across subsequent spells, doing a separate analysis is both tediousand statistically ine�cient (Allison, 1984:51). In the analysis of employ-ment spells, this procedure will generally not be followed. But whenanalyzing the timing of births, it is quite common to perform separateanalyses for di�erent parities. The main disadvantage of this procedure isthat no restrictions can be imposed on the parameters across the parity-speci�c hazard rate models. Moreover, it makes it impossible to identifyunobserved risk factors which are the same for all spells.The second strategy, performing a pooled analysis in which each eventis treated as a separate case, is also very simple. From a substantivepoint of view, this approach is just the opposite of the �rst strategy inthat the factors determining the occurrence or nonoccurrence of an eventare assumed to be equal for each of the subsequent events. In otherwords, all parameters are restricted to be equal across spells (Hamerle,1989). For employment spells this may be a realistic assumption, but inmany other cases the causal process may depend at least partially on theranking of the event.When performing a pooled analysis, the di�erent events for one in-dividual are treated as statistically independent observations. In mostcases, there is good reason to think that the independence assumptionis false, at least to some degree (Allison, 1984:54). In general, it canbe expected that people having short employment spells, will continueto have short employment spells because for some reason they have high



probabilities of becoming unemployed. This does, however, not violatethe (conditional) independence assumption as long as the dependence iscaptured by the explanatory variables included in the model. But, inmost situations it is unrealistic to assume that all heterogeneity is takeninto account by the observed covariates. If the assumption of statisticalindependence is not ful�lled, parameter estimates are biased and theirstandard errors are underestimated.Another problem associated with the pooled analysis approach is thatthe only time dimension that can be used is the time since the last event orsince the entry into the risk set for the event concerned (Hamerle, 1989).When discussing the di�erent kinds of time variables, this time dimensionwas called duration. But, sometimes it is necessary to use other kindsof time variables, such as age or calendar time. And if duration is usedas the principal time dimension, for the �rst event this will generally notbe possible, and even if it is possible, the duration dependence of the�rst event will probably be di�erent from the duration dependence ofthe subsequent events. For example, the time dimension for a second orsubsequent birth can be duration since the previous birth, but for the �rstbirth it is more logical to use age or duration since marriage or unmarriedcohabitation as the time dimension. It will be clear that pooled analysisseriously limits the treatment of the time dependence of the process.Another disadvantage of the approach concerned is that it does notuse information on the correlations among the durations of subsequentspells. These correlations are not only statistically problematic, theyalso make it possible to identify sources of unobserved heterogeneity. Bytreating spells as separate observations this valuable information in thedata is neglected.The third approach for analyzing repeatable events is to perform asimultaneous analysis of the several events recorded per individual tak-ing similarities, di�erences and dependencies among events into account.This makes it possible to restrict particular parameters to be equal acrosssubsequent events, to use di�erent kinds of time dimensions, to use in-formation about the previous history as independent variables, and toidentify unobserved heterogeneity by means of the local independenceassumption.As mentioned above, the choice of the appropriate time dimension isalways problematic when analyzing repeated events. Often, it is advisableto use several time dimensions at the same time. In section 4.6, which



introduced the di�erent types of time variables, it was demonstrated thatfor repeatable events, additional time dimensions can be de�ned contain-ing information on the previous history, such as the mean duration of theprevious spells, total time spent in the risk set for the event concerned(experience), age at occurrence of the previous event (age-cohort), cal-endar time at occurrence of the previous event (cohort), and time sincethe previous event (duration). Of course, linear dependencies among thepotential time dimensions restrict the number of time dimensions thatcan actually be used at the same time.Since hazard models for a single type of repeated event are specialcases of the multiple-state models to be discussed in the next subsection,they are not discussed separately.
4.8.3 Multiple-state modelsThe advantages of the simultaneous analysis of data on repeated eventswas demonstrated above. Of course, the same arguments apply to situ-ations in which there is not only information on the occurrence of morethan one event per observational unit, but in which di�erent types ofevents can occur. Below models for analyzing such multiple-state data arepresented. These multiple-state models are very similar to the multiple-risk models discussed in section 4.7. There are, however, three importantdi�erences, namely: 1] there may be more than one origin state, 2] theremay be more than one spell per person, and 3] not only time or dura-tion and covariate values may in
uence the transition rates, but also theprevious history.
Statistical concepts The notation must be extended to make theabove-mentioned three extensions possible. Let M be an indicator vari-able denoting the episode or spell number and M�i the total number ofobserved episodes for person i. Let Om be an indicator variable denotingthe origin state in the mth spell, O� the number of origin states, and om avalue of Om, with 1 � om � O�. For the destination states the same no-tation is used as in the previous chapter. The only di�erence is that anal-ogous to Om and om, D and d are replaced by a spell-speci�c destinationstate indicator Dm and a spell-speci�c destination state value dm. Notethat generally Om = Dm�1. Moreover, the number of origin states willgenerally be equal to the number of destination states, that is, O� = D�.



Let Tm be the time that the mth event occurred or the censoring timeif m = M�i . If an individual is in episode m, his previous history of theprocess is collected in !m�1, i.e., !m�1 = ft0; o1; t1; d1; : : : ; tm�1; dm�1g.It contains information on the previous states and the time points thattransitions occurred. It is often referred to as a sample path (Tuma andHannan, 1984:48).The hazard rate or transition intensity for a change from Om = omto Dm = dm, given previous history, can be de�ned ashmod(tj!m�1) =lim�t!0 P
�t � Tm < t+�t;Dm = dmjTm � t; Om = om; !m�1��t :This quantity can be interpreted as an origin and destination-speci�chazard rate. Note that here, the transition intensity is postulated asdependent on Tm, a time dimension that is not reset to zero after eachparticular transition.Let Um be a random variable denoting the duration or the waitingtime at which the mth event occurred, i.e., Um = Tm � Tm�1. Equiv-alently, the transition intensities can be speci�ed as dependent on thewaiting time Um rather than Tm, i.e.,hmod(uj!m�1) =lim�u!0 P

�u � Um < u+�u;Dm = dmjUm � u;Om = om; !m�1��t :It should be noted that the de�nition of the hazard rate is very similarto the de�nition that was used for multiple risks (see section 4.7). Theonly di�erence is the appearance of Om = om and !m�1 as additionalconditions in the de�nition of the hazard rate. The overall hazard rate ofleaving origin state om in the mth spell is
hmo (tj!m�1) = D�X

d=1hmod(tj!m�1) ;
hmo (uj!m�1) = D�X

d=1hmod(uj!m�1) ;and the spell and origin-speci�c survival probability is
Smo (tj!m�1) = exp � Z ttm�1

D�X
d=1hmod(vj!m�1)d(v)

! ;



Smo (uj!m�1) = exp � Z u0 D�X
d=1hmod(vj!m�1)d(v)

! :
The other relevant functions, such as the joint probability of either Tmor Um and Dm, the marginal probability that Dm = dm, the conditionalprobability that Dm = dm, given tm or um, and the net hazard rate, arede�ned analogous to the case of multiple risks as well. The only modi�-cation of the de�nition as presented in section 4.7 is the conditioning onom and !m�1.
Markov and semi-Markov chain models As mentioned above, tran-sition rates may depend either on time or on duration since the previousevent, on the spell number, and on information of the previous history.For the moment, we will not consider the in
uence of covariates on thespell, origin, and destination-speci�c hazard rates.Markov chain models are special cases of the multiple-state models.The key assumption of the Markov chain model is that the transition in-tensities do not depend on either the previous history or the spell number(Tuma and Hannan, 1984:92-94). The hazard rates or transition intensi-ties are only allowed to depend on the origin state, the destination state,and Tm:

hmod(tj!m�1) = hod(t) :Note that in Markov models, by de�nition, the use of waiting times (Um)instead of process times (Tm) is not allowed. Markov models also forbidself-transitions, in other words, hoo(t) = 0. The Markov model givenabove is a non-stationary or time-inhomogeneous Markov model sincethe rates depend on Tm. However, often an additional assumption ismade, namely, that the transition intensities do not vary with time:
hod(t) = hod :This gives a stationary or time-homogeneous Markov chain model.Semi-Markov models or Markov renewal models are similar to Markovmodels. In the semi-Markov model, the transition intensities are re-stricted either as

hmod(tj!m�1) = hod(tjtm�1) ;



or as
hmod(uj!m�1) = hod(ujtm�1) :This implies that, unlike the Markov model, the transition intensitiesmay also depend on waiting time, and, moreover, on the calendar time atwhich the previous event occurred. Another di�erence with the Markovmodel is that self-transitions are allowed. This makes the model suitedfor analyzing repeatable events of the same type as discussed above. Inthat case, the model is also called a renewal model (Lancaster, 1990:88-97). A special case of the renewal process occurs when the hazard rate istime-homogeneous. In that case, a Poisson model is obtained (Lancaster,1990:85-88). Another special case of the semi-Markov occurs when thereare two di�erent states and self transitions are not permitted. This givesan alternating renewal model (Lancaster, 1990:97-98; Tuma and Hannan,1984:106).When the transition rates are allowed to depend on covariates, thesame de�nitions apply. However, in that case, Markov and semi-Markovmodels are generally called modulated or heterogeneous Markov and semi-Markov models.

Continuous-time models Event history models for multiple-state sit-uations are very similar to the multiple-risk models discussed in section4.7. In principle, a separate model is speci�ed for each combination of o,d, and m. A proportional log-linear hazard model for a transition from oto d in the mth spell is given by
hmod(tjxm) = hmod(t) exp0@Xj �modjxmodij

1A ;
hmod(ujxm) = hmod(u) exp0@Xj �modjxmodij

1A ;
where xm is the spell-speci�c covariate vector which may also containinformation on the previous history. Nonproportional models can be ob-tained by allowing hmod(t) or hmod(u) to depend on xm. Maximum likelihood



estimates of the �modj parameters can be obtained by maximizing
L = NYi=1

M�iYm=1
O�Yo=1
"(D�Y

d=1hmod(tmi jxmi )�mdi
) exp � Z tmitm�1i hmo (vjxmi )dv!#�moi ;

L = NYi=1
M�iYm=1

O�Yo=1
"(D�Y

d=1hmod(umi jxmi )�mdi
) exp � Z umi0 hmo (vjxmi )dv!#�moi ;

where �mdi is an indicator variable taking the value 1 if a transition to doccurred for person i in the mth spell, and �moi is an indicator variabletaking the value 1 if the origin state is o for person i in the mth spell.Otherwise, �mdi and �moi are equal to zero.Since the likelihood function can be factored into separate componentsfor each combination of o, d, and m, the spell and type of transition-speci�c models can be estimated separately if the parameters are postu-lated to be distinct, that is, if no restrictions are imposed across spells.However, generally it is of interest to impose restrictions across spells andacross di�erent types of events, which implies that the above likelihoodfunction has be to maximized without factorizing it.There are various standard computer programs which can be used toestimate parametric multiple-state models with restrictions on the pa-rameters across origin and destination states and across spells. The bestknown is the RATE program (Tuma, 1979). Another example is the very
exible TDA program (Rohwer, 1993).
Log-rate models Log-rate models can also be used to specify multiple-state models. The only di�erence with the log-rate models for a singlenonrepeatable event is that the table to be analyzed contains three addi-tional dimensions. Let O denote the origin state, D the destination state,M the spell number, Z the time dimension which can be either process orwaiting time, and A and B two categorical covariates. In its most generalform, the multiple-state variant of the log-rate model can be written as

logmabzodm = logEabzom +Xj �odmjxabodmj :
The data which is needed to estimate this model consists of a frequencytable containing the number of events per value of A, B, Z, O, D, and



M , nabzodm, and a table with total exposure times, Eabzom. Note that, asin the case of competing risks, the exposure matrix has no index d, sincein most situations the number of persons at risk is equal for each d. Ifthis is not true, the index d has to be added to the table with exposuretimes.It will be clear that the log-rate model is very 
exible for analyzingmultiple-state data. Equality restrictions can easily be imposed on thetime and covariate e�ects across types of transitions and spells. This cansimply be accomplished by leaving out particular interaction terms of themodel.The multiple-state log-rate model can be estimated relatively easilyby means of the `EM program (Vermunt, 1993). The program allowsspeci�cation of di�erent origin and destination states, and, moreover,more than one spell per record. Of course, it is also possible to use astandard program for log-linear analysis.
4.8.4 Discrete-time Markov chain modelsThe discrete-time logit model can also be adapted for analyzing multiple-state data (Allison, 1982). It can be shown that if the transition rates arein agreement with a Markov chain model, the discrete-time logit modelis equivalent to the discrete-time Markov model which was presented insection 2.9. In order to distinguish between these two models, the latterwill be called the classical Markov model. This subsection discusses thedi�erences and similarities between these two models.According to the de�nition of a Markov chain model presented above,a discrete-time logit model which ful�lls the Markov assumption can bede�ned as

�od(tljx) = exp ��odl +Pj �odjxodij�1 +Pg exp ��ogl +Pj �ogjxogij� : (4.44)
Note that the time dimension is process time (T ) and not waiting time(U). Since the transition probabilities are not allowed to depend on thespell number, �od(tljx) does not contain the superscript m. For the sakeof simplicity, the model for �od(tljx) does not contain time-covariate in-teractions and time-varying covariates.



Let �md and �mo be spell-speci�c indicator variables taking value 1 ifa transition to destination state d occurs and if the origin state equalso, respectively, and otherwise taking value 0. Using these indicator vari-ables, the probability density function of the discrete-time survival datais given by
f(t1; d1; : : : ; tM ; dM jo1;x) = M�Ym=1

O�Yo=1
"(D�Y

d=1
� �od(tmjx)1� �o(tmjx)

��md )
tmYtk=tm�1 (1� �o(tkjx))35�mo ; (4.45)

where �o(tkjx) is the probability of leaving state O, irrespective of thedestination state.Using the same notation as in section 2.9, for the classical Markovmodel, the joint probability of the observed covariate values and the statesa person occupies at the di�erent points in time is given by
�xs0s1:::sL� = �x�s0jx L�Y

l=1�sljxsl�1 : (4.46)
Here, sl denotes a value of Sl, the state occupied at the lth point in time,S0 is the starting position or the initial states, and L� is the total numberof time points. The total number of states is denoted by S�.As a result of a di�erent type of notation, the density functions de-scribed in Equations 4.45 and 4.46 seem to be quiet di�erent. However, ifthe length of the observation period is the same for all persons, the den-sity function for discrete-time survival data (Equation 4.45) can also bewritten as a product of time-point-speci�c transition probabilities ratherthan spell-speci�c densities. As above, let L� be the length of the ob-servation period, and Sl be the state occupied at tl. In that case, thedensity function of the discrete-time survival data given in Equation 4.45can also be written as follows:

f(s1; : : : ; sL� js0;x) = L�Y
l=1�sl�1sl(tljx)�l �1� �sl�1(tljx)	(1��l) ; (4.47)

in which �l is an indicator variable indicating whether a transition oc-



curred in tl or not, and in which
�sl�1(tljx) = S�Xg=1�sl�1g(tljx) if sl = sl�1 ;

�sl�1sl(tljx) = 0 if sl = sl�1 :Now it can be seen that the density function given in Equation 4.47 isequivalent to the last part of Equation 4.46, since
�sljxsl�1 = �sl�1sl(tljx) if sl <> sl�1 ;�sljxsl�1 = 1� �sl�1(tljx) if sl = sl�1 :This re
ects that, if the length of the observation period is the same forall individuals, the models are very similar.The parameters of the classical discrete-time Markov model are theconditional probabilities which appear in Equation 4.46. More restrictedmodels are speci�ed by means of equality and �xed-value restrictions onthese probabilities (Van de Pol and Langeheine, 1990). The di�erent pa-rameterizations make the classical Markov model and the discrete-timelogit model look rather di�erent. However, by using the logit parame-terization of (conditional) probabilities discussed in section 2.9, in otherwords, by treating the classical Markov model as a modi�ed path model(Goodman, 1973; Hagenaars, 1990), a version is obtained that is equiv-alent to the discrete-time logit model. Yamaguchi (1990) already rec-ognized the similarity between Goodman's causal log-linear model forcategorical variables and the discrete-time logit method. The logit pa-rameterization of the transition probabilities appearing in Equation 4.46can, as in Equation 4.44, be parameterized as

�sljsl�1;x = exp ��sl�1sl +Pj �sl�1sljxsl�1slij�Pg exp ��sl�1g +Pj �sl�1gjxsl�1gij� : (4.48)
As always, identifying restrictions have to be imposed on the log-linearparameters. In discrete-time logit models, these restrictions have veryspeci�c form. As can be seen from the logit model described in Equa-tion 4.44, within every level of O, the category no event is the referencecategory. This is the reason that the denominator contains the term 1for the reference category and that the summation is over all possible



events, given the value of O. As a result, the � and � parameters in thediscrete-time logit model represented in Equation 4.44 can be interpretedas e�ects on transition probabilities. To obtain the same parameteriza-tion when using a modi�ed path model with steps of the form given inEquation 4.48, the one-variable parameters of Sl have to be left out ofthe model and the �'s and �'s in which Sl = Sl�1 have to be �xed tozero. The result is that, as in Equation 4.44, the stayers are treated as thereference category within each origin state sl�1. These identifying restric-tions guarantee that the modi�ed path model gives parameters identicalto the discrete-time logit model, namely, time and covariate e�ects on thetransition probabilities rather than on the probability that Sl = sl. Inother words, the model consists of transition-speci�c main and covariatee�ects for each point in time.A di�erence between the discrete-time logit model and the classicaldiscrete-time Markov model is that in the latter the observation period isassumed to be the same for all persons. Generally, there are no facilitiesto handle observations which are censored during the observation period.However, by using the missing data methods discussed in Chapter 3, cen-soring, partial nonresponse, and panel attrition can be handled withoutany problem. Chapter 5 will demonstrate how to deal with di�erent kindsof partially observed event history information when using the modi�edpath analysis approach for analyzing discrete-time event history data.Another di�erence between the two methods is that in the classicalmodel described in Equation 4.46, the marginal distribution of the covari-ates, �x, and the marginal distribution of the initial state, �s0jx, appearin the model. This means that restrictions can be imposed on them aswell. As will be demonstrated in the next chapter, the ability to specify amodel for the covariates and the initial state can be an important feature.For instance, in the hazard modeling tradition, unobserved heterogeneityis generally assumed to be independent of the covariate values and ofthe initial position. However, when it is possible to model the covariatestructure and the initial position, it is no longer necessary to make suchassumptions. Then, it is just one of the possible model speci�cations.Although both models are based on the Markov assumption, in thehazard modeling tradition the Markov assumption is never explicitlytested. When using the classical Markov model, the Markov assumptioncan be explicitly tested by means of, for instance, the likelihood-ratio chi-squared statistic. This is the result of the fact that when all covariates



are categorical, the data can be represented in a frequency table.The last di�erence to be mentioned between the two models is thatin the classical discrete-time Markov model the basic time dimension isalways process time. As demonstrated earlier, in hazard models the timedimension can also be duration or waiting time, although in that case itis no longer a Markov model, but a semi-Markov model. It is possible toaccommodate the classical model to allow the transition rates to dependon waiting time as well.To summarize, a strong point of the discrete-time hazard model isthe logit parameterization of the transition probabilities which makesit possible to specify parsimonious models for covariate dependence ofthe process to be studied. Another strong point, of course, is the wayit handles censored observations. Some weak points are, however, thatthe covariate values and the initial position are always treated as �xedquantities and that the Markov assumption is never tested explicitly.It can be concluded that the classical discrete-time Markov model is,in fact, an event history model as well. It is identical to the discrete-timelogit model when it is parameterized as a modi�ed path model and whenpartially observed data can be included in the analysis. This implies, forinstance, that the latent variables techniques presented in Chapter 3 caneasily be transferred to discrete-time logit models. This is an interestingfeature which will be used in Chapter 5.The logit parameterization of the transition probabilities of classicaldiscrete-time Markov model, including the potential for using partiallyobserved data and the latent variable techniques mentioned above, isimplemented in the `EM program (Vermunt, 1993).
4.8.5 Other kinds of multivariate hazard modelsIn section 4.6, some problems associated with the use of time-varyingcovariates in hazard models were discussed. More precisely, it was shownthat the e�ect of a time-dependent covariate may be (partially) spuriousas a result of unobserved factors in
uencing both the covariate processand the dependent process. Another problem associated with the use oftime-varying covariates is reverse causation.Multivariate hazard models make it possible to detect dependenciesamong di�erent life-cycle transitions which are caused by common an-tecedents. Moreover, they make it possible to analyze the simultaneous



relationships among two or more processes. This implies that multivari-ate hazard models can help to tackle some of the problems associated withthe use of time-varying covariates. An example of an application of such amultivariate hazard model is Yamaguchi's analysis of the interdependencebetween marijuana use and marriage (Yamaguchi, 1990).The use of multivariate event history techniques for studying the rela-tionships among di�erent life-cycle transitions rather than investigatingtheir relationships by means of the use of time-varying covariates is alsoricher from a substantive point of view. Willekens (1989) promoted thesekinds of models for the analysis of interdependencies among parallel ca-reers, where the term parallel careers refers to di�erent aspects of life,such as place of residence, union type, birth of children, education andoccupation. Manton, Woodbury, and Stallard (1988) stressed the impor-tance of simultaneously modeling the process of interest { in their casedeath from di�erent causes { and the evolution of risk factors to be ableto predict the e�ect of intervention in risk factors on survival.10There is, however, also a statistical reason to model several life-cycletransitions simultaneously. According to Lancaster (1990:30), using in-formation on the covariate process of endogenous covariates, improves thee�ciency of the parameter estimates.The analysis of dependent or clustered observations is another �eld ofapplication of multivariate hazard models. Examples of dependent obser-vations are employment histories of husbands and wives, infant mortalityof children from the same family (Guo and Rodriguez, 1991), and schooltransitions of brothers (Mare, 1994). For clustered or dependent obser-vations, the same arguments in favor of simultaneous analysis apply asthe ones that were mentioned when discussing the analysis of repeat-able events. Actually, data on repeatable events is a particular type ofclustered data.
Models Let us use the term cluster in the most general sense. Moreprecisely, a cluster can consist of: 1] a number of observations of the sametype on di�erent individuals belonging to the same group, 2] a numberof observations of the same type on one individual, or 3] a number of

10They proposed modeling changes in discrete and continuous variables by means ofa continuous-time multivariate Gaussian stochastic model (see also Manton and Wood-bury, 1985). The main di�erence between their approach and the approach presentedin this subsection is that the latter assumes that all the variables are discrete.



observations of di�erent types on one individual. Examples of these threetypes of clustered observations are data on school transitions of brothers,measurements of di�erent parts of the body in a clinical trial, and data ona woman's occupational, reproductive and relational career, respectively.Let M indicate a particular observation within a cluster. Assume, forsimplicity of exposition, that there is data on one single kind of event foreach within-cluster observation. This assumption can easily be relaxedby de�ning a multiple-state model for within-cluster observations. Inprinciple, a separate hazard model can be speci�ed for each within-clusterobservation, i.e.,
hm(tjxm) = hm(t) exp0@Xj �mj xmij

1A :
For clustered observations of the types 1 and 2, restrictions are generallyimposed on the parameters across m's. The hazard model could, forinstance, be of the form

hm(tjxm) = h(t) exp0@Xj �jxij +Xk �mk xmik
1A :

Here, both the time dependence and the e�ects of the covariates whichhave the same value for all observations belonging to the same cluster areassumed to be equal.Models for clustered observations of the third type will generally in-clude information on one type of observation as a time-varying covariatein the hazard model for another type of observation. Suppose we performa simultaneous analysis of women's reproductional, occupational and rela-tional histories. In that case, a woman's employment and relational statuscan be used as time-varying covariates in the hazard rate model for the�rst birth, probably with some time-lag to prevent the e�ects which arefound being the result of reversed causation (see section 4.6). In addition,the number of children and marital status can be used as time-varyingcovariates in the hazard rate model for employment transitions.The estimation of the model parameters is performed in the sameway as in the case of repeatable events, which as already mentioned, areclustered observations as well.1111Recently, Petersen (1995) compared three alternative approaches for dealing with



A strong point of the simultaneous analysis of clustered observationsin the way proposed here, is that dependencies among observations whichare not described by the observed covariates included in the model can becaptured by means of the latent variables techniques to be discussed in thenext chapter. Below the problem of conditionally dependent observationsis introduced.
4.8.6 Conditional dependence among observationsThe maximum likelihood methods for estimating multivariate event his-tory models discussed so far are based on the assumption of conditionalindependence. More precisely, the observations within every unit of ob-servation are assumed to be independent given the covariate informationwhich is used in the multivariate hazard model. However, in most sit-uations, this assumption is not very realistic. As a result of commonunobserved risk factors, the spells, the di�erent kinds of transitions fora particular person, or the observations within a particular cluster mayremain correlated, even after controlling for observed risk factors.Since dependencies among observations lead to biased parameter es-timates and underestimated standard deviations (Allison, 1984:54), de-tecting dependencies among observations belonging to the same cluster isimportant from a statistical point of view. However, detecting commonunobserved risk factors is also important from a substantive point of view(Mare, 1994). It helps us to answer the following kinds of questions: Arethere common unobserved variables in
uencing di�erent types of life-cycletransitions? How are survival times of the di�erent observations withinone unit related?There are three types of methods which can be used to detect and tocontrol for dependencies among observations belonging to the same clus-ter: random-e�ects methods, �xed-e�ects methods, and methods whichare based on using association parameters.
interdependent event history data of the third type, data on di�erent types of life-cycletransitions. He demonstrated that as long as events cannot occur at the same pointin time, the three approaches are equivalent to one another and to using one type ofhistory as a time-varying covariate in the hazard model for another type of history.On the other hand, if it is possible to experience more than one type of transition atthe same time, the three approaches yield di�erent results due to the fact that each ofthem speci�es the risk of the simultaneous occurrence of events is a slightly di�erentway.



Random-e�ects approach The random-e�ects approach is based onthe introduction of a latent variable having the same value for all obser-vations belonging to the same cluster (Heckman and Singer, 1982; Guoand Rodriguez, 1992; Clayton and Cuzick, 1985). This latent variable,whose distribution may have either a parametric or non-parametric func-tional form, is included in the hazard model as one of the covariates.The random-e�ects approach (Yamaguchi, 1986) is, in fact, very simi-lar to the way unobserved heterogeneity is handled in univariate hazardmodels (see section 4.6). An important di�erence is, however, that thelocal independence assumption, that is, the assumption that the observa-tions belonging to one cluster are independent given the latent variableincluded in the model, makes it easier to identify the model. Note thatthe local independence assumption is identical to the basic assumption oflatent structure models (see section 3.1).Chamberlain (1985) and Yamaguchi (1986) stated that random-e�ectsmethods have two important disadvantages. First, the functional formof the distribution of the unobserved variable may strongly in
uence theresults. Therefore, Heckman and Singer (1982, 1984, 1985) recommendedusing a non-parametric approach which is similar to a latent class model.A second problem is that the latent variable is generally assumed to beindependent of the observed covariates and of the initial position. But,in most cases it is unrealistic to assume that the unobserved factors in
u-encing the hazard rate are not correlated with the observed factors andwith the state occupied at T = 0. In the next chapter, a random-e�ectsapproach is presented which overcomes the two weak points mentioned byChamberlain and Yamaguchi: it is non-parametric and makes it possibleto relate the latent variable capturing the unobserved heterogeneity tothe observed covariates and to the state occupied at T = 0.
Fixed-e�ects approach A second method for dealing with dependen-cies among observations consists of including cluster-speci�c e�ects, orincidental parameters, in the model (Chamberlain, 1985; Yamaguchi,1986)). In fact, a categorical variable is included in the hazard modelwhich indicates to which cluster a particular observation belongs. Thus,observations belonging to the same cluster have the same value for thisvariable while observations belonging to di�erent clusters have di�erentvalues. This approach, which is called the �xed-e�ects method for treat-



ing unobserved heterogeneity, can only be applied with multivariate sur-vival data, that is, when there is more than one observation for the largestpart of the observational units.The advantage of using �xed-e�ects methods to correct for unobservedheterogeneity is that they circumvent the two objections against random-e�ects methods which were presented above: No functional form needsto be speci�ed for the unobserved heterogeneity and the unobserved het-erogeneity is automatically related to both the initial state and the time-constant covariates.The major limitation of the �xed-e�ects approach is that since eachcluster has its own incidental parameter, no parameter estimates can beobtained for the e�ects of covariates which have the same value for thedi�erent observations belonging to the same cluster. Only the e�ect ofobservation-speci�c, or in the case of repeatable events, of time-varyingcovariates can be estimated. Another problem is that the incidental pa-rameters cannot be estimated consistently, since by de�nition they arebased on a limited number of observations regardless of the sample size.This inconsistency may be carried over to the other parameters if theparameters are estimated by means of maximum likelihood methods (Ya-maguchi, 1986).The maximum likelihood estimation of the �xed-e�ects model canbe performed by means of standard programs for event history analysis.The only thing that has to be done is to include in the hazard model acategorical covariate having a di�erent value for each cluster or observa-tional unit. Because the number of incidental parameters is generally verylarge, it may be di�cult to estimate the model parameters by means ofNewton-Raphson-like methods. Yamaguchi (1986) proposed estimatingthe �xed-e�ects model by means of the Newton-Raphson algorithm afterremoving the incidental parameters from the likelihood function. This ispossible only if the time-varying covariates, including the time variableitself, are step functions of T or U . Another option is to use the iterativeproportional �tting algorithm or the uni-dimensional Newton algorithmwhich were presented in Chapter 2 and which are implemented in, forinstance, the `EM program (Vermunt, 1993).Alternative procedures for estimating the parameters of hazard mod-els with these kinds of incidental parameters are marginal likelihood(Chamberlain, 1985), conditional likelihood (Cox and Lewis, 1966) andpartial likelihood (Chamberlain, 1985) methods. These approaches allow



us to obtain a likelihood function which is independent of the incidentalparameters by imposing additional restrictions on the duration depen-dence of the process and the types of covariates which may be used in theregression model (Yamaguchi, 1986). Although these alternative proce-dures do not have the inconsistency problem of the maximum likelihoodmethod, the additional restrictions strongly limit their applicability.When there are two completed survival times for each unit of obser-vation, the partial likelihood approach for estimating �xed-e�ects modelscan simply be implemented using a logistic regression model (Kalb
eischand Prentice, 1980:190-192). A variable has to be de�ned which takesthe value 1 for the shorter of the two spells and the value 0 for the longerof the two spells. Applying a �xed-e�ect approach involves using thisvariable as the dependent variable in a logistic regression model in whichthe time-varying covariates are used as regressors.
Using association parameters A third approach for modeling depen-dencies among survival times consists of including additional parametersin the hazard model describing the associations among the observed sur-vival times. Clayton and Cuzick (1985) proposed that the associationbetween two survival times be described by means of one parameter de-noted by �. This parameter has a direct interpretation in terms of hazardrates, i.e.,

h(t1jT2 = t2) = � h(t1jT2 > t2) ;h(t2jT1 = t1) = � h(t2jT1 > t1) :Here, T1 and T2 denote the �rst and second survival time, respectively.It can be seen that the hazard rate for observation 1 at a particular pointin time is � times higher if T2 equals t2 than if T2 is greater than t2. Infact, � is a continuous generalization of the well-known continuation ratioin the contingency table literature (Clayton and Cuzick, 1985).Winship (1986) and Mare (1994) modelled the association betweendiscrete survival times by means of a (conditional) quasi-symmetry model.This model is well known in the contingency table literature as well.But it is also possible to use other kinds of models for investigating theassociations among discrete survival times, such as, for instance, the log-multiplicative association models discussed in section 2.7.



The main limitation of modeling the conditional dependence amongsurvival times by means of association parameters is that no causal in-terpretation can be given to the parameters (Whitehead, 1985). Thisis in contrast to the random-e�ects approach, in which the additionalparameters can be interpreted as the e�ects of unobserved common riskfactors.



