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Abstract  
Latent class (LC) analysis is used to construct empirical evidence on the existence of latent 

subgroups based on the associations among a set of observed discrete variables. One of the tests 

used to infer about the number of underlying subgroups is the bootstrap likelihood ratio test 

(BLRT). Although power analysis is rarely conducted for this test, it is important to identify, 

clarify, and specify the design issues that influence the statistical inference on the number of latent 

classes based on the BLRT. This paper proposes a computationally efficient `short-cut’ method to 

evaluate the power of the BLRT, as well as presents a procedure to determine a required sample 

size to attain a specific power level. Results of our numerical study showed that this short-cut 

method yields reliable estimates of the power of the BLRT. The numerical study also showed that 

the sample size required to achieve a specified power level depends on various factors of which the 

class separation plays a dominant role. In some situations, a sample size of 200 may be enough, 

while in others 2000 or more subjects are required to achieve the required power.   

Key words: Bootstrap, Latent Class Models, Likelihood ratio test, Power, Sample size   

1. Introduction 

Latent class (LC) models as developed by Lazarsfeld and Henry (1968) are used by social and 

behavioural scientists as a statistical method for building typologies, taxonomies, and classifications 

based on relevant observed characteristics of the subjects under study. With the advances in 

statistical computing, more researchers have become interested in the application of LC analysis in 

recent years. The application of LC analysis is notable in social and behavioural sciences (e.g., 

Genge 2014; and Leask et al. 2009), in medicine (e.g., Rindskopf 2002), and marketing (e.g., Zenor 

and  Srivastava 1993, and Dias and Vermunt 2007).  Using LC analysis, researchers can assemble 

empirical evidence on possible latent subgroups or classes of individuals based on the association 
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among the observed discrete variables. Unless being pre-specified based on theoretical grounds, 

determining the number of latent classes K is part of the empirical data analysis. A popular 

approach is to fit models with different numbers of classes and compare these models using 

information criteria (IC) such as the Akaike’s IC (Akaike 1974), the Bayesian IC (Schwarz 1978), 

or one of their modified versions, where the model with the lowest value for the information criteria 

is selected.  One of the problems associated with the use of information criteria is that they may 

point at different numbers of classes, for example, the Akaike IC may suggest a 4 class model while 

the Bayesian IC suggests a 3 class model.  

Another approach to compare models with different number of classes is by means of a 

likelihood ratio test (LRT), which tests whether a model with 1K  classes fits significantly better 

than a model with K classes. The LRT considers the log likelihood difference of nested models as a 

test statistic, which under certain regularity conditions asymptotically follows a central chi-square 

distribution with degrees of freedom equal to the difference in the number of parameters of the two 

nested models. One of the regularity conditions is that the parameter restrictions under the null 

model must be an interior point (and thus not a boundary) of the permissible region of parameters 

(Steiger et al. 1985; Shapiro 1985).  However, as pointed by Wolfe (1970), Hartigan (1977), Everitt 

(1981), Holt and Macready (1989), Bock (1996), and McLachlan and Peel (2000), among others, a 

model with K  classes is obtained from a model with 1K classes by fixing one class proportion to 

0, which is restriction on the boundary. Another alternative for obtaining a model with K classes 

from a model with 1K classes is by setting the class-specific parameters in two classes equal, but 

this violate another regularity condition for the LRT namely that the information matrix is non-

singular (Jeffries 2003). 

 Rather than relying on a chi-square distribution, it is also possible to construct the distribution 

of the LR statistic using a parametric bootstrap approach (Langeheine et al. 1996; McLachlan 1987; 

Nylund et al. 2007; van der Heijden et al.  1997). Using the parametric bootstrap, data sets referred 

to as the bootstrap samples, are generated based on the parameter estimates of the K class model.  

Both the models with K  classes and 1K classes are then fitted to these data sets, from which we 

compute the LR statistic as the differences in the log likelihood between the two models. This 

yields the empirical distribution of the LR under the null hypothesis.  The statistical significance of 

the LRT is then evaluated by comparing the observed value of the LR statistic with this empirical 

reference distribution.  Such a bootstrap LRT (BLRT) procedure of null hypothesis significance 

testing is implemented in various LC analysis software, such as Latent GOLD (Vermunt and 

Magidson 2008, 2013) and Mplus (Muthén  and Muthén 1998-2010).  Very little is however known 

about the statistical power for the BLRT in LC analysis.   
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Power analysis is an important aspect of scientific research since it involves the identification 

and specification of the design issues that influence statistical inference. The common ad hoc 

practice is to assume that a single value for sample size (for example, N =200 or 500) suits all 

studies using LC analysis. However, as we explain later in details, the required sample size in LC 

analysis depends on several population and study design characteristics.  In contrast with standard 

statistical models (e.g., ANOVA, linear regression), power analysis in LC models is not 

straightforward as it involves not only the usual factors such as level of significance, effect size, 

sample size, and test statistic, but also design factors which are exclusive to LC analysis.  Examples 

of latter factors are the class proportions, the number of classes, the number of observed indicator 

variables, and separation level between classes.  

