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1. Introduction 

In social and behavioral sciences in general and in psychology in particular, researchers are 

often interested in the occurrence of events such as the formation or ending of formal and 

informal relationships (e.g. marital unions, friendships, love relationships), the onset of and 

recovery from mental disorders, the entry into and exit from a job, the experience of stressful 

and pleasant life events (accidents, dying of a parent, being in love for the first time, etc.), 

and the transition across developmental stages. Mortality may also be the event of interest, 

though that is the more typical event in biomedical studies. Data on the occurrence of the 

event(s) of interest can either be collected using retrospective or prospective study designs, 

and will contain information on whether the event(s) of interest occurred to the individuals in 

the sample, and if so on the time of occurrence. In addition to information on the timing of 

the event(s) of interest, there will usually also be information on socio demographic 

covariates, risk factors, and/or the treatment or intervention received if there is any.  

 Event history data makes it possible to determine at what time periods the event of 

interest is most likely to occur, as well as to determine why some individuals experience the 

event earlier than others and why some do not experience the event of interest at all during 

the study period. Although event history data gives opportunities to answer such questions, 

they also pose certain challenges that cannot be dealt with using standard data analysis 

methods such as linear and logistic regression analysis (Tuma & Hannan, 1979; Allison, 1982; 
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Willett & Singer, 1993). More specifically, simple linear and logistic regression methods are 

not suited for dealing with two distinctive features of event history data; that is, with 

censoring and time-varying covariates. Censoring is a specific kind of missing data problem, 

namely that for some individuals it is not known when the event occurs because they did not 

experience the event during the observation period. Linear regression analysis of such 

censored data yields biased results and logistic regression analysis yields loss of information. 

Moreover, standard regression models lack a way to incorporate time-varying covariates, 

covariates that may change their value over time. In order to deal with censoring and time-

varying covariates, we need special regression techniques which are known as event history 

models, hazard models, survival models, failure time models, and duration models.  

 The main distinction made in the field of event history analysis is between 

continuous-time methods (when the event time can take on any nonnegative value) and 

discrete-time methods (when the event time can take on a finite set of values). In this chapter 

we will focus on discrete-time techniques as a part of a course for graduate level students or 

as a reference for applied researchers. Although continuous-time methods are predominant in 

the statistical literature (Blossfeld & Rohwer, 1995; Collette, 2003; Vermunt, 1997), discrete-

time methods are the more commonly used ones in psychological research as well as in other 

social and behavioral sciences, not only because they are conceptually simpler but also 

because one will seldom have real continuous-time data. Sometimes events can only occur at 

regular discrete time points (e.g., weekly, monthly or yearly), whereas in other situations 

events can occur in continuous time, but the measurement yields discrete-time data, for 

example, when a survey asks the age or year of the formation of a relationship, marriage, or 

divorce instead of the exact date. In both situations it is more appropriate to use discrete-time 

methods instead of methods that are developed for continuous event time. Even if the 

measurement scale of the event time is continuous, discrete-time techniques can be used to 
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approximate the results that would be obtained with continuous-time methods (Yamaguchi, 

1991; Vermunt, 1997). Additionally, discrete-time techniques are computationally and 

conceptually simpler and thus easier to understand by social and behavioral scientists, and 

they can serve as a good starting point for understanding the more advanced continuous-time 

methods.  

 The remainder of this chapter is organized as follows. In the next section, an  

empirical example that will be used throughout this chapter is introduced. Some basic 

terminologies of event history analysis are presented in section 3. Section 4 explains why 

special regression techniques are needed for event history analysis. Section 5 presents the 

statistical concepts used for describing event time distributions − the hazard and survival 

functions − and shows how a grouped data method similar to the actuarial method can be 

used to estimate these functions. Section 6 deals with regression models for discrete-time 

event history data in which the hazard rate − or the probability of event occurrence at a 

particular time point − is related to covariates. Concluding remarks are given in section 7.   

 

2. An empirical example 

Throughout this chapter, a real-life example is used to illustrate the concepts and modeling 

approaches for event-history data. This example is introduced below.  

Example: Adolescents’ Relationship 

The example is about adolescent’s first experience with relationships. The data are taken 

from a small-scale survey of 145 adolescents in the Netherlands (Vinken, 1998). Vermunt 

(2002) used latent class analysis to construct a typology based on four events related to 

adolescent’s first experience with relationships: ‘sleeping with someone’, ‘going out’, 

‘having a steady friend’, and ‘being very much in love’.  Here, we will use the event 
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‘sleeping with someone for the first time’ to illustrate the methods of event history analysis 

discussed in this chapter. Besides information on the occurrence of the four events, binary 

time-constant (i.e., fixed) covariates, youth centrism (YC), gender (G), and education (E) are 

available. Youth centrism is a measure for the extent to which young people perceive their 

peers as a positive valued ingroup and perceive adults as a negatively valued outgroup. The 

dichotomous youth-centrism scale that is used here was constructed by Vinken (1998). 

 

3. State, event, duration, risk period, risk set and censoring 

In order to understand the nature of event history data and the purpose of event history 

analysis, it is important to understand the following concepts: state, event, risk period, and 

censoring (Yamaguchi, 1991). These concepts are illustrated below using the example 

introduced in the previous section.  

 The first step in an event history analysis is to define the discrete states that one 

wishes to distinguish. States are the categories of the variable, the dynamics of which one 

wishes to explain. At every particular point in time, each person occupies exactly one state. In 

our first experience with relationships example, each adolescent is either in the state ‘never 

slept with someone’ or ‘has slept with someone’. An event is a transition from one state to 

another, that is, from an origin state to a destination state. In our example, the event sleeping 

with someone for the first time is the transition from the state ‘newer slept with someone’ to 

the state ‘has slept with someone’. It is clear that in our application the event of interest can 

occur only once because it is not possible to exit the destination state (this is called an 

absorbing state). In other applications, the event(s) of interest may occur several times (this 

called recurrent events), such as the recovery from a depression, which is the transition 

between the states depressed and non-depressed.  
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 Another important concept is the risk period. Clearly, not all persons can experience 

each of the events under study at every point in time. To be able to experience a particular 

event, one must first occupy the original state, that is, one must be at risk of the event 

concerned. The period that someone is at risk of a particular event – or exposed to a particular 

risk – is called the risk period. Usually it is straightforward to identify the persons at risk of 

the event, such as in our relationships example in which adolescents that have never slept 

with someone at a particular age are at risk of experiencing the event of sleeping with 

someone for the first time at that age. The risk period(s) for a recovery from depression are 

the period(s) that a subject stayed in the origin state depressed. A strongly related concept is 

the risk set. The risk set at a particular point in time is formed by all subjects who are at risk 

of experiencing the event concerned at that point in time.  

 Using these concepts, event history analysis can be defined as the analysis of the 

duration of the nonoccurrence of an event during the risk period. When the event of interest is 

‘sleeping with someone for the first time’, the analysis concerns the duration of 

nonoccurrence of the experience of sleeping with someone, in other words, the time that 

adolescents remained in the state ‘never slept with someone’. In practice, as will be 

demonstrated below, the dependent variable in an event history model is not duration or time 

itself but a transition probability or hazard rate. Therefore, event history modeling can also be 

defined as the analysis of the probability (or rate) of occurrence of the event of interest during 

the risk period. In the relationships example this concerns an adolescent’s probability of 

sleeping with someone given that this did not happen before.  

 As was already indicated above, an issue that always receives a great amount of 

attention in discussions on event history analysis is censoring, where a distinction should be 

made between left and right censoring. These two forms of censoring refer to missing 

information on the time of nonoccurrence of the event of interest before and after the 
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observation (or follow-up) period, respectively. Here, we consider only the more common 

right-censoring problem, and we refer interested readers to Kalbfleisch and Prentice (2002), 

Tuma & Hannan (1979), Vermunt (2007), and Yamaguchi (1991) among others for 

discussions of alternative censoring mechanisms and their implications.  

 An observation is called (right) censored if it is known that it did not experience the 

event of interest during a certain amount of time (during follow-up period), but the exact time 

at which it experienced the event is unknown. In the recovery from depression example, a 

censored observation would be an individual who was in the depressed state at the end of the 

study or who dropped out from the study. For such a person, we know the duration of the 

depression till that moment, but not whether or when he or she will recover from depression, 

which means that the duration of nonoccurrence of recovery is only partially observed for 

such a person. In the relationships example, a censored observation would be an adolescent 

who has not experienced the event ‘sleeping with someone’ before the age at which the 

survey took place. This partial information is called the censoring time.  

 More formally, let T be the event time and U the censoring time. The duration of 

nonoccurrence of an event that can actually be observed is Y = min (T, U); that is, we observe 

the true event time when it is smaller than the censoring time and vice versa. Methods for 

event history analysis define a model for the dependent variable Y (and thus not for T). 