Chapter 5
Event history analysis with
latent variables and missing
data
The previous chapter introduced models for the analysis of event historydata and discussed various problems associated with the analysis of eventhistory data, most of which are caused by missing information. In section4.6, it was demonstrated that unobserved heterogeneity hampers the in-terpretation of the e�ects of time-varying covariates, time variables, andtime-covariate interactions. More precisely, unobserved heterogeneity bi-ases the duration dependence downward, even if it is not correlated withthe observed covariates. If the unobserved risk factors are correlated withthe time-constant covariates included in the model, in other words, if thereis selection bias, not only are the model parameters biased, but there willalso be spurious time-covariate interactions. If there are unobserved riskfactors which also have an e�ect on changes in the values of particular en-dogenous time-dependent covariates, the e�ects of these covariates will beat least partially spurious. In section 4.7, it was demonstrated that unob-served common risk factors may lead to dependent competing risks. And�nally, as discussed in 4.8, unobserved heterogeneity may invalidate theassumption of conditional independence in models for repeatable eventsor other types of clustered observations, and may lead to spurious e�ectsof time-varying covariates.In the �eld of event history analysis, techniques have been developed



to tackle some of these problems. In particular, the problem of spurioustime dependence has received a lot of attention (Heckman and Singer,1982, 1984; Flinn and Heckman, 1982; Vaupel, Manton and Stallard,1979; Manton, Vaupel and Stallard, 1986; Trussell and Richards, 1985).Also, some work has been done on the problem of dependent observations(Mare, 1994; Guo and Rodriguez, 1994; Yamaguchi, 1986; Clayton andCuzick, 1985) and on the problem of dependent competing risks (Vaupeland Yashin, 1985; Heckman and Honore, 1989). However, some otherproblems, such as the selection bias problem, remain unresolved since thelatent covariates introduced in the hazard models are always assumed tobe independent of the observed covariates and of an individual's initialstate (Yamaguchi, 1986, 1991:132). The general latent variable approachthat is presented in this chapter does not have this limitation. Therefore,it can also help to resolve some of the remaining problems, especially theproblems of selection bias and of spuriousness of e�ects of time-varyingcovariates.In Chapter 3, two other kinds of missing data problems were dis-cussed: measurement error, and partially missing data. It was shownthat the problem of measurement error in categorical covariates can behandled by means of latent class models (Goodman, 1974; Haberman,1979: Chapter 10). Measurement error is a problem which may also oc-cur when collecting event history data. The covariates may be measuredwith error, which, as is known for ordinary regression models, leads tobiased covariate e�ects. But duration, or more generally, the states thatindividuals occupy at di�erent points in time, may be measured witherror as well.Lancaster (1990:59-61) showed that in particular situations measure-ment error in recorded regressors and durations can, in addition to theabove-mentioned omitted variables problems, be an argument to use amixture model. If the hazard is of a Weibull or exponential form andthe random measurement error in the recorded duration is multiplicative,the error generates a mixture model. If the hazard is proportional andlog-linear and the error in the covariates is additive, a mixture model isalso obtained. In the latter case, the mixture distribution depends on thevalue of the covariate concerned.Here, another more general approach to measurement error in re-corded states and in recorded durations is used which is based on thelatent class techniques discussed in section 3.1. A latent class model



can be used to relate the latent or true score to one or more observedvariables by a set of conditional response probabilities, which may berestricted by means of a logit model. When covariates are measured witherror, or when covariates can only be measured indirectly, one or morecategorical latent variables can be used as covariates in the event historymodel instead of the unreliable observed covariates concerned. A relatedapproach was proposed by Gong, Whittemore, and Grosser (1990) whopresented a method for handling misclassi�cation in covariates with arestricted latent class model. Their approach is actually a special caseof the approach that is presented here, that is, a situation in which themechanism leading to measurement error is known.In the �eld of event history analysis, correcting for measurement errorin recorded states is very rare. However, as already mentioned in section3.1, in the �eld of discrete-time Markov modeling, the idea of correctingmeasurement error in the observed states is very old (Wiggins 1955, 1973;Lazarsfeld and Henry, 1968), and has been worked out more recently byPoulsen (1982) (see also Van de Pol and De Leeuw, 1989; Van de Pol andLangeheine, 1990; and Vermunt, Langeheine, and B�ockenholt, 1995). Inlatent Markov models, the latent unobserved states at the di�erent pointsin time are related to the observed states using a latent class model withas many latent variables as observed ones. A Markov model is speci�ed forthe relationships among these latent variables. This way, it is possible todistinguish true changes from changes which are caused by measurementerror in the recorded states. As demonstrated in section 4.8, discrete-timeMarkov models are equivalent to discrete-time logit models, especially if alogit parameterization of the transition probabilities is used. As a result,discrete-time event history models with error in recorded states can beformulated by means of the latent class methods discussed in Chapter3. The same methods can be used to correct for measurement error intime-varying covariates.Another type of missing data problem is partially missing information.Of course, researchers may be confronted with this problem in event his-tory analysis as well. Both covariate values and information on the depen-dent process may be missing for some individuals. Schluchter and Jackson(1989) proposed using the information of subjects with partially missingtime-constant covariates in a hazard analysis using a method which issimilar to the one proposed by Fuchs (1982) for log-linear models. Theirapproach can easily be extended when using the models for nonresponse



proposed by Fay (1986, 1989) which were introduced in section 3.2. Thismakes it possible to specify nonignorable response models for the par-tial nonresponse on particular covariates. Recently, Baker (1994) appliedthese models for nonresponse in a discrete-time logit model with a par-tially missing covariate.Besides time-constant covariates, information on the dependent pro-cess can be partially missing as well. Censoring is, of course, the bestknown form of missing information on the process to be studied. Asdemonstrated in section 4.5, censoring can easily be dealt with as long asthe censoring mechanism is independent of the process to be studied, inother words, as long as the response mechanism is ignorable. However,when the censoring mechanism is nonignorable, other methods for han-dling censored observation must be used. For that purpose, it is possibleto use Fay's causal models for nonresponse (Fay, 1986, 1989). The modelsfor nonresponse can be used not only to deal with censoring, but also todeal with event history data with nonnested missing data patterns. Thesame methods can be used to handle partially missing information ontime-dependent covariates.This chapter presents a unifying framework for dealing with unob-served heterogeneity, measurement error, and partially missing data inthe context of event history analysis. The general model that is usedfor this purpose consists of two parts, a log-linear model in which therelationships among the observed, partially missing, and unobserved co-variates are speci�ed, and a event history model for those events whoseoccurrence has to be explained. The event history model can be eithera piecewise exponential survival model, which is also known as log-ratemodel, or a discrete-time logit model. This means that only models whichcan be handled within the framework of log-linear analysis are used inthis chapter. The advantage of this restriction is that the models aremathematically simple and that it is not necessary to assume paramet-ric functional forms for the covariate and survival distributions. Whennecessary, parametric models can be approximated by imposing restric-tions on the log-linear parameters. In spite of the restriction to modelswhich can be handled within the framework of log-linear modeling, themain principles of the general approach can be transferred to parametricmodels for the covariates and the duration process.Although above the general approach to be discussed in this chap-ter was presented as a tool for handling di�erent kinds of missing data



Table 5.1: Special cases of the general missing data approach presentedin this chapter
1. Unobserved heterogeneity 5.2
- a. a single nonrepeatable event 5.2.4
- b. dependent competing risks 5.2.5
- c. repeatable events and multiple-state processes 5.2.6
- d. clustered or dependent observations 5.2.7
- e. spurious e�ects of time-varying covariates 5.2.8
2. Measurement error 5.3
- a. in covariates 5.3.1
- b. in recorded states 5.3.2
3. Partially missing data 5.4
- a. information on covariates 5.4.1
- b. event history data 5.4.2

problems in event history analysis, it can also be seen as an extension ofthe log-linear path model. By combining the log-linear path models pre-sented in Chapters 2 and 3 with event history models, it becomes possibleto use information on the timing of events in a modi�ed path model. Onepossible application concerns the construction of typologies by means oflatent class models which contain information on the timing of events asindicators.After the general model is presented in section 5.1, attention is givento the three above-mentioned types of missing data problems: unobservedheterogeneity, measurement error, and partially missing data. Table 5.1gives an overview of the special cases of the general model that are pre-sented in this chapter. As can be seen, the three main types of miss-ing data problems, unobserved heterogeneity, measurement error, andpartially missing data, are dealt with in sections 5.2, 5.3, and 5.4, re-spectively. Within these missing data categories, di�erent special casesare distinguished which are discussed in separate subsections. As alreadymentioned, unobserved heterogeneity may introduce spurious time depen-dence when analyzing a single nonrepeatable event, (5.2.4), may lead todependence among competing risks (5.2.5), may complicate the analysisof repeatable events, multiple-state processes (5.2.6), and other types ofdependent observations (5.2.7), and may lead to spurious e�ects of time-varying covariates (5.2.8). Measurement error may occur in the covariates



which are used in the hazard model (5.3.1) and in the states occupied atthe di�erent points in time (5.3.2). The same applies to partially missingdata (5.4.1 and 5.4.2).Unlike the previous chapters, which described the techniques on whichthe general missing data approach is based, in this chapter many applica-tions are presented using real-world data sets from di�erent substantive�elds to illustrate the potentials of the general missing data approach.
5.1 General model
The general model which is used for dealing with missing data in eventhistory analysis consists of two parts. The �rst part is a model for thetime-constant covariates used in the event history model. These covari-ates may be observed, unobserved, or partially unobserved. A variableindicating the initial state may also be included in this part of the model.For the covariates, we will use a causal log-linear model of the type dis-cussed in Chapters 2 and 3. This implies that, as in modi�ed path models,all endogenous variables have to be categorical. The second part of thegeneral model is a multiple-state event history model, which can be usednot only to model the dependent process to be studied, but also the tran-sitions occurring in the time-varying covariates. Here, we will use eithera log-rate model or a discrete-time logit model in the second part of themodel.If only information on time-constant covariates is missing, the modelcan be written in its most compact form asX

xmis P (x; t; �) = X
xmis P (x)P (t; �jx) : (5.1)

The joint probability function of the time-constant covariates (x) and thetimes that transitions occur (t; �) is decomposed into a part containingthe covariate information and a part containing the event history infor-mation, given the covariate values. Of course, to obtain the density forthe incompletely observed data, one has to sum over the missing data,denoted by xmis.As in other types of regression models, the relationships between thecovariates are normally not investigated in event history analysis. Thismeans that only the second part at the right-hand side of Equation 5.1,



P (t; �jx), is considered. However, by specifying a log-linear path modelfor the covariates, it not only becomes possible to investigate the rela-tionships among the covariates, but also to handle all kinds of missingdata problems concerning the covariates using the techniques discussedin Chapter 3.If, apart from ignorable censoring, no missing information appearsin the second part of the model, it is possible to use any of the eventhistory models discussed in the previous chapter. However, if there ismeasurement error in the recorded states or if there is a more generalform of partially missing information on the dependent process, it is mosttractable to use a discrete-time model. The same applies if some informa-tion on time-varying covariates is missing. The reason for this is that forcontinuous-time models, such as the log-rate model, measurement error inthe recorded states and general forms of partially missing information onthe dependent process cannot easily be dealt with yet. Here, we will onlyuse discrete-time logit models in such situations. Because the discrete-time logit model is also a modi�ed path model (see subsection 4.8.4), itis possible to use the missing data techniques developed in the �eld oflog-linear analysis for dealing with missing information on the dependentprocess.Thus, the models that are used in this chapter may consist of threedi�erent types of models for the event history part. If only informationon some time-constant covariates is missing, the event history model maybe either a log-rate model or a discrete-time logit model. If event historyinformation is missing, the event history model is a discrete-time logitmodel which is extended with the missing data methods developed forthe modi�ed path model discussed in Chapter 3, that is, in which thestates at the di�erent points in time may be latent or partially observed.In the latter case, the general model can be written asX
xmis;smis P (x; s) = X

xmis;smis P (x)P (sjx) : (5.2)
Here, s denotes the observed and unobserved states of an individual atthe di�erent points in time, and smis the missing information in thesestates. As demonstrated in section 4.8, the density function of discrete-time event history model can also be written in terms of states occupied atdi�erent point in time, instead of survival times and censoring indicators.



Estimation Maximum likelihood estimation of event history modelswith missing data can be performed by various means, including the EMalgorithm which was introduced in Chapter 3 in the context of log-linearmodeling with missing data (Dempster, Laird and Rubin, 1979). The Estep of the algorithm involves completing the data on the basis of theobserved data and the parameter values from the previous iteration.1In the M step, the same estimation methods can be used to computeimproved estimates of the model parameters as when there is no missingdata. The event history model and the model for the covariates can beestimated separately by means of the algorithms discussed in Chapter 2,i.e., iterative proportional �tting, Newton-Raphson, and uni-dimensionalNewton.To complete the data in the E step, the probability of the missingdata given the observed data and the parameters estimates from the lastiteration has to be computed. These conditional probabilities, which aresometimes also called posterior probabilities, are obtained by
P (xmisjxobs; t; �) = P (x; t; �)P

xmis P (x; t; �) ; (5.3)
P (xmis; smisjxobs; sobs) = P (x; s)P

xmis;smis P (x; s) : (5.4)
Equation 5.3 refers to situations in which only data on time-constantcovariates is missing; Equation 5.4 refers to situations in which also eventhistory information is missing.This EM algorithm has been implemented in the computer program`EM (Vermunt, 1993). The program allows the user to specify a log-linearpath model for the covariates and a hazard model for the dynamic processunder study. In the M step of the EM algorithm, both the iterativeproportional �tting and the one-dimensional Newton algorithm can beused in `EM . In this way, not only hierarchical log-linear models can bespeci�ed, but also models with all kinds of restrictions on the parametersas discussed in Chapter 2.

1It should be noted that the general de�nition of the E step is the computationof the expectation of the complete data likelihood. However, if the density functionof the complete data belongs to the exponential family, the E step simpli�es to theestimation of the complete-data su�cient statistics (see, for instance, Tanner, 1993:Chapter 4). Since all the models which are discussed in this chapter belong to theexponential family, we can use this simpler de�nition of the E step.



A disadvantage of using the EM algorithm is that it does not auto-matically supply standard errors for the parameter estimates. Since thecomputation of standard errors has not yet been implemented in `EM , thesigni�cance of e�ects has to be tested using likelihood-ratio tests betweennested models.
5.2 Unobserved heterogeneity
The implications of unobserved heterogeneity or omitted variables in thecontext of event history analysis was discussed in sections 4.6, 4.7, and4.8 of the previous chapter. To summarize, it was demonstrated that un-observed heterogeneity biases the duration dependence downward, evenif it is not correlated with the observed covariates. If the unobserved riskfactors are correlated with the time-constant covariates included in themodel, in other words, if there is selection bias, not only are the modelparameters biased, but there will also be spurious time-covariate inter-actions. If there are unobserved risk factors which also have an e�ecton changes in the values of particular endogenous time-dependent covari-ates, the e�ects of these covariates will be, at least partially, spurious. Inaddition, unobserved common risk factors may lead to dependent com-peting risks. And �nally, unobserved heterogeneity may invalidate theassumption of conditional independence in models for repeatable eventsor other types of clustered observations and may lead to spurious e�ectsof time-varying covariates.Because of the serious implications of unobserved heterogeneity inhazard models, it is not surprising that in the last two decades a greatdeal of work has been done on this subject (Vaupel, Manton, and Stallard,1979; Manton, Vaupel and Stallard, 1981, 1986; Vaupel and Yashin, 1985;Heckman and Singer, 1982, 1984; Flinn and Heckman, 1982; Trussell andRichards, 1985; Mare, 1994; Guo and Rodriguez, 1994; Yamaguchi, 1986;Clayton and Cuzick, 1985; Heckman and Honore, 1989). In the above-mentioned sections of Chapter 4, the most important methods for deal-ing with unobserved heterogeneity were mentioned. One approach, alsoknown as the random e�ects methods, involves the introduction of one ormore latent covariates in the event history model. In this section, theserandom e�ects methods are discussed in more detail. First, the paramet-ric and non-parametric latent variable approaches which have become



standard tools for dealing with unobserved heterogeneity in event historyanalysis are discussed. Then, a more general non-parametric latent vari-able approach is presented, which is a special case of the general modelpresented in section 5.1. Subsection 5.2.3 discusses the identi�ability ofthe parameters in hazard models with latent covariates. And �nally, insubsections 5.2.4-5.2.8, it is shown how to use the general latent vari-able approach to detect spurious time dependence when analyzing a sin-gle nonrepeatable event, how to identify dependencies among competingrisks, how to analyze repeatable events and other types of dependent ob-servations, and how to detect spurious e�ects of time-varying covariates.These last �ve subsections contain several examples in which real-worlddata sets from di�erent substantive �elds are used.
5.2.1 Latent variable approaches to unobserved hetero-geneityParametric mixture distributions Vaupel, Manton, and Stallard(1979) proposed correcting for unobserved heterogeneity, or as they calledit `frailty', in the life-table analysis of mortality rates (see also Manton,Vaupel and Stallard, 1981). They were especially concerned about thee�ect of unobserved heterogeneity on the size of the observed mortalityrates at higher ages. Individuals who are alive at a speci�c age form aselective group of the birth cohorts to which they belong, namely, theindividuals who are less frail. As a result, observed age-speci�c mor-tality rates, which equal the mean of the mortality rates of the personswho are still alive, will be lower than the age-speci�c mortality rates forsomeone with average frailty. Vaupel and Yashin (1985) described thisphenomenon nicely as: "Individuals age faster than heterogeneous co-horts". In section 4.6, this phenomenon was described as the downwardsbias of the duration dependence resulting from unobserved heterogeneity.To be able to estimate the age-speci�c mortality rates of someone withaverage frailty, Vaupel, Manton and Stallard (1979) proposed includinga continuous latent variable in a hazard model. The value of this latentvariable was assumed to be constant during an individual's life, and,moreover, the latent variable was assumed to have a multiplicative andproportional e�ect on the hazard rate, i.e.,

h(tj�) = h(t)� : (5.5)



Here, � denotes a value of the latent variable, which is assumed to havea particular distributional form. Since the hazard rate is not allowed totake negative values, � must be greater than or equal to zero. This mustbe taken into account when choosing a particular distributional form for�. The amount of unobserved heterogeneity is determined by the sizeof the standard deviation of the distribution of the latent variable: Thelarger the standard deviation of �, the more unobserved heterogeneitythere is.The model represented in Equation 5.5 is, in fact, a mixture modelas discussed in the context of latent class analysis (see section 3.1). Theonly di�erence is that the mixture variable is assumed to have a particu-lar continuous distribution function, while in latent class analysis, thereis a discrete mixture variable with an unspeci�ed distributional form. Be-low, a non-parametric approach to unobserved heterogeneity is presentedwhich, like latent class analysis, is based on the use of a �nite mixturemodel.Since � cannot be observed, the hazard rate h(t) which appears inEquation 5.5 is also unobservable. The observable hazard rate is themarginal hazard rate at T = t, i.e.,�h(t) = Z 10 h(t)ft(�)d� = h(t)��(t) : (5.6)
Here, ft(�) denotes the density function of � at T = t and ��(t) the meanvalue of the latent variable at T = t. The mean value of � at T = 0,��(0), can be arbitrarily set to 1. Note that �h(t) is the hazard rate that ismodeled when the unobserved heterogeneity is not taken into account. Itcan easily be seen from Equation 5.6, that, except at T = 0, the individualhazard rates h(t) are higher than the marginal hazard rates. The reasonis that the mean value of � declines with time since the individuals witha higher � have higher hazard rates at all t.Vaupel, Manton, and Stallard (1979) proposed using a gamma dis-tribution for �, with a mean of 1 and a variance of 1=
, where 
 is theunknown parameter to be estimated. Several other authors have pro-posed incorporating a gamma distributed multiplicative random term inevent history models (Tuma, and Hannan, 1984:177-179; Tuma, 1985;Lancaster, 1979, 1990:65-70). According to Vaupel, Manton and Stal-lard (1979), the gamma distribution was chosen because it is analyticallytractable and readily computational. Moreover, it is a 
exible distribu-



tion that takes on a variety of shapes as the dispersion parameter 
 varies:When 
 = 1, it is identical to the well-known exponential distribution;when 
 is large, it assumes a bell-shaped form reminiscent of a normaldistribution. Multiplicative frailty cannot be negative, and the gammadistribution is, along with the log-normal and Weibull distribution, oneof the most commonly used distributions to model variables that are nec-essarily positive.The estimation of the parameters of hazard models with a gammadisturbance term is relatively easy for particular conditional survival dis-tributions such as the exponential model, the Weibull model and theGompertz model. This results from the fact that after integrating out themixture distribution, simple expressions remain for the hazard and sur-vival functions appearing in the likelihood function to be maximized. Forinstance, when an exponential survival model is postulated, the marginalhazard and survival functions for person i with covariate values xi are
�h(tjxi) = exp(Pj �jxij)
exp(Pj �jxij)t+ 
 ;
�S(tjxi) =  
exp(Pj �jxij)t+ 


!
 :
Note that the hazard rate depends on the time variable T even thoughin the exponential model the individual hazard rates are time indepen-dent (Tuma and Hannan, 1984:177-179). Several computer programscontain an option to specify parametric hazard models with gamma dis-tributed unobserved heterogeneity, two of which are Tuma's RATE pro-gram (Tuma, 1979) and Rohwer's TDA program (Rohwer, 1993).Although the assumption of a gamma distribution has been dominant,other distributions have also been advocated. Heckman and Singer (1982)used both a log-normal and a normal mixture distribution. Hougard(1984, 1986a, 1986b) proposed the inverse Gaussian distribution andother kinds of positive stable distributions. Wrigley (1990) proposed abeta or multivariate-beta (Dirichlet) form for the mixing distribution incombination with a discrete-time logit model. The beta-logistic model isa heterogeneity model which is often used in the context of discrete choicemodeling (Heckman and Willis, 1977).



Non-parametric mixture distributions Heckman and Singer (1982,1984) demonstrated by an analysis of one particular data set that theresults obtained from continuous-time hazard models can be very sen-sitive to the choice of the functional form of the mixture distribution.Therefore, they proposed using a non-parametric characterization of themixing distribution by means of a �nite set of so-called mass points, orpoints of support, whose number, locations, and weights are empiricallydetermined. In this approach, the continuous mixing distribution of theparametric approach is replaced by a discrete density function de�ned bya set of empirically identi�able mass points which are considered adequateto characterize fully the form of the heterogeneity. Laird's work providesthe theoretical underpinnings of this non-parametric mass points method(Laird, 1978). In �tting models of this type, one typically starts with twopoints of support and proceeds to add more as long as the estimated rel-ative risks are distinct and the weights are positive (Laird, 1978). Often,two or three points of support su�ce (Guo and Rodriguez, 1992).It should be noted that the arguments of Heckman and Singer (1982)against the use of parametric mixing distributions have been criticizedby other authors who claimed that the sensitivity of the results to thechoice of the mixture distribution was caused by the fact that Heckmanand Singer misspeci�ed the duration dependence in the hazard modelthey formulated for the data set they used to demonstrate the poten-tials of their non-parametric approach. (Blossfeld, Hamerle, and Mayer,1989:97). Trussell and Richards (1985) demonstrated that the resultsobtained with Heckman and Singer's non-parametric mixing distributioncan severely be a�ected by a misspeci�cation of the functional form of thedistribution of T . Newman and McCulloch (1984) found no strong in
u-ence of the choice of the mixing distribution on the results in an analysisof the timing of births. Ridder and Verbakel (1983) showed, by means ofa simulation study, that the results are much more sensitive to the choiceof the conditional survival distribution than to the choice of mixture dis-tribution. These results indicate that the speci�cation problem is notsolved simply by using a non-parametric rather than a parametric mix-ture distribution. Irrespective of the type of mixture distribution, a lot ofattention has to be given to the speci�cation of the duration dependenceof the process under study.Actually, the non-parametric unobserved heterogeneity model pro-posed by Heckman and Singer (1982, 1984) is, in fact, strongly related to



latent class analysis (Goodman, 1974a, 1974b). As in latent class anal-ysis, the population is assumed to be composed of a �nite number ofexhaustive and mutually exclusive groups formed by the categories of alatent variable. Suppose Z is a categorical latent variable with Z� cate-gories, and z is a particular value of Z. If there are no observed covariates,the non-parametric hazard model with unobserved heterogeneity can beformulated as follows:
h(tj�z) = h(t)�z :Here, �z denotes the (multiplicative) e�ect on the hazard rate for latentclass z. The marginal hazard rate at T = t is now de�ned as

�h(t) = Z�Xz=1h(t)�z(t)�z = h(t)��z(t) ;
where �z(t) is the proportion of the population belonging to latent classz at T = t and ��z(t) the mean value of �z at T = t. In the terminologyused by Heckman and Singer (1982), the number of latent classes (Z�), thelatent proportions (�z(t)), and the e�ects of Z (�z) are called the numberof mass points, the weights, and the mass points locations, respectively.Recently, Lindsay, Clogg, and Grego (1991) demonstrated the equiva-lence between restricted latent class models and non-parametric mixturemodels in the context of the Rasch model. The latent class model andthe non-parametric heterogeneity model are both applications of �nitemixture distributions (Everitt and Hand, 1981; Titterington, Smith, andMakov, 1985; DeSarbo and Wedel, 1993). The only di�erence betweenthem is, in fact, the purpose for which they were developed: Models withnon-parametric unobserved heterogeneity were developed to approximatea continuous mixing distribution with an unknown form, while latent classmodels were originally developed to construct measurement models withdiscrete latent variables.2Davies (1987) and Wrigley (1990) showed that it is also possible to in-corporate non-parametric unobserved heterogeneity in discrete-time logitmodels. Wrigley proposed the standard incorporation of a �z of zero for

2Recently, Heinen (1993) demonstrated that linearly restricted latent class modelscan be used to estimate latent trait models by approximating the assumed continuousdistribution of the latent trait variable with a discrete distribution.



each origin state. Such a speci�cation leads to a mover-stayer structurewith one class of stayers for each origin state (Goodman, 1961). AlthoughHeckman and Singer (1982) also mentioned the possibility of specifyingmover-stayer models, they never gave examples of this interesting specialcase of their non-parametric approach. Farewell (1982) proposed usingthe mover-stayer model in combination with either a discrete-time logitmodel or a Weibull model for separating the probability of the occurrenceon the event of interest from its timing among the persons who experiencethe event.3 For the discrete-time Markov model, the use of a �nite mix-ture distribution, including the mover-stayer model, has been advocatedby Poulsen (1982) and Van de Pol and Langeheine (1990).A strongly related application of the latent class model was proposedby Wedel et al. (1992). They apply the latent class model in a Poissonregression model. As demonstrated in section 4.8, the Poisson model isequivalent to a continuous-time event history model for repeatable eventsassuming a constant hazard rate, that is, assuming exponential survival.Wedel, Kamakura, and DeSarbo (1993) included non-parametric unob-served heterogeneity in a piecewise exponential survival model or log-rateof the form presented in section 4.4. Recently, B�ockenholt and Lange-heine (1995) proposed including a categorical time-varying latent variableto correct for unobserved heterogeneity in a Poisson regression model inwhich the Poisson rate was assumed to be constant within periods oftime.The estimation of non-parametric heterogeneity models is a bit morecomplicated than, for instance, the gamma model because it is not pos-sible to obtain simple expressions for the hazard and survival functionsby integrating out the mixture distribution. Heckman and Singer (1982,1984) proposed estimating non-parametric models by means of the EMalgorithm (Dempster, Laird and Rubin, 1977). Poulsen (1982) and Lange-heine and Van de Pol (1990, 1994) also used the EM algorithm to estimatetheir mixed Markov models.
Limitations The use of parametric mixture distributions is relativelysimple in models for a single nonrepeatable event. However, when there

3Kuk and Chen (1992) used the same type of mover-stayer speci�cation in combi-nation with a Cox proportional hazard model, while Yamaguchi (1992) and Yamaguchiand Ferguson (1995) combined it with an accelerated failure-time model.



is more than one (latent) survival time per observational unit, that is,when there is a model for competing risks, a model for repeatable events,or another type of multivariate hazard model, this is generally not trueanymore. It is not so easy to include several possibly correlated paramet-ric latent variables in a hazard model because that makes it necessaryto specify the functional form of the multivariate mixture distribution.Therefore, in such cases, most applications use either several mutuallyindependent cause, spell, or transition-speci�c latent variables, or one la-tent variable that may have a di�erent e�ect on the several cause, spellor transition-speci�c hazard rates. The former approach was adopted,for instance, by Tuma and Hannan (1984:177-183), and the latter, forinstance, by Flinn and Heckmann (1982) in a study in which they used anormal mixture distribution.The two above-mentioned speci�cations of the unobserved factorshave also been used in models with non-parametric unobserved hetero-geneity (Heckman and Singer, 1985; Moon, 1991). However, the latentclass approach which is presented in the next subsection is much moregeneral. It can also be used to specify models with several latent vari-ables which are mutually related without the necessity of specifying thedistributional form of their joint distribution since the joint distributionof the latent variables is non-parametric as well. If necessary, the jointdistribution can be restricted by means of a log-linear parameterizationof the latent proportions.Another important drawback of the usual way of modeling unobservedheterogeneity is caused by the fact that the mixture distribution is as-sumed to be independent of the observed covariates.4 This is, in fact,in contradiction to the omitted variables argument which is often usedto motivate the use of mixture models. If one assumes that particularimportant variables are not included in the model, it is usually implausi-ble to assume that they are completely unrelated to the observed factors.In other words, by assuming independence among unobserved and ob-served factors, the omitted variable bias, or selection bias, will generallyremain (Chamberlain, 1985; Yamaguchi, 1986, 1991:132). This is, in fact,Chamberlain's main argument for using �xed e�ects methods to correct
4An exception is the mover-stayer model proposed by Farewell (1982), in which theprobability of belonging to the class of stayers is regressed on a set of covariates bymeans of a logit model (see also Yamaguchi, 1992).



for unobserved heterogeneity. However, as was shown in section 4.8, �xede�ects methods have serious limitations as well. They can only be usedwhen there is more than one observed survival time for the largest partof the sample, and they do not allow for getting estimates for the e�ectsof time-constant covariates.To solve the selection bias problem, Blossfeld, Hamerle, and Mayer(1989:98) proposed regressing an individual's score on the latent variable� on the covariates included in the model. In his TDA program, Rohwer(1993) implemented an option to regress the coe�cient of variation of thegamma distribution on covariate values, which is a �rst attempt to re-late a parametric mixture distribution to observed covariates. However,by regressing the coe�cient of variation on covariates, the mean valueof � is still equal for all individuals, irrespective of their covariate val-ues. Therefore, Rohwer's approach does not solve the above-mentionedproblem.
5.2.2 A more general non-parametric latent variable ap-proach to unobserved heterogeneityTo overcome the limitations of the latent variable approaches which werediscussed above, a more general non-parametric latent variable approachto unobserved heterogeneity was developed which is based on the generalhazard model with missing data presented in section 5.1. The main dif-ference between this latent variable approach and Heckman and Singer'smodel is that di�erent types of speci�cations can be used for the jointdistribution of the observed covariates, the unobserved covariates, andthe initial state. This means that it becomes possible to specify haz-ard models in which the unobserved factors are related to the observedcovariates and to the initial state. A special case is, for instance, themover-stayer model proposed by Farewell (1982), in which the probabil-ity of belonging to the class of stayers is regressed on a set of covariatesby means of a logit model. Moreover, when hazard models are speci�edwith several latent covariates, di�erent types of speci�cations can be usedfor the relationships among the latent variables, one of which leads to atime-varying latent variable as proposed by B�ockenholt and Langeheine(1995). By means of a multivariate hazard model, the latent covariatescan also be related to observed time-varying covariates.Like the general model presented in section 5.1, the model that is



used for dealing with unobserved heterogeneity consists of two parts: alog-linear path model in which the relationships among the time-constantobserved covariates, the initial state, and unobserved covariates are speci-�ed, and an event history model in which the determinants of the dynamicprocess under study are speci�ed.Suppose there is a model with three time-constant observed covari-ates denoted by A, B, and C, and two unobserved covariates denotedby W and Y . In the �rst part of the model, the relationships betweenthese �ve variables are speci�ed by means of a log-linear path model aspresented in sections 2.9 and 3.1. Let �abcwy denote the probability thatan individual belongs to cell (a; b; c; w; y) of the contingency table formedby the variables A, B, C, W , and Y . As was demonstrated in section 2.9,specifying a modi�ed path model for �abcwy involves two things, namely,decomposing �abcwy into a set of conditional probabilities on the basisof the assumed causal order among A, B, C, W , and Y , and specify-ing log-linear or logit models for these conditional probabilities. At leastthree meaningful speci�cations for the causal order among A, B, C, W ,and Y are possible, namely, all the variables are of the same order, thelatent variables are posterior to the observed variables, and the observedvariables are posterior to the latent variables. In the �rst speci�cation,�abcwy is not decomposed in terms of conditional probabilities. The sec-ond speci�cation is obtained by
�abcwy = �abc �wyjabc ;and the third one by
�abcwy = �wy �abcjwy :Suppose that the second speci�cation is chosen. In that case, �abc and�wyjabc can be restricted by means of a non-saturated (multinomial) logitmodel. A possible speci�cation of the dependence of the unobservedcovariates on the observed covariates is, for instance,

�wyjabc = exp �uWw + uYy + uAWaw + uBWbw + uCWcw �
Pwy exp �uWw + uYy + uAWaw + uBWbw + uCWcw � :

Here, W depends on A, B, and C, while Y is assumed to be independent



of W and the observed covariates. Other speci�cations are, for instance,
�wyjabc = exp �uWw + uYy + uWYwy �Pwy exp �uWw + uYy + uWYwy � = �wy ;

where the joint latent variable is assumed to be independent of the ob-served variables, and
�wyjabc = exp �uWw + uYy �Pwy exp �uWw + uYy � = �w�y ;

in which the two latent variables are mutually independent and inde-pendent of the observed variables. It should noted that for these latterspeci�cations it does not matter which assumption is made about causalorder between A, B, C, W , and Y since the same models can be obtainedby imposing restrictions on �abcwy or �abcjwy rather than �wyjabc.
The second part of the model with non-parametric unobserved hetero-geneity consists of an event history model for the dependent process tobe studied. The event history models which are used here are log-ratemodels (section 4.4) and discrete-time logit models (section 4.3).As demonstrated in section 4.8, in its most general form, the hazardrate for the log-rate model in which the variables A, B, C, W , and Y areused as regressors is denoted by hmod(zja; b; c; w; y), where o denotes theorigin state, d the destination state, and m the spell or episode number.In discrete-time models, the transition probability from O = o to D =d is denoted by �mod(tlja; b; c; w; y). When the discrete-time logit modelis a Markov model, the transition probability may also be denoted by�sljabcwysl�1 , where sl is the state that an individual occupies at the lthpoint in time.
Estimation To obtain maximum likelihood estimates of the parame-ters of a hazard model with the observed covariates A, B, and C andlatent covariates W and Y , the following likelihood function has to bemaximized:

L = NYi Xwy �abcwyL�i (h) ; (5.7)



in which L�i (h) denotes the contribution of person i to the complete datalikelihood function for the hazard model, and a, b, c are the observed val-ues of A, B, and C for person i. More information about the exact form ofL�i (h) can be found in section 4.8. Since the likelihood function describedin Equation 5.7 is based on the general density function represented inEquation 5.1, as already mentioned in section 5.1, the parameters can beestimated with the EM algorithm.The posterior probabilities which are needed in the E step to computethe complete-data su�cient statistics can be obtained by means of Equa-tion 5.3. Here, we need the probability that person i belongs to latentclass (w; y) is
P (w; yji) = �abcwyL�i (h)Pwy �abcwyL�i (h) :When using a log-rate model, these posterior probabilities are used toobtain estimates of the number of events and the total exposure times,i.e.,

n̂abcwyzodm = NXi=1 �mizodP (w; yji) 
iabc ;
Êabcwyzom = NXi=1 emizoP (w; yji) 
iabc :Here, 
iabc and �mizod, are indicator variables taking the value one if a par-ticular condition is ful�lled, and which are otherwise equal to zero. Moreprecisely, 
iabc indicates whether person i has covariate values (a; b; c),and �miodz whether person i experienced a transition from O = o to D = din time interval z in the mth spell. And �nally, emizo is the total time thatperson i spent in the origin state o in time interval z in the mth spell.In the M step of the EM algorithm, the completed tables n̂abcwyzodmand Êabcwyzom are used to obtain improved estimates for the hazard pa-rameters as if it were completely observed data. The completed datawhich is needed to update the estimates for the parameters of the log-linear part of the model is obtained in the E step by

n̂abcwy = NXi=1 P (w; yji) 
iabc :



As demonstrated in section 4.8, the discrete-time logit model is equivalentto a modi�ed path model. This means the estimation of discrete-time logitmodels with latent covariates can be performed with the same version ofthe EM algorithm presented in section 3.1.
5.2.3 Identi�abilityElbers and Ridder (1982) proved that the parameters of hazard mod-els with unobserved heterogeneity for a single nonrepeatable event areidenti�able if three conditions are ful�lled, namely, if the model is a pro-portional hazard model with at least one regressor, if the mixture distri-bution has a �nite mean, and if the duration dependence is parameterized.Heckman and Singer (1984) showed, however, that regressors are not nec-essary for identi�cation provided that the hazard function is assumed tobe a member of particular parametric families. They proved identi�abil-ity for a class of Box-Cox hazard rate models from which the Weibull,the Gompertz, and the exponential models are special cases, and for thelog-logistic model. Heckman and Singer also showed that non-parametricmixture models are identi�able if the time dependence is parameterized.If the time-dependence is not parameterized, that is, if the hazardmodel is a semi-parametric model, it is possible to identify the mixturedistribution in models for repeatable events, clustered observations, orother kinds of multivariate survival times which can be assumed to haveequal random terms (Clayton and Cuzick, 1985; Klein, 1992; and Nielsenet al., 1992). Van de Pol and Langeheine (1990) showed that the param-eters of discrete-time mixed Markov models, which are also models forrepeatable events, can be identi�ed without imposing restrictions on thetime dependence or on the mixture distribution. Recently, Kortram etal. (1995) demonstrated that for identi�cation it su�ces that the modelis a proportional hazard model. This means that in proportional hazardmodels, it is not necessary to parameterize the time dependence or themixing distribution, or to have multivariate survival times.In summary, the parameters of event history models with unobservedheterogeneity can be identi�ed by ensuring that at least one of the follow-ing conditions is ful�lled: 1] the model is a proportional hazard model;2] the duration dependence is parameterized; 3] the mixing distributionis parameterized; or 4] the model is a multivariate hazard model.One factor determining identi�ability has not yet been mentioned.