The current paper introduces methods for assessing the power of the BLRT and for determining 

the required sample size for studies using a LC model. One possible way, to determine the power of 

the BLRT is by simulation; that is, by repeating the BLRT a large number of times for data sets 

simulated from the alternative model (Tollenaar and Mooijaart 2003; Davidson and MacKinnon 

2006).  Because the BLRT is itself already a computationally intensive method, such a method is 

not suited for use in practice. We propose a much faster alternative which involves reconstructing 

and comparing the distribution of the BLTR under the null and the alternative hypotheses. This 

‘short-cut’ method is also suitable for sample size determination, which involves power 

computation for multiple sample sizes. 

The remainder of this paper is organized as follows. In section 2, we give a brief review of the 

LC models and the BLRT for the number of classes.  In section 3, we provide details of power 

analysis for the BLRT. We discuss a procedure for determining the minimum required sample size 

in section 4. We give a description and results of a numerical study conducted to illustrate the 

proposed efficient power and sample size computation methods in section 5. The paper ends with a 

brief discussion in section 6. 

2. The latent class model and bootstrap likelihood ratio test 

LC model was introduced by Lazarsfeld and Henry (1968), who used the technique as a tool for 

building typologies (or clustering) based on dichotomous observed variables. Since then many 

extensions have been proposed such as models for other types of response variables (ordinal, 

nominal, count, continuous), models with multiple latent variables, and models with covariates (see 

Magidson and Vermunt, 2004, for an overview). More recently, Oberski (2015) proposed modelling 

local dependence as an alternative to increasing the number of classes.   For simplicity, in this paper 

we consider a simple LC model with single categorical latent variable and binary observed 

variables. Further, we assume local independence.  
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Let itY , with Tt ...,3,2,1 , denote the binary variable containing the response of person i on one 

of T items, and X  a categorical latent variable with K  classes. An LC model contains two types of 

model parameters, the class proportions and the class-specific response probabilities. The class 

proportion )( kXPk   specifies the relative size of a class, for Kk ,3,2,1  , and also referred 

to as prior class membership probability.  Since each individual belongs to one of K  exhaustive 

and mutually exclusive classes, the sum of the class probabilities is constrained to 1, i.e., 1
1




K

k
k  

and 0k .  The class-specific response probabilities )|1( kXYP itkt   specify the probability 

of individuals in the k
th

 class to endorse item t. Thus, the conditional item parameters have 

Bernoulli distribution with success probability kt  as the unknown parameter, for Tt ,,1 .  The 

LC model further assumes that the item responses are independent conditioned on the class. 

        Let    KTKK θπψ ,  
   KTKTK   ,,,,,,, 11111,1  denote the vector of unknown 

parameters for a latent class model with K  classes. The probability of having a response pattern 

),,,( 21
 iTiii YYY Y
 can be modelled as a weighted sum of  K class-specific probabilities (Collins 

and Lanza 2010; Langeheine et al. 1996; Magidson and Vermunt, 2004; Vermunt 2010).  That is, 

the joint probability of the items is given by: 
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The unknown model parameters are estimated using the maximum likelihood (ML) method,
 
in 

which the values of 
Kψ , say 

Kψ̂ , are obtained through the expectation-maximization (EM) 

algorithm that maximizes the log-likelihood function: 
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The EM algorithm maximizes this incomplete data log-likelihood function in an indirect manner. In 

the E-step one computes the expected complete data log-likelihood, which involves calculating the 

posterior class membership probabilities.  In the M-step, the expected complete data log-likelihood 

function is maximized, yielding new estimates of the class proportions and class-conditional 

probabilities. The algorithm repeats these E- and M-steps until the log-likelihood function reaches a 

maximum or a certain convergence criteria (McLachlan and Peel 2000). Because the log-likelihood 

function may contain multiple local maxima, parameter estimation should be repeated using 

multiple random start sets.  