However, because it is also relevant to make a distinction between event and censoring times, 

an event indicator variable has to be defined. For right-censored event data, the event 

indicator for ith person is defined as 
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In other words, iEvent  equal 1 if we observe the event time and 0 if the observation is 

censored. 
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 While traditional regression methodology such as linear or logistic regression analysis 

does not provide a way of simultaneously analyzing observed and censored event times, as 

we will show later, event-history analysis methodology provides a way of considering both 

simultaneously. In the next section, we will explain when these event-history analysis 

methods are more appealing in relation to research problems in practice.   

 

4. When to use event history analysis?  

To determine whether the method of event-history analysis is applicable in a specific 

situation, one has to examine the research problem/question and a study’s methodological 

features. A research’s method of analysis calls for event-history analysis if the research’s 

question is centered on whether and, if so, when events occur. Data can be collected 

prospectively or retrospectively, over a short or a long period of time, in an experiment or an 

observational study. The beginning time which is an initial starting point when no one under 

study has yet experienced the target event but everybody is in the risk set has to be identified. 

The time of a target event whose occurrence is being studied can be measured in years, 

months, days, or minutes; however, a meaningful scale needs to be chosen. For example, in 

the relationships example, the research question is when young adolescents have their first 

experience of sleeping with someone and whether predictors affect the timing of this event? 

Clearly, the target event is the transition to sleeping with someone for the first time. The 

beginning time is the time at which none of the subjects under study has experienced the 

event but in the risk set of the event sleeping with someone. Since data is collected 

retrospectively, it is not practical to precisely measure the time of the first experience of 

sleeping with someone in months, days, or smaller grids of time. During the data collection 

subjects may recall the period of the event in terms of the age at which the event happened. 
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Thus, it is logical to consider age in years as the unit of scale for event period in the 

relationships data example.  

 

5. Describing event time distribution 

5.1. Discrete versus continuous time 

The manner in which the basic statistical concepts of event history analysis are defined 

depends on whether the time variable T, indicating the duration of nonoccurrence of an event, 

is assumed to be continuous or discrete. Of course, it seems logical to assume T to be a 

continuous variable in the sense that the event of interest may occur literally at any time 

defined on (0, ∞). However, in many situations this assumption is not realistic for two 

reasons. Firstly, in many cases, T is not measured accurately enough to be treated as strictly 

continuous. Respondents can usually give dates and times only in ranges or round numbers, 

even if encouraged by interviewers to be more precise. Secondly, the events of interest can 

sometimes only occur at finite particular points in time which are discrete (taking a finite set 

of values, example, 
Lttt ,,, 21 L ).  

 Regardless of the assumption whether T is a discrete or continuous variable, the main 

aim of event history analysis is characterizing the probability distribution of the random 

variable T, the duration of nonoccurrence of an event. An additional objective is typically to 

gain an understanding on how risk factors and covariates affect the event times. This second 

objective can be addressed by modeling the probability distribution of T in terms of 

potentially explanatory variables. Even though these objectives are common to any event 

history analysis, the way the statistical methods are formulated depends on whether the 

measurement of the time variable is assumed to be discrete or continuous. The methods and 

discussions considered below in this chapter assume time is measured on discrete scale. We 

describe in the next subsection possible ways of characterizing the probability distribution of 
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T and give modeling strategies of the probability distribution of T in terms of possible 

explanatory variables in section 6.  

 

5.2. Discrete Event Time distributions 

Let T be a discrete random variable indicating the event time, and lt the lth discrete time 

point, with ,...2,1=l  and L<<< 210 tt . There are three equivalent ways to characterize the 

probability distribution of the event time T. The simplest is as )Pr()( ll tTtf == , or as the 

probability of experiencing an event at ltT = . Another possibility is via the survival function 

)( ltS , which is the probability of not having the event before and in time interval tl or, 

equivalently, the probability of having the event after tl. It is defined as follows: 

 L,2,1),Pr(1)Pr()( =≤−=>= ltTtTtS lll  

Another option is to use the discrete-time hazard probability )( lth , which is the conditional 

probability that the event occurs at ltT =  given that it did not occur prior to T = lt  (given 

)( 1−ltS ). Mathematically, the hazard is given as 

)(
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What is important is that both )( ltf  and )( ltS  can be expressed in terms of )( lth . Using the 

fact that )()( )( 1 lll tStStf −= − , equation (1) can be rewritten as  
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By rearranging this last equation, we obtain  

)](1)[()( 1 lll thtStS −= −        (2) 
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Using 1)( 0 =tS , no individual experienced an event before and in T = t0 , this last equation 

leads to the required expression that  

  ∏
=

−=
l

k

kl thtS
1

)](1[)( .         

where ∏ is a product sign and the term in [bracket] is a complementary of the hazard 

function , which is the conditional probability that the event occurs at time kt  given that it did 

not occur prior to kt  . The equation implies that the survival probability to the end of lth time 

is the product of survival probabilities at each of earlier time points.  

By using equation (2) and (1), the following expression is also obtained for the probability of 

experiencing an event at time lt , 
)( ltf : 

.)](1[)()(
1

1

∏
−

=

−=
l

k

kll ththtf        (3) 

 

5.3. Estimating Event Time Distribution  

The grouped-data or life-table method (Merrell, 1947 & Cox, 1972) and the Kaplan-Meier 

(Kaplan & Meier, 1958) estimator are two descriptive methods for estimating the event-time 

distribution from a sample. Below, we discuss the grouped-data method for discrete event 

times.  

Grouped-data or life-table method for discrete event times 

The most straightforward way to describe the event history in a sample is to construct 

grouped data by merging event times in groups or intervals. This method is more known as 

the life-table method. The life-table method enables the computation of nonparametric 

estimates of the survival and hazard functions in separate intervals over time. The distribution 
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of event times is divided into a certain number of intervals. For each interval we can then 

identify the number of subjects entering the respective interval without having experienced 

the event, the number of cases that experienced the event in the respective interval, and the 

number of cases that were lost or censored in the respective interval. Based on those numbers, 

several additional statistics can be computed. Some of these statistics are: 

• Number of Cases at Risk (risk set rl): This is the number of subjects who are at risk 

of experiencing the event of interest within the specific interval. This number is the 

number of cases that entered the respective interval. 

• Proportion of cases that experience the event (hazard hl): This proportion is 

computed as the ratio of the number of cases experiencing the event within the 

interval divided by the number of cases at risk in the interval.  

• Cumulative Proportion Surviving (Survival Function Sl): This is the cumulative 

proportion of cases surviving up to the end of respective interval.  

• Median Survival Time: This is the survival time at which the cumulative survival 

function is equal to 0.5.  

 

5.4. Example: Life table method for Adolescents’ relationship example  

Table 1 shows a life table for the data on adolescent’s experience on sleeping with someone 

example introduced in section 2. For 142 cases we have information on whether the event 

sleeping with someone had happened yes or no, and if when it happened. It turns out that 

90.1% of these adolescents experienced the event before the time of data collection.  

 A natural definition of the beginning time (t0) for an analysis of this dataset is an age 

at which none of the adolescents experienced the event of interested, or equivalently, an age 
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at which all subjects are at risk of experiencing the event. It does, however, not make sense to 

start at age 0 because the youngest age at which the event happened is 12, which means that 

the hazard rate is 0 and the survival probability is 1 for all ages prior to 12. Without loss of 

information we can therefore use age 11 as the beginning time for the event history analysis. 

By dividing into a series of rows indexing the age intervals (column 1), a life table for the 

relationships example in Table 1 contains information on the number of adolescents who: 

entered the age interval (column 2), censored during the age interval (column 3), and 

experienced the event ‘sleeping with someone’ during the age interval (column 4). The age 

intervals in Table 1 partition the times of the event occurrence in such way that each interval 

contains a range of ages that include the initial time and excludes the concluding time. The 

width of the intervals is set to 1 year for ease of presentation. Conventional mathematical 

notation [brackets] denotes inclusions and (parenthesis) denote exclusions. Thus, bracket is 

used for each interval’s initial time while parenthesis is used for the concluding time.  In total 

there are 14 age intervals with each having 1 year length, [11, 12), [12, 13), …, [24, 25). In 

general, the definition of the time intervals of a life table should be based on a relevant time 

unit and respect the way events occur. Data whose time unit is days, weeks, or months may 

require wider intervals compared to data whose time unit is years, but the grouping should  

always be such that it yields a series of time intervals [t0, t1), [t1, t2), …, [tl-1, tl), [tl, tl+1), …, 

and so on. No events occur during the 0
th

 interval, which begins at time t0 and ends just 

before t1. This interval represents what is called the beginning of time. Any event occurring at 

t1 or later but before t2, is classified as an event happening during the first time interval [t1, t2). 