Contrary to the usual practice, in the approach that is used here, it is notnecessary to assume the latent variable capturing the unobserved hetero-geneity to be independent of the observed covariates. Limited experiencewith this approach has shown that the inclusion of additional parametersin the model describing the relationships between latent and observedcovariates does not lead to identi�cation problems as long as one of theabove-mentioned su�cient conditions is ful�lled.When using non-parametric unobserved heterogeneity, it is not knownbeforehand how many latent classes can be identi�ed on the basis of thedata. Laird (1978) proposed starting with two latent classes and addingmore classes as long as the estimated relative risks are distinct and theweights are greater than zero. Often, two or three latent classes su�ce(Guo and Rodriguez, 1992). In some situations, it is even impossible toidentify two latent classes. This occurs, for instance, if exponential sur-vival is assumed in a model for a single nonrepeatable event, while thedata shows a positive time dependence. The reason for this is that ifsurvival is exponential, unobserved heterogeneity must lead to spuriousnegative duration dependence. Thus, in fact, the observed positive dura-tion dependence is in contradiction with the postulated model. The sameoccurs when there is a positive duration dependence within time intervalsin a piecewise constant hazard model.A well-known method to ensure local identi�ability in latent classmodels is to run the same model using di�erent sets starting values(Goodman, 1974b; Hagenaars, 1990:111-112; Formann, 1992). This isthe simplest way to check identi�ability when using the EM algorithmto estimate the parameters. If two di�erent sets of starting values yielddi�erent parameter estimates but the same values for the log-likelihoodfunction, the model parameters which are di�erent are not identi�able.Note that when both parameter estimates and likelihood values are di�er-ent, the solution with the lower likelihood value is either a local maximumor a boundary solution.
5.2.4 A single nonrepeatable eventAbove, a general approach to the unobserved heterogeneity problem inthe analysis of event history data was introduced. In this subsection, twoapplications are presented to demonstrate how to deal with unobservedheterogeneity when analyzing a single nonrepeatable event. The �rst



application uses a log-rate model for the analysis of �rst-birth rates. Thesecond application uses a discrete-time logit model for the analysis ofschool transition.
Example 1: Timing of the �rst birthThe use of hazard models for the analysis of demographic transitions isincreasingly becoming standard practice. However, as was demonstratedabove, the results can be in
uenced by the presence of unobserved riskfactors. An example is presented in which a latent covariate is included ina log-rate model for the timing of the �rst birth. It should be mentionedthat the example serves mainly as an illustration of the use of the latentvariable methods introduced above. The intention is not to present anaccurately real-world model for the timing of �rst births.
Data The data for the example was obtained from a Dutch family andfertility survey called ORIN5 (NIDI, 1989) which was conducted in 1983.The data set contains information on the fertility histories of 846 18-54year-old women. The time variable which was used is age measured inyears. The time axis was divided into 23 intervals indicating all di�erentages between 18 and 40 years. Because two age groups are empty, thereare 21 di�erent ages at which the event under study occurred. A verysmall number of women in the sample already had a �rst child at age 18.Two observed covariates were used in the log-rate model. The �rstis a woman's educational level, with 4 categories: 1] primary school, 2]secondary school, 3] vocational education and 4] university or polytech-nic. In demographic research, educational level is often used as an indi-cator of either the occupational aspirations of a woman (Vossen, 1989;Willekens, 1991; Vermunt, 1991a) or the opportunity costs of children(Becker, 1981). Women with a higher educational level can be expectedto have a lower probability of having a �rst child because they have workaspirations which con
ict with having children and because their relativecosts of having children are higher, assuming that they have to stop work-ing after the birth of their �rst child. The second covariate is an attitude

5The name ORIN stands for Onderzoek Relatievorming in Nederland (Survey onUnion Formation in the Netherlands). This study was conducted by the NIDI institutein The Hague.



item on the importance of family and children in one's life. This indica-tor was used to operationalize the concept of familism which is thoughtto in
uence fertility behavior (Lesthaege and Meekers, 1986; Vermunt,1991b). The familism item is classi�ed into three categories: 1] familistic2] neither familistic nor non-familistic, and 3] non-familistic.
Model As explained when presenting the hazard model with unob-served heterogeneity, the models to be speci�ed consist of two parts:a log-linear path model for the covariates and a hazard model for thedependent process to be studied. Let A denote a woman's educationallevel, B familism, and W a latent variable which is assumed to capturethe unobserved heterogeneity. The general form of the model which isused in this example to describe the relationships between the covariatesis �abw = �ab �wjab :This means that the latent variable W is seen as an intervening variablebetween the observed covariates and the hazard rate of having a �rstchild. So, W stands for intervening variables in
uencing the rate of �rstbirth which are not included in the model, such as having a partner,wanting to have children, and being employed.Although it is possible, the joint distribution of the observed covari-ates A and B, �ab, is not restricted in this example. Since it is the purposeof the example to show which types of speci�cations can be used for theunobserved heterogeneity rather than to show how to model the relation-ships between observed covariates. Measurement models in which thejoint distribution of the observed covariates is restricted as well will bediscussed in section 5.3. To be able to specify more restricted models for�wjab, it is parameterized by means of a logit model,

�wjab = exp �uWw + uAWaw + uBWbw �Pw exp �uWw + uAWaw + uBWbw � : (5.8)
This is the least restrictive model that will be used for �wjab. Note thatit is not a saturated model because it does not contain the three-variableinteraction term uABWabw .On the basis of the model described in Equation 5.8, it is possibleto specify more restrictive models with regard to the e�ects of A and B



on W by imposing particular restrictions on the uAWaw and uBWbw param-eters. One constraint that is used below is to �x both uAWaw and uBWbwto zero, which yields a model in which the unobserved heterogeneity isindependent of the observed heterogeneity, that is, �wjab = �w. Thisspeci�cation, which is how unobserved heterogeneity is usually modeledin event history analysis, will be denoted as an `independent' unobservedheterogeneity model.Another set of restrictions which may be used to reduce the numberof parameters of the model for the covariates is
uAWaw = (a� �a)(w � �w)�AW ;uBWbw = (b� �b)(w � �w)�BW :

These restrictions lead to a linear-by-linear association between A andW and B and W (see section 2.5). Below, the reason for using such aspeci�cation is explained in more detail.Several di�erent types of speci�cations may be used for the eventhistory part of the model. In its most general form, the log-rate modelthat will be used is
h(zja; b; w) = mabwzEabwz = exp �v + vAa + vBb + vWw + vZz + vWZwz � ; (5.9)

where the variable Z with index z denotes the time intervals. It shouldbe noted that here, unlike in the presentation of the log-rate model insection 4.4, the hazard parameters are denoted by v instead of u to dis-tinguish them from the parameters of the covariate part model. As canbe seen, the hazard model described in Equation 5.9 does not containhigher-order interaction terms involving A or B; only the simplest spec-i�cation for the dependence of the �rst-birth rate on A and B is used.As discussed in the previous section, the assumption that the covariatee�ects are proportional is su�cient for identifying a model, irrespectiveof the choice of speci�cation for the unobserved heterogeneity.Di�erent types of hazard models are speci�ed by restricting vZz andvWZwz . An exponential model is obtained by �xing both vZz and vWZwzto zero. Fixing only vWZwz to zero yields a proportional hazard model, inwhich di�erent kinds of speci�cations for vZz can be used. When no furtherrestrictions are imposed on vZz , a model is obtained which is equivalent toCox's proportional hazard model (see section 4.4). Another speci�cation



which is used for vZz is quadratic time dependence, which is a rathercommon way to describe the age pattern in the timing of the �rst birth,i.e.,
vZz = z �Z1 + z2 �Z2 ;

where �Z1 is the linear e�ect of Z and �Z2 quadratic e�ect of Z on thehazard rate. And �nally, in some models both vZz and vWZwz are restrictedto a quadratic functional form. This results in a nonproportional modelwith di�erent quadratic time dependencies for the di�erent values of W .
Testing The test results for the estimated models are presented in Table5.2. In the �rst set of models (Models 1a to 3b), the latent variable Wis assumed to be independent of the observed covariates; in other words,uAWaw and uBWbw are �xed to zero. Moreover, the e�ect of the latent variableon the hazard rate is assumed to be proportional, which means that vWZwzis �xed to zero. This is the standard way of correcting for unobservedheterogeneity in hazard models.A comparison of the log-likelihood values of the models with one la-tent class, that is, the models without heterogeneity, shows that there isduration dependence. The conditional likelihood test between Model 1aand Models 1b and 1c show that the exponential model, which assumes noduration dependence, �ts a lot worse than the Cox and quadratic models(L21aj1b = 56:37; df = 20; p = :000 and L21aj1c = 42:41; df = 2; p = :000).6The quadratic model captures the time dependence rather well using onlytwo time parameters since it does not �t signi�cantly worse than the Coxmodel (L21cj1b = 28:1; df = 18; p > :06).Including a second latent class does not improve the log-likelihoodvalue of the exponential model (Model 2a) as there is a positive dura-tion dependence, while, as already mentioned in subsection 5.2.3, theexponential model can only capture unobserved heterogeneity if thereis a (spurious) negative duration dependence. As can be seen from the

6The likelihood-ratio chi-square statistic L2rju to compare nested models can becomputed by taking 2 times the di�erence between the log-likelihood value of theunrestricted model and of the restricted model (section 2.4). The number of degrees offreedom can be obtained by taking the di�erence in the number of parameters of themodels concerned. However, as already mentioned in section 3.1, models with di�erentnumbers of latent class cannot be compared this way because of di�culties associatedwith parameter space boundaries (Titterington, Smith and Makov, 1985).



Table 5.2: Test results for the estimated models for the timing of the �rstbirth
Model log-likelihood # parameters
Independent/proportional
1a. 1 class exponential -3497.95 18
1b. 1 class Cox -3441.58 38
1c. 1 class quadratic -3455.54 20
2a. 2 class exponential -3497.95 20
2b. 2 class Cox -3437.95 40
2c. 2 class quadratic -3453.12 22
3a. 3 class Cox -3437.48 42
3b. 3 clas quadratic -3452.83 24
Independent/nonproportional
4a. 2 class Cox -3429.14 60
4b. 2 class quadratic -3449.08 24
5a. 3 class Cox -3426.84 82
5b. 3 class quadratic -3445.55 28
Dependent (AW;BW )/proportional
6a. 2 class Cox -3431.37 45
6b. 2 class quadratic -3445.70 27
7a. 3 class Cox -3422.25 52
7b. 3 class quadratic -3438.51 34
Dependent (AW;BW linear)/proportional
8a. 2 class Cox -3435.50 42
8b. 3 class Cox -3433.44 44
8c. mover-stayer Cox -3437.13 41
8d. 2 movers Cox -3434.89 43



comparison of the two-class Cox model (Model 2b) and the two-classquadratic model (Model 2c) with their no-unobserved heterogeneity vari-ants, the log-likelihood decreases a bit more for the Cox model. Includinga third class does not have much in
uence on either the Cox model (Model3a) or the quadratic model (Model 3b).The �rst extension of the usual way of modeling unobserved hetero-geneity is the speci�cation of models in which the latent variable W is al-lowed to have a nonproportional e�ect on the hazard rate, in other words,the interaction term vWZwz is included in the model (Models 4a-5b). Includ-ing the interaction e�ects between duration and the unobserved covariatein the Cox model leads to so many extra parameters that the improve-ment of the �t is no longer signi�cant. This applies to both the two- andthree-class models (Models 4a and 5a): L22bj4a = 17:6; df = 20; p > :99and L22cj4b = 21:3; df = 40; p > :61. But, the quadratic two- and three-class models both improve signi�cantly by assuming nonproportionality(Models 4b and 5b): L23aj5a = 8:1; df = 2; p < :02 and L23bj5b = 14:6; df =4; p < :01.In Models 6a-7b, the assumption that the unobserved factor W isindependent of the observed covariates is relaxed. This is another impor-tant extension of the usual way of modeling unobserved heterogeneity.For simplicity of exposition, the e�ect of W on the hazard rate is againassumed to be proportional (vWZwz = 0). Table 5.2 shows that the in-clusion of the uAWaw and uBWbw interaction terms in the covariate modelleads to a signi�cant increase in log-likelihood value for Models 6a, 6b,7a and 7b: L22bj6a = 13:2; df = 5; p < :02, L22cj6b = 14:8; df = 5; p < :01,L23aj6a = 30:5; df = 10; p < :0008, and L23bj6b = 28:6; df = 10; p < :002. Itmust be stated that although the models �t very well, many local maximawere encountered when �tting these models. This indicates that one hasto be cautious with these kinds of models. One cannot even be sure thatthe �nal solutions presented in the table are the global maximum likeli-hood solutions. Nevertheless, the fact that several sets of starting valueslead to the same log-likelihood value and the same parameter estimatesdemonstrates that the models are identi�ed.Models 6a-7b are not only problematic because of the occurrence oflocal maxima, but, as will be demonstrated below, the parameter esti-mates of these of models are also rather strange. It seems that to getmore stable results, a more restricted speci�cation for the relationships



between the observed covariates and the latent variable has to be used.To be able to specify more restrictive models, substantive hypotheses areneeded about the nature of the unobserved heterogeneity. One option isto assume that particular covariates in
uence the unobserved covariatebut not the hazard rate (Heckman, 1979). Such a solution is, in fact,very similar to using the observed covariates as indicators for the latentvariables, as in the measurement models that will be discussed in section5.3. Another option is to restrict the relationship between the covariatesand the latent variables to have a more systematic pattern. To demon-strate this option, the relationships between A andW and between B andW are restricted to linear-by-linear (see Equation 5.8). The main reasonfor choosing this speci�cation here is that the parameter estimates of thenonrestricted covariate parts of Models 6a-7b are very di�cult to inter-pret. It is not possible to detect any systematic pattern in the uAWaw anduBWbw parameters, which is strange if one realizes that both A and B areordinal variables. By the rather restrictive linear-by-linear speci�cationit was hoped to get more interpretable results. Other less restrictive spec-i�cations that could be used are, for instance, row or column associationmodels or log-multiplicative association models (see sections 2.5 and 2.7).For simplicity of exposition, the linear-by-linear �AW and �BW terms(see Equation 5.9) are only included in the Cox proportional models withtwo and three latent classes (Models 8a and 8b). Now, only the three-class model �ts signi�cantly better than the `independent heterogeneity'model concerned (Models 2b and 3a): L22bj8a = 4:9; df = 2; p > :08 andL22cj8b = 8:1; df = 2; p < :03. Furthermore, both Models 8a and 8b are re-stricted by �xing the log-linear hazard parameter for one class to be equalto �1.7 In other words, the models become mover-stayer models withone class (Model 8c) or two classes (Model 8d) of movers, respectively.This mover-stayer structure is interesting from a substantive point ofview, because the proportion of stayers can be interpreted as the propor-tion of women that remain childless. Note that testing the mover-stayerrestriction using the likelihood-ratio statistic is not allowed since the vWwparameter concerned is �xed on a boundary value. Nevertheless, the
7Fixing a log-linear parameter to �1 is the same as �xing the multiplicative param-eter concerned to zero. When using the IPF or the uni-dimensional Newton algorithmdiscussed in Chapter 2, a multiplicative parameter can simply be �xed to zero by usingzero as starting value for the parameter concerned. This will lead to structural zerocells in the table concerned.



small decrease in the likelihood of Models 8c and 8d compared to Models8a and 8b indicates that the mover-stayer structure performs quite well.
Parameters Table 5.2 presents the estimates for the covariate e�ectson the hazard rate and for the parameters describing the relationshipsamong the covariates for some of the model in Table 5.3. When there isno unobserved heterogeneity, the e�ects of A and B on the hazard rateare very similar for the di�erent speci�cations of the duration dependence(Models 1a, 1b, and 1c). Inclusion of a two-class independent unobservedheterogeneity component in the model, leads to stronger e�ects of A andB (Models 2b and 2c). In other words, `independent' heterogeneity at-tenuates the hazard parameters. Again, the hazard parameters for theCox model (Model 2b) and the quadratic model (Model 2c) are very sim-ilar. Also, the class proportions and the e�ects of the latent variable arealmost the same for the two models. Both models identi�ed two latentgroups, one with a low hazard rate and one with a much higher hazard.In Models 2b and 2c, the ratio of the hazard rates of the two groups is .12(= exp(�1:0589�1:0589)) and .17 (= exp(�:8916� :8916)), respectively.In the three-class `dependent' unobserved heterogeneity models (Mod-els 7a and 8d), the parameter estimates are very di�erent from Models2b and 2c and also from one another. In the three-class model withunrestricted interaction terms uAWaw and uBWbw (Model 7a), the hazard pa-rameters for the covariates become very extreme. For instance, someonewith A = 2 has a 100 (=exp(1:6523��2:9491)) times higher hazard ratethan someone with A = 4. Similar extreme e�ects are found for covariateB. However, at the same time, the parameters describing the e�ects ofA and B on W indicate that the extremely low-risk groups, A = 4 andB = 3, have a very high probability of belonging to latent class numberthree, the class with an extremely high risk of a �rst birth. The oppositeis true for A = 2 and B = 1, the groups with the highest risks. Theyhave a very low probability of belonging to the high-risk class. Thus, whatactually happens is that class membership and covariate e�ects compen-sate one another, which makes the results obtained from Model 7a verydi�cult to interpret.In the restricted `dependent' model (Model 8d), the hazard parame-ters for A are very similar to the `independent' models (Models 2b and2c). However, B has the opposite e�ect: Non-familistic women have



Table 5.3: Some parameter estimates for models for the timing of the �rstbirth
Model1a 1b 1c 2b 2c 7a 8dlog-rate parametersv -2.7772 -2.9806 -3.8788 -2.5186 -4.2968 -2.5498 -2.2176vA1 0.5361 0.5552 0.5541 0.8595 0.7980 1.2742 0.7399vA2 0.2860 0.3019 0.3017 0.4497 0.3968 1.6523 0.4404vA3 -0.0216 -0.0246 -0.0246 -0.0417 -0.0604 0.0226 0.0090vA4 -0.8005 -0.8324 -0.8311 -1.2675 -1.1345 -2.9491 -1.1893vB1 0.2915 0.3054 0.3032 0.4023 0.3791 1.4303 -0.2122vB2 -0.0838 -0.0831 -0.0823 -0.1419 -0.1272 -0.2199 -0.1800vB3 -0.2076 -0.2222 -0.2209 -0.2603 -0.2520 -1.2104 0.3922vW1 -1.0589 -0.8916 -2.3954 �1vW2 1.0589 0.8916 -0.0531 -0.8140vW3 2.4485 0.8140latent proportions�W1 0.5967 0.5858 0.3119 0.1991�W2 0.4033 0.4142 0.3922 0.3350�W3 0.2960 0.4659e�ects of A and B on WuAW11 -0.5629uAW21 0.6103uAW31 -0.8561uAW41 0.8087uAW12 1.3447uAW22 1.1049uAW32 1.7891uAW42 -4.2387uAW13 -0.7818uAW23 -1.7151uAW33 -0.9330uAW43 3.4300uBW11 1.7124uBW21 -0.2492uBW31 -1.4632uBW12 0.1958uBW22 -0.1085uBW32 -0.0872uBW13 -1.9081uBW23 0.3577uBW33 1.5504�XA -0.1207�XB -0.6252



higher risks of a �rst birth than familistic women. The linear e�ects of Aand B on W indicate that both educational level and familism are nega-tively related to the latent variable. Women with a low educational leveland with a familistic attitude have a much lower probability of belong-ing to class one, the group that remains childless, than highly educatednon-familistic women. This is consistent with what one expects to �nd.In fact, the only result in Model 8d which is di�cult to interpret is thereversed e�ect of B on the hazard rate. Apparently, after controlling forthe indirect e�ect of B viaW on the hazard rate, there remains a positivee�ect of B. Of course, we do not know whether that is true, or whether itresults, for instance, from a misspeci�cation of the relationship betweenB and W .
To summarize, this example showed how to deal with unobserved hetero-geneity using the general approach presented in subsection 5.2.2. Twoextensions of the usual way of modeling unobserved heterogeneity, whichcan be routinely handled within the general hazard model, were applied,namely, the e�ect of the unobserved variable was allowed to be nonpro-portional and the unobserved heterogeneity was allowed to be related tothe observed covariates. The latter extension seems to be problematicin that the results are sensitive to the speci�cation that is used for therelationships among A, B, and W . This means that it is necessary tohave some a priori information to be able to decide which of the speci�-cations is the correct one. This cannot simply be decided on the basis ofthe model �t. The speci�cation problem also shows that the independentunobserved heterogeneity model which is just one of the possible modelsmay be misspeci�ed as well.
Example 2: School transitionsData and model The application of the latent variable approach whentime is a discrete variable is illustrated using data published in a recentpaper by Mare (1994). The data is a cross-tabulation of the educationalattainments of 18,563 men, their fathers, and their oldest brothers ob-tained from the 1973 Occupational Changes in a Generation II Survey(Featherman and Hauser, 1975). Further on, in subsection 5.2.7 on mod-els for dependent or clustered observations, both the respondents' andthe oldest brothers' information on school transitions will be used. Here,



only the respondents' information is used.Mare (1994) proposed analyzing data on school transitions by meansof discrete-time hazard models. As in the analyses of Mare, the timeaxis is not formed by time or age, but by the qualitative stages of theschooling process. The actual amount of calendar time that it takes anindividual to get through a particular school level is assumed to be ir-relevant. The time axis or the respondent's schooling is classi�ed intothree levels: did not �nish high school, �nished high school, and com-pleted some post-secondary schooling. The event whose occurrence isexplained is dropping out of school, that is, not �nishing the next schoollevel, given that one has �nished the previous level. Dropping out mayeither occur after �nishing primary school or after �nishing high school.Mare used one observed covariate, the educational level of the father ofthe respondent which is measured in �ve categories (0-8, 0-11,12,13-15and � 16 years). In the application presented by Mare, a latent covariatewas used in a simultaneous analysis of respondents' and brothers' schooltransitions. Here, we demonstrate how to incorporate a latent covariateinto a discrete-time logit model for a single event.Let A denote the observed covariate father's schooling and W theunobserved covariate. As in Example 1, two types of speci�cations areused for the relationship between the observed and unobserved covariate.The unobserved covariate, denoted by W , may be either independent ofor dependent on A. If it is dependent, the relationship is restricted tolinear-by-linear because otherwise the model is not identi�able.In its most general form, the discrete-time logit model which is usedequals
�(tlja;w) = exp �v + vAa + vWw + vLl + vALal + vWLwl �1 + exp �v + vAa + vWw + vLl + vALal + vWLwl � :Here, �(tlja;w) denotes the probability of dropping out of school at thelth school level, given an individual's scores on A and W .Because of identi�cation problems it is not always possible to includeall the hazard parameters (v's) in the model at once. To identify themodel parameters when W is included in the model, both vALal and vWLwlmust be assumed to be equal to zero for all a, w, and l. In other words,the covariate e�ects on the probability of dropping out must be assumedto be proportional. As will be demonstrated later on, these restrictions



Table 5.4: Test results for the estimated models for respondents droppingout of school
Model L2 # parameters df p
1. no covariates 4195.36 7 8 .0000
2. A proportional 175.72 11 4 .0000
3. A nonproportional 0.00 15 0 -
4. Model 2 + 2 class 16.59 13 2 .0002
5. Model 2 + mover-stayer 17.30 12 3 .0006

are not necessary when the respondent's and brother's schooling historiesare analyzed simultaneously.The discrete-time event history data for this example can be orga-nized into a contingency table format because the length of the observa-tion period is the same for all individuals and because all covariates arecategorical. This makes it possible to test the �t of the models by meansof the Pearson's and the likelihood-ratio chi-square statistics. Therefore,L2 values and number of degrees of freedom are presented instead of log-likelihood values and number of parameters.
Results Table 5.4 presents the test results for the models which are es-timated with the respondents schooling data. Models 1, 2, and 3 do notinclude unobserved heterogeneity. In Model 1, it is assumed that A has noe�ect on the probability of dropping out, in other words, it contains onlythe main e�ect v. This model �ts very badly (L2 = 4195:36; df = 8; p =:000). In Model 2, the e�ect of fathers' education (A) on the rate of drop-ping out of school (vAa ) is included and in Model 3, this e�ect is allowedto be nonproportional, which involves including vALal . The conditional L2tests between the three models without unobserved heterogeneity showthat both the main e�ect of fathers' educational level on the probabilityof dropping out (L21j2 = 4019:64; df = 4; p = :000) and the interactionof fathers' education with duration (L22j3 = 175:72; df = 4; p = :000)are highly signi�cant. Thus, only the saturated model �ts the data well.However, as demonstrated in section 4.6, this nonproportionality can alsobe caused by unobserved heterogeneity.Model 4 is a proportional hazard model with a two-class latent co-variate which is independent of A. Although its absolute �t is not perfect



Table 5.5: Parameter estimates for some models for respondents droppingout of school
Model 1 Model 4 Model 5

discrete-time logit parameters
v -0.8257 -2.2685 -0.5212
vA1 1.1677 1.6060 1.5700
vA2 0.8261 1.1093 1.0821
vA3 -0.0300 -0.1537 -0.1505
vA4 -0.6639 -0.9207 -0.8977
vA5 -1.2999 -1.6409 -1.6039
vL1 -0.5062 -0.8969 -0.8692
vL2 0.5062 0.8969 0.8692
vW1 1.8251 0.0000
vW2 -1.8251 �1
latent proportions
�W1 0.8327 0.8749
�W2 0.1673 0.1251

(L2 = 16:59; df = 2; p < :0003), it �ts much better than Model 2, usingonly two additional parameters. Model 4 can be simpli�ed by imposinga mover-stayer structure on the e�ect of the latent variable, that is, byrestricting the hazard parameter for one class to be equal to �1. The �tof the mover-stayer model (Model 5) is not worse than the unrestrictedtwo-class model (L2 = 17:30; df = 3; p < :0006). It should be noted thatalthough Model 5 does not describe the data perfectly, it performs quitewell if the huge sample size (18563 cases) is taken into account. Finally, alinear-by-linear e�ect of A on W was included in the mover-stayer model(Model 6). The conditional test between Models 5 and 6 shows that thise�ect of A on W is not signi�cant (L25j6 = 1:65; df = 1; p > :19).Table 5.5 reports the parameter estimates for three di�erent propor-tional hazard models. As in Example 1, the e�ect of the observed co-variate becomes somewhat stronger after correcting for unobserved het-erogeneity. Not surprisingly, correcting for unobserved heterogeneity alsoincreases the positive duration dependence. The hazard parameters ofthe mover-stayer model (Model 5) and the unrestricted two-class model(Model 4) are very similar. In the mover-stayer model, one group con-taining 12:5 percent of the respondents is identi�ed having a dropout



probability of zero. The other 87:5 percent have a `mean' probability ofdropping out of .20 (= exp(�:5212 � :8692)=(1 + exp(�:5212 � :8692)))and .59 (= exp(�:5212 + :8692)=(1 + exp(�:5212 + :8692))) at the �rstand second school level, respectively.The example on school transitions demonstrated that a more par-simonious description of the data can be obtained when correcting forunobserved heterogeneity. Instead of assuming a nonproportional e�ectof father's education on the probability of dropping out at a particularschool level, the data could be described almost as well by means of amover-stayer model which contained only one parameter more than aproportional model without heterogeneity.
5.2.5 Dependent competing risksAs mentioned in section 4.7, the latent variable techniques can also beused to model conditional dependence among di�erent types of events.Dependence among competing risks can be modelled either by allowingthe di�erent types of events to depend on the same unobserved factor orby specifying event- or risk-speci�c unobserved factors which are allowedto be related to one another. Below an example is presented in whichthe events becoming employed and leaving the labor force are treatedas competing risks for individuals who are unemployed (Example 3). Adiscrete-time logit model with a latent covariate is used to capture thedependence between these two transitions. In a second example (Example4), the �rst birth example discussed in subsection 5.2.4 is extended bytreating censoring as a dependent competing risk, in other words, byrelaxing the independent censoring assumption.
Example 3: Transition from unemployed to employed or out ofthe labor forceData and models This example investigates the determinants of theprocess of leaving the state of `unemployed', with destination states `em-ployed' and `out of the labor force' being treated as competing risks. Itseems unrealistic to assume that, even given covariate values, becomingemployed and leaving the labor market are independent events. Certainly,there will be unobserved individual factors in
uencing both the probabil-ity of �nding employment and of leaving the labor force. This example is



used to show how to take possible dependencies among competing risksinto account by means of the general latent variable approach introducedin subsection 5.2.2.The data are taken from the well-known `Survey of Income and Pro-gram Participation' (SIPP). This survey is a panel study in which everythree months information is gathered on the respondents' employmenthistories during the preceding three months. The information which isused for this example is obtained from a group of individuals who werefollowed during the years 1986 and 1987. Not all available employmentinformation is used, only a person's employment status in the middle ofthe month before the interview. For the group of individuals concerned,complete information is available for 6 points in time for 4,597 people.Section 5.4 shows how the partially observed employment histories canalso be used for parameter estimation.To analyze the transition from unemployed to either employed or outof the labor force, the �rst unemployment spell is selected for each personin the sample. Of course, it would also be possible to use all unemploy-ment spells. In that case, the dependencies among the spells have to betaken into account, which is the subject of the next subsection. For thisexample, in which the problem of dependencies among competing risks isthe central issue, it is su�cient to use only the �rst unemployment spellfor each individual. In total, 535 persons were either unemployed at thebeginning of the observation period or became unemployed during the ob-servation period. These 535 persons form the risk set for the competingevents of interest.The discrete-time logit model which is used contains three observedcovariates: sex (male, female), ethnic group (non-black, black), and ageat the beginning of the observation period or cohort (47-66, 27-46, < 27).The age group above 66 years is not used in the analysis, because onlyvery few of them belonged to the risk set of unemployed persons. Theobserved covariates are denoted by A, B and C, respectively. Also anunobserved covariate is included in the model to take unobserved riskfactors into account. As in the examples presented above, this latentcovariate, denoted by W , can be either independent of or dependent onthe observed covariates.For simplicity of exposition, the event- or risk-speci�c transition prob-abilities are assumed to be constant over time. Note that if these proba-bilities depend on some time dimension which is unknown as a result of



left censoring, such as the length of the current unemployment spell, itis only possible to perform the analysis correctly if there is some exter-nal information on the distribution of the time of entry into the risk set(see section 4.5). Of course, it would have been possible to postulate therisk-speci�c transition probabilities as dependent on some known timedimension, such as age or calendar time.The most general model which is used for destination state d is givenby
�d(tlja; b; c; w) = exp �vDd + vADad + vBDbd + vCDcd + vWDwd �1 +Pd exp �vDd + vADad + vBDbd + vCDcd + vWDwd � : (5.10)If D = 1, the event is �nding a job, and if D = 2, the event is leaving thelabor force. The fact that this model does contain the one-variable e�ectsfor A, B, C, andW does not mean that it is a non-hierarchical model. Asexplained in section 4.8, the two-variable e�ects vADad , vBDbd , vCDcd , and vWDwdare parameterized in such a way that they can be directly interpreted asthe risk-speci�c covariate e�ects.8 Note that the model represented inEquation 5.10 is already a restricted model since many interactions areexcluded from it. Of course, it is possible to specify models which contain,for instance, three-variable interaction terms, such as vACDacd .

Results The test result for the estimated models are given in Table 5.6.Model 1 contains only the main e�ect vDd , and Model 2a also contains thetwo-variable interactions vADad , vBDbd , and vCDcd . By comparing these twomodels without unobserved heterogeneity, it can be seen that the ob-served covariates have a signi�cant e�ect on the probability of leavingunemployment (L21j2 = 54:8; df = 8; p < :0001). Although not demon-strated here, separate tests for sex, ethnic group, and age show that allthree variables have a signi�cant e�ect on both transition probabilities.Models 2b-3b contain a latent variable which is postulated to be in-dependent of the observed covariates. By comparing the log-likelihoodvalues of Models 2a, 2b, and 2c, it can be seen that the two-class solution(Model 2b) captures almost all unobserved heterogeneity. The decrease
8The parameters vADad , for instance, can be interpreted as the e�ect of A on theprobability of the occurrence of event d at tl if Pa vADad = 0. In other words, theidentifying restriction which is used is that the two-variable terms sum to zero withineach level of D.



Table 5.6: Test results for the estimated competing risks models for leav-ing the state of unemployment
Model log-likelihood # parameters
1. no covariates -1930.59 15
2a. 1 class -1903.19 23
2b. 2 class -1891.94 26
2c. 3 class -1891.29 29
3a. 1 stayer + 1 mover -1899.77 24
3b. 1 stayer + 2 movers -1891.99 27
4a. 2 class + AW;BW;CW -1886.16 30
4b. 2 class + linear AW;BW;CW -1890.91 29
4c. 3 class + AW;BW;CW -1880.15 37
4d. 3 class + linear AW;BW;CW -1883.93 32

of the log-likelihood by including a third latent class (Model 2c) is negligi-ble. The likelihood values of the mover-stayer models9 indicate that boththe model with one class of movers (Model 3a) and the model with twoclasses of movers (Model 3b) detect unobserved heterogeneity. However,the �t of Model 3b is almost identical to the �t of Model 2b. This iscaused by the fact that in Model 3b, the estimated probability of belong-ing to the class of stayers is almost zero, which makes it almost identicalto the two-class model.In Models 4a-4d the assumption that the unobserved heterogeneitymodels is independent of the observed covariates is relaxed by includingdirect e�ects of A, B, and C onW in the model. Both the two-class model(Model 4a) and the three-class model (Model 4c) improve signi�cantly byincluding these additional e�ects (L22bj4a = 11:6; df = 5; p > 0:05 andL22cj4b = 19:0; df = 8; p < 0:02). When linear-by-linear e�ects are usedinstead of unrestricted two-variable e�ects the situation changes slightly.In that case, only the three-class model (Model 4d) performs well.Table 5.7 reports the parameter estimates for Models 2a, 2b, and4a. The comparison between the no unobserved heterogeneity model(Model 2a) and the two-class `independent' unobserved heterogeneitymodel (Model 2b) with respect to the e�ects of the observed covariates
9The mover-stayer models (Models 3a and 3b) are obtained by �xing one vWDwdparameter to �1 within each level of D.