5 
 

In the applications of LC models, the most important model selection issue concerns the number 

of classes.  The usual procedure to decide on the number of classes begins with a small number of 

classes and then checks whether an additional class could improve the fit significantly.  More 

specifically, we test the null hypothesis  

             :0H Number of classes K                                                            (3) 

against the alternative hypothesis  

                
1 : 1H Number of classes K  .                   (4) 

To compare the improvement in fit between the adjacent class models, that is comparing the models 

with K  and 1K  classes, one can compute the LR as the difference in log likelihoods:  

 )ˆ(log)ˆ(log2 )1(  KK LLLR ψψ ,                   (5) 

where KΨ̂  and )1(
ˆ

KΨ are the ML estimators for parameters under H0 and H1, respectively. Whether 

the null should be rejected or retained is evaluated by comparing the observed LR in (5) to the 

distribution of the LR under the null hypothesis.    

Whereas usually the LRT can be based on a central chi-square distribution with degrees of 

freedom equal to the difference in the number of parameters in H1 and H0, this does not apply to the 

hypotheses formulated in (3) and (4). As was noted among others by Wolfe (1970), Hartigan 

(1977), Everitt (1981), Holt & Macready (1989), Bock (1996), and McLachlan & Peel (2000), 

among others, the LR statistic given in (5) does not follow chi-square distribution because of non-

regularity. In principle, the K class model is nested in the 1K  class model, and is obtained by a) 

setting one of the class proportions to zero, or b) setting the class specific parameters in two classes 

equal. In both cases, the regularity conditions for a standard asymptotic distribution fail because of 

such problem as in (a)    is on the boundary of the parameter space, and either 
KTθ  or  TK )1( θ  is 

not identified, in (b)   is not identified and furthermore, the information matrix becomes singular 

(Jeffries 2003; Lo et al.  2001; Shapiro 1985 ;  Takane et al. 2003).    

       Lo et al.  (2001) proposed approximating the distribution of LR using a weighted sum of 

independent chi-square distributions, in which the weights are obtained from the information 

matrix.  However, Jeffries (2003) noted that the Lo et al.  (2001) assumptions are generally not 

satisfied in the context of mixture models.  Instead of using the theoretical chi-square distribution, 

one can employ a parametric bootstrap approach, in which one constructs the distribution of the LR 

statistic in (5) empirically (McLachlan 1987).  This often is referred to as the bootstrap likelihood 

ratio test (BLRT). The BLRT requires using the ML estimate KΨ̂  of the model with K  classes to 

generate the bootstrap samples. The LR statistic defined in (5) is then computed based on these 

bootstrap  samples.  This yields the reference distribution under H0 for null significance testing of 
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the H0 model against the H1 model.  More specifically, in the BLRT, a p-value for the LRT is 

obtained by the following steps, as discussed by Langeheine et al. (1996), Nylund et al. (2007) and 

van der Heijden et al. (1997):  

1. Estimate both the model under the null and the alternative hypothesis by ML and compute the 

LR as in (5). Note that multiple starting values should be used to prevent local maxima. 

2. Generate a bootstrap sample using the ML estimates under the null hypothesis KΨ̂ as the 

population values and compute the LR by estimating both the null and the alternative models 

with this bootstrap sample.  

3. Repeat step 2 many times (say 500 times), which yield an estimate of the distribution of the 

LR statistic.  

4. Estimate the p-value by comparing the distribution obtained in step 3 with the LR obtained in 

step 1.  That is, obtain the p-value as the proportion of bootstrap LR values that is larger or 

equal to the LR value from step 1.  

       The p-value obtained in step 4 is called bootstrap p-value and is used to decide whether the K  

class model under the null hypothesis should be rejected in favour of the ( 1K ) class model under 

the alternative hypothesis. The procedure is implemented in various LC analysis software packages, 

for example, in Latent GOLD (Vermunt  and Magidson 2008, 2013) and Mplus (Muthén and 

Muthén 1998-2010). To gain computationally efficiency parallel computing can be used.  Below we 

describe two methods (a brute force and a computationally efficient method) to determine the 

statistical power of the BLRT.  

3. Power analysis for the BLRT 

The statistical power of a test is the probability of rejecting the model under the null hypothesis (H0) 

given that the model under the alternative hypothesis (H1) holds in the population. Thus, we assume 

the model under the alternative hypothesis is the true population model with known population 

parameters.  In power analysis for hypothesis about the number of classes, the main interest can be 

either determining the ability of the test to detect the correct number of classes or estimating the 

sample size necessary to achieve a certain acceptable power level (e.g. a power of .8 or more).     