The lth time interval, [tl, tl+1), begins immediately at time tl and ends just before time tl+1. 

 The next column in the life table contains the number of adolescents who enter each 

successive age interval without experiencing the event or censoring in the previous intervals. 

This number is the risk set for the discrete-time life-table description. As shown in column 3 
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of Table 1, censoring happens for some cases in the last two age groups. For these cases, the 

event sleeping with someone has not happened at before the time of data collection. The only 

known information is that those adolescents have not experienced the event until ages 24 (in 

the age interval [23, 24)) and 25 ((in the age interval [24, 25)), respectively. Column 4 

contains the number of events that occured in each age interval. As can be seen, the risk set or 

the number in column 2 for each interval is the risk set of previous interval minus the sum of 

the numbers in column 3 and 4 of previous interval.  

       <<< Insert Table 1 about here >>>>>>>>> 

 

Column 5 in Table 1 shows the proportion of each interval’s risk set that experiences the 

event during the interval. Thus, these are conditional probabilities (or hazards) that the event 

occurs to an individual in lth interval given that the event did not occur to that person before 

the lth interval. In fact, the proportions in column 6 are maximum likelihood estimates of the 

discrete-time hazard given in equation (1) (Singer & Willett, 1993, 2003). That means, we 

estimate the discrete-time hazard for each interval in the life table by the proportion of the 

risk set that experiences the event within the interval. These proportions are mathematically 

obtained by dividing the numbers in column 4 to the numbers in column 2, i. e,.  

     ,
 intervalin risk at number 

  intervalin  events ofnumber
)(ˆ

l

l
th l =        (4)          

where )(ˆ lth  is an estimate of the discrete hazard probability at time t in interval l.  

 Hence the estimate of hazard is 0070.0)(ˆ 1 =th  for a time in the first interval, the 

estimate is zero for the second interval as none of the adolescents experienced the event in the 
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second interval, 0142.0)(ˆ 3 =th  and so on. Note that the discrete-time hazard is a probability, 

which implies that its value always lies between 0 and 1. A helpful way of examining the 

time-dependence of the hazard probabilities is to graph their values over time. The left panel 

of Figure 1 plots the estimated hazard function based on the proportions in column 5 of Table 

1. The risk of event occurrence (sleeping with someone for the first time) among the 

adolescents at ages below 16 is small. The risk in general increases with time starting from 

age 16 until age 19 where it drops suddenly. It again increases in the interval [20, 21) and 

starts to decrease thereafter. Finally, there is an increase from starting from age 23. In general 

the ‘risky’ time periods for experiencing the event are from age 16 with a high peak at age 20.  

 The estimated hazard probabilities at each time interval describe the distribution of 

event occurrence for a random sample of individuals from a homogenous population. In 

section 6, we show how individual difference in the hazard probabilities can be investigated 

using regression models including predictor variables (e.g., gender and education level).  

   <<<<< Insert Figure 1 about here >>>>>>>> 

 The proportion of adolescents who has not slept with someone till the end of each 

time interval (who survived) is shown in column 6 of Table 1. This proportion is an estimate 

of the survival function given in equation (2). Since no one has experienced the event before 

age 12, the estimate of survival function for the 0
th

 interval, ),(ˆ
0tS

 
is 1. The estimate for the 

1
st
 interval is then the product of the survival function of the 0

th
 interval and the probability of 

surviving (not having the event) during the 1
st
 interval. This latter probability is just the 

complement of the hazard probability in the 1
st
 interval, .0070.01)(ˆ1 1 −=− th  Thus, the 

estimate of the survival function for the 1
st
 interval is 

9930.0]0070.01[1)](ˆ1)[(ˆ)(ˆ
101 =−×=−= thtStS , implying that 99.3% of the adolescents did 
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not experience the event until the end of the 1
st
 interval. In general the estimate of the hazard 

function for lth interval is  

  
)].(ˆ1)[(ˆ)(ˆ

1 lll thtStS −= −        (5) 

In general, the survivor function over time declines to 0 which is the lower bound for the 

survival probability. A useful way to examine the survival function is again to graph the 

estimates of survival function over time. The right panel of Figure 1 graphs the survival 

function based on the estimates in column 6 of Table 1. Unlike the hazard function which can 

increase, decrease or remain constant over time, the survivor function never increases. For 

intervals with no events occurring (for example interval [13, 14)), the survivor function 

remains steady at the value of previous interval. The survivor function drops rapidly in those 

periods where the hazard is high and the survivor function declines slowly at the time periods 

with low hazard.  

 The life-table estimates of the discrete-time hazard and survival functions yield two 

alternative descriptions of the event time’s distribution. The interest is usually also on the 

summary statistics or center of the distribution. If there was no censoring, the center of the 

event time distribution could be estimated using sample mean. However, due to censoring the 

event time is not known for all individuals and the sample mean cannot be used as an 

estimate of the center of the distribution. Instead, another measure of central tendency is often 

used in event history analysis: the median survival time. As a measure of center of the 

distribution, the estimated median survival time is the value of time (here age) for which the 

value of the estimated survival function is 0.5. Note that in general, the median survival time 

or the 50th percentile for the survival function is not necessarily the same as the point in time 

up to which 50% of the sample survived without the event. The median survival time 
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corresponds to the point in time up to which 50% of the sample survived without the event 

only if there were no censored observations prior to this time (which is the case in the 

adolescents’ relationship example). 

 A closer look at the estimate of the survival function in column 7 shows that 0.6056 of 

the adolescents survived to the end of the interval [17, 18) and the proportion drops below 0.5 

to 0.4577 in the interval [18, 19). Thus, the median survival time could be reported as age 

between 17 and 18. If needed, the estimate of median survival time can be more accurately 

obtained by interpolation between the two intervals that have survival estimates close to 0.5 

on both sides at the top and bottom. In the current adolescents’ relationship example, the two 

intervals are [17, 18) and [18, 19). Let tm be the initial time for the interval when the sample 

survivor function is just above 0.5 (in our example, age 17), let )(ˆ
mtS represent the value of 

the sample survivor function of that interval, let tm+1 and )(ˆ
1+mtS be the initial time and 

sample survivor function, respectively, for the following interval (when the survivor function 

is just below 0.5). Then, following linear interpolation, the estimated median survival time is  

 ( )mm

mm

m

m tt
tStS

tS
tndM −













−

−
+= +

+

1

1 )(ˆ)(ˆ

5.0)(ˆ
ˆ       (6) 

For the current example the interpolation is illustrated using the following simple sketch.  

         
0.1056                              

               17   Mdn                   18          Age  

survival:              0.6056 0.5                 0.4577
 

              0.1479                    

 Mdn = 17 + [(0.6056 – 0.5) / (0.6056 – 0.4577)] (18-17) 

                    = 17 + (0.1056) / (0.1479)  = 17.7.   
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Note that in our application there are no censored cases for the intervals prior to [18, 19) 

which contains the median survival time. As a result, the median survival time 17.7 is also 

the age at which 50% of the sample units experienced the event.  

 Hazard functions are the most useful tools in describing patterns of event occurrence 

as they are sensitive to the unique risk associated with each time period while the survivor 

functions accumulate information across time periods. Thus, by examining the variation over 

time in the magnitude of the hazard function, we identify when events are likely, or unlikely, 

to occur.  The median survival time identifies the center of the distribution and it tells little 

about the distribution of event times. It is an ‘average’ event time but relatively less sensitive 

to the extreme values.  

 The life-table method for estimating hazard and survival functions using discrete-time 

event data is similar to the actuarial method for estimating these functions using continuous-

time event data. These methods differ only in the assumption about the occurrence of events 

and censorings within intervals. The discrete-time method assumes events and censorings 

occur at the endpoint of the time interval, which means that all those who entered the interval 

are in the risk set throughout the interval. The actuarial method, however, assumes that both 

events and censorings are distributed equally throughout the interval, which means that the 

risk set changes during an interval. In the actuarial method, the risk set is estimated as the 

average number of person at risk during the interval, which leads to slight modifications of 

equations (4) and (5) for this method. More details about the actuarial method are given 

elsewhere (Singer & Willett, 2003 (pp. 480); Mould, 1976;  and Cutler & Ederer, 1958. 

among others).  

 The description and estimation of the event time distributions discussed so far 

assumes a single homogeneous group of subjects. However, in practice researchers are also 
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interested in identifying factors that affect the occurrence and timing of the event of interest. 