Table 5.7: Parameter estimates for some competing risks models for leav-ing the state of unemployment
Model 2a Model 2b Model 4a

transition to employed (D = 1)
v -0.1071 -0.1249 0.2993
vA1 ;�v

A
2 -0.2471 -0.2738 0.1905

vB1 ;�v
B
2 0.4448 0.5933 0.4303

vC1 -0.4726 -0.5936 0.8642
vC2 0.1576 0.2092 -2.3748
vC3 0.3150 0.3845 1.5106
vW1 ;�vW2 -1.2766 -2.4741
transition out of the labor force (D = 2)
v -0.1577 0.0194 0.2347
vA1 ;�v

A
2 -0.4499 -0.4641 -0.3734

vB1 ;�v
B
2 -0.1174 -0.0609 -0.1261

vC1 -0.0717 -0.1140 0.5332
vC2 -0.1356 -0.1318 -1.3419
vC3 0.2072 0.2458 0.8086
vW1 ;�vW2 -0.5262 -1.0502
latent proportions
�W1 0.4142 0.4550
�W2 0.5858 0.5450
e�ects of A, B and C on W
uAW11 ;�uAW21 ;�uAW12 ; uAW22 -0.4301
uBW11 ;�uBW21 ;�uBW12 ; uBW22 0.1737
uCW11 ;�uCW12 -0.9073
uCW21 ;�uCW22 1.4872
uCW31 ;�uCW32 -0.5799



on the event-speci�c transition probabilities shows that, as in the previ-ous examples, most e�ects become slightly stronger by correcting for theunmeasured risk factor. The only exception is the e�ect of C on the prob-ability of leaving the labor force at tl. Furthermore, the parameters ofModel 2b show that the unobserved risk factors for the two kinds of eventsare strongly positively related. Both the risk of becoming employed andthe risks of leaving the labor force is much higher for the second classthan for the �rst class.The parameter estimates of the competing-risk model di�er a greatdeal between the `dependent' two-class model (Model 4a) and Model 2b.First, it must be noted that, as in Example 1, the e�ects of the latentvariable become much stronger when the latent covariate is related to theobserved covariates. The e�ects of age (C) on the risk-speci�c transi-tion probabilities are in
uenced most strongly by this speci�cation of theunobserved factor. This is not surprising when one considers the directe�ects of the observed covariates on the latent covariate. Persons withC = 2 have a much higher probability of belonging to the low-risk class.This e�ect is partially compensated by a higher transition probability forC = 2. The same kind of compensation occurs for the e�ect of sex onthe rate of becoming employed. After controlling for `dependent' unob-served heterogeneity, the e�ect of sex on the rate of becoming employedchanges its sign: Women have a higher risk of �nding a job than men.But, women have, at the same time, a lower probability of belonging tothe latent class with the highest risk of becoming employed than men.As in Example 1, this shows that the results are strongly in
uencedby the speci�cation that is used for the nature of the unobserved het-erogeneity. It should be noted that besides assuming the unobservedheterogeneity to be independent of all the observed covariates or to bedependent on all the observed covariates, there are many other possiblespeci�cations. For instance, W could be assumed to depend on age (C)but not on sex (A) and ethnic group (B). Theoretical considerations mustdetermine which of the possible speci�cations should be preferred.
Example 4: Timing of the �rst birth with dependent censoringWhen discussing the example on �rst births (Example 1), the censoringmechanism was assumed to be conditionally independent of the processunder study. In other words, it was assumed that there are no unobserved



Table 5.8: Test results for the estimated models for the timing of the �rstbirth in which censoring is treated as a competing risk
Model log-likelihood # parameters
1. 1 class -4753.33 65
2. 2 class -4749.50 68
3. 3 class -4748.99 71
4. 4 class -4748.99 74

risk factors in
uencing both censoring and the occurrence of an event. Ofcourse, assuming independent censoring is the usual way of performingsuch an analysis. However, by treating censoring as a competing risk,it is possible to test the independent censoring assumption. That is, wecan investigate whether there are common unobserved risk factors forcensoring and the occurrence of a �rst birth.For this example, the same ORIN data as in the example on �rst birthsdiscussed above is used. For simplicity of exposition, the latent variableis assumed to be independent of the observed covariates. In Example1, the possibility of relaxing this assumption was discussed. The hazardmodel is similar to Cox's proportional hazard model in that the covariatee�ects are assumed to be proportional and the time dependencies of theprocesses concerned is not restricted. This gives the following log-ratemodel:
hd(zja; b; w) = mabwzdEabwz = exp �vDd + vADad + vBDbd + vWDwd + vZDzd � :

The event is a �rst birth if D = 1 and censoring if D = 2. The sameidentifying restrictions are imposed on the two-variable parameters as inthe preceding example.The test result given in Table 5.8 show that a two-class solution(Model 2) su�ces in describing the unobserved heterogeneity in the com-peting risks, �rst birth and censoring. Table 5.9 presents the parameterestimates for the model without an unobserved heterogeneity component(Model 1) and the two-class model (Model 2). The opposite sign of thehazard parameters of the latent variable W for �rst birth and for cen-soring indicates that there is a (weak) negative dependence between thecompeting risks, �rst birth and censoring. Women belonging to the classwith a lower risk of having a �rst child run a bit higher risk of being cen-



Table 5.9: Parameter estimates for two models for the timing of the �rstbirth in which censoring is treated as a competing risk
Model 1 Model 2

�rst birth censoring �rst birth censoring
(D = 1) (D = 2) (D = 1) (D = 2)

log-rate parameters
v -2.9806 -2.8914 -2.4921 -3.0160
vA1 0.5552 -0.7024 0.8716 -0.7248
vA2 0.3019 0.0471 0.4670 0.0305
vA3 -0.0246 0.2875 -0.0417 0.2848
vA4 -0.8325 0.3678 -1.2970 0.4096
vB1 0.3054 -0.0830 0.4078 -0.0951
vB2 -0.0831 -0.0136 -0.1467 -0.0047
vB3 -0.2222 0.0966 -0.2611 0.0997
vW1 -1.0649 0.1565
vW2 1.0649 -0.1565
latent proportions
�W1 0.6301
�W2 0.3699

sored. The parameter estimates for the two-class model are very similarto the ones for Model 2b in Example 1 (see Table 5.3), where there wasno correction for dependencies between censoring and �rst birth. Appar-ently, the weak negative dependence between the occurrence of an eventand censoring does not in
uence the parameter estimates very much. Theonly di�erence of some importance is the small increase from 59:7 to 63:0percent of the size of the class with a lower risk of experiencing a �rstbirth. If the `event' censoring could be removed, that is, if there were nocensored observations, the hazard rate of having a �rst child would beslightly lower than the one that is currently observed.
5.2.6 Repeatable events and multiple-state processesThe two preceding subsections illustrated the use of the latent variableapproach to unobserved heterogeneity in situations in which each individ-ual can experience only one event. However, when events are repeatable,the problem of unobserved heterogeneity is even more serious. As demon-strated in section 4.8, in such a case unobserved heterogeneity may not



only introduce spurious time dependence and selection bias, but may alsolead to a violation of one of the principal assumptions on which the max-imum likelihood estimation of the model parameters is based, that is, theassumption that the di�erent events for one individual are independentgiven the covariates which are included in the hazard model.Fortunately, it is relatively easy to detect dependencies among dif-ferent spells for the same observational unit. When events are not re-peatable, the detection of omitted variables can be rather sensitive tomodel assumptions, such as proportionality of covariate e�ects, parame-terization of the time dependence, and speci�cation of the relationshipsbetween observed and unobserved covariates. Since in repeatable eventssituations it is generally plausible to assume that the unobserved risk fac-tors are the same for all events, there is much more information to identifyunobserved heterogeneity. More precisely, dependencies among observedsurvival times can be used to detect common unobserved risk factors.Actually, this is the same principle used in standard latent class modelsin which the relationships between the indicators are used to identify thelatent variables. As with latent class models where the indicators are as-sumed to be independent of one another given the latent variable(s), herethe spell-speci�c duration distributions are assumed to be independent ofone another after controlling for their common unobserved risk factor(s).Below, the modeling of dependencies among events is illustrated bymeans of an application to the timing of the �rst, second, and thirdbirth, and by means of an application to labor market transitions. Theformer application uses a log-rate model, the latter one a discrete-timelogit model.
Example 5: Timing of the �rst, second, and third birthData and model This example extends Example 1 on the timing ofthe �rst birth by simultaneously analyzing the occurrence or nonoccur-rence of the �rst, second, and third birth. For this purpose the sameORIN data is used. Although the parity-speci�c births can be seen asrepeatable events, it is implausible to assume that the parameters de-termining the three di�erent processes are the same. This means thatthe hazard parameters will almost certainly depend on the number ofprevious events, which is sometimes also called occurrence dependence(Heckman and Singer, 1985). Rather than seeing birth as a repeatable



event, it can be seen as a multiple-state process in which only particulartransitions are possible. More precisely, the only transitions which arepossible are forward transitions in which no parities are skipped. Sucha process in which individuals pass through di�erent stages is sometimesreferred to as a staging process (Chiang, 1984: Chapter 12; Willekens,1990).A special problem in analyzing repeatable events is the choice of thetime axis. In this example, the number of years after turning 18 is used asthe time variable for the �rst birth, while the duration since the previousbirth is used as the time variable for the second and third births. Usingsuch di�erent types of time variables is not problematic as long as onedoes not want to make the time dependency equal across spells. Insteadof, or in addition to duration, it would also have been possible to use,for instance, age and calendar time as additional time variables in thetransition-speci�c hazard models. Of course, in a more extended applica-tion it would be preferable to perform the analysis using di�erent kindsof time variables. For this illustrative example, however, it is su�cient toinclude one single type of time variable in the hazard model.The speci�cation that is used for the covariate part of the model is thesame as in Example 1 (see Equation 5.8). Apart from the latent variableW , the models contain two observed covariates: educational level (A) andfamilism (B). As in Example 1, three di�erent speci�cations are used forthe covariate part of the model, namely: models with an `independent'latent variable, models in which W depends on A and B, and models inwhich W is linearly related to A and B.For the hazard model only the simplest speci�cation is used, that is, aproportional hazard model in which there is a separate duration param-eter for each duration category. The log-rate model for the applicationconcerned is given by
hm(zja; b; w) = exp �vMm + vAMam + vBMbm + vWMwm + vZMzm � :

As in section 4.8, superscriptm of hm(zja; b; w) is used to denote a partic-ular spell. The variable indicating the spell number is denoted by M . Inthis case, 1 � m � 3, that is, the �rst, the second, or the third birth. Ascan be seen from the speci�cation of the log-linear parameters includedin the hazard model, the e�ects of A (education), B (familism), and Won the hazard rates are assumed to be unequal for the di�erent events.



Table 5.10: Test results for the estimated models for the timing of the�rst, second, and third births
Model log-likelihood # parameters
independent W
1a. 1 class -4734.89 73
1b. 2 class -4726.61 77
1c. 3 class -4723.75 81
1d. 4 class -4721.14 85
W related to A and B
2a. 2 class -4719.57 82
2b. 3 class -4711.61 91
2c. 4 class -4697.82 100
W linearly related to A and B
3a. 2 class -4724.75 79
3b. 3 class -4719.45 83
3c. 4 class -4715.71 87

Results Table 5.10 presents the test results for the models that areestimated. When the latent variable is assumed to be independent of theobserved covariates, each additional latent class leads to an increase inthe likelihood function (Models 1a-1d). It can be seen that the increasebecomes smaller for each next latent class. Again, the �t of the modelscan be greatly improved by including the unrestricted direct e�ects ofthe observed covariates on the latent variable W (Models 2a-2c). But,as in Example 1, these models are very unstable. Many di�erent sets ofstarting values were needed to obtain the solutions presented here, andmany local maxima were encountered. The linearly restricted `dependent'models are much more stable. Irrespective of the starting values, thesame solution was always obtained. In the two-class model (Model 3a),the linear e�ects of A and B on W are, however, not signi�cant (L21bj3a =3:7; df = 2; p > :15). On the other hand, the �t of the three- and four-classmodels (Models 3b and 3c) improves by including the linear e�ects of theobserved covariates on the latent variable: L21cj3b = 8:6; df = 2; p < :02;and L21dj3c = 10:9; df = 2; p < :005.The parameter estimates for Models 1a, 1b, and 3b are reported in Ta-ble 5.11. The parameter estimates for the model without an unobservedheterogeneity component (Model 1a) indicate that the e�ect of educa-



Table 5.11: Parameter estimates for some models for the timing of the�rst, second, and third birthsModel 1a Model 1b Model 3b�rst birth (M = 1)v -2.9806 -2.9832 -2.6088vA1 0.5552 0.5529 0.4193vA2 0.3019 0.3031 0.2851vA3 -0.0246 -0.0242 0.0239vA4 -0.8325 -0.8318 -0.7283vB1 0.3054 0.3061 0.6521vB2 -0.0831 -0.0837 0.0510vB3 -0.2222 -0.2224 -0.7030vW1 0.0300 1.1710vW2 -0.0300 -0.5202vW3 -0.6509second birth (M = 2)v -2.0748 -1.6604 -1.8450vA1 -0.0906 -0.1229 -0.0007vA2 0.1132 0.0845 0.1081vA3 -0.1612 -0.1751 -0.1820vA4 0.1386 0.2135 0.0746vB1 0.1659 0.1812 -0.1318vB2 -0.1229 -0.1151 0.0182vB3 -0.0430 -0.0661 0.1135vW1 -0.6420 0.0616vW2 0.6420 -0.6893vW3 0.6277third birth (M = 3)v -2.8524 -2.9053 -19.7604vA1 0.1725 0.2332 0.4364vA2 -0.1995 -0.2157 -0.2317vA3 -0.2866 -0.4344 -0.4589vA4 0.3137 0.4170 0.2542vB1 0.3422 0.4392 0.0371vB2 -0.0107 -0.0049 0.2704vB3 -0.3315 -0.4343 -0.3075vW1 -1.0010 17.5065vW2 1.0010 -35.3455vW3 17.8390latent proportions�W1 0.5468 0.1444�W2 0.4532 0.4645�W3 0.3911linear e�ects of A and B on W�AW 0.5550�BW -1.6538



tional level is strongest for the �rst birth and weakest for the secondbirth. The e�ect of the familism indicator is strongest for the third birthand weakest for the second birth. Including a two-class `independent'unobserved heterogeneity component in the model (Model 1b) slightlyincreases the hazard parameters of the observed covariates for the sec-ond and third births. The hazard parameters of the latent variable Windicate that the two-class latent variable captures the positive depen-dence between the second and the third event: Class one has both alower risk of a second birth and a lower risk of a third birth than classtwo. The two latent classes do not di�er with respect to the hazard ratefor the �rst birth. Seemingly, Model 2b does not capture the unobservedheterogeneity that was encountered in the example on the occurrence ornonoccurrence of the �rst birth. In Example 1, two latent classes wereidenti�ed which di�ered strongly with respect to the risk of the �rst birth.Although not demonstrated here, the `independent' three-class solution(Model 2c) detects the unobserved heterogeneity in the �rst birth. Inaddition, the hazard parameters for the �rst birth are similar to the onesof the `independent' two-class model in Example 1.The parameter estimates for the `linearly dependent' three-class model(Model 3b) are rather di�erent from the other two models. The �rst classconsists of women with a high risk of a �rst birth and a moderate riskof a second and third birth. Note that the strong positive e�ects ofW = 1 and W = 3 on the hazard rate of the third child is compensatedby the extremely low intercept. Class two has a low risk of a �rst anda second birth and an extremely low risk of a third birth. Class threehas a low risk of a �rst child, but a relatively high risk of a second andthird child. The direct e�ects of A and B on W indicate that thereis a strong positive relationship between educational level and W and astrong negative relationship between familism andW , where one has to beaware of the fact that familism is coded from familistic to non-familistic.Non-familistic women with a low education have the highest probabilityof belonging to class one, while highly educated familistic women havethe highest probability of belonging to class three. Compared to Model1b, the hazard parameters of the familism indicator for the �rst and thethird birth change most. The direct e�ect of B on the rate of the �rstbirth becomes much stronger. This works in the opposite direction to theindirect e�ect of B via W . The direct e�ect of B on the hazard rate ofthe third birth not only becomes somewhat smaller, but also the order



between the parameters for B = 1 and B = 2 reverses.
The example on the timing of the �rst, second, and third birth showedthat a substantial amount of unobserved heterogeneity may be detectedusing the dependencies among spells. Although the models in which thelatent variable was assumed to be related to the observed covariates �ttedsigni�cantly better than the model with an `independent' latent variable,there are several problems associated with the former type of model. Ifthe relationships between the observed covariates and the latent variableare not restricted, the models may become unstable. Another problemis that indirect e�ects of the observed covariates via the latent variableand direct e�ects of the observed covariates on the hazard rates maycompensate one another.
Example 6: Labor market transitionsThis example demonstrates how unobserved heterogeneity can be dealtwith when analyzing multiple-state data as in the case of labor markettransitions. In a particular period of time, individuals may move severaltimes through the states of employed, unemployed, and out of the laborforce. As in the preceding examples, the goal is not to build a modelthat explains as well as possible the processes that are going on in real-ity, but to demonstrate the 
exibility of the latent variable approach tounobserved heterogeneity which was introduced in subsection 5.2.2.
Data and model Example 6 uses the SIPP data which were intro-duced in Example 3. As in that example, information on a respondent'semployment status at six points in time with a mutual distance of threemonths is selected from the available 1986-1987 SIPP data. For the sakeof simplicity, only two di�erent states are distinguished: employed andnot employed, where not employed can be either unemployed or out ofthe labor force. The analysis presented below concerns the transitions be-tween these two states. The observed covariates race, sex, and age thatare used in the model for the transition probabilities are the same as inExample 3. The only di�erence is that now the information on the oldestage group is also used. As a result, there are four age/cohort categoriesinstead of three (> 66; 47� 66; 27� 46; < 27).The time dimension that is used in the discrete-time logit model is



calendar time. This means that the transition probabilities are assumednot to depend on the duration in a particular state. So, in fact, a discrete-time Markov model is used. When working with this kind of panel data,it is very di�cult to allow the transition probabilities to depend on dura-tion. The reason for this is that the observations are left-censored, whichmeans that no information is available on the time of entry into the stateoccupied at the time of the �rst interview (see section 4.5). Although theMarkov assumption also implies that the transition probabilities dependonly on the origin state at the time point concerned, this assumption caneasily be relaxed.Actually, the combined covariate model and discrete-time Markovmodel used to analyze the SIPP data is a modi�ed path model witha latent mixture variable, sometimes also referred to as a mixed Markovmodel (Poulsen, 1982; Van de Pol and Langeheine, 1990). The jointdistribution of the observed covariates (A, B, and C), the unobservedcovariate (W ), the initial state (S0), and the states occupied from T = 1up to T = 5 (S1; S2; S3; S4, and S5) can be written as
�abcws0s1s2s3s4s5 = �abc�wjabc�s0jabcw 5Y

l=1�sljabcwsl�1 ; (5.11)
If Sl = 1, an individual is employed at T = tl, and if Sl = 2, an individualis not employed at T = tl. Thus, if Sl�1 6= Sl, �sljabcwsl�1 is the probabilityof experiencing one of the possible transitions at the lth point in time.It can be seen that in the model represented in Equation 5.11, thelatent variable W capturing the unobserved heterogeneity is assumed tointervene between the observed covariates A, B, and C, and the depen-dent process of interest. In this particular situation, such a speci�cationseems to be the most logical one since it is more plausible that an individ-ual's sex, race, and age in
uence unobserved factors which are relevant foremployment transitions than the other way around. Possible interveningvariables which are not included in the model and which, as a result, mayintroduce unobserved heterogeneity are educational level, human capital,work-related attitudes, and position in the household in which one lives.The most general model that is used for �wjabc is

�wjabc = exp �uWw + uAWaw + uBWbw + uCWcw �Pw exp �uWw + uAWaw + uBWbw + uCWcw � : (5.12)



This means that in the `dependent' unobserved heterogeneity models,only the two-variable interaction terms between W and the observed co-variates are included. An `independent' unobserved heterogeneity modelis obtained by �xing the two-variable interactions uAWaw , uBWbw , and uCWcwto zero.From Equation 5.11, it can be seen that the state that an individualoccupies at T = 0 is included as one of the variables in the model. Thismakes it possible to specify a model for the relationship between theunobserved covariate and the initial state. Two speci�cations are used forthe relationship between S0 and W : models containing the two-variableinteraction term uWS0ws0 and models in which uWS0ws0 is �xed to zero. Therelationships between A, B, C, and S0 are not restricted.The model that is used for the transition probabilities is
�sljabcwsl�1 = (5.13)exp �vSlSl�1slsl�1 + vASlSl�1aslsl�1 + vBSlSl�1bslsl�1 + vCSlSl�1cslsl�1 + vWSlSl�1wslsl�1 �Psl exp �vSlSl�1slsl�1 + vASlSl�1aslsl�1 + vBSlSl�1bslsl�1 + vCSlSl�1cslsl�1 + vWSlSl�1wslsl�1 � ;where

vSlSl�1slsl�1 = vASlSl�1aslsl�1 = vBSlSl�1bslsl�1 = vCSlSl�1cslsl�1 = vWSlSl�1wslsl�1 = 0 if Sl = Sl�1:So, actually, the discrete-time logit model which is used to model the tran-sitions from state Sl�1 to state Sl is a modi�ed path model with modi�edpath steps of the form given in Equation 5.14. However, as demonstratedin subsection 4.8.4, to obtain the same parameter estimates as in thestandard discrete-time logit model, the v parameters cannot be identi-�ed by the usual ANOVA-like restrictions, but the v parameters in whichSl = Sl�1 must be �xed to zero. Within each level of Sl�1 the stay-ers are treated as reference category. These identifying restrictions giveparameters that can be interpreted as covariate e�ects on the transitionprobabilities rather than covariate e�ects on the probability that Sl = sl.In other words, the model consists of transition-speci�c main e�ects andcovariate e�ects for each l.The discrete-time logit model represented in Equation 5.14 is alreadya restricted model since it does not contain higher-order interaction termsinvolving more than one covariate. This does not mean, however, that it isnot possible to include these higher-order interaction terms in the model.



In addition, more restricted models can be speci�ed on the basis of thisone. For instance, a stationary Markov model is obtained by assumingboth the main e�ects and the covariate e�ects to be equal across timepoints. Moreover, a proportional model is obtained by assuming thecovariate e�ects to be equal across time points.10Because in the SIPP panel the observation period is the same for allpersons, and all the covariates included in the model are categorical, thedata can be organized into a contingency table. This makes it possibleto test the �t of the estimated models by means of the likelihood-ratiochi-square statistic L2.
Testing Table 5.12 presents the test results for the models that areestimated using the SIPP data. Models 1a and 1b are without covariatee�ects. Models 2a-2e contain the e�ects of the observed covariates andof the unobserved covariate, which is assumed to be independent of boththe initial position and the observed covariates. In Models 3a-3g, theunobserved heterogeneity is assumed to be related to the initial position,and in Models 4a-4d, it is assumed to be related to both the initial positionand the observed covariates.The stationarity assumption can be tested by comparing the station-ary and nonstationary models without covariates (Models 1a and 1b).The conditional test of Model 1a against Model 1b indicates that, al-though the nonstationary model �ts signi�cantly better than the station-ary model (L21aj1b = 41:6; df = 8; p < :001), the �t does not improve verymuch by assuming nonstationarity, especially if one compares it withthe improvement of the �t that occurs by including the e�ects of theobserved covariates on the two transition probabilities in the stationarymodel (Model 2a). The conditional test between Models 1a and 2a showsthat the L2 value falls from 3390:6 to 1919:8 using only 10 degrees offreedom. Therefore, for the sake of simplicity, in all the other models theMarkov process is assumed to be stationary.The test results for the `independent' unobserved heterogeneity mod-els (Models 2b-2e) show that there is a large improvement of L2 when alatent covariate is included. Compared to 2a, the two-class model has an

10Assuming parameters to be equal across time points involves restricting parametersto be equal across modi�ed path steps. Appendix E.3 explains how to estimate modelswith such restrictions.



Table 5.12: Test results for the estimated models for the transitions be-tween employed and not employed
Model L2 # parameters df p
no covariates
1a. stationary 3390.59 34 990 0.000
1b. nonstationary 3349.01 42 982 0.000
independent W
2a. 1 class 1919.82 44 980 0.000
2b. 2 class 1198.27 47 977 0.000
2c. 3 class 1116.78 50 974 0.001
2d. 4 class 1101.91 53 971 0.002
2e. 5 class 1077.53 56 968 0.008
W related to S0
3a. 2 stayer + 1 mover 1573.99 46 978 0.000
3b. 2 stayer + 2 mover 1098.98 50 974 0.003
3c. 2 stayer + 3 mover 963.86 54 970 0.550
3d. 2 stayer + 4 mover 945.33 58 966 0.677
3e. 2 class 1183.44 48 976 0.000
3f. 3 class 964.59 52 972 0.561
3g. 4 class 945.54 56 968 0.691
W related to S0, A , B and C
4a. 2 class 1088.26 53 971 0.005
4b. 3 class 859.66 62 962 0.992
4c. 4 class 801.40 71 953 1.000
4d. 2*2 class 915.34 61 963 0.862



L2 value more than 700 points lower using only three additional param-eters. Also, the third class captures a substantial amount of unobservedheterogeneity. Even after including a �fth class (Model 2e) the L2 valuegoes down. Apparently, there is a substantial amount of unobserved het-erogeneity in the data.It seems implausible to assume that the unobserved risk factors in
u-ence the transition probabilities, or equivalently, the states occupied fromT = t1 to T = t5, but not the state occupied at T = t0. Therefore, adirect e�ect of W on S0 is included in the model (Models 3a-3g). Includ-ing such an e�ect makes it possible to specify a mover-stayer structureas proposed by Wrigley (1990), that is, a model with one class of stay-ers for every origin state. Models 3a-3d are models with two classes ofstayers, one for the state employed and one for the state not employed,while Models 3e-3g are unrestricted. As in the example on the transitionout of the state of unemployment (Example 3), the mover-stayer modelsbecome almost equal to the non-restricted models if the number of classesincreases. This is caused by the fact that the latent proportions in theclasses of stayers become rather small very quickly. In this example, theunrestricted three-class model (Model 3e) �ts as well as the model withtwo classes of stayers and three classes of movers (Model 3c), and thefour-class model (Model 3f) �ts as well as the model with two classes ofstayers and four classes of movers (Model 3d). It has to be concluded thatin this particular situation the mover-stayer structure does not functionvery well.Comparison of Model 3e with Model 2b shows that the �t of the two-class model does not improve as much as one would expect by includinga direct e�ect of W on S0 (L22bj3e = 14:83; df = 1; p < :001). On the otherhand, the three- and four-class models improve a great deal. This can beseen by comparing Model 3f with Model 2c (L22cj3f = 152:19; df = 2; p =:000) and Model 3g with Model 2d (L22cj3g = 156:38; df = 3; p = :000).As in the previous examples, it is possible to relax the assumption thatthe unobserved heterogeneity is independent of the observed heterogene-ity. This can be accomplished by including direct e�ects of the observedcovariates on the latent variable in models as described in Equation 5.12.The test results of Models 4a-4c compared with those of Models 3e-3gindicate that inclusion of the two-variable interactions uAWaw , uBWbw , anduCWcw greatly improves the �t, irrespective of the number of latent classes:



L23ej4a = 95:18; df = 5; p = :000; L23f j4b = 104:93; df = 10; p = :000; andL23gj4c = 144:54; df = 15; p = :000. Here, the linear-by-linear model isnot used because two covariates are dichotomous and the third covariate,age, cannot be expected to have a linear e�ect on W .The models presented so far contained one latent variable in
uencingboth the transition from employed to not employed and the transitionfrom not employed to employed. So, in fact, it was assumed that theunobserved risk factors are the same for both transitions. Whether theunobserved factors which in
uence the two transition probabilities are thesame or not can be tested by using a speci�cation with two latent vari-ables, each of which is assumed to in
uence one of the two transitions.Model 4d contains two related dichotomous latent variables, one in
uenc-ing the transition from employed to not employed and one in
uencing thetransition from not employed to employed. Although the �t of Model 4dis better than the two-class model with only one latent variable (Model4a), it is much worse than that of Model 4b, which has almost the samenumber of parameters as Model 4d. So, assuming origin state-speci�clatent variables does not lead to a simpler and better �tting model.
Parameters Table 5.13 reports the parameter estimates for Model 2aand for three variants of the well-performing three-class model (Models 2c,3f, and 4b). In the model without unobserved heterogeneity (Model 2a),females, blacks, and persons belonging to the oldest and the youngest agegroups have the highest risk of experiencing a transition from employedto not employed. On the other hand, males, non-blacks, and personsbelonging to the two youngest age groups have the highest risk of movingfrom not employed to employed.In Model 2c, most parameter estimates are somewhat more extremethan those in Model 2a. This is the same result as in the other exampleswith an `independent' latent variable. The e�ects of the latent variable onthe transition probabilities indicate that the largest class, containing 61percent of the population, consists of persons with a low risk of becomingnot employed and a low risk of �nding a job after becoming not employed.Actually, it is a class of stayers in either the position employed or theposition not employed. The �rst class, with a latent proportion of 29percent, consists of persons with a high risk of becoming not employedand a moderate risk of becoming employed. And �nally, the smallest class



Table 5.13: Parameter estimates for some models for the transitions be-tween employed and not employedModel 2a Model 2c Model 3f Model 4bemployed to not employed (Sl�1 = 1 and Sl = 2)v -2.2322 -3.4195 -1.8300 -1.7077vA1 ;�vA2 -0.1387 -0.1848 -0.2434 -0.2183vB1 ;�vB2 -0.2015 -0.1978 -0.2977 -0.1289vC1 0.4350 0.2213 0.6636 1.2675vC2 -0.3295 -0.2811 -0.1445 0.0698vC3 -0.6525 -0.6561 -0.9430 -0.8746vC4 0.5470 0.7158 0.4239 -0.4627vW1 2.4825 2.0276 2.2000vW2 1.8466 0.0519 -0.4863vW3 -4.3291 -1.9757 -1.7137not employed to employed (Sl�1 = 2 and Sl = 1)v -2.5460 -2.0755 -2.3941 -1.7470vA1 ;�vA2 0.2657 0.2190 0.3040 0.2757vB1 ;�vB2 0.2741 0.3244 0.3334 0.3763vC1 -2.3389 -3.3943 -3.6445 -1.2043vC2 -0.2172 -0.1899 -0.3652 -0.6219vC3 1.1196 1.6259 1.7978 1.1606vC4 1.4365 1.9583 2.2119 -0.6656vW1 -0.5004 -0.4788 0.0620vW2 3.0430 2.7974 2.5858vW3 -2.5426 -2.3186 -2.5478latent proportions�W1 0.2919 0.1876 0.1357�W2 0.1000 0.2168 0.2620�W3 0.6081 0.5956 0.6023e�ects of observed covariates on WuAW11 ;�uAW21 -0.0140uAW12 ;�uAW22 0.0413uAW13 ;�uAW23 -0.0273uBW11 ;�uBW21 -0.2457uBW12 ;�uBW22 0.1898uBW13 ;�uBW23 0.0559uCW11 -14.5024uCW21 4.2171uCW31 4.6044uCW41 5.6809uCW12 6.0965uCW22 -2.0766uCW32 -2.0003uCW42 -2.0195uCW13 8.4059uCW23 -2.1405uCW33 -2.6040uCW43 -3.6614e�ect of W on initial position (S0)uWS011 ;�uWS012 -0.7375 -0.7313uWS021 ;�uWS022 0.6070 0.6988uWS031 ;�uWS032 0.1304 0.0325



is a class of frequent movers, that is, persons that have both a high riskof becoming not employed and a high risk of �nding a job.In Model 3f, the latent variable was allowed not only to in
uence thetransition probabilities but also the initial position; in other words, Wwas allowed to have an indirect e�ect on the states occupied after T = t0via the value of S0. As can be seen, this slightly increases the e�ects of theobserved covariates on the transition probabilities. The e�ect ofW on theinitial position indicates that persons belonging to the �rst class have arelatively high probability of starting in the position not employed, whilepersons belonging to the second class have a relatively high probabilityof starting in the position employed. Apparently, these unequal initialpositions of persons belonging to the di�erent latent classes have twoconsequences. First, the latent distribution changes considerably, andsecond, the e�ect of the latent variable becomes less strong. The �rstclass now has a much higher risk of becoming not employed than theother two groups, and although the risk of becoming not employed forthe third class is not so low any more as in Model 2a, it is still muchlower than for the other two classes. The e�ect of W on the transitionfrom employed to not employed does not change very much.The parameter estimates for Model 4b indicate that including di-rect e�ects of the observed covariates on the latent variable W has thestrongest impact on the age e�ect. This is not surprising given the es-timates for the e�ects of A, B, and C on W . Sex (A) has no e�ect ona person's score on W . Non-blacks (B = 1) have a somewhat higherprobability of belonging to class two, while blacks (B = 2) have a higherprobability of belonging to class one. The e�ect of C on W is extreme,however. Persons belonging to the oldest age group (C = 1) never belongto class one, and have the highest probability of belonging to class three,which is the class with a very low probability of becoming employed. Thisis caused by the fact that almost all persons over 66 years of age are retiredand, therefore, stay out of the labor force. After controlling for W , thee�ect for the oldest category on the probability of becoming not employedincreases because the persons that are still employed have a high risk ofbecoming not employed, or more precisely, of leaving the labor force as aresult of retirement. In fact, this compensates for the negative e�ect ofbelonging to class three on the transition concerned. On the other hand,the e�ect on the probability of becoming employed decreases since thelower probabilities are partially captured by means of an increased mem-



bership of class three. Also, the parameters for the youngest age group(C = 4) change a great deal when one compares Model 4b with Model 3f.Note that the youngest people have a relatively high probability of be-longing to class one and a relatively low probability of belonging to classthree. So, after controlling for the fact that persons under 27 years ofage have a higher probability of belonging to the class with a high risk ofbecoming not employed, the e�ect of C = 4 on the transition probabilityconcerned decreases. Equivalently, the e�ect of C = 4 on the probabilityof becoming employed decreases because the younger persons belong toeither the moderate or the high-risk class for �nding a job.This example demonstrates the importance of correcting for unob-served heterogeneity when analyzing multiple-state data. The `indepen-dent' unobserved heterogeneity models detected a substantial amount ofinterdependence between the di�erent spells of one individual. In addi-tion, it was shown that the latent variable approach which is proposedhere is very 
exible: Several speci�cations can be used for the latentvariable capturing unobserved heterogeneity. Besides the standard `inde-pendent' unobserved heterogeneity speci�cation, the latent variable cap-turing the unobserved heterogeneity may be related to both the observedcovariates and the initial position. Moreover, models with several mutu-ally related latent variables can be speci�ed. It was shown that the resultsmay be strongly in
uenced by the speci�cation which is chosen. Thisillustrates that substantive arguments must guide the choice of modelspeci�cation.
5.2.7 Dependent or clustered observationsAs demonstrated in section 4.8, not only models for repeatable events andmultiple-state processes, but also models for dependent or clustered ob-servations belong to the family of multivariate hazard models. Clusteredsurvival data occurs in many situations. Instances of clustered data areobservations of members of the same household, observations of spousesor brothers, observations of di�erent parts of the body of one individualor animal in medical trials, observations of di�erent parts of a machine,etc. Repeatable events can also be seen as a speci�c form of clusteredobservations since, in that case, there are several observations of the sameindividual too. Like repeatable events, clustered survival times can gen-erally not be treated as independent observations, even after controlling



for the observed covariates which are included in the hazard model. Thereason for this is that there will be unobserved heterogeneity which theobservations belonging to the same cluster have in common.This subsection demonstrates how to use the general latent variablesapproach to unobserved heterogeneity when analyzing bivariate survivaldata. For this purpose, Example 2 (on dropping out of school) is ex-tended: the respondents' school careers as well as the school careers oftheir brothers are analyzed. Although the example concerns a situationin which each cluster consists of exactly two observations, the approachused here can also be applied when clusters contain more than two ob-servations, possibly with clusters of unequal sizes.
Example 7: School transitions of brothersData and model The example of respondents' school careers (Exam-ple 2) is extended by analyzing simultaneously the school histories ofrespondents and their brothers. As mentioned above, Mare (1994) usedthe data on the schooling of brothers to demonstrate how to use a latentclass approach to detect dependencies between survival times when ob-servations are dependent or clustered. The model proposed by Mare isa special case of the hazard model with unobserved heterogeneity whichwas presented in subsection 5.2.2. Mare speci�ed a bivariate discrete-time logit model with a dichotomous `independent' latent variable whichwas assumed to have a proportional and equal e�ect on respondents' andtheir oldest brothers' probabilities of dropping out of school.11Here, part of Mare's analysis is repeated, but also several types of ex-tensions are presented which lead to models �tting much better than thelatent class models presented by Mare. In addition, it is demonstratedthat the discrete-time event history model proposed by Mare can be spec-i�ed in a much easier and e�cient way when it is treated as a modi�edpath model with latent variables.Apart from the observed covariate father's education denoted by A,the bivariate discrete-time logit model contains two latent variables Wand Y denoting the unobserved respondent's (W ) and brother's (Y ) fac-tors in
uencing the risk of dropping out of school, where W and Y are

11Information is available on the school careers of respondents and their oldest broth-ers. It should be noted that a respondent's oldest brother is not necessarily older thanthe respondent.



assumed to be associated with each other. As in the previous examples,the unobserved variables are assumed to be intervening variables. Thisimplies that, in the covariate part of the model, a model has to be speci-�ed for �wyja. The most general model that is used for �wyja is
�wyja = exp �uWw + uYy + uAWaw + uAYay + uWYwy �Pwy exp �uWw + uYy + uAWaw + uAYay + uWYwy � : (5.14)

It can be seen that the three-variable interaction term uAWYawy is assumedto be zero.Several kinds of speci�cations can be obtained by restricting the two-variable interactions appearing in the model described in Equation 5.14.The latent variables can either be assumed to be independent of or de-pendent on A. When they are independent of A, all uAWaw and uAYay pa-rameters must be �xed to zero. Dependence ofW and Y on A is modeledby means of linear-by-linear interaction terms. This speci�cation is usedbecause it forces the e�ects of the ordinal variable father's education onthe intervening unobserved factors to have systematic patterns.In the discussion below, the relationship betweenW and Y is modeledin several ways. The simplest one is to assume all nondiagonal elementsof the conditional distribution of WY given A to be empty,
�wyja = 0 if w 6= y ; (5.15)

that is, to assume all uWYwy terms in which w 6= y to be equal to �1.This boils down to assuming that the unobserved factors in
uencing therisk of dropping out of school are the same for respondents and brothers.In other words, W and Y are actually identical, and it is more e�cientthen to use only one latent variable instead of two.Other possible speci�cations of the conditional distribution of W andY given A are symmetry and quasi-symmetry. A symmetry model isobtained by restricting
uWYwy = uWYyw and uWw = uYy ; (5.16)

and quasi-symmetry by
uWYwy = uWYyw : (5.17)