 This section presents power and sample size computation methods for the BLRT.  As we 

pointed out in the previous section, various studies dealt with the bootstrap procedure for p-value 

computation (Langeheine et al. 1996; McLachlan 1987; Nylund et al. 2007; van der Heijden et al.  

1997), which involves constructing the empirical distribution of the LR statistic only under the null 

hypothesis.  However, these studies did not investigate the computation of the distribution under the 

alternative hypothesis, which is what is also needed for the evaluation of the power of the test. 
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 One possible way to evaluate the power of the BLRT involves repeating the BLRT procedure 

for a large number of simulated samples from the population defined under H1 (Tollenaar and 

Mooijaart 2003; Davidson and MacKinnon 2006).  The power is then estimated by the proportion 

of simulated samples under H1 with a bootstrap p-value that leads to rejection of the null hypothesis 

given the specified sample size and nominal α level, and the assumed values for the population 

parameters. We call this method “power based on proportion of p-values” (PPP).  Since for every 

simulated sample the full bootstrap procedure needs to be repeated, the PPP method is 

computationally very demanding. This makes it less useful for practical purposes, especially if one 

wishes to determine the minimum required sample size to achieve a specific power level, which as 

explained below requires repeating the power computation for a range of samples sizes.   

To overcome the computational problems associated with the PPP method, we propose an 

alternative computationally much less demanding procedure for estimating the power for the BLRT, 

which we call the “short-cut” method. Actually, the proposed short-cut procedure is based on 

exactly the same theoretical idea as any power computation; that is, we obtain the critical value 

from the distribution under H0 and compute the probability of obtaining a value for the test statistic 

larger that the critical value from the distribution under H1. However, because we cannot rely on 

known asymptotic distributions under the null and alternative hypothesis, the short-cut method 

approximates these distributions by Monte Carlo simulation. First, it estimates the critical value of 

the test from the empirical distribution of the LRT statistic under H0. Subsequently, it estimates the 

power as the proportion of LR values exceeding this critical value in Monte Carlo samples 

generated under H1. We now provide more details on these two steps. 

   Given the nominal significance level α, the LR statistic defined in (5) rejects the null 

hypothesis that the number of classes is K  instead of 1K provided that the observed value of the 

LR statistic exceeds a critical value (CV) C .  That is, the model under H0 is rejected if 

   CLR  ,               (6)  

where C  is the (1-α)
th

 quantile of the underlying distribution of the LR test statistic under the null 

hypothesis. Since, as explained earlier, the regularity conditions are violated, one cannot rely on an 

asymptotic chi-square distribution to obtain the CV.  By considering an empirical distribution 0F  

that satisfies the data generating conditions under H0, it is possible to estimate the CV such that 

  )|()|( 00 FCLRPHCLRP            (7) 

To construct the empirical distribution 0F , one needs the parameter values for the population under 

H0.  In practice these population parameter values can be estimated by fitting the model under H0 to 

certain sample data.  In the context of a power computation, this will be a large pilot data set 
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generated from the population defined under H1, which is sometimes referred to as exemplary data 

(Self et al., 1992). Note that the use of an exemplary data set is the standard approach to power 

computation for the LRT. 

Whereas in the bootstrap procedure described in section 2 the Monte Carlo method was used to 

obtain a p-value, here we use it to obtain the critical value C . Let ),,( 1

b

T

bb yy Y  be a random 

sample of size N drawn from LC model with K  classes )ˆ,( KiP ψY , where 
Kψ̂  is the ML estimate 

under H0 obtained based on the exemplary data set generated according to the H1 LC model with  

1K classes. Let 
bLR0  be the LR statistic computed for the replicate sample b , for Bb ,,1 . This 

results in a series of values which can be rearranged in order such that 
BLRLRLR 0

2

0

1

0   .  

From this ordered statistic, we obtain the estimate of the critical value C as the quantile at 

th)]1([ B position; that is,   

)]1([
ˆ

  BQC ,      (8) 

where Q[h] is the thh quantile in the ordered statistic of the bootstrap LR under H0. Once an estimate 

for the CV is obtained, the power may be computed as follows.  

Given the nominal significance level α, the population values under H1, and the data 

characteristic design factors (e.g., the sample size), the power G  of the LRT is the probability that 

the observed value of the LR statistic exceeds the CV given that the model under the alternative 

hypothesis holds in the population. Mathematically, the power is  

   )|( 1FCLRPG   ,    (9)  

Where 1F  represents the distribution of the LR under the alternative hypothesis. 