For example, in intervention or experimental studies, the interest is to estimate the effects of 

the intervention on the probability of occurrence of the event over time. Therefore, we move 

from the discussion of method for describing event time distribution to regression models for 

which allow including predictors such as socio demographic covariates and experimental 

conditions. The objective is to determine the relationship between those predictors and the 

likelihood of event occurrence. The specific modeling approach again depends on whether 

the event time is treated as discrete or continuous. Thus, we pursue the discussion below with 

the assumption of discrete event times and we refer readers to Blossfeld & Rohwer (1995), 

Collette(2003), and Vermunt (1997) among others for well developed methodologies on 

continuous event time models. Regression models for discrete event time data are better 

known in literature as discrete-time survival models (DTSM). Even though originally 

discrete- and continuous-time models were formulated separately by Cox (Cox, 1972), 

asymptotically the two models are equivalent. That is, as the discrete time interval get smaller 

and smaller, a DTSM becomes more and more similar to a continuous-time model 

(Thompson, 1977; Allison, 1982; D’agostino et al., 1990; Yamaguchi, 1991; Peterson, 1991).  

 

6. Discrete Time Event History Models 

Cox was the first to propose models for censored data (Cox, 1972). He proposed discrete-

time models for tied event data alongside his formulation of proportional hazard modeling for 

continuous-time data. A tie refers to the situation where several subjects experience the event 

at the same specific time, which is something that in a strict continuous-time framework 

should not occur. When there are many ties in the data, a discrete-time model is more 

appropriate. The discrete-time modeling approach involves using a logistic regression model 
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for a person-period dataset. For all time points until a person either experiences the event or 

is censored, the dependent variable is an indicator of whether or not an individual 

experienced the event at that time point (Allison, 1982; Singer & Willett, 1993).  

As discussed in the previous section, in contrast to the other distributions for event 

history data, the hazard function is the most important element in event history analysis 

because of at least three reasons. First, it shows the risk of event occurrence at each time 

period, it tells us whether and when an event is likely to occur. Second, the event history 

analysis is able to deal with censored cases because the hazard always includes both censored 

and non-censored cases. Third, the sample survival function cannot be computed directly for 

a given time point when there is censoring, but the survival function can be estimated 

indirectly from the hazard function. In general, the mathematical relationships described 

earlier between the distributions of event history data can be used to obtain estimates of other 

distributions ( )( and )( ll tftS ) if the estimate of hazard is known.  By using the hazard )( lth
 

as the left-hand side variable in a regression model, one can relate hazard distribution to the 

covariates of interest. Because hazards are (conditional) probabilities bounded by 0 and 1, 

they can be transformed using logit link function so that the transformed hazard is unbounded 

and can easily be regressed on covariates and time variables. That means, instead of modeling 

the hazard probability directly the logit of the hazard probability is used as the left-hand side  

variable in a (generalized) linear model. The logit hazard at time ltT =  for a person with 

covariate value X is given by: 

XD
th

th
Logth ll

lX

lX
elX βα +=









−
=

)(1

)(
)]([logit ,     (7) 

where [ ]cLoge  is the natural logarithm of c, )( lX th is the hazard or conditional event 

probability at time lt  for a person with covariate value X, lD  is a dummy variable indicating 
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the time period ( ll tTD ==  if ,1  and 0 otherwise), lα  is the intercept parameter at time point 

ltT =  representing the logit hazard when X = 0 (baseline logit hazard at time lt ), and β  is 

the slope parameter that shows the effect of the covariate X on the logit hazard. When there 

are more covariates, model (7) can be extended by including the covariates and 

corresponding β  parameters at the right-hand side of the equation. That means, for a person 

with covariate values pXXX ,,, 21 L  the logit hazard is  

∑ =
+=++++=
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where )( lpX th is the hazard or conditional probability at time lt  for a person with p covariate 

values pXXX ,,, 21 L  and kβ is the parameter that shows the effect of the covariate Xk on the 

logit hazard controlling for other covariates in the model, pk ,,1 L= .  

Equation (8) is a discrete-time event history model or DTSM. When the value of all 

covariates equals, the logit hazard in (8) reduces to the baseline logit hazard  

           
ll
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0
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where )(0 lth is the baseline hazard or conditional probability with covariate values equal to 

zero at time lt  .  

Note that 
)(1

)(

lX

lX

th

th

p

p

−
 is the odds of event occurrence at time lt  and the model in 

equation (8) represents the log-odds of event occurrence as a function of time period and 

covariates. By using an inverse function of the natural logarithm, exponential function, in 

equation (8) the odds of an event can be expressed as  
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By using equation (9), this last equation can be rewritten as  
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Thus, the discrete-time event history model implies that the odds of having the event at each 

discrete time point are ( )∑ =

p

k kk X
1

exp β  times for subjects characterized by covariate values 

pXXX ,,, 21 L  compared to subjects in the baseline group (subjects characterized by 

covariate values 0,,0,0 21 === pXXX L ). The model also implies that, controlling for 

other covariates, an increase in one unit of kX  increases (or decreases depending on the sign 

of kβ ) the odds of having the event ( )kβexp  times. When the covariate effects are time-

independent (that is, when there are no time-covariate interactions), the model is a 

proportional odds model. That means, the ratio of odds of having an event among a group 

characterized by particular covariate values and the baseline group, 
)(1

)(
/

)(1

)(

0

0

l

l

lX

lX

th

th

th

th

p

p

−−
, is 

constant over time. The proportional odds model is similar to the Cox proportional hazards 

model for continuous event times with respect to this property. While the ratio of odds is 

time-constant for the proportional odds model, the ratio of hazard rates is time-constant for 

the Cox’s proportional hazards model. As discussed in more detail below, the proportional 

odds assumption can be tested and relaxed by including interaction effects of time and 

covariates in the model.  

An advantage of the discrete-time event history model compared with the continuous 

time event history model is that we can use the usual logistic regression options of most 
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available computer programs for the estimation of the parameters. The structure of the input 

data, however, differs between the usual logistic regression analysis and the use of logistic 

regression for discrete-time event history analysis. While the former uses one observation for 

each sample subject, the latter uses multiple observations for each subject. Accordingly the 

event history data for the logistic regression must be arranged in a specific way as described 

in the next subsection.  

 

6.1. Construction of input data 

The discrete-event time model described above uses a logistic regression approach. However,  

unlike standard logistic regression analysis, such an analysis it is not based on a person-

oriented dataset, but instead it requires a person-period dataset in which each person may 

have a different number of records depending on the duration or stay in the risk set. In a 

typical person-oriented dataset, each person has one record (case) of data. Because 

researchers often keep event history data in a person oriented dataset format, conversion to a 

person-period dataset that contains for each person as many records as the time (period) he or 

she stays in the risk set without experiencing the event or censoring is needed. Table 2 

illustrates such a conversion using 3 subjects from the adolescents’ relationships data. The 

smallest event time for the adolescents’ relationship data is 12 and the maximum is 24. 

Among the three adolescents whose data on some of the variables are shown in Table 2, the 

event times are known for the first and third (ID 2 and 12 reported event time at age 15). An 

adolescent with ID 9 is censored, i.e., event has not occurred during data collection and his 

age is 24. In the converted person-period dataset, subjects have different number of records 

depending on how long they stay before they experience the event or censoring. The period 

variable is included in the dataset to indicate the time to which the corresponding record 
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refers for each adolescent from age 12 and above. Since the first event occurs in the dataset at 

age 12, interest on event history is restricted to ages 12 and above. The period variable takes 

on the values 12, 13, 14 and 15 for each of adolescent with ID 2 and 12, to indicate that these 

four records describe their corresponding status in the periods from age 12 until the 

occurrence of the event at age 15. For the adolescent with ID 9, the variable period takes on 

the values 12 through 24, to indicate that those are the ages represented in the 13 records. The 

set of dummy variables D12 through D24 are also created to represent each time period in the 

logistic regression model for the discrete time event history model. The dummy variable 

ll tD ==  period if ,1
 
and 0 otherwise. A dichotomous event indicator is created for the 

occurrence of ‘sleeping with someone for the first time’ to indicate whether a person 

experiences the event during the time period concerned (0 = no event, 1 = event). For each 

individual, the event indicator is 0 in every record except the last. Noncensored adolescents 

experience the event in their last period, so the variable event takes on the value 1 in that last 

period as shown for ID 2 and 12. Censored adolescents never experience at the periods shown 

in the data, so the variable event remains 0 throughout the records as shown for ID 9. Values 

of the time-constant covariates are repeated in each time period. Only values for the covariate 

gender are shown in Table 2 due to space limitation. SPSS and SAS
®

 syntaxes to convert the 

person-oriented dataset to person-period dataset are  given in the appendix.  