The likelihood-ratio test of the symmetry model against the quasi-symme-try model can be used to test the assumption of marginal homogeneity ofW and Y (Bishop, Fienberg and Holland, 1975: Chapter 8; Hagenaars,1986, 1990:156-162). Thus, it is not only possible to test the strongassumption that W and Y are identical, it is also possible to test theweaker assumption that W and Y have the same marginal distribution.The event history part of the model consists of separate discrete-timelogit models for oldest brothers and respondents,
�1(tlja;w) = exp �vM1 + vLMl1 + vAMa1 + vYMy1 + vALMal1 + vY LMyl1 �

1 + exp �vM1 + vLMl1 + vAMa1 + vYMy1 + vALMal1 + vY LMyl1 � ;
(5.18)

�2(tlja; y) = exp �vM2 + vLMl2 + vAMa2 + vWMw2 + vALMal2 + vWLMwl2 �
1 + exp �vM2 + vLMl2 + vAMa2 + vWMw2 + vALMal2 + vWLMwl2 � :

(5.19)
Here, �1(tlja;w) is the brother's probability of dropping out of school atthe lth point in time, while �2(tlja;w) is the same probability for therespondent. To distinguish the parameters of the two discrete-time logitmodels a variable M is introduced, taking value 1 for the oldest brotherand value 2 for the respondent. Variable A denotes the father's education,W and Y are the latent covariates, and L is the discrete time interval.Equality restrictions can be imposed on the parameters across the twomodels represented in Equations 5.18 and 5.19. For simplicity of exposi-tion, the models that are presented here di�er only from each other withrespect to the speci�cation of the e�ects of W and Y . The speci�cationof the duration e�ects and the e�ects of father's schooling is based onMare's best �tting model. This means that the duration e�ects are notrestricted and that the e�ects of father's schooling are assumed to benonproportional, but equal for respondents and brothers. In other words,the restrictions that

vAMa1 = vAMa2 and vALMal1 = vALMal2 (5.20)
are imposed.Mare (1994) estimated the bivariate discrete-time logit model withHaberman's NEWTON program (Haberman, 1988), which is a program



for estimating latent class models and other kinds of log-linear modelswith latent variables. It can be demonstrated that the model formulatedin Equations 5.14, 5.18, and 5.19 is similar to a latent class model or, moreprecisely, to a latent class model with direct e�ects between indicators.When a speci�cation is used in which W is identical to Y (see Equation5.15), using the modi�ed path notation introduced in sections 2.9 and 3.1,the probability density function of the above bivariate survival model canalso be written as
�aws11s12s21s22 = �a�wja�s11jaw�s12jaws11�s21jaw�s22jaws21 : (5.21)

Here, S11, S12, S21, and S22 denote the states occupied by the brother(S11, S12) and the respondent (S21, S22) at the two points in time. Itwill be clear that the model represented in Equation 5.21 is a modi�edpath model with a latent variable. As a result, it must be estimated inthe same way as the modi�ed path models described in section 3.1.It can be seen that, in fact, the variables S11, S12, S21, and S22 serve asindicators for the latent variable W . The model di�ers from an ordinarylatent class model in that the states occupied at the second point in timedepend on the states occupied at the �rst point in time. In this sensethe model is similar to a latent class model with direct e�ects betweenindicators as proposed by Hagenaars (1988). Here, these direct e�ectsare, however, �xed a priori by means of structural zero probabilities, orequivalently, by log-linear parameters �xed to be equal to �1, becausethe state dropped out is an absorbing state: If someone drops out atthe �rst point in time, the probability of being a dropout at the secondpoint in time is one. Another di�erence between the model described inEquation 5.21 and a standard latent class model is the presence of anexternal variable (A) that is assumed to be related to the indicators.Because Mare (1994) used the NEWTON program to estimate thebivariate logit model, he speci�ed it in a di�erent way. Although Winshipand Mare (1989) showed that it is possible to specify modi�ed path modelsby means of NEWTON, normally the model parameters are estimated inthe complete table, that is, in the table containing all variables. Fora standard latent class model, this is not a problem. Because of theassumed local independence among indicators, it does not matter whetherthe parameters are estimated in the separate marginal tables containingan indicator and the corresponding latent variable or in the complete



Table 5.14: Test results for the estimated models for respondents' andoldest brothers' dropping out of school
Model L2 df p1. 1 class 4381.64 28 0.0002. 2 class 689.26 26 0.0003a. 3 class 256.07 24 0.0003b. 3 class with linear e�ect of W 257.61 25 0.0004a. 4 class 186.76 22 0.0004b. 4 class with linear e�ect of W 199.22 23 0.0005a. Model 3b + linear AW 132.20 24 0.0005b. Model 3b + unequal e�ects of W 214.47 24 0.0005c. Model 3b + nonproportional e�ects of W 244.13 24 0.0006a. 2*3 class unrestricted WY 163.45 19 0.0006b. 2*3 class symmetric WY 234.56 22 0.0006c. 2*3 class quasi-symmetric WY 164.94 20 0.0007a. Model 6c + linear AW and AY 26.77 18 0.0837b. Model 6c + linear AW = AY 29.16 19 0.0647c. Model 6c + unequal e�ects of W and Y 155.18 19 0.0007d. Model 6c + nonproportional e�ects of W and Y 159.75 19 0.0007e. Model 7b + unequal e�ects of W and Y 27.62 17 0.0508. Model 7d - e�ect of A + unrestricted AW = AY 50.43 19 0.000

table. This results from the collapsibility theorem (Bishop, Fienberg, andHolland, 1975:47-48). However, in this example it does matter whetherW is speci�ed to be independent of A in the marginal table AW or inthe complete table. This results from the fact that both A and W aresupposed to have a direct e�ect on S11, S12, S21, and S22. By specifyingWto be independent of A in the table including S11, S12, S21, and S22, Mare(1994) made the latent covariate conditionally independent of A, that is,given the values of S11, S12, S21, and S22. Such a speci�cation is notin agreement with the usual way of specifying unobserved heterogeneityand, moreover, it is a bit strange since normally it makes no sense toset conditions on something that is posterior. As will be demonstratedbelow, Mare's speci�cation may yield estimates which di�er a great dealfrom the ones obtained with the speci�cation described in Equation 5.21.
Testing Table 5.14 gives the test results for the models that are esti-mated with the brothers' schooling data. Model 1, which is used as areference model, does not contain unobserved heterogeneity. The model



for the risk of dropping out is of the form given in Equations 5.18 and5.19, with the restriction described in Equation 5.20. In other words, thee�ect of fathers' schooling on the dropout probability for respondents andtheir oldest brothers is assumed to be nonproportional and equal for re-spondents and their brothers. Model 1 �ts very badly (L2 = 4381:64; df =28; p = :000). Apparently, the assumption of conditional independencebetween brothers' and respondents' schooling must be rejected. Notethat here it is possible to test explicitly the conditional independenceassumption by means of the likelihood-ratio chi-square. However, whenusing continuous-time models, such a test does not exist. This is perhapsthe reason why most researchers use event history models without beingconcerned about possible dependencies among observations.The next set of models contains one latent variable to be denoted byW . As mentioned above, this is equivalent to assuming that the associa-tion between W and Y is perfect (see restriction 5.15). For the moment,the e�ects of the latent variable in the discrete-time logit model are as-sumed to be equal for respondents and brothers and proportional, thatis, vWMw1 = vWMw2 and vWLMwl1 = vWLMwl2 = 0, and W is assumed to beindependent of A.As can be seen from Table 5.14, including a two-class latent covari-ate in the bivariate logit model (Model 2) improves the �t a great dealcompared to Model 1 (L2 = 689:26) with only two additional parameters:a latent class proportion and the e�ect of W on the transition probabil-ities. A two-class model of this form is the most extended model withunobserved heterogeneity presented by Mare (1994). But, as mentionedabove, an important di�erence with the approach presented here is thatMare estimated the model parameters in the complete table, which givesan L2 value of 877.65 instead of 689.26.By including a third latent class (Model 3a), the �t improves againa great deal (L2 = 256:07). Even including a fourth class in the model(Model 4a) improves the �t considerably (L2 = 186:76), especially if onerealizes that only two additional parameters are used for each additionallatent class. To test whether the latent variable has a linear e�ect on thetransition probability, in Models 3b and 4b, the e�ects ofW are restrictedto be linear. The �t of the three-class model does not deteriorate by thisadditional restriction (L23bj3a = 1:5; df = 1; p > :21). Although in the four-class model the linear restriction leads to a signi�cantly worse model, the



increase in L2 is moderate (L24bj4a = 12:5; df = 2; p < :002), especially ifthe huge sample size of 18,563 cases is taken into account.Because the gain of incorporating a fourth class is relatively smallcompared to the gain of incorporating a second and third class, an e�ortcan be made to improve the well-performing three-class model (Model3b) by relaxing one by one the underlying assumptions of this modelwith regard to the nature of the unobserved heterogeneity. These as-sumptions are: an equal e�ect of W on the probability of dropping outfor the respondent and his brother, proportionality of the e�ect of W , Windependent of A, and identical unobserved risk factors for the respon-dent and his oldest brother. The �rst three assumptions can be relaxedusing models with only one latent variable W (Models 5a-5c). To relaxthe other assumption, it is necessary to specify models with two latentvariables W and Y (Models 6a-6c).Inclusion of a linear direct e�ect of A on W in the model (Model 5a)greatly improves the �t of the model compared to Model 3b (L23bj5a =125:41; df = 1; p = :000). Also, relaxing only the assumption that thee�ect of W is equal for respondents and brothers (Model 5b) leads toa considerably better �t (L23bj5b = 43:14; df = 1; p = :000). Althoughthe improvement is relatively less important, allowing the e�ect of Wto be nonproportional (Model 5c) leads to a signi�cantly better �ttingmodel as well (L23bj5c = 13:48; df = 1; p = :000). So, all three assumptionsconcerned seem to be violated.To check whether the unobserved risk factors are the same for respon-dents and their brothers, a model is speci�ed with two latent variablesdenoted by W and Y (Model 6a). As mentioned above, W is assumedto capture the respondent's unobserved factors and Y the brother's un-observed factors. Actually, compared to Model 3b, only the restrictionsdescribed in Equation 5.15 are relaxed. Because these restrictions in-volve �xing parameters to their boundary values, it is not possible to testModel 3b against Model 6a by means of a likelihood-ratio test. Neverthe-less, the large di�erence in L2 between Model 6a and Model 3b { 94.14using six additional parameters { indicates that the assumption that theunobserved risk factors for the respondent and the brother are exactlythe same, is too strong.Besides the unrestricted speci�cation of the relationship between Wand Y which is used in Model 6a, more restricted speci�cations can be



used. In Model 6b, the relationship between W and Y is assumed tobe symmetric, and in Model 6c, it is speci�ed to be quasi-symmetric.The restrictions to obtain these two models are described in Equations5.16 and 5.17, respectively. The conditional test of the quasi-symmetrymodel (Model 6c) against Model 6a demonstrates that the relationshipbetweenW and Y can be described very well by a quasi-symmetry model(L26cj6a = 1:49; df = 1; p > :22). On the other hand, the symmetrymodel (Model 6b) performs very badly compared to Model 6a (L26bj6a =71:11; df = 3; p = :000). The test of the symmetry model against thequasi-symmetry model provides us with the well-known conditional testfor marginal homogeneity (Bishop, Fienberg and Holland, 1975: Chapter8; Hagenaars, 1990:156-162). This test leads to a signi�cant result aswell (L26bj6c = 69:61; df = 3; p = :000). Thus, the conclusion can bethat respondents and their oldest brothers do not have exactly the sameunobserved factors and that, moreover, W and Y have di�erent marginaldistributions.By means of Models 5a-6c it was tested whether the �t of Model 3bcould be improved by relaxing one by one the underlying assumptions ofthis model with regard to the nature of the unobserved heterogeneity. Thenext set of models (Models 7a-7e) investigate the e�ect of relaxing theseassumptions simultaneously. The starting-point is Model 6c: the modelwith a quasi-symmetric relation between W and Y , with equal, linear,and proportional e�ects of W and Y on the transition probabilities, andwithout direct e�ects of A on W and Y .Including a direct linear e�ect of A on W and Y (Model 7a), greatlyimproves the �t of Model 6c (L26cj7a = 138:17; df = 2; p = :000). If therelationships AW and AY are assumed to be equal (Model 7b), the �tdoes not deteriorate at all (L27bj7a = 2:39; df = 1; p > :12). Allowing forunequal e�ects of W and Y (Model 7c) and nonproportional e�ects of Wand Y on the transition probabilities (Model 7d) leads to better �ttingmodels as well (L26cj7c = 9:76; df = 1; p < :02; and L26cj7d = 5:19; df =1; p < :03). The improvement of the �t is, however, not so spectacularas with Models 7a and 7b. Finally, to see whether assuming unequale�ects of W and Y still improves the model �t after including the directe�ects of A on W and Y , both assumptions are relaxed simultaneouslyin Model 7e. The test of Model 7b against 7e shows that the assumptionthat the hazard parameters for W and Y are equal is no longer violated



after allowing W and Y to depend on A (L27bj7e = 1:54; df = 1; p > :21).Thus, the �nal model could serve the very well-�tting Model 7b (L2 =29:16; df = 19; p > :06): the model with a quasi-symmetry associationbetween W and Y , and with equal and linear e�ects of A on W andY . Model 7b is a parsimonious model that can be interpreted easily:The schooling histories of respondents and their brothers are condition-ally independent of one another given their fathers' educational level andthe person-speci�c unobserved risk factors. These unobserved factorshave equal, linear, and proportional e�ects on the logit of probability ofdropping out for respondents and their oldest brothers. Moreover, theunobserved factors W and Y are associated, and are equally and linearlyin
uenced by the fathers' schooling.But, as will be demonstrated below, Model 7b yields are rather strangee�ects of fathers' education on the probability of dropping out. To illus-trate that the speci�cation of the nature of the unobserved heterogeneityused in Model 7b is just one of the possible speci�cations leading to awell-�tting model, another quite di�erent speci�cation is used in Model8. Because the strange parameters obtained from Model 7b are probablythe result of the assumed linearity of the relationship between A and Y ,and between A and W , this assumption is relaxed in Model 8. How-ever, because of the bad experience with models with both unrestrictedindirect e�ects and unrestricted direct e�ects of observed covariates ofthe transition probabilities (see Example 1), the direct e�ect of A on thetransition probabilities is excluded from Model 8. To compensate for thenonproportionality of the e�ect of A that was found in the other models,the e�ects of Y and W are allowed to be nonproportional. So, Model 8is a model without a direct e�ect of A on the respondent's and brother'sprobability of dropping out, with unrestricted but equal AW and AYinteraction terms, and with equal and linear but nonproportional e�ectsof W and Y . Although its �t is not as good as for Model 7b, Model 8performs rather well (L2 = 50:43; df = 19; p < :0002), especially if thehuge sample size (18,563) is taken into account. As will be shown below,the parameter estimates for Model 8 can be easily interpreted.
Parameters Table 5.15 reports the parameter estimates for Model 1and for four di�erent three-class models. It must be noted that, to beable to compare directly the mean of the logit of the transition proba-



Table 5.15: Parameter estimates for some models for respondents' andoldest brothers' dropping out of schoolModel 1 Model 3b Model 6c Model 7b Model 8discrete-time logit parametersvLM11 -1.3380 -2.8414 -2.9064 -6.4816 -6.4736vLM21 -0.1418 -0.5958 -0.0862 8.4248 1.8098vLM12 -1.5432 -3.1714 -3.0340 -2.1534 -1.6268vLM22 -0.2556 -0.8052 0.1020 8.1972 2.5794vAL11 1.4864 2.2238 2.5466 1.0006vAL21 0.9422 1.3594 1.3950 1.4210vAL31 -0.4236 -0.7714 -0.8682 -3.0442vAL41 -0.6620 -1.0210 -1.1274 0.0424vAL51 -1.3430 -1.7906 -1.9462 0.5802vAL12 0.9446 1.8718 2.7056 0.7132vAL22 0.7970 1.5234 1.9754 1.0410vAL32 0.2150 0.1988 0.0888 0.1524vAL42 -0.6152 -1.1482 -1.5716 -0.4670vAL52 -1.3414 -2.4458 -3.1980 -1.4396�W ; �Y 3.0788 3.2528 9.6810�WL1 ; �Y L1 8.9530�WL2 ; �Y L2 5.5192latent proportions�WY11 0.0794 0.1776 0.2791 0.1505�WY12 0.0528 0.0260 0.0725�WY13 0.0411 0.0611 0.0354�WY21 0.0002 0.0424 0.0426�WY22 0.5548 0.3764 0.1610 0.2455�WY23 0.0000 0.1262 0.1489�WY31 0.0198 0.0227 0.0042�WY32 0.0000 0.0287 0.0304�WY33 0.3658 0.3321 0.2528 0.2699e�ect of A on W and Y�AW ; �AY -0.2847uAW11 ; uAY11 -0.7004uAW21 ; uAY21 -0.5257uAW31 ; uAY31 0.0689uAW41 ; uAY41 0.3831uAW51 ; uAY51 0.7741uAW12 ; uAY12 -0.0149uAW22 ; uAY22 0.0954uAW32 ; uAY32 0.2697uAW42 ; uAY42 -0.0969uAW52 ; uAY52 -0.2533uAW13 ; uAY13 0.7153uAW23 ; uAY23 0.4303uAW33 ; uAY33 -0.3387uAW43 ; uAY43 -0.2862uAW53 ; uAY53 -0.5208



bility for brothers and respondents at the two points in time, the maine�ect vMm is absorbed in vLMlm . As can be seen from the vLMlm parametersof Model 1, at both school levels the risk of dropping out is somewhatlower for respondents (M = 2) than for their oldest brothers (M = 1).Furthermore, as could be expected, the e�ect of fathers' schooling showsa monotonic pattern at both points in time. The nonproportionality ofthe e�ect of A results from the fact that the di�erences between the tran-sition probabilities of adjacent categories of A change strongly betweenT = t1 and T = t2: The distances between the �rst three categories of Aare much smaller at the second school level, while the distance betweenthe third and fourth categories of A are much larger at the second schoollevel.From the parameters of Model 3b, it can be seen that including an`independent' three-class latent covariate in the discrete-time logit modelleads to more extreme parameters. The di�erences between respondentsand brothers, between the two time points, and between the categoriesof A are larger than in Model 1. It is important to note that theseresults are exactly the opposite of the results obtained by Mare (1994).It was checked whether the di�erences are caused by the additional latentclass, but this is not the case. Also in the two-class model (Model 2) theparameters are more extreme than in Model 1. So, the fact that Mareestimated the bivariate logit model in the complete table instead of usinga modi�ed path model not only leads to a worse model �t, but also tocompletely di�erent substantive results.The latent proportions and e�ects ofW on the transition probabilitiesshow that there is a group containing 37 percent of the population withan extremely high risk of dropping out of school.12 Persons belonging toclass two, the modal class, have a low risk of dropping out of school, anda small group containing 8 percent of the population has an extremelylow risk of dropping out of school.In the quasi-symmetry model (Model 6c), the distribution of the un-observed factors for respondents (W ) and brothers (Y ) was allowed to bedi�erent. This leads to even more extreme di�erences between the timecategories and among the levels of father's education. However, the dif-
12The scores that were used for W and Y in the linear e�ects �W and �Y are -1, 0,and 1. The parameters for categories 1, 2, and 3 of W and Y are 3.0788, 0.0000, and3.0788, respectively.



ferences between the mean of the logit of the transition probabilities forrespondents and their brothers disappear. At the second point in time,brothers have an even lower risk of dropping out than respondents. Thisis not surprising, because brothers, who, as we saw, have a higher riskof dropping out of school, more often belong to the high-risk class (classthree) than respondents (0:44 versus 0:30). On the other hand, respon-dents have a higher probability of belonging to the low-risk class (classone) than brothers (0:37 versus 0:18). Note that these probabilities canbe calculated from the cell probabilities of the joint latent distribution ofW and Y .As demonstrated above, by allowing W and Y to depend linearly andequally on A, the �t of the model improved a great deal. But, as can beseen from Table 5.14, the parameters of the discrete-time logit model forModel 7b are rather di�erent from the parameters for Models 1, 3b, and6c. Particularly the e�ect of fathers' education is very di�cult to interpretsince the monotonic pattern disappeared completely. From the covariatepart of Model 7b, it can be seen that the e�ect of A onW and Y is ratherstrong. For instance, the ratio of the odds of belonging to class one ratherthan to class three between persons with less and highly educated fathersis exp(8 � �0:2827) = :1025.13 In other words, individuals with highlyeducated fathers will belong to class one more often, while persons withless educated fathers will belong to class three in more cases.The latent probabilities show that, as in Model 6c, brothers belongmore often to the high-risk class than respondents (.44 versus .30). Thedi�erence in belonging to the �rst class is, however, smaller than in Model6c; 37 percent of the respondents and 34 percent of the brothers belongto the low-risk class. On the basis of the size of the direct e�ects of Wand Y on the transition probabilities (9:6810), it can be concluded thatpersons belonging to class one are stayers, while persons belonging toclass three certainly drop out, where the probability of dropping out atthe �rst point in time is higher for respondents than for brothers. Notethat the linear e�ect of 9.6810 means that the e�ects are �1 � 9:6810 forclass one, 0�9:6810 for class two, and 1�9:6810. for class three. However,the larger number of brothers in class three is partially compensated bya lower mean transition probability at the �rst point in time.
13For the levels of W and Y the scores -1, 0, and 1 were used, and for the levels ofA the scores -2, -1, 0, 1, and 2.



Table 5.16: Estimated probabilities of dropping out of school for respon-dents' and oldest brothers' according to Models 7b and 8
W=Y A �1(t1ja; y) �1(t2ja; y) �2(t1ja;w) �2(t2ja;w)
Model 7b
1 1 0.0000 0.3675 0.0000 0.3170
1 2 0.0000 0.4465 0.0000 0.3918
1 3 0.0000 0.2491 0.0000 0.2095
1 4 0.0000 0.1515 0.0000 0.1248
1 5 0.0000 0.0632 0.0000 0.0512
2 1 0.0041 0.9999 0.2400 0.9999
2 2 0.0063 0.9999 0.3247 0.9999
2 3 0.0001 0.9998 0.0055 0.9998
2 4 0.0016 0.9997 0.1080 0.9996
2 5 0.0027 0.9991 0.1718 0.9988
3 1 0.9852 1.0000 0.9998 1.0000
3 2 0.9902 1.0000 0.9999 1.0000
3 3 0.5387 1.0000 0.9888 1.0000
3 4 0.9624 1.0000 0.9995 1.0000
3 5 0.9777 1.0000 0.9997 1.0000

Model 8
1 0.0000 0.0239 0.0000 0.0502
2 0.0015 0.8593 0.1643 0.9295
3 0.9227 0.9993 0.9993 0.9997

Most of the e�ects of fathers' education on the risk of dropping outare weaker than in Model 6c. This is to be expected when an observed co-variate is allowed to have an indirect e�ect on the transition probabilitiesvia a latent variable. The e�ects of A are no longer monotonic, however,with the parameter vAL31 (-3.0442) being a real outlier. This problem,which makes the e�ect of A di�cult to interpret, can be expected to becaused by the fact that the e�ect of A on Y and W was restricted tolinear-by-linear. This probably resulted in a too high number of peoplewith A = 3 in the high-risk classes, which is compensated by an extremelylow direct e�ect on the transition probability.The estimated transition probabilities for Model 7b, which are re-ported in Table 5.16, demonstrate the implication of the extreme valuesof the hazard parameters. Although the �rst class is clearly a low-riskclass, contrary to what would be expected on the basis of the e�ects of



W and Y on the transition probabilities, it is not a class of stayers. Inthe second time interval, both brothers and respondents have a consid-erable risk of dropping out, where the size of the transition probabilitiesalso depends on the value of A. The second class surely drops out atT = t2. However, the risk of dropping out at T = t1 di�ers for brothersand respondents. Respondents belonging to class two have a much higherprobability of dropping out in the �rst time interval than their oldestbrothers. The probability of dropping out also depends on A, where per-sons with A = 3 clearly have the lowest risks. Finally, class three has avery high risk of dropping out at the �rst time interval. There is, how-ever, one exception: For brothers with a father belonging to the middleeducational category, the probability of dropping out is much lower. Thepersons of class three that do not drop out at the �rst point in time surelydrop out at the second point in time. Thus, it can be concluded that themuch lower mean transition probability at T = t1 for brothers leads tosigni�cantly lower transition probabilities only for brothers belonging toclass two. Moreover, the extremely low value of vAL31 leads to much lowertransition probabilities for brothers belonging to class three and respon-dents belonging to class two. In fact, the linear-by-linear e�ects AY andAW result in too many brothers with A = 3 in class three instead of classtwo and too many respondents with A = 3 in class two instead of classone.Because of the problems associated with Model 7b, a speci�cation inwhich the relationships between A and the unobserved risk factors arenot linearly restricted was tested. In Model 8, the association betweenW and Y is similar to that in Model 7b, although fewer persons belongto class one, and more to class two. The direct e�ects of A on W andY show a quite regular pattern. Persons with less educated fathers moreoften belong to class one and persons with highly educated fathers aremore often found in class three. The middle category of A has the highestprobability of belonging to class two. From the hazard parameters, it canbe seen that, as in Model 7b, the larger number of brothers in the high-risk class is partially compensated by a much lower mean of the logit ofthe transition probabilities at T = t1. The e�ect of the latent variablesW and Y on the risk of dropping out is again very strong. Therefore,class three could be labeled as certain movers and class one as stayers.From the estimated probabilities in Table 5.16 it can be seen that classone is indeed almost a class of stayers. Only at the second point in time,



do persons belonging to class one have a small risk of dropping out. Classtwo has a much higher dropout probability, where the risk is higher forrespondents than for their brothers. And �nally, all members of classthree drop out, where brothers have a somewhat higher probability ofdropping out at T = t2 instead of T = t1.It will be clear that, although Model 7b �ts better, Model 8 is mucheasier to interpret. Moreover, the assumption that a background variablesuch as fathers' education has only an indirect e�ect on the school behav-ior of sons can be very well defended. It should, however, be noted thatModel 8 di�ers substantially from the usual way of correcting for unob-served heterogeneity. But, to correct for selection bias, strong a prioriassumptions about the selection mechanism are needed. As already men-tioned, such an assumption could be that a particular covariate in
uencesthe unobserved factor but has no direct e�ect on the risk of dropping out.
This example demonstrated the potentials of the general latent variableapproach to correct for unobserved heterogeneity when analyzing survivaldata from dependent observations. The inclusion of a latent covariate inthe model for dropping out of school showed that there is a strong depen-dence between the dropout risks of respondents and their oldest brothers.In addition, it was demonstrated how to relax some of the assumptionswhich are generally made when correcting for unobserved heterogeneity:The unobserved heterogeneity was allowed to depend on the observedcovariate, to be partially di�erent for respondents and brothers, and tohave nonproportional e�ects on the risk of dropping out of school. It willalso be clear from the example that it is not a problem to obtain a modelthat describes the data well. However, only on the basis of substantivearguments can it be decided whether a particular speci�cation for theunobserved heterogeneity makes sense.
5.2.8 Simultaneous modeling of the dependent process andthe covariate processAs explained in 4.6 in the discussion of the problems associated with theuse of time-varying covariates, the e�ect of a time-varying covariate onthe hazard rate of the event of interest may be partially spurious. Ifthere are unobserved factors that in
uence both the covariate process



and the dependent process,14 systematic selection into categories of thetime-varying covariate concerned will occur, and, as a result, the e�ect ofthe covariate concerned will be (partially) spurious.Here, we will demonstrate how to disentangle true and spurious e�ectsof time-varying covariates by simultaneously modeling the covariate pro-cess and the dependent process. Using a multivariate hazard model, theexistence of a latent variable can be postulated which in
uences both thetransition rates of a time-dependent covariate and the transition rates ofthe event(s) under study. Furthermore, by including a direct e�ect of thetime-varying covariate on the hazard rate, it is possible to check whethera signi�cant direct e�ect remains after controlling for the common unob-served risk factor(s). Note that such a latent variable approach not onlyallows us to disentangle true and spurious e�ects of time-varying covari-ates, it also makes it possible to detect unobserved factors in
uencing theoccurrence of the event to be studied.
Example 8: School transitions of brothers with direct e�ectsbetween processesData and model To demonstrate how to perform a simultaneous anal-ysis of the covariate and dependent processes, the previous example (Ex-ample 7) is modi�ed. In this example, the respondent's schooling is notonly explained by his father's schooling, but also by his oldest brother'sschooling. Actually, the schooling of the oldest brother is included in themodel for the respondent as a time-varying covariate having two possiblevalues: dropped out or not at the school level concerned. It is expectedthat if the older brother dropped out at or before a particular school level,the respondent will have a higher risk of dropping out at that school level.The time-varying covariate indicating whether a respondent's oldestbrother dropped out of school is not an exogenous covariate (see section4.6). As a result of the existence of common unobserved family factorsin
uencing both school careers, a respondent's survival in tl will help topredict the covariate value in tl+1. Therefore, the relationship betweenbrothers' and respondents' schooling will at least partially be spurious.As in the previous example, the latent class approach is used to control

14The terms dependent process and covariate process are used to denote changesthat occur in the value of the dependent variable of interest and changes that occur inthe values of the time-varying covariates, respectively.



for common unobserved risk factors. In fact, the only di�erence withthe analyses presented in the previous subsection is that the schooling ofthe oldest brother is allowed to have a direct e�ect on the respondent'sdropout rate.It must be noted that, although in the data set that is used mostoldest brothers are older than the respondents, in some cases the oldestbrother is younger that the respondent (Mare, 1994). To perform theanalysis correctly, in such cases one should reverse the status of oldestbrother and respondent because, logically, only the schooling of the olderone can in
uence the schooling of the younger one and not the otherway around. But, there is no information available to determine whetherthe brother or the respondent is older. So, in principle, the correctnessof the causal inference is not only threatened by unobserved risk factorsbut also by this partial reverse causation. However, for simplicity ofexposition, the analysis is performed as if the oldest brother is alwaysolder than the respondent. Although this may somewhat distort thesubstantive conclusions, it does not in
uence the illustrative relevance ofthis example.Because the main purpose of this example is to show how to disen-tangle the true and the spurious e�ects of a time-varying covariate, onlythe simplest speci�cation for the nature of the unobserved risk factors isused. The unobserved risk factors are assumed to be the same for therespondents and their brothers, which, as was demonstrated in Example7, is equivalent to using one single latent variable. Moreover, the latentvariable is assumed to be independent of the father's education.The discrete-time logit model for the brother's dropping out is thesame as the one which is used in Example 7. The model for the respon-dent's dropping out di�ers in that a time-varying covariate is included inthe model, i.e., his brother's dropout status at the time point or schoollevel concerned. The discrete-time logit models are given by
�1(tlja;w) = exp �vM1 + vLMl1 + vAMa1 + vWMw1 �

1 + exp �vM1 + vLMl1 + vAMa1 + vWMw1 � ; (5.22)
�2(tlja;w; s1l) = exp �vM2 + vLMl2 + vAMa2 + vWMw2 + vS1ls1l �1 + exp �vM2 + vLMl2 + vAMa2 + vWMw2 + vS1ls1l � ; (5.23)

in which vS1ls1l denotes the e�ect of the dropout status of the oldest brother



at time point tl on the respondent's probability of dropping out at timepoint tl. In other words, the e�ect vS11s11 describes whether the oldestbrother's dropping out before �nishing secondary school in
uences therespondent's dropout probability at this school level, and the e�ect vS12s12describes whether the oldest brother's dropping out before completingsome post-secondary education in
uences the probability that respon-dents drop out at this level. Particularly interesting is whether the directe�ect of the time-varying covariate brother's dropout status on the re-spondent's risk of dropping out declines when one controls for unobservedrisk factors in
uencing both the covariate process and the dependent pro-cess.From the model represented in Equations 5.22 and 5.23, it can be seenthat the e�ect of the latent variable W and of the father's education (A)is assumed to be proportional. An additional restriction that is imposedon the parameters is that the e�ects of W and A are equal for brothersand respondents, i.e., vAMa1 = vAMa2 and vWMw1 = vWMw2 .Note that, as in the previous example, the combined covariate andhazard model can be written as a modi�ed path model, that is,
�aws11s12s21s22 = �a�wja�s11jaw�s12jaws11�s21jaws11�s22jaws21s12 :The only di�erence with the modi�ed path model described in Equation5.21 is that here it is assumed that there are also direct e�ects of S11 onS21 and of S12 on S22.

Results The models for which the test results are presented in Table5.17 di�er with respect to the number of latent classes and the speci�-cation of vS1ls1l . Models 1a, 2a, 3a, and 4a have one, two, three, and fourlatent classes, but without a direct e�ect of the brother's dropout statuson the respondent's risk of dropping out. In Models 1b, 2b, 3b, and 4b,a direct e�ect of the brother's dropout status on the respondent's proba-bility of dropping out is included, but this e�ect is assumed to be equalat both school levels, i.e., vS11s11 = vS12s12 . And �nally, in Models 1c, 2c, 3c,and 4c, this e�ect is allowed to be nonproportional.The test results show that the model �t can be greatly improved byincluding a direct e�ect of brother's schooling on respondent's schoolingin the model. The proportional e�ect of brother's schooling remains sig-ni�cant after controlling for common unobserved risk factors, irrespective



Table 5.17: Test results and parameter estimates for the estimated modelsfor respondent's schooling in which oldest brother's schooling is used asa time-varying covariate
Model L2 df vS11s11 vS12s12
1a. 1 class no vS1ls1l 4381.64 28 0.0000 0.0000
1b. 1 class proportional 647.33 27 0.8160 0.8160
1c. 1 class nonproportional 596.90 26 0.8942 0.6922
2a. 2 class no vS1ls1l 689.26 26 0.0000 0.0000
2b. 2 class proportional 219.56 25 0.4928 0.4928
2c. 2 class nonproportional 218.01 24 0.5244 0.4724
3a. 3 class no vS1ls1l 256.07 24 0.0000 0.0000
3b. 3 class proportional 174.86 23 0.3450 0.3450
3c. 3 class nonproportional 154.45 22 0.4102 0.2014
4a. 4 class no vS1ls1l 186.76 22 0.0000 0.0000
4b. 4 class proportional 156.44 21 0.2574 0.2574
4c. 4 class nonproportional 144.99 20 0.3442 0.1756

of the number of latent classes. Moreover, the e�ect seems to be nonpro-portional. Including a nonproportional direct e�ect of brother's schoolingon respondent's schooling in the model without unobserved heterogene-ity decreases the L2 value dramatically from 4381.6 (Model 1a) to 596.9(Model 1c). Although not so extreme, the decrease in the L2 value issigni�cant in the two-, three-, and four-class models as well. Note thatonly in the two-class model does the proportionality assumption not needto be rejected (L22bj2c = 1:55; df = 1; p > :21).15Table 5.17 also provides the estimates for the direct e�ects of thebrother's dropout status on the respondent's risk of dropping out. Whenone controls for common unobserved heterogeneity, the size of the e�ectdecreases considerably. In Model 1c, the time-speci�c e�ects are :89 and:69, which implies that the odds of dropping out rather than not droppingout are 5:93 (= exp[2 � :89]) and 3:97 (= exp[2 � :69]) times higher if arespondent's brother dropped out at or before the school type or thetime point concerned than if the brother did not drop out. In Model 4c,these e�ects decline to :34 and :18, or in terms of the odds ratios, to 1:97
15Because this could be the result of a local maximum, Model 2c was estimatedusing di�erent sets of starting values. However, all sets of starting values gave the L2reported in the table, which indicates that it is not a local solution.