In order to estimate the power in (9), we use the Monte Carlo estimate of the CV from (8).  For 

power computation, the empirical distribution of the LR statistic under the alternative hypothesis is 

also required.  Monte Carlo simulation can be applied to construct the empirical distribution under 

the alternative hypothesis in a similar fashion as it is done under the null hypothesis for CV 

computation.  More specifically, given the hypothesized parameter values under H1 (i.e., parameter 

values for class proportions and class-indicator variables associations for 1K class LC model), 

generate M random samples of size N from the population defined by the alternative hypothesis.  

On each of the samples fit both the K  and 1K  class models and compute the LR statistic
mLR1 .  

The collection {
1

1LR , 
2

1LR , 
3

1LR , …., 
MLR1 } yields the empirical distribution of the LR under the 

alternative hypothesis.  Based on this empirical distribution the power G  in (9) is computed as  
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    





M

m
CLRm

M
G

1
]ˆ[ 1

1ˆ


 ,     (10) 

where ][h is an indicator function equal to 1 if h is true and 0 otherwise, and where Ĉ is the 

bootstrap estimate of the CV given in (8).  

It should be noted that, as with the PPP method, power computation using the short-cut method 

requires specification of the population under H1. This implies that we estimate the power of the 

BLRT for a specific sample size and type I error given the assumed K+1 class population model. 

Changing the parameter settings for the population model will also change the estimated power.  In 

fact, specifying the parameters of the latent class model is similar to setting the effect size in a 

power analysis for say a regression analysis.  

4. Sample size determination 

During the design stage of study researchers would like to know the smallest number of subjects 

(sample size) required to achieve a pre-specified power, 0G .  When analytic methods cannot be 

applied, the required sample size may be determined by simulation.  This requires us to repeat a 

simulation based power computation for different sample sizes until we find the sample size 

yielding the pre-specified power level.  Since the PPP method is already computationally expensive 

when applying it a single time, it becomes impractical to use it for this purpose. This section shows 

how to apply the short-cut method for sample size determination. 

     Given the population parameters under the alternative hypothesis, compute the power using the 

short-cut method as discussed above. We do this for different sample sizes.  The minimum required 

sample size n is then determined as  

 

   })(ˆ:){min( 0GnGn  ,                          (11) 

Where 





M

m
nCnLRm

M
nG

1
)](ˆ)([ 1

1
)(ˆ


 .  Here, ][hI is an indicator function as defined before, )(1 nLRm

 is 

the LR statistic evaluated at m
th

 Monte Carlo sample of size n from the population model under the 

alternative hypothesis and )(ˆ nC is the CV computed based on B  samples draw from the 

population model under the null hypothesis.   

      Searching for the minimum sample size n such that 0)(ˆ GnG   as given in (11) requires a 

series of trials.  So, based on an exemplary data set created according to the population model under 

the alternative hypothesis, first we obtain the parameter estimate for the model under the null 
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hypothesis.  The CV is then computed based on B independent samples of arbitrary size n drawn 

from )ˆ,( KiP ψY  as discussed in section 3.  Next, we take M independent samples of size n from the 

population model ),( 1KiP ψY  and evaluate the test statistic )(1 nLRm
at each sample, for 

Mm ,,1 .   A smaller value of n is needed for the next trial if 0)(ˆ GnG  , otherwise a larger 

value is needed. A linear search algorithm can be used to obtain a good guess for the next trial.  

5. Numerical study  

5.1 Setup of the numerical study 

The objective of this numerical study is to illustrate and compare the proposed methods for power 

computation and sample size determination. We considered different scenarios of parameter values 

for class proportions and class-indicator variable associations for the population model under the 

alternative hypothesis.  These scenarios define a range of differences between the null and 

alternative hypothesis, as we explain further below.  We consider both the PPP and short-cut 

methods discussed in section 3 and compare the results under different design conditions. As it is 

computationally too demanding to determine sample size using the PPP method, we illustrate the 

determination of the sample size only using the short-cut method. 