The person-period dataset contains all information on survival time, including the 

information for censored observations. Once a person-period dataset is created, existing 

procedures in general statistical packages can be directly used for event history analysis 

without any modifications for censoring. As a descriptive analysis, a cross-tabulation of the 

variables period and event which can be obtained using CROSSTABS procedure of SPSS 

(PASAW statistics) or SAS procedure FREQ (SAS Institute)  gives estimates of hazard or 

conditional probability at each time period as shown in column 5 of Table 1.  
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  <<<<< Insert Table 2 about here >>>>>>>>>> 

 

6.2. Maximum likelihood estimates 

The likelihood function (Myung, 2003) for the discrete event time model expresses the 

probability that we would observe the specific pattern of event occurrence actually observed 

over time. The likelihood function is composed of as many terms as there are records in the 

person-period dataset. The probability that ith individual experiences the event at time period 

tl, given that the event has not occurred before, is )( li th . During the time period when 

individual i experiences the event (the variable event =1 in the person-period dataset), he or 

she contributes )( li th  to the likelihood function. The probability that ith individual does not 

experience the event in time period tl, given that the event has not occurred before, is 

)](1[ li th− . During the time periods when individual i does not experience the event (when 

the variable event = 0), he or she contributes )](1[ li th−  to the likelihood function. The 

contributions are mathematically expressed using the likelihood function as  

,)](1[)(Likelihood
1 1

)1(∏∏
= =

−−=
v

i

L

l

event

li

event

li

i

ilil thth      (12) 

where ∏ is a product sign, n is the total number of subjects (sample size), Li is the number 

of records for ith person in the person-period dataset and ilevent  is the value on the variable 

event (either 0 or 1) for ith person at lth period. Note that the two product signs ensure that 

the likelihood function multiplies the contributions of each record in the person-period 

dataset across all individuals via the first product sign and across all time periods for each 

individual via the second product sign. Since event is coded with either 0 or 1, only one of the 
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two terms ( )( li th  or )](1[ li th− ) contribute to the likelihood function at each record in 

person-period dataset. In time period when the event does occur, only the first term remains 

while the second term becomes 1. In time periods when the event does not occur, only the 

second term remains while the first term becomes 1.  

By using the notation )( lX th
p

for the conditional probability of an ith individual with 

p covariates from equation (8) in equation (12) instead of )( li th , the likelihood function can 

be written as a function of unknown parameters α’s for the baseline hazards and β’s for the 

effects of the covariates.  The objective of maximum likelihood estimation is to find 

estimates of the parameters that maximize the likelihood function. In practice the logarithm 

of the likelihood (log-likelihood) function is used as it is mathematically more tractable. Thus, 

the values of α’s and β’s that maximize the log-likelihood function should be obtained. In fact 

the routines for logistic regression model available in most standard statistical packages (e.g., 

SPSS, SAS, Stata, etc) provide estimates of the parameters of the discrete event time model 

that maximize the log-likelihood function when a proper person-period dataset is used. Thus, 

statistical routines of logistic regression to regress the event indicator variable on the dummy 

variables for time indicators and the selected p covariates in the person-period dataset can be 

used to obtain the maximum likelihood estimates of the parameters in the discrete event time 

model.  

 

6.3. Example: Discrete event time model for Adolescents’ relationship data 

To illustrate the procedures of fitting, interpreting and testing statistical statements 

(hypothesis) for the discrete event time model, we use the adolescents’ relationship data 

example. The person-period dataset with records of 1093 for the event of ‘sleeping with 
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someone’ for the first time and the covariates youth-centrism (YC), gender (G), education (E) 

and dummy variable lD as indicator of time period lt (see section 6.1) is used to fit the 

following models:  

Model 1: lll Dth α=))(logit( 0  

Model 2:  YC))(logit( 1βα += lllX Dth  

Model 3: EG))(logit( 32 ββα ++= lllX Dth  

Model 4: EG YC))(logit( 321 βββα +++= lllX Dth  

Model 1 contains only the time periods and it describes the hazard profile over time. The 

model is estimated using the dummy variables for time with a no intercept option of logistic 

model in standard software. Model 1 helps to find the risk of event occurrence at each time 

period and identify the important periods (ages) where the event is common among the 

adolescents. The parameters α’s for each time period are the logit of the hazard (log odds). 

From these parameters the odds of event occurrence can be obtained by exponentiation of the 

parameters. The conditional probabilities or hazards of event occurrence can be obtained 

from the parameter estimates using: 

)](exp[1

1
)(

l

lth
α−+

=  .       (13)  

The estimates of the parameters of discrete event time model and the corresponding hazards 

for the baseline or reference group (when covariate values YC, gender and education equal to 

0) under each of the four models fitted for the adolescents’ relationship data are shown in 

Table 3. An increase in hazard shows higher risk of event occurrence. A closer look at 

hazards (based on estimates of parameters) in model 1 shows that this baseline model (a 
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model without a covariate) gives exactly the result on hazard probability of a life table 

analysis we have in Table 1. Thus, using the baseline model the hazard at each time period 

computed in life table can be obtained.  

The baseline model estimates the overall population profile of the risk across time and 

indicate when events are more likely to occur. In order to know whether the hazard profile is 

different for adolescents with different values on the covariate youth centric, the dummy 

variable youth-centric (YC =1 if youth centric and 0 if not youth centric) is considered in 

addition to the time period variables as given in model 2. The parameter estimates are given 

under model 2 in Table 3. The estimates of the parameters 24231312 ,,,, αααα L  under model 

2 represent the baseline log odds of hazard profile at each of the time periods for the non 

youth centric group of adolescents (a reference group with YC = 0). The parameter 
1β  is a 

shift parameter that displaces the baseline log odds of hazard profile for the youth centric 

group (YC = 1). The estimated log odds for YC is 0.310 with corresponding odds ratio of 

1.363 ( )310.0exp( ). This indicates that youth centric adolescents are about 1.4 times more 

likely than non youth centric adolescents to experience the event ‘sleeping with someone for 

the first time’ (if at risk).  

Model 3 contains the covariates gender (G) and education (E) in addition to the time 

period dummy variables. The baseline (or reference group) contains subjects with value 0 for 

gender and education, i.e., low educated female adolescents. The estimates of the parameters 

α’s for the reference group is shown as log odds under model 3 in Table 3. The corresponding 

hazard (probability) of event occurrence at each time for the reference group are also shown 

in Table 3 under the column model 3. The parameter 2β  in model 3 is a shift parameter that 

displaces the baseline log odds of hazard profile for male adolescents (gender = 1) keeping 

the values of education constant. The estimated log odds for gender in model 3 is -0.542 with 
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the corresponding odds ratio of 0.581 ( )542.0exp(− ), controlling for education. Similarly, the 

parameter 3β  in model 3 is a shift parameter that displaces the baseline log odds of hazard 

profile for highly educated adolescents (education = 1) keeping gender constant. The 

estimated log odds for education is -0.112 with the corresponding odds ratio of 0.894 

( )112.0exp(− ), controlling for gender. 

Model 4 includes the covariates YC, G and E in addition to the time period dummy 

variables. The baseline (or reference group) consists subjects with value 0 for YC, G and E, 

i.e., non youth-centric low educated female adolescent. The estimates of the parameters α’s 

for the reference group is shown as log odds under model 4 in Table 3. The corresponding 

hazard (probability) of event occurrence at each time for the reference group are shown in the 

last columns of Table 3. The parameter 
1β  in model 4 is a shift parameter that displaces the 

baseline log odds of hazard profile for the youth centric group (YC = 1) keeping gender and 

education constant. The estimated log odds for YC is 0.483 with the corresponding odds ratio 

of 1.620 ( )483.0exp( ), controlling gender and education. Similarly, the parameter 2β  in 

model 4 is a shift parameter that displaces the baseline log odds of hazard profile for male 

adolescents (gender = 1) keeping the values of youth-centric and education constant. The 

estimated log odds for gender is -0.592 with the corresponding odds ratio of 0.553 

( )592.0exp(− ), controlling YC and education. Thus, the odds of ‘sleeping with someone for 

the first time’ for boys is 0.553 times that for girls. The estimate of 3β  is interpreted in a 

similar fashion for education by keeping YC and gender constant.  

The likelihood ratio test (e.g., Rao, 1973) is used to test the significance of the effects of the 

covariates in each of the models. The -2 Log Likelihood statistic (-2LL), which is often 

displayed in outputs from commonly used statistical software (e.g., SPSS) for logistic 
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regression routine, is the deviance statistic for the discrete event history models. A deviance 

statistic is always greater than 0 and the smaller the deviance the better the fit of the model to 

the observed data. The last row of Table 3 shows the deviance statistics for the four models 

we fit for the adolescents’ relationship data.  

  <<<<< Insert Table 3 about here >>>>>>>> 

A likelihood ratio test compares deviance statistics for the comparison of two nested models. 