(= exp[2 � :34]) and 1:43 (=exp[2 � :18]). Thus, although an importantdirect e�ect of the oldest brother's schooling on the respondent's schoolingremains, the e�ect is much weaker than if no correction for commonunobserved risk factors is carried out. In other words, the e�ect found inModel 1c seems to be partially spurious.Usually, event histories on di�erent types of life-cycle transitions areroutinely related to each other by using one type of history as a time-varying covariate in a hazard model in which transitions in another typeof history are explained. For example, a woman's employment and re-lational histories are used to explain the timing of the birth of her �rstchild (Vermunt, 1991a). Like in the brothers' schooling example, sucha practice may lead to parameter estimates which are at least partiallyspurious. This example demonstrated that by modeling simultaneouslythe dependent process and the covariate process, it is possible to identifyand to control for common unobserved risk factors in
uencing both thecovariate process and the dependent process. This makes it possible todistinguish the true and the spurious e�ects of a time-varying covariate.
5.3 Measurement error
The previous section demonstrated how to use the event history modelwith missing data introduced in section 5.1 to correct for unobserved het-erogeneity. On the one hand, standard approaches, such as the `indepen-dent' unobserved heterogeneity models proposed by Heckman and Singer(1982, 1984), Wrigley (1990), and Mare (1994), were presented as specialcases of the combined log-linear and hazard modeling approach. On theother hand, it was shown how to extend these `independent' unobservedheterogeneity models, for instance, by allowing the unobserved factor(s)to be related to observed covariates and to the initial position. Other ex-tensions of the usual way of treating unobserved heterogeneity that werediscussed are models with several possibly related latent covariates andmodels for the simultaneous analysis of the covariate process and the de-pendent process. All these models have in common that they concentrateon the traditional use of models with latent variables in the �eld of eventhistory analysis, namely, correcting for unobserved heterogeneity.Another interesting application of models with latent variables, which,moreover, has more in common with the latent variable models discussed



in Chapter 3, is correcting for measurement error. In Chapter 3, the latentclass model, which was originally proposed by Lazarsfeld (1950a, 1950b),was presented as a tool for correcting for measurement error in observedvariables. In addition, some extensions of the standard latent class modelwere discussed, with the modi�ed path model with latent variables as themost general `latent class model' (Hagenaars, 1985, 1990:135-142, 1993;Vermunt, 1994). As was indicated in Figure 5.1, this section explainshow to apply latent class models and modi�ed path models with latentvariables to correct for measurement error in the observed categoricalcovariates which are used in event history models and in the observedstates at the di�erent points in time in discrete-time event history models.As in the models discussed in the previous section, correcting for mea-surement error in the observed covariates involves including one or morelatent variables as covariates in a hazard model. There are, however, twoimportant di�erences with the use of latent variables to correct for un-observed heterogeneity. First, when latent variable models are used tocorrect for measurement error in observed covariates, the latent variablemust always be related to one or more observed covariates which, more-over, are generally assumed to be mutually independent given a partic-ular value of the latent variable. Second, the observed variables servingas indirect measures for the latent covariate will generally not be usedas regressors in the hazard model. In other words, the `indicators' andthe survival distribution(s) are assumed to be conditionally independent,that is, independent given the latent variable(s) concerned. Thus, a latentclass model is speci�ed in which a number of unreliable measures are usedto identify one or more latent covariates, which are used as regressors ina hazard model.Gong, Whittemore, and Grosser (1990) proposed specifying a latentclass-like model for the covariates in a log-rate model to deal with theproblem of misclassi�cation in covariates. In a model for survival ofbreast cancer, they used the stage of the disease at diagnosis as a co-variate, but it was known that for a part of the sample the stage of thedisease was underestimated by one level. Although Gong, Whittemore,and Grosser did not call it by that name, they proposed to correct forthe misclassi�cation in the covariate by means of a restricted latent classmodel in which only the conditional response probabilities in which theobserved stage equals the true stage or is one stage lower than the truestate were not �xed to zero. This application of a latent class model in



the covariate part of an event history model is a special case of the moregeneral approach that is presented below.Latent class models or, more precisely, modi�ed path models withlatent variables can also be used to correct for measurement error inthe observed states occupied at the di�erent points in time when timeis assumed to be a discrete variable. For that purpose, an extension ofthe discrete-time latent Markov model proposed by Wiggins (1955, 1973)is used. In section 4.8, it was shown that the parameterization of thediscrete-time Markov model as a modi�ed path model yields a speci�ca-tion which is equivalent to a discrete-time logit model. By parameter-izing the latent Markov model in a similar way, that is, as a modi�edpath model with latent variables, a discrete-time logit model is obtainedwhich can be used to analyze transitions between latent states. In otherwords, an event history model is obtained that can be used to correct formeasurement error in the observed states at the di�erent points in time.Although the methods for correcting for measurement error in theobserved states that are discussed here can only be used if time is adiscrete variable, there are also models which can be used in continuous-time settings. Coleman (1964) showed how to estimate continuous-timeMarkov models with panel data subject to measurement error. The un-reliable measurements, or uncertain responses, as Coleman called them,were assumed to be measured at particular time points, while the un-derlying duration process was assumed to be continuous. Also Lancaster(1990:59-60) proposed a method to correct for measurement error in ob-served duration. He demonstrated that in speci�c situations measurementerror in recorded continuous durations can be dealt with using mixturemodels as discussed in the previous section.Below we will demonstrate how to use the modi�ed path model withlatent variables to correct for measurement error in observed categori-cal covariates in both discrete-time and continuous-time models, and tocorrect for measurement error in observed states in discrete-time eventhistory models. As in the previous section, a number of applicationsbased on real-world data sets are used to illustrate these two variants ofthe general approach to missing data problems in event history analysis.



5.3.1 Measurement error in covariatesAs demonstrated in section 5.1, the general model for dealing with missingdata problems in event history analysis consists of two parts: a part inwhich the relationships among the covariates are speci�ed and a partin which the event history model of interest is speci�ed. Correcting formeasurement error in observed covariates involves specifying a latent classmodel in the covariate part of the model, and using the latent indirectlymeasured variable as a regressor in the hazard model.Suppose there is a hazard model with two time-constant covariatesdenoted by A and W , where A is observed and W is latent or measuredindirectly. Four observed variables B, C, D, and E serve as indicators forthe latent variable W . Suppose, furthermore, that the latent covariate(W ) is posterior to observed covariate (A). In this case, the covariatepart of the model, specifying the relationships among A, B, C, D, E,and W , equals16
�abcdew = �a �wja �bcdejw ; (5.24)

where, as a result of the local independence assumption,
�bcdejw = �bjw �cjw �djw �ejw : (5.25)

As shown in section 3.1, all kinds of restricted latent class models canbe speci�ed by parameterizing the conditional response probabilities ap-pearing in Equation 5.25 as logit models.Although here only one observed and one latent covariate is used inthe hazard model, it is not a problem to specify models with several ob-served and several indirectly measured covariates. The only di�erence isthat in such a case, the modi�ed path model in which the relationships be-tween observed covariates, indirectly observed covariates, and indicatorsare speci�ed becomes a bit more complicated.The event history part of the model is exactly the same as in modelswith unobserved heterogeneity. Again, the hazard model may be either adiscrete-time logit model or a continuous-time log-rate model of the mostgeneral form, that is, a multiple-state model.
16If no a priori assumption is made about the causal ordering between A and W ,the term �a �wja appearing in Equation 5.24 has to be replaced by �aw, and if W isassumed to precede A, by �w �ajw.



Obtaining maximum likelihood estimates of the parameters of a haz-ard model with A and W as covariates, and with B, C, D, and E asindicators for W involves maximizing the following likelihood function:
L = NYi Xw �abcdewL�i (h) ; (5.26)

in which L�i (h) denotes the contribution of person i to the complete datalikelihood function for the hazard model, and a, b, c, d, and e are thevalues of A, B, C, D and E for person i. More information about theexact form of L�i (h) can be found in section 4.8. Since the likelihoodfunction described in Equation 5.26 is based on the general density func-tion represented in Equation 5.1, as already mentioned in section 5.1, theparameters can be estimated with the EM algorithm. In subsection 5.2.2,more details were given about the E step and the M step when the hazardmodel is a log-rate model.
Example 9: An indirectly measured covariate in the analysis ofthe timing of the �rst, second, and third birthsData and model This example illustrates the use of indirectly ob-served covariates by means of a hazard model for the timing of the �rst,the second, and the third birth. It di�ers from Example 5 in that, in-stead of introducing a latent variable to correct for unobserved hetero-geneity, here an indirectly measured variable is introduced which in
u-ences the hazard rate. This indirectly measured covariate is assumedto measure a woman's family and work attitude. It is well known thatwork-orientedness and familism are important determinants of fertilitybehavior (Bernhardt, 1986; Lesthaege en Meekers, 1986; Vermunt, 1991a,1991b). In fact, the single familism item which was used as a covariatein the hazard model is replaced by a latent variable indicating familismand work-orientedness.17The observed covariate educational level will again be denoted by A,the indicators by B, C, D, and E, and the latent covariate by W . The

17Two labels (work-orientedness and familism) are used for the same latent variablebecause originally two types of indicators were used with the intention of identifying twodi�erent dimensions. However, the analysis presented below shows that the indicatorsmeasured the same dimensions.



items B and C serve as indicators for familism, and the items D and Eserve as indicators for work-orientedness. The wording of the four at-titude items is as follows: B] Marriage is the most unique relationshipin a person's lifetime (1=fully agree and 3=totally disagree); C] In ourmodern world the only place where you can feel completely happy and atease is at home, with your own family and children (1=fully agree and3=totally disagree); D] How positively or negatively do you feel about�nancial independence for a conjugal or intimate two-person relation-ship? (1=negative and 3=positive); E] For a married woman with schoolchildren working outside the home is ... (1=objectionable, 2=not objec-tionable, and 3=recommendable). Item C is the one that was used as thecovariate indicating `familism' in Examples 1, 4, and 5.The covariate part of the model is exactly the same as in the modeldescribed in Equations 5.24 and 5.25. So, apart from a measurementmodel forW , educational level is assumed to in
uence a woman's familismand work-orientedness. The models to be estimated only di�er from oneanother with respect to the number of latent classes.For the hazard model, only one speci�cation is used as well, that is,a proportional hazard model with unrestricted time dependence. Thee�ects of W , A, and the time variable Z are assumed to be di�erent forthe �rst, the second, and the third birth. This gives the following rathersimple transition or event-speci�c log-rate model:
hm(zja;w) = �vMm + vAMam + vWMwm + vZMzm � :

The variable M with index m is used denote the spell number, in thiscase the parity of the birth.
Results Table 5.18 shows the test results for the models with one to�ve latent classes (Models 1-5). It can be seen that inclusion of eachadditional latent class decreases the likelihood function using �fteen ad-ditional parameters. However, the decrease becomes smaller with eachnext latent class. Because on the basis of the log-likelihood function itis di�cult to decide which model performs best, Table 5.18 also reportsthe BIC and AIC values for the models concerned.18 It can be seen that18The de�nitions of BIC and AIC which are used here are given in Equations 2.10and 2.9, respectively. Using these de�nitions, the smaller the value of BIC and AIC,the better the model performs.



Table 5.18: Test results for the estimated models for the timing of the�rst, second, and third births with an indirectly measured covariate
Model log-likelihood # parameters BIC AIC
1. 1 class -7241.69 67 14935.0 14617.4
2. 2 class -7003.12 82 14559.0 14170.2
3. 3 class -6943.13 97 14540.1 14080.3
4. 4 class -6911.18 112 14577.3 14046.4
5. 5 class -6898.90 127 14653.8 14051.8

on the basis of the BIC criterion Model 3 should be preferred, while onthe basis of the AIC criterion it should be decided that Model 4 performsbest.Table 5.19 reports the parameter estimates for the covariate part ofModel 4. The estimates for the conditional response probabilities �bjw,�cjw, �djw and �ejw can be used to label the latent classes with respect totheir familism (items B and C) and work-orientedness (items D and E).The fact that class one has the highest probability of giving positive an-swers to the familism items and negative answers to the work-orientednessitems indicates that this class consists of the most familistic and the leastwork-oriented women. Class number four is the least familistic and themost work-oriented group. The other two classes take an intermediateposition, where class two is more familistic and less work-oriented thanclass three.Actually, the classes can be ordered on one single dimension sincethe conditional response probabilities are almost consistent with the or-dinal latent class model proposed by Croon (1990). In an ordinal latentclass model, the cumulative conditional response probabilities for adjacentclasses are not allowed to cross each other. Only three pairs of responseprobabilities, which are marked with *, show small discrepancies from theperfect ordinal latent class model.From the estimated conditional probabilities that W = w given thatA = a it can be seen that the latent variable is strongly related to ed-ucational level. Women with a high educational level have the highestprobability of belonging to the non-familistic work-oriented class (classfour), while women with a low educational level have the highest proba-bility of belonging to the familistic non-work-oriented class (class one).



Table 5.19: Parameter estimates for the covariate part of Model 4 for thetiming of the �rst, second, and third births with an indirectly measuredcovariate
�wja A = 1 A = 2 A = 3 A = 4 total
W = 1 0.5414 0.3580 0.1468 0.0702 0.2247
W = 2 0.1989 0.3395 0.2412 0.0062 0.2120
W = 3 0.2227 0.2333 0.3264 0.4157 0.3111
W = 4 0.0371 0.0692 0.2856 0.5079 0.2522

�bjw W = 1 W = 2 W = 3 W = 4
B = 1 0.6510 0.2578 0.1039 0.0266
B = 2 0.2943 0.6514 0.8577 0.4288
B = 3 0.0547 0.0908 0.0383 0.5447

�cjw W = 1 W = 2 W = 3 W = 4
C = 1 0.6663 0.1050 0.0283 0.0003
C = 2 0.2331 0.7305 0.7597 0.2566
C = 3 0.1006 0.1645 0.2120 0.7431

�djw W = 1 W = 2 W = 3 W = 4
D = 1 0.3868 0.2028 *0.0219 *0.0485
D = 2 0.2553 0.4767 0.6479 0.1943
D = 3 *0.3580 *0.3204 0.3302 0.7572

�ejw W = 1 W = 2 W = 3 W = 4
E = 1 0.5678 0.5105 0.1505 0.0464
E = 2 0.3833 0.4865 0.7652 0.6678
E = 3 *0.0488 *0.0029 0.0843 0.2859



Table 5.20: Hazard parameters for the model for the timing of the �rst,second, and third births with an indirectly observed covariate (Model 4)
M = 1 M = 2 M = 3

v -3.0004 -1.7920 -2.8593
vA1 0.5887 -0.2508 -0.0127
vA2 0.5207 -0.0064 -0.3539
vA3 -0.0009 -0.1315 -0.2581
vA4 -1.1085 0.3888 0.6247
vW1 0.6214 0.1273 0.4800
vW2 -1.1359 0.9399 0.7763
vW3 0.6920 -0.5894 -0.4240
vW4 -0.1776 -0.4779 -0.8322

The estimated hazard parameters for Model 4, which are given inTable 5.20, indicate that the categories ofW are not ordered with respectto the risk of experiencing subsequent births. Classes one and three havethe highest risk of a �rst birth, while class two has the lowest risk of a�rst birth. So, class two contains the highest proportion of women thatremain childless. Given that a �rst birth occurred, class three has thehighest risk of a second and a third birth. Classes two and four have thelowest risk of a second and third birth.From a substantive point of view, the results of this example aresomewhat disappointing. It would have been nice if the latent classeshad shown some regular pattern with respect to the hazard rates of the�rst, second, and third births. That this is not so may be due to the factthat the hazard regression model itself is very simplistic. For instance,important time dimensions, such as cohort and age at the previous birth,were not included in the model and, moreover, the covariate e�ects werenot allowed to be nonproportional. Nevertheless, it will be clear that thelatent class approach exempli�ed here provides us with a powerful toolfor correcting for measurement error in observed covariate values.
5.3.2 Measurement error in observed statesWhen the observed states at the di�erent points in time are subject tomeasurement error, the observed transitions are a mixture of true andspurious transitions resulting from measurement error. Generally, such



unreliable measurements in
ate observed changes (Van de Pol and DeLeeuw, 1986). Thus, if a correction for unreliability in the recorded statestakes place, fewer individuals will be found to experience transitions thanif no correction for this type of error takes place (Coleman, 1964; Hage-naars, 1992). It should, however, be noted that this rule is only validif the errors made at the successive points in time are assumed to beuncorrelated.Here, a method for correcting for measurement error is presented thatis based on an extension of the discrete-time latent Markov model origi-nally proposed by Wiggins (1955, 1973). In section 4.8 it was shown thatby parameterizing the manifest discrete-time Markov model as a modi�edpath model, a model is obtained that is equivalent to a discrete-time logitmodel. By parameterizing the latent Markov model in a similar way, thatis, as a modi�ed path model with latent variables, a discrete-time logitmodel is obtained which can be used to model transitions between latentstates. In this model, the observed states at the di�erent points in timeare related to the latent states by means of a set of conditional responseprobabilities capturing the measurement error in the recorded states.The discrete-time logit model for latent transitions is similar to themultiple-group latent Markov model which was proposed by Van de Poland Langeheine (1990) to make it possible to take observed heterogene-ity into account. The multiple-group latent Markov model has, however,two important limitations (Vermunt, Langeheine, and B�ockenholt, 1995).First, since each level of the joint independent variables has its own setof parameters, the number of parameters to be estimated may becomevery large as the number of explanatory variables increases. A secondlimitation is that it cannot be used with time-varying covariates. Theapproach to be presented below overcomes these two limitations by al-lowing the speci�cation of a logit regression model with time-constantand time-varying covariates for the latent transition probabilities.In the previous discussions on discrete-time models, the state thatan individual occupies at T = tl was denoted by Sl, where l denotes aparticular point in time. This notation should be extended to be able todistinguish true or latent states from observed or manifest states. Theobserved states will be denoted by Sl, with values sl, and the latent statesby �l, with values �l. Although in this case each latent variable, �l, hasonly one indicator, Sl, it is also possible to specify models with severalindicators per occasion (Vermunt and Georg, 1995). Assuming that the



model contains three observed covariates denoted by A, B, and C, thejoint distribution of the observed covariates, the observed states fromT = t0 up to T = tL� and the true states from T = t0 up to T = tL� isgiven by
�abcs0s1:::sL��0�1:::�L� = �abc��0jabc L�Y

l=1��ljabc�l�1
L�Y
l=0�sljabc�l : (5.27)

Here, �abc forms the covariate part of the model. Although, for the sakeof simplicity, all the covariates are assumed to be time constant and ob-served, the latent discrete-time model may also contain unobserved, in-directly observed, and time-varying covariates.The event history part of the model represented in Equation 5.27contains three types of parameters: ��0jabc is the conditional probabilityof a particular true initial state given the categories of A, B, and C,��ljabc�l�1 is the conditional probability of being in the true state � at thelth point in time given the values of the observed covariates and the truestate occupied at the l � 1th point in time, and �sljabc�l is a conditionalresponse probability describing the amount of measurement error in �l.Although generally in latent Markov models ��0jabc is not restricted,it is possible to restrict the initial latent distribution given the observedcovariates. For instance, by assuming ��0jabc to be equal to ��0 for all a,b, and c, a model is obtained in which the latent distribution at T = t0is assumed to be equal for all the levels of the joint variable ABC.If �l 6= �l�1, ��ljabc�l�1 is a transition probability, though now be-tween latent states instead of observed states. As in the manifest case,��ljabc�l�1 can be parameterized by means of a logit model. For example,a possible logit model for the latent transition probabilities is
��ljabcw�l�1 = (5.28)exp �v�l�l�1�l�l�1 + vA�l�l�1a�l�l�1 + vB�l�l�1b�l�l�1 + vC�l�l�1c�l�l�1 + vW�l�l�1w�l�l�1

�
P�l exp �v�l�l�1�l�l�1 + vA�l�l�1a�l�l�1 + vB�l�l�1b�l�l�1 + vC�l�l�1c�l�l�1 + vW�l�l�1w�l�l�1

� ;
where the following identifying restrictions are imposed on the v param-eters:
v�l�l�1�l�l�1 = vA�l�l�1a�l�l�1 = vB�l�l�1b�l�l�1 = vC�l�l�1c�l�l�1 = vW�l�l�1w�l�l�1 = 0 if �l = �l�1:



In fact, the logit model that is speci�ed for the latent transitions is of thesame form as the discrete-time logit models that were used for manifesttransitions.From the conditional response probabilities, �sljabc�l , appearing inEquation 5.27, it can be seen that the observed states are assumed tobe conditionally independent of each other given the joint latent variable�0�1 : : :�L� . So, in fact, the latent Markov model is a latent class modelin which the latent distribution is restricted to have a Markovian changestructure (Hagenaars, 1992). Another slightly di�erent and perhaps easierway to view the latent Markov model is as a model with L� mutuallyrelated latent variables, each with only one indicator.As in latent class models, it is possible to relax the local independenceassumption by including direct e�ects between observed states (Hage-naars, 1988; Bassi et al., 1995). The measurement errors at successivepoints in time may, for instance, be assumed to be correlated becausepeople tend to be consistent with regard to their reported states, irre-spective of their true states. In such a case, the response probabilities�sljabc�l appearing in Equation 5.27 have to be replaced by �sljabcsl�1�lfor all T � t1.Also the conditional response probabilities describing the measure-ment part of the model can be parameterized by means of a logit model.The simplest speci�cation for �sljabc�l is to assume the measurement errorto be independent of the observed covariates and the point in time, thatis,
�sljabc�l = �sj� = exp �qS�s� �Ps exp �qS�s� � ;where q denotes a log-linear parameter of the measurement model.19 Thisgives time-homogeneous and equal reliability for all the values of A, B,and C. Another possible speci�cation is

�sljabc�l = �sjabc� = exp �qS�s� + qAS�as� + qBS�bs� + qCS�cs� �
Ps exp �qS�s� + qAS�as� + qBS�bs� + qCS�cs� � :

19The log-linear parameters of the measurement part of the discrete-time model aredenoted by q to be able to distinguish them from the u parameters of the covariatepart of the model and the v parameters of the discrete-time logit model.



Here, the error rates also depend on A, B, and C, but not on higher-orderinteractions among the three covariates. For the q parameters, the samekinds of identifying restrictions are used as for the v parameters, that is,all the e�ects in which �l = Sl are �xed to zero. With such identifyingrestrictions, each q parameter indicates the main or covariate e�ect onthe `transition' from a particular true state to another observed state, inother words, on the size of the measurement error. It will be clear thatthe log-linear parameterization of the measurement model for the latentstates is very 
exible. When there are several indicators per occasion, thelogit models may, for instance, be used to specify measurement modelswhich are discrete approximations of latent trait models (Heinen, 1992;Vermunt and Georg, 1995).To be able to identify the model parameters of the model representedin Equation 5.27, it is necessary to impose certain restrictions on eitherthe latent transition probabilities or the conditional response probabil-ities. This is not surprising, especially if one realizes how many latentvariables the model contains. According to Van de Pol and Langeheine(1990), in a latent Markov model the response probabilities for the �rstoccasion T = t0 and last occasion T = tL� are not identi�ed. However,it is su�cient for identi�cation to assume them to be equal to the re-sponse probabilities for the nearest occasions, i.e., �s0j�0 = �s1j�1 and�sL� j�L� = �sL��1j�L��1 . Note that this means that the latent Markovmodel can only be identi�ed if there are observations for at least threepoints in time. Another procedure to achieve identi�cation, which can beused if there are at least four occasions, is to impose restrictions on the�rst and the last set of transition probabilities, for instance, by assumingtime-homogeneity of the latent Markov chain. But, if one does not wantto impose these kinds of identifying restrictions, the parameters of latentMarkov models can only be identi�ed by using more than one indicatorfor the time-speci�c latent states (Bassi et al., 1995).Estimation of the latent discrete-time logit model can be performedby means of the EM algorithm which is implemented in the `EM program(Vermunt, 1993). The contribution to the likelihood function for an indi-vidual with covariate values a, b, and c, and observed states s0, s1; : : : sL�can be based on the probability density function given in Equation 5.27.Since this density function is of the form given in Equation 5.2, the pos-terior probabilities needed in the E step of the EM algorithm are given



in Equation 5.4. In this particular case, they are obtained by
P (�0; �1; : : : ; �L� ja; b; c; s0; s1; : : : ; sL�) =�abcs0s1:::sL��0�1:::�L�P�0�1:::�L� �abcs0s1:::sL��0�1:::�L� :Because the model for latent transitions is a modi�ed path model withlatent variables, the same version of the EM algorithm may be used toestimate its parameters as was presented in section 3.1.There is one important limitation with respect to the practical ap-plicability of the discrete-time logit model for latent transitions. In theE step of the EM algorithm, for each non-zero observed cell entry, thecorresponding cell entries of the table including the joint latent dimension�0�1 : : :�L� have to be computed. Since the number of cell entries of thejoint latent dimension increases exponentially with the number of timepoints, computational limitations make it impossible to estimate latentMarkov models with a large number of time points.20Another restrictive feature of the event history model for latent tran-sitions is that it can only be applied if the length of the observationperiod is the same for all the individuals involved in the study. This is,in fact, the same condition as for applying the classical latent Markovmodel as implemented in, for instance, the PANMARK program (Van dePol, Langeheine, and De Jong, 1988). It must, however, be noted thatthis condition can easily be relaxed by using the missing data methodsto be discussed in the next section.

Example 10: A model for latent labor market transitionsData and models To illustrate the use of models for transitions be-tween latent states, the example on labor market transitions (Example6) is extended. As in Example 6, the transitions between the states em-ployed and not employed are analyzed, but the di�erence is that now themeasurements of the states occupied at the six di�erent points in timeare no longer assumed to be completely reliable. The covariates whichare used in the model are sex (A), ethnic group (B), and cohort/age (C).
20If the latent variables are dichotomous, it is possible to deal with eight to ten timepoints, but if the latent variables have �ve categories, three or four is the maximumnumber of occasions that can be dealt with (Vermunt, Langeheine, and B�ockenholt,1995).



Table 5.21: Test results for the estimated models for latent labor markettransitions
Model L2 df p
1. no error 1919.82 980 0.000
2a. saturated heterogeneous 784.68 788 0.527
2b. simple heterogeneous 1393.49 968 0.000
2c. 2th order heterogeneous 1074.40 938 0.001
2d. 3th order heterogeneous 893.53 908 0.628
3a. saturated homogeneous 1021.15 948 0.049
3b. simple homogeneous 1433.30 978 0.000
3c. 2th order homogeneous 1180.13 973 0.000
3d. 3th order homogeneous 1042.76 968 0.047
4a. 2th order homogeneous correlated 1140.80 972 0.000
4b. 3th order homogeneous correlated 981.46 966 0.358

Because the stationary Markov model performed rather well in themanifest case, here the transition probabilities are assumed to be time ho-mogeneous as well. This makes the event history part of the model simpleso that the example can focus on the speci�cation of the measurementmodel for the latent states. Another advantage of assuming stationarityof the transition probabilities is that under this condition identi�cation ofall the parameters is guaranteed, irrespective of the model that is speci-�ed for the conditional response probabilities. The model that is used forthe latent transitions is of the form given in Equation 5.29, with the onlydi�erence that the parameters are assumed not to depend on the point intime. So, in fact, the model not only assumes the transition probabilitiesto be time homogeneous, but that the covariate e�ects are proportionalas well.
Testing Table 5.21 reports the test results for four types of models:a model without measurement error (Model 1), heterogeneous modelsor models in which the measurement error di�ers per occasion (Models2a-2d), homogeneous models or models in which the measurement erroris assumed to be equal for the di�erent points in time (Models 3a-3d),and homogeneous models with correlated errors or direct e�ects betweenobserved states (Models 4a and 4b).Model 1 and Model 2a give the upper and lower bound L2 values for



the stationary latent Markov model with uncorrelated measurement er-rors. Model 1 is the stationary model without measurement error, whileModel 2a is the model with completely unrestricted �sljabc�l 's. By cor-recting for (uncorrelated) measurement errors, at maximum the L2 valuecan go down 1135:14 points using 192 degrees of freedom. The excellent�t of Model 2a indicates that if, from a substantive point of view, it issensible to assume that the true states are not measured completely reli-able, the lack of �t of the stationary Markov model can, to a large extent,be attributed to measurement errors in the recorded states.In Model 2b, labeled as the simple heterogeneous model, the responseprobabilities do not depend on the observed covariates A, B, and C,in other words, �sljabc�l = �slj�l . Model 2b captures almost half of thedi�erence in L2 values between Model 1 and Model 2a using only 12 de-grees of freedom (L22bj2a = 526:33). Model 2c contains, besides the directe�ect of �l on Sl, the two-variable interactions between the covariatesand the observed states Sl, that is, qasl , qbsl , and qcsl . This means thatthe covariates are allowed to in
uence directly the value of the observedstates, irrespective of the true state. These two-variable e�ects have avery speci�c meaning in terms of the state-speci�c measurement errors.Suppose, for instance, that qasl is negative. In this case, �l = 1 will bemeasured less reliably for A = 1 than for A = 2, while �l = 2 will bemeasured more reliably for A = 1 than for A = 2. In other words, thecovariate concerned is assumed to have exactly the reverse e�ect on themeasurement error for the states employed and not employed, which is arather strong assumption. The fact that Model 2c �ts signi�cantly betterthan Model 2b (L22bj2c = 310:09; df = 30; p = :000) indicates that thereliability of the measurements depends on the covariate values. Whenthe three-variable interactions qasl�l , qbsl�l , and qcsl�l are included in themeasurement model, in other words, when the covariates are allowed toin
uence the state-speci�c reliabilities in a non-reversed way (Model 2d),the model greatly improves again (L22cj2d = 180:87; df = 30; p = :000).Moreover, since Model 2d does not �t signi�cantly worse than Model 2a(L22dj2d = 97:54; df = 120; p < :93), it seems that it is not necessary toinclude higher-order interaction terms in the measurement model.The heterogeneous models presented above have one important dis-advantage: They use many parameters to describe the unreliability inthe recorded states. However, often it is realistic to assume the mea-surement error to be equal across points in time. Models 3a-3d are



time-homogeneous variants of Models 2a-2d. All the conditional L2 testsof the homogeneous models against the matching heterogeneous mod-els are signi�cant, which implies that the measurement error is not sta-ble across time points. However, the much more parsimonious homo-geneous models do not perform that badly if their L2 values are com-pared with heterogeneous models with the same number of degrees offreedom. Model 3d, for instance, has the same df as Model 2b, but amuch lower L2 value. Comparison of the L2 values of Models 3c and3d (L23cj3d = 137:87; df = 5; p = :000) indicates again that the covariatee�ects on the state-speci�c measurement errors are not exactly reversed.Because often it is unrealistic to assume that the measurement errorsat the di�erent points in time are uncorrelated, two models are speci�edwith a direct e�ect of Sl�1 on Sl. Model 4a is the same as Model 3c,except that it contains the two-variable interaction terms qslsl�1 . Model4b is obtained by including the three-variable interaction terms qslsl�1�linto Model 3d. Models 4a and 4b �t signi�cantly better than Models3c and 3d, respectively: L23cj4a = 39:33; df = 1; p = :000; and L23dj4b =81:30; df = 2; p = :000. This indicates that, if from a substantive pointof view it is sensible to assume correlated measurement errors betweensuccessive occasions, it can be an important source of lack of �t of themanifest Markov model (Model 1) as well.
Parameters The parameter estimates reported in Table 5.22 show thatthe parameters of the event history model depend rather strongly on thespeci�cation of the error structure for the true states. Consider �rst theparameters of the measurement part of Model 3b. The q parametersfor Model 3b indicate that the measurement error is rather small. Themean error probabilities for the state employed and not employed are:027 (= exp(�3:5708)=[1+exp(�3:5708)]) and :013 (= exp(�4:3694)=[1+exp(�4:3694)]), respectively. But even with this rather small amountof measurement error, correcting for measurement error decreases thetransition probabilities considerably. The mean probability of a transitionfrom employed to not employed declines from :097 in Model 1 to :055 inModel 3b, while the mean of the other transition probability declines from:073 to :032.21 Furthermore, all the covariate e�ects on the transition

21The mean transition probability within the levels of the covariates can be obtainedfrom the main e�ect v. For example, :097 = exp(�2:2322)=[1 + exp(�2:2322)].



Table 5.22: Parameter estimates for some models for latent labor markettransitions
Model 1 Model 3b Model 3d Model 4b

employed to not employed (�l�1 = 1 and �l = 2)
v -2.2322 -2.8447 -3.1700 -5.9831
vA1 ;�v

A
2 -0.1387 -0.1385 -0.2673 -0.3119

vB1 ;�v
B
2 -0.2015 -0.2662 -0.2486 -0.0218

vC1 0.4350 0.5080 0.9926 3.6790
vC2 -0.3295 -0.3448 0.0010 2.4338
vC3 -0.6525 -0.9758 -0.8830 1.1971
vC4 0.5470 0.8126 -0.1106 -7.3099
not employed to employed (�l�1 = 2 and �l = 1)
v -2.5460 -3.4237 -3.7002 -4.6106
vA1 ;�v

A
2 0.2657 0.1180 0.0247 0.0048

vB1 ;�v
B
2 0.2741 0.3334 0.3188 0.7613

vC1 -2.3389 -2.5286 -2.1297 -1.6980
vC2 -0.2172 -0.4197 -0.0898 -0.1745
vC3 1.1196 0.9557 0.9893 0.9205
vC4 1.4365 1.9926 1.2303 0.9520
measurement error for employed (�l = 1 and Sl = 2)
q -3.5708 -3.3376 -2.3142
qA1 ;�q

A
2 -0.1600 -0.1937

qB1 ;�q
B
2 -0.1089 -0.2256

qC1 0.4044 0.1271
qC2 -0.2431 -0.1149
qC3 -0.4424 -0.4338
qC4 0.2811 0.4216

q
Sl�1
1 ;�q

Sl�1
2 -0.8876

measurement error for not employed (�l = 2 and Sl = 1)
q -4.3694 -4.4233 -3.7808
qA1 ;�q

A
2 0.3579 0.2555

qB1 ;�q
B
2 0.2560 0.1742

qC1 -3.9301 -3.9985
qC2 -0.4814 -0.5889
qC3 1.8321 1.9152
qC4 2.5794 2.6722

q
Sl�1
1 ;�q

Sl�1
2 0.5600



probabilities become somewhat stronger, except for the e�ect of sex (A)on the transition from not employed to employed. This is in agreementwith what is found most often, that is, that measurement error attenuatesthe strength of the relationships between variables.In Model 3d, the covariates were allowed to in
uence the error rates.Since the same identifying restrictions are used for the q parameters asfor the parameters of the discrete-time logit model, they indicate thein
uence on the `transition' from a true state to another observed state,in other words, the in
uence on the sizes of �2jabc1 and �1jabc2, respectively.As can be seen from the q parameters for Model 3d, males (A = 1), whites(B = 1), and persons belonging to the middle two age groups (C = 2 andC = 3) have the lowest error rates for the state employed, while females,non-whites, and the two oldest age groups have the lowest error rates forthe state not employed. Moreover, the e�ect of age on both error rates ismuch stronger than the e�ects of sex and ethnic group.The event history parameters for Model 3d indicate that when thestructure of the measurement error is speci�ed more precisely, there iseven less change. In Model 3d, the mean probability of becoming notemployed is :040, and the mean probability of �nding a job is :024. Fur-thermore, because of the strong e�ect of age on the error rates, it is notsurprising that the e�ects of age are a�ected most by allowing reliabilityto depend on the covariate values. The most striking change occurs in thee�ect for the youngest age group (C = 4) on the transition from employedto not employed. While in Models 1 and 3b the youngest age group hadthe highest risk of becoming not employed, in Model 3d the probabilityfor this age group is around the mean level. Other di�erences betweenthe parameters for Models 3b and 3d are the weaker e�ects of A and Con the transition from not employed to employed, and the stronger e�ectof A on the transition from employed to not employed.In Model 4b, the measurement errors were allowed to be correlatedbetween successive time points. By including direct e�ects of the pre-ceding observed states on the error rates, the covariate e�ects on themeasurement error change most for the true state employed. The errorrates for whites (B = 1) and persons belonging to the oldest age group(C = 1) become lower, while the error rates for persons belonging to theyoungest age group become higher. Moreover, the e�ects of sex and eth-nic group on the measurement errors for the state not employed becomesomewhat smaller. The signs of the direct e�ects of the observed state



on the previous occasion on the state-speci�c reliabilities indicate thatpersons with Sl�1 = 1 have a lower error rate for the true state employedand a higher error rate for the true state not employed, while personswith Sl�1 = 2 have a higher error rate for the state employed and a lowererror rate for the state not employed. So, people tend to be consistent intheir reported employment status, irrespective of their true state. Thisleads to a more reliable measurement if the true state corresponds withthe observed state, and a less reliable measurement if the true state doesnot correspond with the observed state.The most important change in the event history parameters comparedwith the model with uncorrelated errors (Model 3d) is the change in theprobability of becoming not employed for persons with C = 4. This grouphas a probability of nearly zero (exp(�5:98�7:31)=[1+exp(�5:98�7:31)])of becoming not employed, which indicates that the solution is on or veryclose to the boundary of the parameter space. From a substantive pointof view, this implies that all the observed transitions from employed tonot employed of persons belonging to the youngest age group can be at-tributed to measurement error. Also the e�ect of ethnic group on the twotransition probabilities changes quite a lot: The di�erence between whitesand non-whites in the probability of becoming not employed disappears,while the di�erence in the probability of becoming employed increases.Although on the basis of the model �t it can be concluded that Model4b performs very well, the extremely low probability of becoming notemployed for the youngest age group indicates that it probably overes-timates the amount of measurement error. It is very implausible thatthe youngest age group really has a probability of zero of becoming un-employed or going out of the labor force. Thus, as always, substantivearguments must determine the choice from among the many di�erentpossible speci�cations for the structure of the measurement error. Thisexample demonstrated the 
exibility of approach for dealing with mea-surement error in the observed states, which was presented in this section.It can be used to test di�erent types of assumptions about measurementerror, such as whether the measurement error is stable over time, whetherthe measurement error depends on an individual's covariate values, andwhether the measurement error is correlated between successive points intime.