As is always required in power or sample size computation, we should specify the population 

parameter values and the values of the other design factors. Since the aim of a power analysis for a 

LC model is to identify whether the test is able to detect the differences between the latent classes, 

separation between classes can be expected to be an important factor. Class separation can be 

manipulated, among others, by the number of indicator variables, the number of classes, the 

response probabilities for the most likely response, and the class proportions (see Vermunt, 2010; 

Collins and Lanza, 2010). The number of indicator variables was set to T=6 and T=10, while the 

number of classes was set to K=2, K=3 and K=4. Three values were used for the class-specific 

response probabilities; that is, 0.7, 0.8 and 0.9, yielding what we refer to as the low, moderate, and 

high separation condition.  In the model with 4 classes, with a moderate separation level, the 

response probabilities are set to kt =0.8 in class 1, to kt =0.2 in class 2, to kt =0.8 for the first half 

of the indicators and kt =0.2 for the other half in class 3, and to kt =0.2 for the first half of the 

indicators and kt =0.8 for the other half in class 4. Models with 2 and 3 classes are obtained by 

removing last class(es). The class sizes k  were specified to be equal or unequal, were in the 

unequal conditions the class sizes were set to (0.6, 0.4), (0.5, 0.3, 0.2), and (0.4, 0.3, 0.2, 0.1), for 2, 

3, and 4-class models, respectively.  The design conditions with low separation and unequal class 

proportions represent a smaller difference between the null to the alternative hypothesis, as the null 
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hypothesis may be obtained by either setting one of the class proportion to zero or the class specific 

response probabilities in two classes equal. 

    The type I error rate was fixed to 0.05. For power analysis, the sample size N was set to 75, 150, 

300, 500, and 600. For the computation of minimum sample size, we set the desired power, 0G , to 

0.80.  Note that Cohen (1988) suggests, as a rule of thumb, that power is moderate when it is about 

0.50 and high when it is at least 0.80. 

        The above mentioned numerical study set up results in a total of 2 (number of indicators) x 3 

(number of classes) x 3 (class-indicator associations) x 2 (class proportions) x 5 (sample size) 

simulation conditions. Using the short-cut method, for each simulation condition, an exemplary data 

set (of 1000 observations) was generated according to the H1 model and the H0 parameters were 

estimated using this data set. Next, for each simulation condition, B=500 samples were generated 

according to the H0 parameters and the CV value was computed. Given a specified sample size, the 

power is then computed based on M=500 samples generated according to the H1 model as discussed 

in section 3.  

        The estimated power of the short-cut method is evaluated by comparing it with the PPP 

method. Using the PPP method, for each Monte Carlo sample m generated according to the H1 

model, p-value was computed using 500 bootstrap samples drawn from the ML estimates of the H0 

model.  The power is then computed as the proportion of the Monte Carlo samples (M=500) with a 

bootstrap p-value smaller than .05.  

         As is the case for mixture models in general, the likelihood function for a LC model can have 

multiple maxima, and thus there is no guarantee that a global maximum is located.  Since the 

bootstrap procedure makes use of the ML estimates, occurrence of local maxima may introduce 

some bias (Langeheine et al. 1996; McLachlan 1987).  To avoid local maxima (and hence minimize 

this bias), multiple starting values are specified.  More specifically, using the exemplary data set 

created according to the H1 model, we fit the H0 model by specifying multiple start values. Next, 

when computing the bootstrap LR distribution under H0 based replicate samples, we used the 

parameter estimate obtained from the exemplary data set as the starting values. 

 

5.2 Results for power computation 

Before discussing the results in more detail, we would like to stress the huge difference in 

computation time between the PPP and the short-cut method. The average computation time per cell 

in Table 1 was 2 hours and 37 minutes for the PPP method and 3 minutes for the short-cut method. 

This shows that the proposed short-cut method is indeed much faster, and that it can easily be used 

multiple times as is required for sample size computation.  
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     Table 1 shows the power of the BLRT under different separation, number of indicator variables 

T, number of classes, and sample size N for models with equal class sizes. The reported power 

concerns the test of the model with one class less than the true LC model. Because the power of the 

BLRT was always 1 (100%) under a high separation level irrespective of the other design 

conditions, the results are not shown for these conditions. As can be observed from Table 1, the 

power of the test increases as the separation level goes from low to moderate. The BLRT can 

generally detect the true model when the separation between classes is moderate to high but not 

when the class separation is low. Another general trend that can be deduced from Table 1 is that the 

power increases as the number of indicator variables increases for a given separation condition. 

Another clear trend from Table 1 is that the power of the test increases as the sample size increases, 

keeping other conditions constant. The effect of sample size is more evident for low separation and 

for true number of classes larger than 2. When class separation is moderate and equal class 

proportions are assumed, the power of the test is high (at least 0.80) for a sample size as low as 150. 