Two models are called nested when both contain the same parameters and one of the models 

has at least one additional parameter. That is, one is obtained by having a constraint on the 

additional parameters in the other model. In the current example, model 1 can be obtained 

from all other models by imposing constraints that the parameters corresponding to the 

covariates youth-centric, gender and education are set to zero. Thus, model 1 is nested within 

all other models. Model 4 contains all parameters involved in other models. Thus, model 4 is 

the biggest model with all parameters of interest. For the likelihood ratio test, the difference 

in deviance statistics for two nested models will asymptotically have a chi-square distribution 

on k degrees of freedom (df), where k is the number of additional parameters in a bigger 

model in terms of parameters. When the difference in deviance statistic is larger than the 

critical value for chi-square distribution we reject the null hypothesis that the model with less 

number of parameters (reduced model) and conclude that some of the additional covariates in 

the model with more number of parameters (full model) have significant effect on the log 

odds of event occurrence. When the difference in the deviance statistic is small, we fail to 

reject the reduced parsimonious model and we conclude that the reduced model is as good as 

the full model. In the current example, the difference between deviance statistics for model 1 

and model 2 is 2.046 (=645.979-643.933) which is smaller than the critical value of chi-

square distribution with df =1 at 5% level of significance ( =2

)05.0(1χ 3.84). Thus, model 2 is 
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not statistically better than model 1 and the covariate youth-centric alone has no effect on the 

log odds of event occurrence. However; it turns out that the covariate youth-centric indeed 

has an effect after the variables gender and education are controlled as discussed below. The 

difference in deviance statistics between model 1 and model 3 is 22.680 (=645.979 – 

623.299). Because there are 2 more parameters in model 3 compared to model 1 (β’s for 

gender and education), the df for the chi-square is now 2. Since the difference in deviance, 

22.680 is greater than the chi-square value ( )99.5
2

)05.0(2 =χ , we reject the reduced model 

(model 1) and conclude that model 3 gives a better fit of the data in such a way that at least 

one of the covariates involved in the model (gender and education) have significant effect on 

the log odds of event occurrence. Having model 3 which contains gender and education, we 

may be interested to know the effect of youth-centrism given that gender and education are 

controlled. We can compare models 3 and 4 for that purpose. Note that comparison between 

models 1 and 2 gives the effect of youth-centrism without controlling the variables gender 

and education. However, the comparison between models 3 and 4 helps to test whether 

youth-centrism has an effect on hazard probabilities after controlling the covariates gender 

and education.  

The difference in deviance statistics between model 3 and model 4 is 3.943 (=623.299 

- 619.356). Since there is only one more parameter in model 4 compared to model 3 (β1 for 

youth-centric), the df for the chi-square is 1. Because the difference in deviance, 3.943, is 

slightly greater than the chi-square value ( =2

)05.0(1χ 3.84) we conclude that YC has significant 

effect after controlling the covariates gender and education.  

 

6.4. Polynomial specification of time period 
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The dummy variables for time period that included in the discrete event time model helps to 

maintain the shape of the baseline logit hazard function. The use of 
LTTT ,, 21 L  as a 

representation of the L discrete time points in the model puts no specification on the shape of 

the hazard functions and further makes the interpretation of the parameters in the discrete 

event history model easier. Each of the coefficients of the dummy variables for time periods, 

αl, is interpreted as the population value of logit hazard in time period l for the baseline group, 

for l = 1, 2, …, L. The use of dummy variables representation for time periods in the model is 

encouraged as it does not put any constraint on the shape of the baseline model and facilitates 

interpretation of the coefficients. However, when there are many discrete time periods, L is 

large; the model needs the inclusion of many dummy variables representation for the time 

periods. This leads the model to be over parameterized and lack of parsimony (Efron, 1988; 

Fahrmeir and Wagenpfeil, 1996; Singer & Willett, 2003 (PP. 408)). Thus, using an 

alternative approach for the representation of time periods in the discrete event time model is 

required when the there are many time points. The option of considering the time periods as 

if they are continuous covariate and a specification of polynomial model for the baseline logit 

hazard function gives a more parsimonious model provided that the fit of the model to the 

data is not compromised (Mantel & Hankey, 1978 and Singer & Willett, 2003). The variable 

period in person-period dataset whose values represent the time period that the record 

describes, as shown in Table 2, can easily be used as a continuous covariate in polynomial 

representation of time in the discrete event time models. The polynomial representation could 

be linear, quadratic, cubic or higher degree polynomials. The choice could also be a 

logarithmic transformation of time or any other kind of function of time depending on the 

theoretical or practical motivation for such functions. In situations where the polynomial 

model is not pre-specified, search for the appropriate polynomial model can begin from the 

most simple one to the more complex models guided by statistical test for model comparison. 
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As outlined by Singer & Willett (2003 pp. 410), a formal goodness of test should confirm that 

the selected polynomial fits the data as good as the model with dummy variable 

representation of time period (‘general’ model). That means, a likelihood ratio test should 

confirm that there is no statistically significance difference between a polynomial model 

representation of time period for baseline logit hazard and model 1 for example in 

adolescents’ relationship data example. Table 4 displays the deviance statistics and the 

differences in deviance statistics for the likelihood ratio test to identify an appropriate 

polynomial representation of time periods for the adolescents’ relationship data. The df for 

the test is the difference in the number of parameters in the models to be compared. The 

difference in deviance statistics between the linear and the general model, 58.988, is greater 

than the chi-square value ( 68.192

)05.0(11 =χ ). Thus, the fit of the linear model is not as good as 

the general model. The next candidate model is the quadratic model. The difference in 

deviance statistics between quadratic and general models, 17.312, is less than the chi-square 

value ( 31.182

)05.0(10 =χ ). Thus, the fit of the quadratic model is as good as the general model. 

We found the same result for cubic model. However, a comparison between the quadratic and 

cubic models shows that the cubic model is not significantly better than the quadratic model 

(the difference in deviances, 2.581, is less than chi-square value ( 84.32

)05.0(1 =χ )). Thus, 

quadratic polynomial representation of the time periods is parsimonious in its number of 

parameters while it fits the data as good as the general model for the discrete event time 

models for the adolescents’ relationship data.  

The parameters in the polynomial models are estimated using the same procedure as 

earlier using maximum likelihood method. The logistic regression model routines in the 

commonly used software can be used with a little modification of the dataset. First, a new 

variable need to be formed from the variable period within the person-period dataset. Then, 
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depending on the degree of the polynomial that we want to fit a series of additional variables 

should be recomputed from the new variable to represent each polynomial term in the model. 

For example, in the current data example, a new variable )12( −period is first computed 

from the variable period and then for the representation of quadratic term 
2)12( −period is 

recomputed. In general, the new variable can be obtained by subtracting a constant c from 

period )( cperiod −  and then other series of variables can be obtained by taking the power of 

this variable to represent each polynomial term in the model. The choice of the constant c is 

arbitrary, however; c should be within the range of the observed event time periods. The 

constant c is in fact the time period at which the estimated logit hazard (probability) of event 

occurrence for the baseline group is the estimate of the intercept in the polynomial model. For 

example, the estimate of the parameter 0a  for the current example is the sample estimate of 

the logit hazard of event occurrence for the baseline group at time period (age) 12.  

   <<<<<< Insert Table 4 about here >>>>>>>>>>> 

In general, for the linear model the intercept parameter 0a  represents the value of the logit 

hazard when the covariate is zero. The covariate in the current linear models is )( cperiod − . 

Thus, 0a  represents the value of the logit hazard when period equal to c. The slope parameter, 

1b  is unaffected by the subtraction of constant c from the time period and it represents the 

increase (or decrease) in logit hazard per unit increase in time. For the quadratic model, the 

intercept still represents the value of the logit hazard in time period c. The slope parameter 

too still measures the increase (or decrease) in logit hazard per unit increase in time but now 

only at one particular instant, time period c. The curvature parameter,

 
2b  , in quadratic model 

specifies whether the logit hazard function is convex with a trough ( U  shape) or concave, 

with a peak ( ∩ shape). If 
2b  is positive, the hazard function is convex and if it is negative, 
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the shape is concave. The time period at which the hazard function reaches its peak or trough 

is given by )]([
2

1
2

1
b

bc − . 

For example, the estimates of the parameters 210  and , , bba  for the quadratic model of 

the adolescents’ relationship data are -5.551, 1.191 and -0.075, respectively, i.e., the 

quadratic model for the baseline group is )((logit 0 lth )12(191.1551.5 −+−= period  

.)12(075.0 2−− period  This implies that the estimate of the logit hazard at age 12 for the 

baseline is -5.551 (compare with the result in Table 3) and the instantaneous rate of change in 

logit hazard at age 12 is 1.191. Since the estimate for 
2b  , -0.075,  is negative the hazard 

function is concave reaching its peak at time period (age) 94.19)](12[ )075.0(
191.1

2
1 =− − . The 

peak of the hazard function is after age 19 and close to age 20 implying that the risk of the 

event, sleeping with someone for the first time, is highest at age 20.  