5.4 Partially missing data
The two previous sections presented event history models with latent vari-ables, in other words, models in which the information on some variables iscompletely missing. This section deals with another type of missing dataproblem. Event history models are presented which can be used whencovariate values are partially missing or when event history informationis partially missing. The lack of some information can, for instance, bethe result of nonresponse or panel attrition, but it can also be caused bythe data collection design itself. In clinical trials, sometimes it is veryexpensive or even impossible to collect additional covariate informationfor the individuals who are already involved in the study. Social surveysare also often subject to partial nonresponse.The approach for dealing with partially observed data discussed hereis based on the missing data techniques developed in the �eld of log-linear modeling. Schluchter and Jackson (1989) applied the approach ofFuchs (1982) to use cases with partially observed covariate values in alog-rate model with categorical covariates. However, as demonstrated insection 3.2, Fuchs's approach has the disadvantage that the nonresponsemechanism must be assumed to be ignorable. Moreover, Schluchter andJackson (1989) only speci�ed a saturated model for the covariate part ofthe model. Here, Schluchter and Jackson's method is extended by usingFay's approach to nonresponse (Fay, 1986) instead of Fuchs's approach.This makes it possible to relax the assumption that the response mecha-nism is ignorable. Recently, Baker (1994) applied models for nonresponsein combination with a discrete-time logit model. Furthermore, since thecovariate part of the event history model used is a modi�ed path model,di�erent kinds of log-linear models can be speci�ed for the covariates, suchas the models with latent variables discussed in the previous two sections.It should be noted that Schluchter and Jackson already mentioned thepossibility of extending their hazard model with partially observed co-variates with a more general model for the covariates and with a modelfor response mechanism.Not only the covariate values, but also the event history data may bepartially missing. The best known forms of missing data on the occur-rence or nonoccurrence of the event(s) under study are, of course, left andright censoring. As demonstrated in section 4.5, one of the strong pointsof hazard rate models is that right-censored observations can be used for



the estimation of the parameters, and that, in speci�c situations, the sameapplies to left-censored observations. However, the standard treatment ofcensored observations is only valid if the censoring mechanism is indepen-dent (Kalb
eisch and Prentice, 1980) or noninformative (Lagakos, 1979),that is, if the missing data mechanism is ignorable for likelihood-basedinference. By means of the above-mentioned methods for handling miss-ing data, it is possible to relax this assumption for discrete-time eventhistory models; more precisely, it is possible to specify models in whichthe dependent process and the censoring process are related to each other.The approach presented here has two other advantages compared to thestandard way of dealing with missing event history information. First, itcan be used with more general patterns of nonresponse than left censoringand right censoring: Missing data may occur at every point in time, thatis, not only at the beginning or the end of the observation period. Second,it can also be used for dealing with missing information on time-varyingcovariates.It should be noted that the models for nonresponse can only be usedfor dealing with missing event history information if time is treated as adiscrete variable. The reason for this is that the models for nonresponseare based on de�ning an event history model as a modi�ed path modelwith missing data, which is only possible for a discrete-time logit model.If time is continuous, other types of methods have to be used to deal withnonignorable censoring. One method, which was illustrated in Example4, is treating censoring as a dependent competing risk.One of the strongest points of the approach to be presented here isthat it is embedded in the general missing data framework introduced insection 5.1. This makes it possible to use the missing data techniques to bediscussed below in conjunction with unobserved heterogeneity, indirectlyobserved covariates, and latent transitions. The next two subsectionsdemonstrate the way in which to use Fay's causal models for nonresponseto deal with partially observed covariates and with partially observeddiscrete-time event history data.
5.4.1 Partially observed covariatesIn section 3.2, the method proposed by Fay (1986) for handling partiallyobserved data in log-linear models was discussed. Fay's method can alsobe used for dealing with partially observed covariates in event history



models by simultaneously specifying a causal log-linear model with re-sponse indicators and a hazard model for the time variable of interest.Thus, a model consists again of two parts: a part in which the relation-ships between the covariates and the response mechanism is speci�ed,and a part in which the dependent process of interest is speci�ed. In fact,the solution for this type of missing data problem is very similar to thesolution that was applied for completely unobserved covariates in sections5.2 and 5.3.Suppose there is a hazard model for one single type of event withfour observed covariates A, B, C, and D. Furthermore, suppose that thescores on D are missing for some persons, and that the indicator variableR indicates whether D is observed (R = 1) or not (R = 2). Using theterminology introduced in section 3.2, there are two subgroups of personson whom the same kind of information is available. For subgroup ABCD,all covariates are observed, while for subgroup ABC, only A, B, and Care observed. In addition, for all persons there is information on thesurvival time and on whether one experienced an event or not.The covariate part of the model is a causal model for nonresponse asproposed by Fay (1986), i.e.,
�abcdr = �abcd �rjabcd : (5.29)Although, for the sake of simplicity, �abcd will not be restricted, it ispossible to postulate a model for the covariates as well.The mechanism causing the missing data can be speci�ed by means ofa logit model for conditional probability �rjabcd. It should be noted that itis even necessary to impose some restrictions on �rjabcd because otherwisethe model is not identi�ed. It is not possible to include the e�ects of allcompletely and partially observed covariates, including all their higher-order interaction terms, in the model for the response mechanism. Thesimplest response model is obtained by the following logit model:

�rjabcd = �r = exp �uRr �Pr exp (uRr ) : (5.30)
From the fact that the model for �rjabcd does not contain interaction termsof R and the covariates, it can be seen that the probability of nonresponseis assumed to be independent of all the covariates included in the model.Using the missing data terminology introduced in section 3.2, the missing



data is assumed to be missing completely at random (MCAR). Anotherpossible speci�cation is
�rjabcd = �rjabc = exp �uRr + uRAra + uRBrb + uRCrc �Pr exp �uRr + uRAra + uRBrb + uRCrc � : (5.31)

Here, R is assumed to depend on A, B, and C, but not the higher-orderinteractions between these variables. Since R depends only on variableswhich are observed for all individuals, the response model represented inEquation 5.31 assumes the missing data to be missing at random (MAR).Note that it is a `non-saturated' MAR model because the higher-orderinteraction terms are not included in the model.The response models described in Equations 5.30 and 5.31 both as-sume the response mechanism to be ignorable because the value of theresponse indicator R does not depend on the variable which is missingfor some persons. A simple nonignorable nonresponse model would be
�rjabcd = �rjd = exp �uRr + uRDrd �Pr exp �uRr + uRDrd � : (5.32)

This is a nonignorable response model because the probability of nonre-sponse depends on a variable which is not observed for all individuals.The second part of the model can be either a log-rate model or adiscrete-time logit model. The log-rate model may be of the form
h(zja; b; c; d) = exp �v + vAa + vBb + vCc + vDd + vZz � ; (5.33)

which is a proportional hazard model. It should be noted that the re-sponse indicator can be included as a regressor in the hazard model aswell. Although in most applications it is not very sensible, in some situ-ations it may be of interest to test whether the nonresponse is related tothe dependent process.Estimation of the parameters of the log-linear model for the covariates,the response model, and the hazard model can again be performed bymeans of the EM algorithm. Since the model described in Equations 5.29and 5.33 is a special case of the general model de�ned in Equation 5.1, theposterior probabilities which are needed in the E step of the EM algorithmfor obtaining the complete data are of the form given in Equation 5.3.



In this particular example, the E step involves computing the probabilitythat D = d given the observed covariate and survival information andthe current parameter estimates for individuals with a missing value onD. This posterior probability can be obtained by
P (dji) = �abcd2L�i (h)Pd �abcd2L�i (h) ;where a, b, and c are the observed covariate values of person i, and L�i (h)is the contribution of person i to the complete data likelihood functionfor the event history part of model.

Example 11: A hazard model for the incidence of high bloodpressure with partially observed covariatesData and model Schluchter and Jackson (1989) illustrated their ap-proach to partially observed covariates in log-rate models by means of anexample on the incidence of high blood pressure. Example 11, which isbased on the same data set, demonstrates some of the possible extensionsof their method when using the general missing data approach presentedabove. After repeating a part of Schluchter and Jackson's analysis, wewill show how to specify nonignorable response models and models inwhich the relationships between the covariates are restricted by means ofa latent class model.The data concern 6,942 men who enrolled in the Institute for AerobicFitness in Dallas, Texas, between 1970 and 1982 (Blair et al., 1984). Atthe initial visit, the men were examined, and baseline data were collected.In 1982, data was collected on the incidence of high blood pressure duringthe period between the initial visit and the moment of the interview.Schluchter and Jackson de�ned the time variable for their hazard modelas the time between the year of the initial visit to the center and theyear a person was diagnosed to have high blood pressure. As covariatesthey used age (� 40; > 40), systolic blood pressure (� 120 mm Hg, > 120mm Hg), treadmill stress test time (� 11 minutes, > 11 minutes), andpercentage body fat as determined by hydrostatic weighing (� 16; > 16),which will here be denoted by A, B, C, and D, respectively. The variablepercentage of body fat (D) was the only variable with partially missinginformation. It was not observed in 53 percent of the men enrolled in thestudy.



Table 5.23: Test results for the estimated models for the incidence of highblood pressure with missing data on one of the covariates
Model log-lik. # par.
simple hazard model
1. MCAR fABCD;Rg -16839.38 24
2. saturated MAR fABCD;ABCRg -16766.16 31
3. second order MAR fABCD;AR;BR;CRg -16768.58 27
4. nonignorable fABCD;DRg -16779.57 25
latent class hazard model
5. 2 class nonignorable fAW;BW;CW;DW;RWg -16869.51 16
6. 3 class nonignorable fAW;BW;CW;DW;RWg -16775.94 23

The model for the covariates and the response model are of the formgiven in Equation 5.29. For the time of being, a saturated model is as-sumed for the relationships between the covariates. To test di�erent as-sumptions about the response mechanism di�erent speci�cations are usedfor response probability �rjabcd, such as the ones described in Equations5.30-5.32.For the hazard part of the model only one speci�cation is used, that is,a piecewise constant proportional hazard model with three time intervals:0-3 years, 4-6 years, and 7-12 years. The log-rate model concerned isequivalent to the model described in Equation 5.33. From the analysesperformed by Schluchter and Jackson, it is known that this simple model�ts very well. So, the only part that is varied is the model for the responsemechanism.
Results Table 5.23 shows the test results for the models that are pre-sented below. Model 1, which is Schluchter and Jackson's �nal model,is of the form given in Equation 5.30; in other words, it assumes themissing data to be MCAR. Models 2 and 3 are two other ignorable re-sponse models. Model 2 is the `saturated' MAR model; in other words,the model in which R depends on all completely observed covariates, in-cluding all their higher-order interaction terms.22 From the conditionallikelihood-ratio test of Model 1 against Model 2, it can be seen that

22In this particular case, a log-linear model for nonresponse can be speci�ed whichis equivalent to the `saturated' ignorable response mechanism because of the nestedpattern of nonresponse (see also section 3.2).



the missing data is clearly not MCAR: L21j2 = 145:44; df = 7; p = :000.Model 3 is the `non-saturated' ignorable response model described inEquation 5.31: It contains only the two-variable terms of R and A, B,and C, respectively. Since Model 3 does not �t worse than Model 2(L23j2 = 4:84; df = 4; p > :31), the higher-order interaction terms are notsigni�cant. Although not presented in Table 5.23, separate tests showthat all two-variable e�ects are signi�cant.In Model 4, the response mechanism is of the form described in Equa-tion 5.32, which is a nonignorable model since it contains a direct e�ectof D on R. As can be seen from the di�erence in values of the log-likelihood functions, Model 4 �ts much better than Model 1, using onlyone additional parameter (L21j4 = 119:62; df = 1; p = :000). Moreover,it �ts almost as well as Model 3.23 Of course, substantive argumentshave to determine the choice between an ignorable and a nonignorableresponse model. It will be clear, however, that, using Fay's approach, itis relatively easy to specify nonignorable models for nonresponse. And,in terms of �t, this model performs rather well in this example. Oftenone does not know whether the missing data mechanism is ignorable ornot. In such cases, it is advisable to investigate whether the structuralparameters of interest are sensitive to the speci�cation which is used forthe mechanism causing the missing data.Table 5.24 reports the parameter estimates for some of the modelsfor nonresponse. The �rst column gives the estimates of the hazard pa-rameters which are obtained when only complete cases are used. Thesecond column presents the parameter estimates for Model 3, the `non-saturated' MAR model. But, since any ignorable response model givesthe same hazard parameters, the reported hazard parameters for Model3 are at the same time the hazard parameters for Models 1 and 2. It canbe seen that the parameter estimates change when using incomplete datain the analysis. The e�ect of age (A) on the risk of high blood pressurebecomes weaker, whereas the e�ects of systolic blood pressure (B) andtreadmill stress test time (C) become stronger. The e�ect of percentageof body fat (D), the variable with missing data, remains almost equal.And �nally, the negative time dependence becomes weaker.From the parameter estimates for the response model of Model 3, it
23Models 3 and 4 cannot be tested against each other by means of a likelihood-ratiotest because they are not nested.



Table 5.24: Parameter estimates for the models for the incidence of highblood pressure under di�erent assumptions about the response mechanism
Complete data Model 3 Model 4 Model 6

log-rate parameters
v -5.2503 -5.2805 -5.2292 -5.1498
vA1 ,-v

A
2 -0.2044 -0.1237 -0.1223

vB2 ,-v
B
2 -0.7678 -0.8307 -0.8280

vC3 ,-v
C
2 0.2062 0.2953 0.3085

vD4 ,-v
D
2 -0.1947 -0.1964 -0.1557

vW1 -0.7896
vW2 -0.5264
vW3 1.3159
vZ1 0.1871 0.0798 0.0821 0.0772
vZ2 0.1675 0.1317 0.1234 0.1202
vZ3 -0.3546 -0.2115 -0.2055 -0.1974
response parameters
uR1 -0.1277 -0.0749 -0.0698
uRA11 -0.0650
uRB11 -0.0739
uRC11 0.1042
uRD11 -0.3619
uRW11 -0.2459
uRW12 0.0310
uRW13 0.2148

can be seen that the high-risk groups (A = 2, B = 2, and C = 1) havethe highest probability of nonresponse. Although the e�ects are weak,the nonresponse is clearly selective in the sense that it is related to thedependent process under study.The parameters for the response model of Model 4 indicate that thereis a rather strong relationship between D and the probability of observingor not observing D. Nevertheless, the hazard parameters for this nonig-norable model are very similar to the ones for the ignorable models. Onlythe e�ect of D becomes somewhat weaker when a nonignorable responsemechanism is postulated instead of an ignorable one. Thus, in this par-ticular case, it is more important to use the partially observed data thanto specify correctly the mechanism causing the missing data.



To show that the approach for dealing with incompletely observed co-variates can easily be applied together with the latent variable modelsdiscussed in the previous two sections, two additional models are formu-lated which, from a substantive point of view, seem to be interesting aswell. Suppose that the variables A, B, C, and D are indicators for the la-tent variable `physical condition', denoted by W . In this case, the modelfor the joint distribution of A, B, C, D, W , and R may be:
�abcdwr = �a �wja �bjw �cjw �djw �rjw :This is, in fact, a latent class model in which B, C, and D serve as in-dicators for W , and in which A (age) is used as an exogenous variable.Moreover, W is assumed to determine the probability of observing D.Note that such a response model gives a nonignorable response mecha-nism because the response indicator depends on a variable which is notobserved for all persons. The hazard rate is assumed to depend only onW , where the e�ect is assumed to be proportional.As can be seen from the test results reported in Table 5.23, the modelwith a two-class latent variable (Model 5) performs very badly. However,the three-class model performs very well (Model 6). The value of the log-likelihood function is very near to the ones for Models 2 and 4. Model 6has, however, less parameters than these two models and, moreover, theparameter estimates can be interpreted very easily.The hazard parameters for Model 4, which are reported in Table 5.24,show that the latent class model identi�ed three groups with clearly di�er-ent risks of being diagnosed as having high blood pressure. The hazardrate for persons belonging to the third class is more than eight timeshigher than for the persons belonging to the �rst class. Moreover, theparameter estimates for the response model show that the group withthe highest hazard rate also has the highest probability of missing dataon D. This is, of course, consistent with the �ndings from Models 3 and4. Table 5.25 gives the parameter estimates for the covariate part ofModel 6. The estimated marginal distribution of W shows that almost40 percent of the persons belong to the high-risk class. Furthermore,it can be seen that there is a rather strong relationship between ageand W . Almost 50 percent of the individuals who are older than 40years of age belong to high-risk class three, while only 26 percent of



Table 5.25: Parameter estimates for the covariate part of the latent classmodel for the incidence of high blood pressure with a nonignorable re-sponse mechanism (Model 6)
�wja A = 1 A = 2 �w
W = 1 0.5076 0.1990 0.3284
W = 2 0.2304 0.3208 0.2829
W = 3 0.2620 0.4802 0.3887

�bjw W = 1 W = 2 W = 3
B = 1 0.5406 0.9999 0.0018
B = 2 0.4594 0.0001 0.9982

�cjw W = 1 W = 2 W = 3
C = 1 0.3831 0.9640 0.9330
C = 2 0.6169 0.0360 0.0670

�djw W = 1 W = 2 W = 3
D = 1 0.8084 0.1479 0.1370
D = 2 0.1916 0.8521 0.8630

the youngest age group belongs to the high-risk class. The conditional`response' probabilities �bjw, �cjw, and �djw show that W is most stronglyrelated to B. Almost all persons belonging to class three have a highsystolic blood pressure (B = 2), which is quite di�erent from the twolow-risk classes. The relationships betweenW and the other two observedvariables, C and D, are less clear. Although most persons belongingto class three have a low treadmill stress time (C = 1), most personsbelonging to class two have a low treadmill stress time as well. Thesame applies to the risk factor high percentage of body fat (D = 2).Actually, high systolic blood pressure, short treadmill stress time, andhigh percentage of body fat seem to be risk factors only if, as in classthree, they occur in combination with each other.
5.4.2 Partially observed event history dataThe missing data methods developed in the �eld of log-linear modelingcan be used not only for dealing with partially observed covariates, butalso for dealing with partially missing discrete-time event history data.



This is not surprising, since the discrete-time logit model is, in fact, amodi�ed path model.Event history models are very well suited for using one particulartype of missing data in the analysis, i.e., censored observations (see sec-tion 4.5). However, the models with response indicators proposed by Fay(1986) have a number of advantages over the usual way of dealing withcensored observations. The most important one is that they make it possi-ble to relax the assumption that the censoring mechanism is independentof the process under study. Nonignorable missing data mechanisms, ordependent censoring mechanisms, can be speci�ed by allowing the re-sponse indicators to depend on the variables with missing data, that is,on the states occupied at the di�erent points in time. A second advantageof Fay's approach is that partially observed data can be used for param-eter estimation, irrespective of the pattern of the missing data. In otherwords, non-nested patterns of missing data can be handled without anyproblem. A third important feature is that the procedure can be used notonly with missing data on the dependent process, but also with missingdata on time-varying covariates.Although Fay's procedure has not yet been applied in order to dealwith partially observed event history data,24 causal models for nonre-sponse have been applied many times in the context of longitudinal analy-sis of categorical data, that is, in combination with modi�ed path models.Hagenaars (1990:181-200) demonstrated the usefulness of these methodsfor the analysis of panel data; Vermunt (1988, 1994, 1996) applied causalmodels for nonresponse to a long-term panel study on social mobility,while Conaway (1992, 1993) used these models for analyzing partiallymissing longitudinal labor market data and longitudinal data on victim-ization.Suppose there is a discrete-time logit model with three observed co-variates A, B, and C. Let, as in the other applications on discrete-timemodels, Sl be the state that a person occupies at T = tl, where l indicatesa particular point in time. Furthermore, let Rl be a response indicatordenoting whether Sl is observed (Rl = 1) or missing (Rl = 2). No apriori assumptions are made about the pattern of the missing data: For
24Baker, Wax, and Patterson (1993) used a similar procedure for dealing with infor-mative censoring. The di�erence is, however, that they used additional information oncensored observations obtained by double sampling.



each individual, any Sl may be either observed or missing. The simulta-neous model for the covariates, the dependent process, and the responsemechanism is given by�abcs0s1;:::;sL�r0r1;:::;rL� = (5.34)
�abc�s0jabc�r0jabcs0 L�Y

l=1
��sljabcsl�1�rljabcs0;:::;slr0;:::;rl�1� :

For simplicity of exposition, the covariate part of the model, �abc, is not re-stricted, and, moreover, it is assumed that all covariates are time constant.The only di�erence between Equation 5.35 and a standard discrete-timelogit model is the inclusion of a set of conditional probabilities in whichthe response indicators appear as dependent variables: �r0jabc denotes theconditional probability of observing or not observing the initial state S0,while �rljabcs0;:::;slr0;:::;rl�1 denotes the conditional probability of observingor not observing Sl. It can be seen that the value of Rl may depend onthe covariates, the previous states, the current state, and the previousvalues of the response indicators. As recommended by Fay (1986), it willbe assumed that the values of response indicators do not in
uence thevalues of other variables included in the model.25 Although, from a sub-stantive point of view, this seems rather logical, technically it is not aproblem to change the structure of Equation 5.35 in such a way that eachresponse indicator in
uences, for instance, the state occupied at the nextpoint in time.Like the other probabilities appearing in Equation 5.35, the nonre-sponse probabilities, �rljabcs0;:::;slr0;:::;rl�1 , can be restricted by means of alogit parameterization. It is even necessary to impose some restrictionson these probabilities because not all e�ects can be identi�ed at the sametime. More precisely, if the model includes a direct e�ect of Sl on Rl,some of the other e�ects must be left out of the model.Because of the non-nested pattern of the missing data, it is not possi-ble to specify a causal log-linear model for nonresponse which is equivalentto the `saturated' MAR model. The `saturated' MAR model is the ignor-able response model which uses all degrees of freedom which are gained25According to Fay (1986), a response indicator appearing in a model for nonresponsemay only be used either as a dependent variable or as an independent variable in a logitmodel for another response indicator. In other words, response indicators may not beused as explanatory variables in a logit model for a variable which is not a responseindicator.



by incorporating the incomplete tables in the analysis. However, as al-ready demonstrated in section 3.2, the L2 value under a `saturated' MARmodel can be obtained in an indirect way (Fuchs, 1982). By specifyinga saturated log-linear model for the covariates and the states occupiedbetween T = t0 and T = tL� in combination with an MCAR responsemodel, the L2 and df are obtained for the MCAR response model. Notethat an MCAR response model is obtained by restricting the nonresponseprobabilities to depend only on the preceding response indicators. Sub-tracting the L2 and df of this MCAR model from the L2 and df thatare obtained from an event history model which is also estimated underthe MCAR assumption gives a conditional test for the estimated modelunder a `saturated' MAR nonresponse model. The parameter estimatesfor the discrete-time logit model are the same for any ignorable responsemechanism, which is exactly the de�nition of ignorability.When a log-linear model is speci�ed for the response mechanism, itwill very quickly become a nonignorable response model. A nonignorableresponse model { in other words, a response model that in
uences the es-timates of the structural parameters of interest { is obtained by allowingthe response indicators to depend on variables which are missing for somepersons. In this case, a nonignorable response model is obtained if themodel contains direct e�ects of the Sl's on the Rl's, for instance, if Sl�1is assumed to in
uence Rl. Thus, contrary to what perhaps would be ex-pected on the basis of the term `nonignorable nonresponse', a log-linearresponse model may yield a nonignorable response mechanism even if theresponse indicators are not directly in
uenced by the variables which lackof information they indicate. An exception to this rule occurs when thenonresponse has a nested pattern. In that case, the response mechanismwill be ignorable as long as the response model does not contain direct ef-fects on the response indicators of the variables which lack of informationthey indicate (see also section 3.2).Because the model given in Equation 5.35 is a modi�ed path model,the same version of the EM algorithm can be used for obtaining maxi-mum likelihood estimates of its parameters as the version described in thesection 3.2. Model testing can be performed by means of the L2 statistic.



Example 12: A discrete-time logit model for partially observedlabor market transitionsData and models This example illustrates the use of the log-linearmodels for nonresponse when data is missing on the states that personsoccupy at the di�erent points in time. For this purpose, the SIPP data onlabor market transitions which was introduced in Example 3 is used. Bothcomplete and incomplete data is used in the analysis, and the mechanismcausing the missing data is investigated.The SIPP rotation group from which the data was also used in someof the previous examples consists of 6,754 persons. For 4,597 personsthere is complete information on the states occupied from T = t0 toT = t5. Thus, by using only complete cases, the available informationfor 32 percent of the cases is not used. Since there are observations forsix points in time, theoretically there are 64 (26) distinct patterns ofnonresponse. In the data set, 52 of these 64 pattern occur. This meansthat there is clearly no nested pattern in the missing data. From the2,157 persons with missing data, 964 persons have missing data on all theSl after the �rst occurrence of nonresponse. These 964 persons do notinclude the 17 persons who have missing data on all Sl. Another groupof 582 respondents starts participating in the study after T = t0, andcontinues to participate until the end of the study. The remaining 504persons have less regular missing data patterns.The model that is used is of the form given in Equation 5.35. For thesake of simplicity, only one speci�cation is used for the discrete-time logitmodel. As in Example 11, the transition probabilities are assumed to beconstant over time and the e�ects of the covariates sex (A), race (B), andage (C) are assumed to be proportional; in other words, the model is astationary Markov model. The example focuses on the speci�cation ofthe model for nonresponse rather than the event history model itself.
Results Table 5.26 reports the test results for the models that are es-timated using the complete and incomplete SIPP data. Models 1 and2 are two reference models in which the missing data is assumed to beMCAR. In Model 1, a saturated model is speci�ed for the event historypart of the model, while Model 2 is the stationary Markov of interest. Asmentioned above, the L2 value for the stationary Markov model assuming`saturated' MAR missing data (Model 3) can be obtained by subtracting



Table 5.26: Test results for the estimated models for labor market tran-sitions with missing data on the dependent process
Model L2 df
saturated model
1. MCAR 2689.02 10577
hazard model with ignorable response mechanisms
2. MCAR or fR0::Rlg 4770.68 11557
3. 'saturated' MAR 2081.66 980
4. fR0::RlABCg 3690.41 10612
5. fR0::Rl; RlA;RlB;RlCg 4255.29 11527
6. fR0::Rl; RlRl�1A;RlRl�1B;RlRl�1Cg 4221.70 11502
7. fR0::Rl; RlABCg 4195.53 11467
8. fR0::Rl; R0Cg 4310.07 11554
9. fR0::Rl; RA;RB;RCg 4592.20 11552
hazard model with nonignorable response mechanisms
10. fR0::Rl; RlA;RlB;RlC;RlSl�1g 4250.18 11522
11. fR0::Rl; RlA;RlB;RlC;RlSlg 4237.45 11521
12. fR0::Rl; RlA;RlB;RlC;RlSl�1Slg 4212.53 11511

the L2 value of Model 1 from the L2 value of Model 2. Thus, 2081:66 is thelower bound value for L2 that can be obtained by specifying a model forthe response mechanism, while 4770:68 is the upper bound value, that is,the value for the most restrictive missing data mechanism, MCAR. Thedi�erence between the two, 2689.02, can be bridged using 10,577 degreesof freedom.Model 4 is the most extended ignorable model that can be speci�edwith the log-linear models for nonresponse. The values of the responseindicators Rl are assumed to depend on the values of all previous responseindicators and the values of the three covariates A, B, and C, includingall their higher-order interaction terms. Model 4 has an L2 value whichis 1080:27 lower than for Model 2 using 945 additional parameters (p <:002). Model 5 includes only the two-variable terms between Rl and A,B, and C, respectively. Comparison of this rather parsimonious ignorablemodel with the `saturated' MAR model (Model 2) shows that Model 5captures an important part of the process causing nonresponse: L25j2 =515:39; df = 30; p = :000. In Models 6 and 7, an attempt is made toimprove the �t of Model 5 in two di�erent ways. Model 6 contains the



three-variable interactions among Rl, Rl�1, and the covariates, whichmeans that the e�ect of responding or not on the previous occasion isassumed to depend on covariate values. Model 7 contains all the higher-order interaction terms among Rl and the covariates. Conditional testsshow that neither Model 6 nor Model 7 �ts better than Model 5: L25j6 =33:59; df = 25; p > :11; and L25j7 = 59:76; df = 60; p > :48.Since the parameter estimates for Model 5 indicate that, except forthe e�ect of age (C) on R0, all the covariate e�ects on the nonresponseprobabilities are very weak, a response model is speci�ed that, apart fromthe interactions among the response indicators, only contains a directe�ect of C on R0 (Model 8). The strong decrease in L2 compared toModel 2 (L22j8 = 460:61) indicates that indeed uR0Cr0c is the most importantcovariate e�ect in the model for the nonresponse. However, the othere�ects included in Model 5 are still signi�cant: L28j5 = 54:78; df = 27; p <:002. And lastly, another ignorable model more parsimonious than Model5 is tested, namely, a response model in which the e�ects of the covariateson the response indicators are assumed to be equal for all points in time(Model 9). Model 9 �ts much worse than Model 5 (L29j5 = 363:91; df =25; p = :000), which means that the probability of nonresponse is nottime-homogeneous.Taking Model 5 as a starting-point, some nonignorable response mod-els are tested. Model 10 contains the direct e�ects of the state occupiedat T = tl�1 on the probability of responding or not at T = tl. The condi-tional test against Model 5 indicates that these e�ects are not signi�cant:L25j10 = 5:11; df = 5; p > :40. In Model 11, the response probabilities areallowed to depend on the state occupied at the same moment in time.These e�ects are signi�cant: L25j11 = 17:84; df = 6; p < :001. And �-nally, Model 12 contains the three-variable interactions among Rl, Sl,and Sl�1, which implies that the nonresponse probabilities are assumedto depend on whether a transition took place or not, and also on thetype of transition.26 Model 12 �ts signi�cantly better than Model 11:L211j12 = 24:92; df = 10; p < :006.Because most of the parameters of the log-linear models for nonre-
26Since nonignorable response models may not be identi�ed, di�erent sets of startingvalues have been used for Models 10-12 to check the identi�ability of all their parame-ters. All these di�erent sets of starting values gave the same solution, which indicatesthat the models are identi�ed.



Table 5.27: Parameter estimates for the models for labor market transi-tions under di�erent assumptions about the nonresponse mechanism
Complete cases Models 2-9 Model 12

employed to not employed (Sl�1 = 1 and Sl = 2)
v -2.2322 -2.1368 -2.1570
vA1 ;�v

A
2 -0.1387 -0.1130 -0.1149

vB1 ;�v
B
2 -0.2015 -0.1912 -0.1837

vC1 0.4350 0.5030 0.5113
vC2 -0.3295 -0.4264 -0.4171
vC3 -0.6525 -0.6517 -0.6517
vC4 0.5470 0.5751 0.5575
not employed to employed (Sl�1 = 2 and Sl = 1)
v -2.5460 -2.5358 -2.5116
vA1 ;�v

A
2 0.2657 0.2562 0.2524

vB1 ;�v
B
2 0.2741 0.2465 0.2418

vC1 -2.3389 -2.3304 -2.3318
vC2 -0.2172 -0.1440 -0.1397
vC3 1.1196 1.1652 1.1696
vC4 1.4365 1.3092 1.3019

sponse are very small, only the parameters of the event history part ofthe model are considered. These parameters are obtained using only com-plete cases, assuming ignorable nonresponse (Model 2-9), and assumingnonignorable nonresponse (Model 12) are given in Table 5.27. It can beseen that in this particular case the parameter estimates are rather in-variant under the di�erent assumptions about the response mechanism.The only parameters that change somewhat by including the partiallyobserved data in the analysis are the e�ects of age (C) on both transitionprobabilities. The main e�ect for the transition from employed to notemployed also increases slightly. Apparently, persons with missing datahave a higher risk of becoming not employed than persons without miss-ing data. Comparison of the parameters of the ignorable models withthose of the nonignorable model demonstrates that in this particular caseit does not matter which model is speci�ed for the response mechanism.This is, of course, important to know.



5.5 Conclusions
This chapter presented a general approach to missing data problems inevent history analysis which can be used to correct for unobserved hetero-geneity, to correct for measurement error in observed covariate values andin the observed states, and to deal with partially missing information oncovariate values and on the states occupied at the di�erent points in time.This very 
exible approach was based on the use of log-linear models or,more precisely stated, on the simultaneous speci�cation of a modi�edpath model with latent or partially missing variables for the covariatesand an event history model for the dependent process of interest.Several existing models, such as Heckman and Singer's non-parametricunobserved heterogeneity model and hazard models with partially ob-served covariates, are special cases of the general model presented in thischapter. In addition, the general approach makes it possible to extendparticular existing approaches by relaxing some of their basic assump-tions. Some extensions of the standard methods for dealing with unob-served heterogeneity that were proposed are models in which the unob-served heterogeneity is related to the observed covariates, models withseveral mutually related latent covariates, and models in which the latentvariable capturing the unobserved heterogeneity is time varying. Withrespect to partially missing covariate values, it was shown that it is possi-ble to relax the assumption that the data are missing at random; in otherwords, the response mechanism may also be nonignorable.New missing data applications that were developed on the basis of thegeneral model are models with indirectly measured covariates, event his-tory models which correct for measurement error in the observed states,and models for dealing with general missing data patterns in the depen-dent variable of interest assuming either an ignorable or nonignorableresponse mechanism. Event history models with indirectly measured co-variates, that is, with covariates which are subject to measurement error,were formulated by de�ning a latent class model for the latent covariates.In addition, models which correct for measurement error in the statesoccupied at the di�erent points in time were obtained by using modi�edpath models with latent variables as discrete-time event history models.And �nally, models for ignorable and nonignorable `nonresponse' on thedependent variable were based on the use of a modi�ed path model withpartially observed data as a discrete-time event history model together



with a log-linear model for the response or censoring mechanism.On the one hand, the generality and 
exibility of the approach thatwas presented may be problematic since, as was demonstrated by theexamples, the results may be rather sensitive to the speci�cation whichis used. When correcting for unobserved heterogeneity, the results arestrongly in
uenced by whether the latent variable is related to the ob-served variables or not. In the latent class models which were used tocorrect for measurement error in the observed covariates, it was oftendi�cult to decide how many latent classes were needed to su�ciently de-scribe the data. When using latent Markov models with one indicator peroccasion to correct for measurement error in the observed states, the re-sults may be in
uenced by the identifying restrictions which are used andby whether the measurement errors in the observed states are assumed tobe correlated. In addition, when using partially observed data, it is di�-cult to decide whether to assume an ignorable or nonignorable responsemechanism, though the examples showed that it is often more importantto use the partially observed data in the analysis than to correctly specifythe response mechanism.On the other hand, existing approaches, in which assumptions areoften made that are not tested at all, may lead to misspeci�ed modelsas well. The great advantage of the approach presented in this chap-ter is that it makes it possible to test the underlying assumptions onwhich standard missing data approaches are based. It is thus possibleto test whether the unobserved heterogeneity is independent of the ob-served covariates, whether covariates and states are measured withouterror, whether the measurement errors are uncorrelated between timepoints, whether covariate values are missing at random, whether the cen-soring mechanism is ignorable, etc. Consequently, it is possible to usethat particular speci�cation which seems to be the most realistic from asubstantive point of view, without the necessity of making too strong apriori assumptions. Moreover, it is possible to investigate the sensitivityof the results for the speci�cation of the unobserved heterogeneity, themeasurement error, and the response mechanism.