However, also in the moderate separation condition the sample size should be larger when the true 

model contains more than 2 classes.  

As can be seen from Table 1, the power is almost equal to 1 for all design conditions when a 

true 2 class model is compared against a model that assumes a single homogeneous group. This 

implies that the test can detect a true 2 class model for all design conditions in our numerical study. 

Identifying a true 3 class model against a 2 class model does not require a large sample either, so 

long as the separation between classes is moderate. However, with low class separation more than 

300 subjects are needed to have high power with T=10 indicators and more than 500 subjects with 

T=6 indicators. Detecting a true 4 class model against a 3 class model is easiest for the test when the 

separation level is moderate and the number of indicator variables is at least 10. However, it 

requires more than 150 subjects when the separation is moderate and the number of indicator 

variables is 6. When the separation level is low, this test requires slightly more than 600 subjects to 

have high power with 10 indicators. With 6 indicators, the power is only 0.16 with 600 subjects, 

which is far too low by any standard. 

  What can also be seen from the results reported in Table 1 is that the estimated power obtained 

using short-cut method is always close to the estimate obtained with the PPP method. Sometimes it 

is slightly larger, especially in the very low power conditions, but in other situation there is not 

systematic deviation in a certain direction. Note also that we are using Monte Carlo methods, so 

slight differences will always be present, also if one repeats the same method a second time.  

Overall, the differences between the two methods seem to be irrelevant for practical purposes. 

    Since the numerical results for the LCM with unequal class sizes show trends as those with equal 

class sizes with respect to the design conditions, a separate table is not shown. The power in general 

increases with sample size, number of indicator variables and the separation condition from low to 
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moderate. However, the power of the test is slightly lower when the class sizes are unequal 

compared to the results in Table 1 for equal class sizes.  

Table 1. Approximated power for Bootstrap Likelihood Ratio Test with T number of binary 

indicator variables and equal class sizes.  

 

 

Hypotheses 

 

Sample 

size (N) 

 Separation* 

 

Method 

Low Moderate 

T = 6 T = 10 T = 6 T = 10 

 

 

 

 

H0: 1 class  

H1: 2 class  

75 Short-cut 0.894 1.000 1.000 1.000 

 PPP 0.892 0. 996 0.954 1.000 

150 Short-cut 0.992 1.000 1.000 1.000 

 PPP 0.998 1.000 1.000 1.000 

300 Short-cut 1.000 1.000 1.000 1.000 

 PPP 1.000 1.000 1.000 1.000 

500 Short-cut 1.000 1.000 1.000 1.000 

 PPP 1.000 1.000 1.000 1.000 

600 Short-cut 1.000 1.000 1.000 1.000 

 PPP 1.000 1.000 1.000 1.000 

 

 

 

 

H0: 2 class   

H1: 3 class 

75 Short-cut 0.104 0.118 0.634 0.956 

 PPP 0.052 0.138 0.562 0.948  

150 Short-cut 0.198 0.330 0.908 1.000 

 PPP 0.142 0.432 0.914 1.000 

300 Short-cut 0.314 0.786 1.000 1.000 

 PPP 0.354 0.814 1.000 1.000 

500 Short-cut 0.652 0.986 1.000 1.000 

 PPP 0.700 0.988 1.000 1.000 

600 Short-cut 0.824 0.996 1.000 1.000 
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 PPP 0.758 0.996 1.000 1.000 

 

 

 

 

H0: 3 class 

H1: 4 class  

75 Short-cut 0.040 0.074 0.200 0.702 

 PPP 0.014 0.028 0.154 0.998 

150 Short-cut 0.062 0.134 0.554 0.988 

 PPP 0.028 0.062 0.526 1.00 

300 Short-cut 0.094 0.240 0.926 1.000 

 PPP 0.046 0.218 0.948 1.000 

500 Short-cut 0.126 0.524 1.000 1.000 

 PPP 0.098 0.578 0.998 1.000 

600 Short-cut 0.160 0.716 1.000 1.000 

 PPP 0.142 0.722 1.000 1.000 

*Note: Power is equal to 1.000 in all conditions when separation is high.  The results reported in this table 

are obtained using 500 Monte Carlo and/or bootstrap samples. 