 

6.5. Time-varying covariates  

In previous sections, we considered covariates that have constant values with time. However, 

the values of some covariates for each person may change over time in practice. With a little 

modification, it is possible to relate the occurrence of the event of interest to covariates that 

change their values with time using the discrete event history model. One of the advantages 

of using person-period dataset is that it naturally allows a time– varying covariate simply to 

take on its appropriate value for each person in each record or period. In adolescents’ 

relationship example, we focus in this chapter on the event of sleeping with someone for the 

first time and discussed the effect of time constant covariates youth-centric, gender and 

education. As mentioned in section 2, the survey had also collected the time at which the 

adolescents experienced the events ‘going out’, ‘having a steady friend’, and ‘being very 
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much in love’ for the first time. It may be hypothesized that the occurrence of these events 

could have effect on the timing of our event of interest, sleeping with someone for the first 

time. For simplicity and ease of presentation we consider only the effect of going out on the 

timing of sleeping with someone for the first time. The value on covariate going out (OUT) 

for each person at period l will be 0 if the person did not go out for the first time until period l. 

The value changes to 1 when a person goes out for the first time at period l. Thus, the 

covariate OUT is time-varying binary covariate in this example as its value changes with time. 

More technically, the covariate is defined as  





=
 beforeor   at timeout  goneperson  a if   , 1

 at timeout  gonot  didperson  a if  , 0
OUT

l

l
l  

The data values can easily be appended in the person-period dataset for example next to the 

last column of Table 2.  

Considering the quadratic model specification for the baseline group, the model with both 

time constant and time-varying covariate is given by:  

llllX periodbperiodbath OUTEG YC)12()12())(logit( 4321

2

210 ββββ ++++−+−+=     

(14) 

Note that the time constant covariates YC, G, and E do not have subscript l while the time-

varying covariate OUT has a subscript l to indicate that the data values for the variable OUT 

can be different values at different time periods for the same person. The parameter β4 

represents the difference in risk of the event sleeping with someone for the first time among 

adolescents who recently or previously experienced going out and those who have still not 

experienced going out controlling for other covariates. Because the covariate OUT is time-
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varying, its effect does not contrast static group but adolescents who differ by unit value on 

the covariate OUT at each point in time, i.e., individuals can switch group membership and 

the adolescents who constitute the comparison group differ in each time period even if we are 

comparing two groups those who have experienced going out and who have not. Thus, the 

interpretation of the time-varying covariate’s effect must be attached to each point in time 

period. In contrast, for the time constant covariates, we need not to attach a time point in the 

interpretation of the covariate’s effect as the group members to be compared and data values 

of the covariate at each time period are constant. As the last model in equation (14) assumes 

time invariant effects of both the time constant and time-varying covariates, i.e., the effects 

on logit hazard in each time period is constant. Although the values of the time-varying 

covariate and the members of the groups to be compared may vary over time period, the 

difference between the logit hazard functions for the two groups to be compared in this 

example is constant and identical in every time period.  

By fitting model in equation (14) for the adolescents’ relationship data, we got:  

l

lllX periodperiodth

OUT629.2E054.00.549G-                         

 YC508.0)12(043.0)12(734.0544.6))(logit( 2

++

+−−−+−=
 

Comparison of the model that exclude the time-varying covariate OUT and this last equation 

using deviance statistic shows that the time-varying covariate is statistically significant 

controlling for the effect of the other covariates. The estimates of the parameters for the time 

constant covariates are interpreted in a similar way as we did in section 6.3. For example, the 

estimate of the parameter β2, -0.549, for gender could be interpreted as odds ratio by taking 

the exponent of the estimate, i.e., controlling for the effect of other covariates in the model, 

the odds of sleeping with someone for the first time for boys is 0.578 (exp(-0.549)) times that 

of female adolescents. In another words, the odds of sleeping with someone for the first time 
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are 1.73 (=1/0.578) times for girls. In similar way, by taking the exponent of the estimate of 

the parameter β4, (exp (2.629) = 13.866), at every age from 12 to 24 years the odds of 

sleeping with someone for the first time are about 14 times higher for adolescents who 

experienced the event of going out earlier and subsequent times compared to those who 

remain without the experience of going out controlling for the effect of the other covariates in 

the model. Note that the risk of sleeping with someone increases only in those time periods 

concurrent with or subsequent to, the event of going out. Before the event going out occurs, 

those adolescents who are later at greater risk of sleeping with someone are not different from 

other adolescents who stay without the event going out.  

 

6.6. Proportionality assumption of the discrete event time models 

The models we have considered so far assume that the covariates have an identical effect in 

every time period under the study which is known as the proportionality assumption. The 

assumption is crucial for the estimation procedure of most parametric hazard models for 

continuous time data. However, in the discrete time event history models presented above, 

apart from simplification of the models, there is no such requirement in the estimation 

procedure.  In some practical situations this assumption is restrictive and can be relaxed by 

including an interaction term between the covariates and the time period. An inclusion of an 

interaction term between a covariate and time period allows the effects of the covariate to 

depend on time instead of being constant at all time periods. The interaction term with the 

covariate of interest can be made using the dummy variable representation of time period or 

the alternative polynomial representation. For the current example, the interaction terms are 

constructed by multiplying each of the covariate YC, G, E and OUT by the variable 

)12( −period , linear term of the polynomial representation. The non-proportional discrete 
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event time model is estimated in each case by including the interaction term in model (14). 

One can test whether an effect of a covariate depends on time by comparing the model with 

proportionality assumption and the model that includes an interaction term between the 

covariate and time period. As explained earlier, comparison of the deviance statistics helps to 

make the comparison of the models. Since none of the differences in deviance statistics 

between model (14) and the models that include the interaction terms showed a statistical 

significance for the current example, the detailed results are not shown here.  Thus, the data 

from adolescents’ relationship example offer little evidence that the effects of the covariates 

change over time.  

 

6.7. Competing-risk models 

In the models we have considered so far, there is a single destination state from the origin 

state. In some applications there may be more than one way of (or reason for) exiting an 

origin state. Such reasons or destination states are referred as competing risks (Chiang, 1991; 

David & Moeschberger, 1978). For example, in the analysis of mortality or death rates, one 

may want to distinguish different causes of death; in the analysis of partnership formation, 

one may transit from single state to either marriage or cohabitation (without formal marriage). 

The hazard in such cases is defined as for single types of event, but now we have one for each 

competing risk. Suppose there are D mutually exclusive destination states, then the hazard of 

event type d at time tl is:  

)| at time   typeofPr(event )()(

lll

d
tTtdth ≥=  . 

The hazard that no event of any type occurs at tl given survival to time period tl-1 is 
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l thth
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)()0( )(1)(  

The survival function that the events occur after time tl is the same as the probability that no 

event of any type occurs until and including time tl  is 

 )()()()( 1

)0(

2

)0(

1

)0(

−×××= ll thththtS L .  

The model that relates the hazards to the covariates when individuals may leave the origin 

state to different destination states is the competing-risk model. There are two approaches to 

model the hazards. One approach is to model the hazards of each competing risk separately 

using the discrete event time model discussed so far, treating all other events as censored. 

This approach models the underlying risk of a particular event in the absence of all other risks. 

The other approach is modelling the hazards of the competing risks simultaneously using a 

multinomial logistic model.  

For the multinomial logistic model, the person-period dataset discussed earlier needs a 

minor change. A multinomial event indicating categorical variable (response variable) Eild 

needs to be defined indicating occurrence and type of event d at time period tl for ith person. 

The response categories of Eil are 0 (no event), 1, 2, . . ., D. The multiple records in the 

person-period dataset for each person should be defined until one of the events or censoring 

occurs. The multinomial logistic model that contrasts event type d with no event for a person 

with covariates pXXX ,,, 21 L  is given by: 

∑ =
+=
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Comparison of this last model with the model in equation (8) shows that a separate set of 

time and covariate effects ( d

k

d

l βα  and ) are included for each type of event via the index d. 

Note that some of the covariates can be time-varying and may need subscript l for such 

covariates in equation (15). For the multinomial logistic model in equation (15) we estimate 

D equations contrasting each of the competing risks with no event. Further contrasts to 

compare the competing risks among each other can then be obtained from those D equations. 

For example, for partnership formation, two contrasts (marriage with single (“no event”), 

cohabitation with single) can be obtained using model in equation (15). The remaining 

contrast, marriage with cohabitation, may be estimated from the other two contrasts. Using 

the modified person-period dataset, a multinomial logistic model for discrete event time data 

in equation (15) can be estimated using routines developed for standard multinomial logistic 

model in the commonly available software (for example, SPSS, SAS, Stata).  