Appendix A
Computation of the
log-linear parameters when
using the IPF algorithm
A.1 Removing parameters from the estimatedexpected frequencies
The IPF algorithm can be used for obtaining maximum likelihood esti-mates for the expected cell frequencies according to a particular log-linearmodel. Since the IPF algorithm does not provide estimates for the log-linear parameters, they must be calculated separately. One of the meth-ods that can be used to obtain the log-linear parameters is calculating aparticular set of parameters and subsequently removing them from theestimated expected frequencies.Suppose the log-linear model for which the estimated expected fre-quencies m̂abc are computed by means of IPF is of the form fAB;BCg.Assume, moreover, that we want to obtain e�ect-coded log-linear parame-ters, that is, parameters which are identi�ed by ANOVA-like restrictions.To obtain these parameters, �rst the overall mean has to be calculatedby

û = X
abc log m̂abcA�B�C� ;



and removed from m̂abc by
m̂0abc = m̂abc exp (�û) :Here, A�, B�, and C� denote the number of categories of the variables A,B, and C, respectively.The one-variable e�ects can be computed by means of m̂0abc as follows:
ûAa = X

bc log m̂0abcB�C� ;
ûBb = Xac log m̂0abcA�C� ;
ûCc = X

ab log m̂0abcA�B� :
These e�ects have to be removed from m̂0abc to obtain m̂00abc by

m̂00abc = m̂0abc exp ��ûAa � ûBb � ûCc � :
And �nally, the two-variable e�ects can be obtained by means of the m̂00abcas follows:

ûABab = Xc log m̂00abcC� ;
ûBCbc = Xa log m̂00abcA� :

As can be seen from the above equations, e�ect-coded log-linear parame-ters can be simply obtained by calculating the mean of the log of the ex-pected frequencies from which the lower-order e�ects are removed withinthe categories of the variables which are not involved in the e�ect con-cerned.When using dummy coding, a similar procedure can be followed. Thedi�erence is, however, that in dummy coding, the parameters are obtainedin the reference categories of the variables which are not involved in thee�ect concerned rather than by calculating the mean within the categoriesof these variables.



A.2 Removing parameters from the cumulatedmultipliers
An alternative procedure for calculating the log-linear parameters in com-bination with IPF is based on the use of the cumulated multipliers of theIPF iterations rather than of the estimated expected frequencies. In theLOGLIN program (Olivier and Ne�, 1976), the parameters are obtainedby using the cumulated multipliers for all cell entries. Removing param-eters from the logs of these multipliers proceeds in the same way as wasdiscussed in the previous section. A slightly modi�ed version of this pro-cedure has been implemented in the `EM program (Vermunt, 1993). Theparameters are computed by means of the cumulated multipliers for themarginal cell entries which have to be reproduced according to the postu-lated log-linear model. In the case of log-linear model fAB;BCg, thesecumulated multipliers of the IPF cycles, denoted by cmab and cmbc, areobtained by

cmab = Y� nab+m̂(��1)ab+ ;
cmbc = Y� n+bcm̂(�)0+bc ;

where the product is over all IPF iterations. Moreover, m̂(��1)ab+ denotesthe estimated expected marginal frequency for A = a and B = b afteriteration � � 1, and m̂(�)0+bc the estimated expected marginal frequency forB = b and C = c after adjusting the marginal AB in iteration �.When using e�ect coding, the parameters can be obtained by remov-ing the mean of the logs of cmab and cmbc. For each log-linear parameter,the multipliers have to be used which contain the indices of the e�ectconcerned as a subset. First, the overall mean is computed using cmaband cmbc,
û(1) = X

ab log cmabA�B� ;
û(2) = X

bc log cmbcB�C� ;
û = û(1) + û(2) :



Then, û(1) and û(2) are removed from cmab and cmbc, respectivelycm0ab = cmab exp ��û(1)� ;cm0bc = cmbc exp ��û(2)� :The one-variable e�ects are obtained by
ûAa = X

b log cm0abB� ;
ûB(1)b = Xa log cm0abA� ;
ûB(2)b = Xc log cm0bcC� ;
ûBb = ûB(1)b + ûB(2)b ;
ûCc = X

ab log cm0bcA�B� :
Note that ûBb is based on both multipliers because index b appears inboth cmab and cmbc. After removing the components belonging to theone-variable e�ects, the two-variable e�ects remain, i.e.,ûABab = log �cm0ab exp ��ûAa � ûB(1)b �� ;

ûBCbc = log �cm0bc exp ��ûB(2)b � ûCc �� :This procedure can easily be modi�ed to obtain parameter estimates un-der other kinds of identifying restrictions. In dummy coding, for instance,the parameters are obtained from the logs of the cumulated multiplierswithin the reference categories of the variables not involved in the e�ectconcerned. Removing the parameters proceeds in the same manner asdiscussed above.Two �nal remarks have to be made. First, when using the above-mentioned procedure for obtaining the estimates for the log-linear pa-rameters, the starting values for the log-linear parameters must not onlybe implemented in the estimated expected frequencies, but also in the cu-mulated multipliers because otherwise the parameters estimates will notbe correct. Second, this procedure can also be applied when a model con-tains structural zeros as long as no zeros (sampling or structural) occurin the minimal su�cient statistics.



Appendix B
The log-linear model as one
of the generalized linear
models
It can be demonstrated that the log-linear model is a member of thefamily of generalized linear models (GLMs) (Nelder and Wedderburn,1972; McCullagh and Nelder, 1983, 1989). GLMs are characterized bythree components: a random component, a systematic component, and alink between the random component and the systematic component.Models belong to the family of generalized linear models when therandom component of each of n independent observations yi, or, in otherwords, the probability density function of the data, has a distribution inthe exponential family taking the form

f (yi; �i; �) = exp f[yi�i � b (�i)] =a (�) + c (yi; �)gfor some speci�c functions a(:), b(:), and c(:). The term �i is called thenatural parameter of the distribution. Assuming a Poisson distribution,the probability density function for an observed cell count ni is
f (ni;mi) = exp (�mi)mniini!= exp [ni log(mi)�mi � log(ni!)] :This implies that �i = log(mi), b(�i) = exp(�i) = mi, a(�) = 1, andc(yi; �) = � log(ni!).



The systematic component of a GLM relates the linear predictor �ito a set of j explanatory variables xij ,
�i = Xj �jxij ;

where �j are the model parameters.The third component is a link between the random component andthe systematic component. The expected values of the observations, �i =E(yi), are linked to the linear predictor �i by a function g(�i),
�i = g (�i) = Xj �jxij :

When the link transforms the expected value of an observation to thenatural parameter �i, it is called a canonical link. Using a canonical linkhas the advantage that j su�cient statistics exist which equalXi xijyi :
Since the natural parameter of the Poisson distribution is logmi, thecanonical link function is �i = logmi. So, in its most general form, thelog-linear model can be written as

logmi = Xj �jxij ;
in which �j is a log-linear parameter and xij is an element of the designmatrix. It can be formulated shorter in matrix notation as

logm = X� :
Moreover, the su�cient statistics are given byXi xijni :



Appendix C
The Newton-Raphson
algorithm
C.1 Log-linear models
Suppose we want to obtain maximum likelihood estimates for the �j pa-rameters of log-linear modellogmi = Xj �jxij :
Assuming a Poisson distribution, the kernel of the log-likelihood functionto be maximized to �nd the ML estimates for the �j parameters of theabove log-linear model is

logL = Xi ni0@Xj �jxij1A�Xi exp0@Xj �jxij1A :
Di�erentiation with respect to �j yields

qj = @ logL@�j = Xi nixij �Xi mixij = Xi (ni �mi)xij :
A particular element of the matrix of second-order partial derivatives usedby the Newton-Raphson algorithm can be obtained by

Hjk = @2 logL@�j�k = �Xi mixijxik :



Let �(�) denote the vector containing the �th approximation for the pa-rameter estimates and m(�) the �th approximation for the estimatedexpected frequencies, where m(�) = exp �X�(�)�. Iteration � of theNewton-Raphson algorithm involves �nding improved estimates of the� parameters as follows
�(�) = �(��1) � �H(�)��1 q(�) :

The vector q(�) denotes the gradient vector containing the partial deriva-tives of the log-likelihood function with respect to the parameters to beestimated. Matrix H(�) is the matrix of the second partial derivatives,also called the Hessian matrix. Both are evaluated at the parameterestimates from the (� � 1)th iteration,
q(�)j = Xi

�ni �m(��1)i �xij ;
H(�)jk = �Xi m(��1)i xijxik :

The Newton-Raphson algorithm, which starts with an initial guess ofthe � parameters, involves calculating the gradient vector and the Hes-sian matrix every iteration. In addition, the Hessian matrix has to beinverted every iteration, which implies that it must be nonsingular; inother words, there may be no linear dependencies between the parame-ters. The estimated large-sample covariance matrix of �̂ is ��Ĥ��1.
C.2 Multinomial response models
According to Haberman (1979), in its most general form, the multinomialresponse model can be written as

logmik = �k +Xj �jxijk ;
where k is the index for the joint distribution of the independent variablesand i is the index for the (joint) response variable. Haberman (1979) de-veloped a special variant of the Newton-Raphson algorithm for estimatingthe multinomial response model. This is necessary because the number



of �k can become very large. In Haberman's algorithm, the elements ofthe gradient vector and the Hessian matrix are obtained by
q(�)j = X

ik
�nik �m(��1)ik � (xijk � �jk) ;

H(�)jh = X
ik m(��1)ik (xijk � �jk) (xihk � �hk) ;

where
�jk = Xi xijkm(��1)ik =Xi m(��1)ik :

The updated parameter estimates �(�)j and �(�)k are found by
�(�) = �(��1) � �H(�)��1 q(�) ;
�(�)k = log0@ Pi nikPi exp �Pj �(�)j xijk�

1A :
In fact, Haberman's procedure consists of applying a Newton-Raphsoncycle to update the �j parameters, followed by an IPF-like cycle to updatethe �k parameters. Note that the calculation of the �k parameters is suchthat Pimik = Pi nik, in other words, that the marginals belonging tothe joint independent variable are reproduced exactly. The asymptoticvariance-covariance matrix of the � parameters is given by ��Ĥ��1.





Appendix D
The uni-dimensional
Newton algorithm
D.1 Log-linear models
An alternative for the Newton-Raphson algorithm is the uni-dimensionalNewton algorithm. It di�ers from the multi-dimensional Newton algo-rithm discussed in Appendix C in that it adjusts only one parameter ata time instead of adjusting all parameters simultaneously. In that sense,it resembles IPF. Instead of using the complete Hessian matrix, the uni-dimensional Newton algorithm only uses the diagonal element belongingto the parameter to be updated (Andersen, 1990; Jensen, Johansen, andLauritzen, 1991).Suppose we want to obtain maximum likelihood estimates for the �jparameters of log-linear model

logmi = Xj �jxij :
Successive approximations of �j involve

�(�)j = �(��1)j + q(�)jH(�)jj = �(��1)j + Pi �ni �m(��1)i �xijPim(��1)i xijxij : (D.1)
Of course, these adjustments can be performed much faster than an iter-ation with the Newton-Raphson algorithm because it is not necessary to



invert the complete Hessian matrix. This is especially true when a modelcontains many parameters.Goodman (1979, 1984) presented a slightly di�erent version of the uni-dimensional Newton algorithm. The main di�erence with the algorithmgiven in Equation D.1 is that his formulas involve the adjustment of themultiplicative parameters instead of the log-linear parameters, i.e.,
exp�(�)j = exp�(��1)j

241 + Pi �ni �m(��1)i �xijPim(��1)i xijxij
35 ; (D.2)

which in terms of the log-linear parameters can also be written as
�(�)j = �(��1)j + log241 + Pi �ni �m(��1)i �xijPim(��1)i xijxij

35 : (D.3)
It can easily be demonstrated that the two versions of the uni-dimensionalNewton algorithm described in Equations D.1 and D.3 are almost equiv-alent. Let �(�)j denote q(�)j =H(�)jj . This term appears at the right-handside of both Equation D.1 and Equation D.3. In Equation D.1, �(�)j isadded to the current trial value of �̂j to obtain a new trial value. Onthe other hand, Equation D.3 involves adding log(1 + �(�)j ) to the oldguess to improve the estimated value for �j . Thus, the main di�erencesbetween the two versions of the uni-dimensional Newton algorithm occurwhen �(�)j is large. This will generally be the case in the �rst iterations,especially if the starting values for the parameters are far from the �nalsolution. In that case, Goodman's algorithm will use smaller approxi-mation steps because ���log(1 + �(�)j )��� < ����(�)j ���. However, if �(�)j ! 0, thedi�erence between the two algorithms becomes negligible because in thatcase log(1 + �(�)j )! �(�)j .It can be demonstrated that IPF is a special case of Goodman's versionof the uni-dimensional Newton algorithm. Suppose the model of interestis a hierarchical log-linear model of the form fAB;BCg. Fitting thismodel by means of IPF is equivalent to using a design matrix whichcontains one parameter for each of the marginal cells of the margins ABand BC, without imposing identifying restrictions on these parameters.More precisely, the design matrix consists of A�B� + B�C� columns, inwhich a particular xij equals 1 if cell i contributes to e�ect j, in other



words, to the minimal su�cient statistic concerned. Otherwise xij isequal to 0. The adjustment of the jth log-linear parameter by means ofEquation D.2 is equivalent to the following adjustment of the estimatedexpected frequencies:
m(�)i = m(��1)i

241 + Pi �ni �m(��1)i �xijPim(��1)i xijxij
35xij :

If, as in this case, the xij take only the values 0 or 1, this equation issimpli�ed to
m(�)i = m(��1)i "1 + Pi nixij �Pim(��1)i xijPim(��1)i xij

#xij
= m(��1)i " Pi nixijPim(��1)i xij

#xij :
This is just an IPF adjustment in which the term Pi nixij is an observedmarginal cell count, or a minimal su�cient statistic, and Pim(��1)i xijis the current estimate for the same marginal cell count. The new es-timated expected frequencies m(�)i will satisfy the condition Pi nixij =Pi m̂(�)i xij .
D.2 Log-multiplicative models
Goodman (1979) proposed estimating the parameters of the log-multipli-cative RC association models by means of the uni-dimensional Newtonalgorithm. As mentioned above, this procedure adjusts only one param-eter at a time, treating the other parameters as �xed. Clogg (1982) andEliason (1995) used the same algorithm for more extended RC associationmodels.Suppose there is an RC association model of the form

logmabc = u+ uAa + uBb + uCc + �ABa �AB�ABb + �BCb �BC�BCc :
The estimation of, for instance, the log-multiplicative parameters of theassociation between A and B involves solving the following set of likeli-



hood functions:@ logL@�AB = X
abc (mabc � nabc)�ABa �ABb = 0 ;

@ logL@�ABa = X
bc (mabc � nabc)�AB�ABb = 0 ;

@ logL@�ABb = Xac (mabc � nabc)�ABa �AB = 0 :
The second partial derivatives needed by the uni-dimensional Newtonalgorithm are @ logL@�AB@�AB = X

abc mabc ��ABa �ABb �2 ;
@ logL@�ABa @�ABa = X

bc mabc ��AB�ABb �2 ;
@ logL@�ABb @�ABb = Xac mabc ��ABa �AB�2 :

Consequently, the (�)th uni-dimensional Newton iteration equals
�AB(�) = �AB(��1) + Pabc �m(��1)abc � nabc��AB(��1)a �AB(��1)bPabc m̂abc ��AB(��1)a �AB(��1)b �2 ;
�AB(�)a = �AB(��1)a + Pbc �m(�)0abc � nabc��AB(�)�AB(��1)bPbc m̂abc ��AB(�)�AB(��1)b �2 ;
�AB(�)b = �AB(��1)b + Pac �m(�)00abc � nabc��AB(�)a �AB(�)Pac m̂abc ��AB(�)a �AB(�)�2 ;

in which m(�)0abc and m(�)00abc denote the updated estimated expected frequen-cies after updating �AB and �ABa , respectively. The necessary rescalingto identify the parameters can be performed after every iteration cycle.As demonstrated by Becker (1990), the same version of the uni-di-mensional Newton algorithm can be used for estimating RC(M) models.The only di�erence is that in that case the parameters of the di�erentdimensions have to be orthogonalized after the last iteration by means ofa singular-value decomposition (Goodman, 1991).



Appendix E
Likelihood equations for
modi�ed path models
Below, it is shown that if the parameters of the various modi�ed pathsteps are distinct, the parameters of a modi�ed path model can be esti-mated using the observed frequencies in the separate subtables. More-over, it is demonstrated that the likelihood equation for a parameter thatappears in di�erent modi�ed path steps can be simply obtained by sum-ming the contributions of the modi�ed path steps concerned. Althoughthe derivations concern the likelihood equations for the case of completelyobserved data, the results can, of course, also be used in the M-step of theEM algorithm if there are missing data. The next three sections derivethe likelihood equations for a parameter of an ordinary multinomial logitmodel, for a parameter of a modi�ed path model, and for a parameterwhich appears in di�erent steps of a modi�ed path model.
E.1 Multinomial logit model
Consider a multinomial logit model in which C is the dependent variableand A and B are the independent variables:

�cjab = exp �Pj xabcj�j�Pc exp �Pj xabcj�j� : (E.1)



Here, �j denotes a log-linear or logit parameter and xabcj is an elementof the design matrix.Given the kernel of (product) multinomial likelihoodlogL = X
abc nabc log �cjab ;the �rst derivative with respect to �j is@ logL@�j = X
abc nabc�cjab @�cjab@�j : (E.2)

When using � as an abbreviation of exp �Pj xabcj�j�,
@�cjab@�j = 1(Pc � )2

"(Xc �) � xabcj � � (Xc � xabcj)#
= �Pc �

�xabcj � Pc � xabcjPc �
� = �cjab �xabcj � Pc � xabcjPc �

�
= �cjab "xabcj �Xc xabcj�cjab# :

Substituting into Equation E.2 and setting the result equal to zero yieldsthe likelihood equationX
abc nabc�cjab�cjab

"xabcj �Xc xabcj�cjab# = 0 ;
or simpli�ed X

abc nabc
"xabcj �Xc xabcj�cjab# = 0 ; (E.3)

which is the well-known likelihood equation for a parameter of a multi-nomial logit model. Note thatX
abc nabc

Xc xabcj�cjab = X
ab nab+

Xc xabcj�cjab
= X

abc xabcj�cjabnab+= X
abc xabcjmabc ;



of course, given that Xc nabc = Xc mabc ; (E.4)
which is always the case in a logit model because of the normalizationtaking place by the denominator of logit model described in EquationE.1. Substitution into Equation E.3 givesX

abc xabcj [nabc �mabc] = 0 : (E.5)
This expression is equivalent to the likelihood equation derived from thePoisson likelihood function for a parameter of the log-linear model of theform

mabc = exp0@�ab +Xj xabcj�j
1A ; (E.6)

which demonstrates the well-known equivalence of logit models and log-linear models.In the `EM program (Vermunt, 1993), the log-linear model describedin Equation E.6 is estimated rather than the logit model described inEquation E.1. This results from the fact that the likelihood function rep-resented in Equation E.5 is used instead of Equation E.3, of course, underthe condition given in Equation E.4. This condition is automatically ful-�lled by including the intercept �ab in the model.
E.2 Modi�ed path model
Suppose that the logit model for �cjab is now a step in a modi�ed pathmodel of the form

�abcd = �ab�cjab�djabc ; (E.7)
where the other �'s may be restricted by a logit parameterization as well.In that case, the kernel of likelihood equation changes into

logL = X
abcdnabcd log �abcd :



The �rst derivative with respect to �j is now@ logL@�j = X
abcd nabcd�abcd @�abcd@�j ;

where @�abcd@�j = @�ab�cjab�djabc@�j = �ab�djabcd@�cjab@�j= �ab�djabcd�cjab "xabcj �Xc xabcj�cjab#
= �abcd "xabcj �Xc xabcj�cjab# : (E.8)

This yields the following likelihood equation:X
abcd nabcd�abcd�abcd

"xabcj �Xc xabcj�cjab# = 0 ;
or simpli�ed X

abc nabc+
"xabcj �Xc xabcj�cjab# = 0 ;

which is equivalent to Equation E.3, the likelihood equation for an ordi-nary multinomial logit model. This shows that the parameters of eachmodi�ed path step may be estimated separately, with the observed cellcounts of the marginal table formed by the dependent and independentvariables appearing in the modi�ed path step concerned serving as data.
E.3 Restricted modi�ed path model
Suppose there is a model of the form given in Equation E.7 in which twolog-linear parameters appearing in two di�erent modi�ed path steps arepostulated to be equal. Suppose that the �j parameter concerned appearsin both �cjab and �djabc. In that case,

@�abcd@�j = @�ab�cjab�djabc@�j



= �ab�djabc@�cjab@�j + �ab�cjab@�djabc@�j= �abcd("xabcj �Xc xabcj�cjab#
+ "xabcdj �Xd xabcdj�djabc#) :

This yields the following likelihood equation for �j :X
abcd nabcd�abcd�abcd

("xabcj �Xc xabcj�cjab#
+ "xabcdj �Xd xabcdj�djabc#) = 0 ;

or simpli�ed X
abc nabc+

"xabcj �Xc xabcj�cjab#
+Xabcdnabcd

"xabcdj �Xd xabcdj�djabc# = 0 :
Note that the �rst part of this equation is identical to the left-hand side ofEquation E.3. Moreover, the second part is the derivative with respect to�j that would have been obtained if �j would have appeared only in �djabc.This implies that the likelihood equation for a parameter that appearsin di�erent modi�ed path steps can easily be obtained by summing thecontributions of the modi�ed path steps in which the parameter concernedappears.As mentioned in section E.1, the `EM program (Vermunt, 1993) usesthe log-linear equivalent of the likelihood equations, which in this case isX

abc xabcj [nabc+ �mabc] +X
abcdxabcdj [nabcd �mabcd] = 0 ;

with the additional restrictions thatXc nabc = Xc mabc ;X
d nabcd = X

d mabcd ;



to reproduce the marginal distributions of the independent variables.Here, mabc and mabcd denote the expected cell frequencies in the marginaltables ABC and ABCD, respectively.



Appendix F
The estimation of
conditional probabilities
under restrictions
Suppose there is modi�ed path model of the form

�abcd = �ab�cjab�djabc :In contrast to the models presented in the previous appendices, the (con-ditional) probabilities of this model are not restricted by a log-linear pa-rameterization. Unrestricted estimates for �ab, �cjab, and �djabc, denotedby �̂ab �̂cjab, and �̂djabc, can be obtained by
�̂ab = nab++n++++ ;
�̂cjab = nabc+nab++ ;
�̂djabc = nabcdnabc+ ;

respectively. However, it is sometimes necessary to restrict some (condi-tional) probabilities to be equal to one another or to be equal to some �xedvalue. Suppose we want to restrict three arbitrary conditional probabili-ties, �1j22, �2j13, and �3j213, to have the same value. According to Good-man (1974b), maximum likelihood estimates for these restricted proba-



bilities, denoted by �̂r1j22, �̂r2j13, and �̂r3j213, can be obtained by
�̂r1j22 = �̂r2j13 = �̂r3j213 = n22++�̂1j22 + n13++�̂2j13 + n213+�̂3j213n22++ + n13++ + n213+ ;
in other words, by calculating the weighted average of the unrestrictedprobabilities, where the weights are the observed cell counts of the mar-ginal distributions of the independent variables concerned.After imposing these equality restrictions, the estimated probabilitiesfor �cj22, �cj13, and �dj213 will generally no longer sum to 1 within eachlevel of the joint independent variable. Therefore, the unrestricted prob-abilities must be rescaled to again ful�ll the requirement that the prob-abilities sum to unity. The rescaling of, for instance, the unrestrictedprobability that C = c given A = 2 and B = 2, �̂ucj22, is accomplished by

�̂u0cj22 = �̂ucj22 1�Pc �̂rcj22Pc �̂ucj22 ;
where �̂u0cjab denotes the value of a particular unrestricted probability af-ter rescaling it. Note that in this case, Pc �̂rcj22 = �̂r1j22 because onlyone probability was restricted for A = 2 and B = 2. The unrestrictedprobabilities �̂ucj13 and �̂udj213 have to be rescaled in a similar manner.Any set of conditional probabilities can be restricted in this way, irre-spective of whether they belong to the same or to di�erent modi�ed pathsteps. Moreover, �xed-value restrictions can be imposed by replacing theunrestricted probabilities concerned by the values to which they have tobe �xed.
However, in speci�c situations, Goodman's algorithm does work prop-erly (Mooijaart and Van der Heijden, 1992). The reason is, in fact, verysimple. Sometimes, the rescaling which has to take place to satisfy thecondition that the probabilities must sum to unity within every levelof the joint independent variable is not possible. This may happen inthree types of situations, namely, when within one of the levels of thejoint independent variable: 1] all the probabilities are restricted, 2] dur-ing a particular iteration, the sum of the restricted probabilities becomesgreater than 1, 3] all the unrestricted probabilities become �tted zeroes.Situation 1 cannot occur when at least one probability is left free within



every level of the joint independent variable. The occurrence of situation3 depends on the data.Situation 2 may occur when restrictions are imposed in an `asym-metric' way. This can be illustrated by means of two simple examples.Suppose restrictions are imposed within one modi�ed step with depen-dent variable D and (joint) independent variable I, each having threecategories. The conditional probabilities are denoted by �dji. For thesake of simplicity, it is assumed that all ni+ are equal and that there areno �xed-value restrictions. Suppose that �1j1, �2j1, and �2j2 are restrictedto be equal, and that their unrestricted estimates are :40, :50, and :70,respectively. This yields restricted estimates equal to :53 and, as a result,a sum of the restricted probabilities for I = 1 greater than 1.Another example is the following. Suppose we want to restrict �1j1to be equal to �1j2 and �2j2 to be equal to �2j3 . Let their unrestrictedestimates be :70, :50, :30, and :70, respectively. This yields restrictedestimates for these conditional probabilities of :60, :60, :50, and :50. Nowthe sum of the restricted probabilities for I = 2 is greater than 1.The two examples demonstrate that situation 2 may occur when aparticular i with restricted parameters contains more restricted param-eters than the other i's which have at least one restricted parameter incommon. In the �rst example, I = 1 had two restricted parameters, whileI = 2 had only one restricted parameter. In the second example, I = 2had two restricted parameters, while I = 1 and I = 3, which both hadone restricted parameter in common with I = 2, had only one restrictedparameter. It is, however, not necessary that the sum of sets of restrictedprobabilities is greater than one in such cases. Whether it really occursdepends on the data and on the initial parameter estimates. The simplestway to �nd out whether situation 2 occurs is to check it every iterationcycle. This is exactly what is done in the `EM program (Vermunt, 1993).Mooijaart and Van der Heijden (1992) proposed using an alternative,more complex procedure for obtaining maximum likelihood estimates forthe parameters of latent class models with equality and �xed-value con-straints on the probabilities. Their procedure consists of adding Lagrangemultipliers to the log-likelihood function to be maximized. They showedthat in speci�c situations, such as situation 2, the estimates for the condi-tional probabilities must be obtained iteratively. Mooijaart and Van derHeijden's procedure for restricted latent class models is so general that itis not a problem to translate it to modi�ed path models.





Appendix G
Fisher's scoring algorithm
for modi�ed path models
with missing data
This appendix shows how to obtain estimates for the log-linear param-eters of a modi�ed path model with missing data using Fisher's scoringalgorithm. The expected information matrix determining the step size ofthe adjustments of the parameters can also be used to obtain the stan-dard deviations of the parameters and to check the identi�ability of themodel concerned when using the EM algorithm.Suppose there is a modi�ed path model consisting of S� steps, whereindex s denotes a particular step. In its most general form, the logitmodel for step s is given by

�isjks = exp �Pjs �jsxisjsks�Pis exp �Pjs �jsxisjsks� :Here, is denotes the value of the joint dependent variable; ks is the valueof the joint independent variable; and js is the jth parameter of modi�edpath step s.Let l be the index for the joint distribution of the latent variables ando the index for the joint distribution of the observed variables. This meansthat an observed cell count can be denoted by no, an expected probabilityin the incomplete table by �o, and a probability in the complete table by



�lo. In its most general form, a modi�ed path model with latent variablescan be written as
�lo = Ys �isjks

Assuming a multinomial sampling scheme, obtaining maximum likelihoodestimates for parameters �js involves maximizing
logL = Xo no log �o :

The �rst-order derivative with respect to �js is@ logL@�js = Xo no�o @�o@�js ;and the expected value of the second-order derivative with respect to �jsand �ht equals
E  @2 logL@�js@�ht

! = �NXo 1�o @�o@�js @�o@�ht :To solve these derivatives, it is necessary to calculate
@�o@�js = @Pl �lo@�js = X

l @�lo@�js = X
l �lo

24xisjsks �Xis xisjsks�isjks
35 :

Except for the summation over the joint latent dimension, this expressionis the same as the expression for modi�ed path models without latentvariables, which is given in Equation E.8.Iteration � of Fisher's scoring algorithm involves �nding improvedestimates of the � parameters as follows:
�(�) = �(��1) + �Inf (�)��1 q(�) ;

in which
q(�) = @ logL@�(��1) ;

Inf (�) = �E  @2 logL@�(��1)@�0(��1)
! :



Matrix �Inf (��)��1 is the estimated variance-covariance matrix of theparameter estimates, where �� denotes the last iteration. Moreover, ifmatrix Inf (��) is positive de�nite, all model parameters can be identi�ed.
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Samenvatting
Omdat een belangrijk deel van de theorien in de sociale wetenschappenbetrekking heeft op processen van sociale verandering, wordt er in ditvakgebied hoe langer hoe meer aandacht besteed aan het verzamelenvan longitudinale gegevens en aan het ontwikkeling van technieken voorde analyse van dit type gegevens. Dit boek beschrijft analysetechnie-ken voor een bepaald type longitudinale gegevens, namelijk event-historydata. Het presenteert een algemeen kader voor het aanpakken van prob-lemen die samenhangen met het feit dat bepaalde gegevens ontbreken.Dit kan gaan om het niet observeren van belangrijke verklarende variabe-len, om meetfouten in de afhankelijke of onafhankelijke variabelen, of ompartieel ontbrekende waarnemingen in de afhankelijke of onafhankelijkevariabelen.Event-history data { in het Nederlands ook wel aangeduid als le-vensloopgegevens { zijn gegevens over het aantal en het type veran-deringen of gebeurtenissen dat respondenten meemaken gedurende eenbepaalde waarnemingsperiode en over de precieze tijdstippen waarop dezegebeurtenissen zich voordoen. Voorbeelden van event-history data zijnarbeids- en schoolloopbaangegevens, gegevens over demogra�sche transi-ties zoals de geboorte van kinderen en veranderingen van samenlevings-vorm, gegevens over het ziekteverzuim van werknemers, gegevens overde aankoop van bepaalde producten door consumenten en gegevens oververanderingen die zich voordoen in organisaties.Er zijn verschillen typen technieken ontwikkeld voor het analyserenvan event-history data. Het meest gebruikt worden modellen waarin dehazard rate { ofwel het risico om een gebeurtenis mee te maken in eenklein tijdsinterval { wordt geregresseerd op een aantal verklarende vari-abelen. Interessant in de context van dit boek is dat deze hazard mod-ellen nauw verwant zijn aan bepaalde loglineaire modellen voor de analyse



van categorische data. Zo zijn bijvoorbeeld de veel gebruikte exponen-tile, piecewise exponentile en Cox hazard modellen voor continue-duurgegevens in feite equivalent aan het log-rate model, en is { zoals wordtaangetoond in hoofdstuk 4 { het discrete-duur logit model equivalent aanhet causale loglineaire model.De belangrijkste bijdrage van dit boek is dat het laat zien dat tech-nieken die zijn ontwikkeld voor het behandelen van ontbrekende gegevensbij de analyse van categorische gegevens ook kunnen worden toegepast bijde analyse van levensloopgegevens. Zo kunnen loglineaire modellen metlatente variabelen worden gebruikt voor het speci�ceren van event-historymodellen met niet-geobserveerde heterogeniteit en met meetfouten in deafhankelijke en onafhankelijke variabelen. Loglineaire modellen voor non-respons kunnen worden toegepast wanneer gegevens ontbreken over deafhankelijke of onafhankelijke variabelen voor bepaalde respondenten.Hoofdstuk 2 geeft een introductie in de loglineaire analyse van fre-quentie tabellen. Daarbij wordt speciale aandacht besteed aan het log-rate model, het causale loglineaire model en aan de schattingsprocedureszoals gemplementeerd in het computerprogramma `EM dat is ontwikkeldvoor het verkrijgen van meest aannemelijke schatters voor de in dit boekbeschreven modellen. Loglineaire modellen met latente variabelen { in-clusief het latente-klasse model { en loglineaire modellen voor nonresponskomen aan bod in het derde hoofdstuk. Deze twee modellen vormende basis voor de in dit boek gepresenteerde missing data benadering bijevent-history analyse.Hoofdstuk 4 geeft een uitvoerige beschrijving van technieken voorhet analyseren van levensloopgegevens. Daarbij wordt speciale aandachtbesteed aan de overeenkomsten met loglineaire modellen voor de anal-yse van categorische data en aan speci�eke problemen die zich kunnenvoordoen bij event-history analyse, zoals linkse en rechtse censurering,endogeniteit van tijdsvarirende covariaten, niet-geobserveerde heterogen-iteit, afhankelijke competing risks en afhankelijke waarnemingen. Som-mige van deze problemen kunnen worden gezien als missing data proble-men en kunnen dan ook worden aangepakt met de technieken die wordenbeschreven in hoofdstuk 5. Dit laatste hoofdstuk laat aan de hand vanvele voorbeelden met rele data zien hoe omgegaan kan worden met niet-geobserveerde heterogeniteit en met meetfouten en partieel ontbrekendewaarnemingen in zowel de afhankelijke als onafhankelijke variabelen. Debelangrijkste conclusie die kan worden getrokken op basis van de in het



laatste hoofdstuk beschreven analyses, is dat de nieuwe benadering al-gemener en 
exibeler is dan de meeste bestaande benaderingen. Keuzesmet betrekking tot de modelspeci�catie die enkel op inhoudelijke gron-den kunnen worden gemaakt, blijven belangrijk voor de kwaliteit van deonderzoeksresultaten.