 

5.3 Results for sample size approximation 

Table 2 shows the minimum required sample size to achieve a power of 0.80 under different design 

conditions. As can be seen, very small sample sizes are needed when class separation is high: a 

sample size of 41 subjects suffices in the least favourable of the investigated conditions. Similarly, a 

sample size of 60 subjects is enough in the least favourable condition to detect a 2 class model 

against a homogeneous group (results are not shown). Also with a moderate class separation, 

sample sizes do not need to be very large: a sample size of 225 subjects is large enough all four 

conditions. However, when class separation is low, the minimum required sample size is much 

larger than what most researchers use in practice. For example, a researcher using 6 indicator 

variables may require 1800 or more subjects to detect a true 4 class against a 3 class model with a 

power of 0.80.  The number of subjects that is required reduces by increasing the number of 

indicator variables, but still more than 700 subjects are required even with 10 indicator variables. In 

general, the smaller the number of indicator variables or the worse the separation, the larger the 

number of subjects needed to achieve a high power. It can also be observed from Table 2 that the 

larger the number of true classes, the larger the required number of subjects.   
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          The required sample sizes reported in Table 2 are for conditions in which the class 

proportions are equal.  When class proportions are unequal, the required sample sizes will be larger 

than those reported in Table 2.   

 

Table 2. Approximate minimum required sample size (n) to achieve a power of 0.80 for Bootstrap 

Likelihood Ratio Test with T binary indicator variables and equal class sizes.  

 

Hypotheses 

 

T 

Separation 

Low Moderate High 

H0: 2 class ; H1: 3 class  6 670 104 25 

10   291 52 14 

H0: 3 class; H1: 4 class   6 1830 225 41 

10 705 86 19 

Note: The results reported in this table are obtained using 500 Monte Carlo samples. 

 

6. Discussion 

This paper dealt with power and sample size computation for the BLRT in LC analysis. One 

possible way to compute the power of the BLRT is via Monte Carlo simulation, yielding what we 

referred to as the PPP (power by proportion of p values) method. Because Monte Carlo evaluation 

of the bootstrap is computationally very intensive, we proposed a much faster alternative, which is 

based on standard power computation theory. Since asymptotic do not hold for the LRT in latent 

class models, Monte Carlo simulation is used to construct the sampling distributions of the test 

statistic under the null and the alternative hypothesis. Using the estimated critical value obtained 

from the former distribution, the power can be obtained from the latter distribution.   

The behaviour of short-cut method was investigated via a numerical study and compared with 

the computationally intensive PPP method, which we treated as the gold standard. The estimated 

power obtained with the much faster short-cut method is very similar to the one obtained with the 

PPP method, though the short-cut method seems to slightly overestimate the power when the power 

is very low.  However, for power levels above .5, which are the values of main practical interest, the 

two methods always gave identical conclusions.  From this we conclude that the short-cut method is 

good approach for power and sample size computation for the BLRT in LC analysis.  

As a side product, our numerical study showed the design factors affecting the power of the 

BLTR in a LCA.  It also showed that the idea of a single value for the sample size, say of 200 or 
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500 subjects, fitting for all studies is erroneous. With low class separation, much larger numbers of 

subjects and/or more indicators are needed to get high statistical power. The most unfavourable 

situation we investigated required 1800 subjects, which occurred when comparing a 4 with a 3 class 

model under low separation and 6 indicator variables condition. On other hand, when separation 

between classes is moderate or high, the power could be sufficient with sample sizes and numbers 

of indicator variables that are commonly used in practice.  In any case, it is clear that it is important 

to perform power analysis under anticipated design conditions prior to the design of the study, 

which can now be easily done with the tool described in this paper.  

In this study, we restricted ourselves to power analysis for simple unrestricted LC models for 

dichotomous responses. The proposed short-cut approach can also be applied to more complex LC 

models with constraints on the response probabilities, with explanatory variables, and with 

polytomous indicators. Another interesting area of research is the generalization to other types of 

mixture models, such as mixtures of normals and hidden Markov models, in which BLRT is used to 

decide about the number of mixture components and the number of latent states, respectively.  

The power analysis methods described in this paper require specification of the parameter values 

under alternative hypothesis. This is similar to setting the effect size in a power computation for 

example as in a simple ANOVA. However, often we have only vague ideas about the possible 

population parameters of a latent class model. A possible solution is to use a conservative setting 

with classes which are not too well separated and possibly also of unequal sizes. Another alternative 

is to use ranges of plausible values for parameters under the alternative hypothesis (see, for 

example, Tekle et al. 2008) or, as in Bayesian paradigm, to specify prior distributions for 

parameters under alternative hypothesis (Johnson and Rossell, 2010;   Rubin 1981). Further 

research should focus on such alternative approaches which make it possible to take the uncertainty 

about the population parameters into account. 
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