 

6.8. Unobserved heterogeneity 

In the models discussed so far, variability in the hazard of event occurrence is explained 

using observed covariates and risk factors. However, even after controlling for these observed 

characteristics, some subjects will be more likely to experience the event than others as a 

result of unobserved subject-specific risk factors. This unobserved heterogeneity in the 

hazard is sometimes referred to as frailty (Hougaard,1984,1995). If there are subject-specific 

unobserved factors that affect the hazard, the estimated form of the hazard function at the 

population or group level will tend to be different from those at the subject level. For 

example, if the hazards of all subjects in a population are constant over time, the aggregate 

population hazard will be decreasing. This can be explained by what is called a selection 

effect; that is, high risk subjects will tend to have the event first, leaving lower risk subjects 
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in the population.  Therefore, as time goes the risk population is increasingly depleted of 

those subjects most likely to experience the event, leading to a decrease in the population 

hazard. Because of this selection, we may see a decrease in the population hazard even if 

individual hazards are constant (or even increasing). This selection effect not only affects the 

time dependence, but may,  for example, also yield spurious time-covariate effects (Vermunt, 

2002, 2009).  

The common way to deal with unobserved heterogeneity is to include random effects (or 

subject-specific effects) in the models discussed so far. This involves the inclusion of a time 

constant latent covariate in the model and it requires an assumption about the distributional 

form of the latent variable. Mare (1994) and Vermunt (1997, 2002) presented discrete-time 

variants of such models. The amount of unobserved heterogeneity is determined by the 

variance of the latent variable, where the larger the variance the more unobserved 

heterogeneity. The interpretation of the regression parameters β will also change when 

random effects are included. In the models discussed so far without random effects, exp(β) is 

an odds ratio and it compares the odds of an event for two randomly selected individuals with 

values 1 unit apart on covariate X keeping the same values for other covariates in the model. 

In a model with random effects, exp(β) is an odds ratio only when the random effects are held 

constant, i.e. if we are comparing two hypothetical individuals with the same random effect 

values. Using models with random effects makes sense when it can be expected that 

important time-constant risk factors are not included in the model. Failure to control for such 

unobserved factors may bias the estimates of the factors included in the model. Discrete-time 

models with random effects can be defined using software for multilevel logistic regression 

analysis. Routines for continuous-time modeling sometimes often contain provisions for 

specifying models with unobserved heterogeneity (e.g the Stata routines stcox and streg). 
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7. Final Remarks 

This chapter gave a gentle introduction to event history analysis for discrete event times. 

These methods were introduced to social and behavioral scientists by Allison (1984), 

Vermunt (1997, 2009), Willett and Singer (1993, 2003), and Yamaguchi (1991) among others. 

These methods are still relatively unknown and not widely used in psychology, despite their 

appropriateness for many research questions. We have shown that with an appropriate 

restructuring of the dataset, the software routines that are familiar to the applied researchers 

can be used for discrete event history analysis. That is, no specialized software is needed to 

perform an discrete event time analysis. The methods presented here are technically 

manageable and could also be used as an introduction to understanding of more advanced 

methods in continuous event time analysis, as, for example, described by Vermunt (1997, 

2009) and Willett and Singer (2003). 

Logistic regression model is adopted to relate the hazard of event occurrence to 

covariates. With an appropriate data restructuring, both the censoring problem and the 

inclusion of time-varying covariates are managed. The discussion was confined to only right 

censoring. Left censoring is less common in practice and in general difficult to deal with than 

right censoring. The method was extended for competing risks using multinomial logistic 

model. More advanced technique to account for unobserved heterogeneity was briefly 

discussed. Other more advanced topics that were not discussed in this chapter are models for 

multivariate events, covariates containing measurement error, , missing data on covariates, 

and recurrent events.  

Models for multivariate events consider distributions of two or more distinct event 

time variables and jointly model the time variables (Vermunt & Moors, 2005; Wei, et al., 
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1989). The objective of simultaneous modeling is to take into account the fact that the 

occurrence of one life event might directly affect the hazard for another type of event. When 

the covariates or predictor variables are subject to measurement error the estimates of 

regression coefficients and their corresponding confidence intervals may be biased and 

corrections are needed (Rosner, et al., 1990; Nakamura, 1992, Vermunt, 1996). When a 

covariate is partially missing, excluding the subjects with partially missing covariate values 

from the analysis leads to biased parameter estimates unless the missing mechanism is 

missing completely at random (Little & Rubin, 1987). Recurrent events refers to the situation 

in which subjects may experience the event of interest more than once, for example, repeated 

divorce or marriage, asthma attacks, child birth, employment, injury, and prison. Different 

techniques are suggested in literature for the analysis of recurrent event data. Lim, et al. 

(2007) compared those methods using empirical data of Pediatric Firearm Victim’s visit to 

emergency department Department/Trauma Center at Children's Hospital of Wisconsin and 

all other hospitals in the Milwaukee metropolitan area between 1990 and 1995. 
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Appendix:  Syntaxes for the conversion of person-oriented dataset to person-period dataset, 

adolescents’ relationships data.  

SPSS syntax  

*first open the data file ‘relationships.sav’  which can be obtained from one of the authors.  

 

do repeat D=D12 to D24 /ptime=12,13,14,15,16,17,18,19,20,21,22,23,24. 

   if (time_sleeping > ptime) D=0.                       

   if (time_sleeping=ptime) D=1-censind1.                    

end repeat. 

execute. 

 

VARSTOCASES 

  /ID=id 

  /MAKE event FROM D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 

  /INDEX=period(13) 

  /KEEP=boy loweduc youthcen 

  /NULL=DROP. 

COMPUTE period=period+11. 

EXECUTE. 

 

* Making dummy variables for modeling  

do repeat D=D12 to D24 /ptime=12,13,14,15,16,17,18,19,20,21,22,23,24. 

   if (period >ptime) D=0.                       

   if (period=ptime) D=1. 

   if (period<ptime) D=0. 

end repeat. 

execute. 

 

SAS syntax 

* Creating a person-period dataset from a person-level dataset ; 

* Assuming the person-level dataset exists in drive C;   

 

data relationships_pp1; 

 set 'c:\relationships'; 

  do period= 12 to 24 ; 

   if (time_sleeping > period) then event= 0; 

   else if (time_sleeping = period) then event=1-censind1; 

   else if (time_sleeping< period) then delete; 

    output; 

 end; 

 keep id boy loweduc youthcen period event; 

run; 

 

proc print 

 data=relationships_pp1; 

 run; 
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data relationships_pp; 

 set relationships_pp1; 

 array AD[12:24] D12-D24; 

 do dummy =12 to 24; 

  if (period eq dummy) then AD[dummy]=1; 

  else 

   AD[dummy]=0; 

  end; 

   drop dummy; 

  run; 

 

proc print 

 data=relationships_pp; 

 run; 
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Figure 1. Estimated hazard and survival functions for 142 adolescents experience with 

sleeping with someone for the first time.  
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Table 1: Life table describing the ages at ‘sleeping with someone for the first time’ for a sample of 142 adolescents. 

Number Proportion  

Age  

interval 

Entering  

Interval 

Withdrawing 

during Interval 

(censored) 

‘slept with 

someone for the 

first timer’  

during interval 

 ‘slept with 

someone for the 

first time’ during 

interval 

(Hazard) 

who has not slept with 

someone at the end of 

the interval  

(survival function) 

[11, 12) 142 0   1.0000 

[12, 13) 142 0 1 0.0070 0.9930 

[13, 14) 141 0 0 0.0000 0.9930 

[14, 15) 141 0 2 0.0142 0.9789 

[15, 16) 139 0 11 0.0791 0.9014 

[16, 17) 128 0 19 0.1484 0.7676 

[17, 18) 109 0 23 0.2110 0.6056 

[18, 19) 86 0 21 0.2442 0.4577 

[19, 20) 65 0 11 0.1692 0.3803 

[20, 21) 54 0 20 0.3704 0.2394 

[21, 22) 34 0 11 0.3235 0.1620 

[22, 23) 23 0 3 0.1304 0.1408 

[23, 24) 20 6 3 0.1500 0.1190 

[24, 25) 11 8 3 0.2727 0.0865 

 



EVENT HISTORY                         52 

 
 

Table 2: Conversion of a person-oriented dataset into a person-period dataset for adolescents’ relationships data example 

Original dataset (‘Person-oriented’ dataset) 

ID Time Censor Gender   

2 15 No Female   

9 24 Yes Male   

12 15 No Male   

Converted ‘person-period’ dataset 

ID Period D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 Sleeping with 

someone (event) 

Gender 

2 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Female 

2 13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Female 

2 14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Female 

2 15 0 0 0 1 0 0 0 0 0 0 0 0 0 1 Female 

9 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Male 

9 13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Male 

9 14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Male 

9 15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 Male 

9 16 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Male 

9 17 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Male 

9 18 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Male 

9 19 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Male 

9 20 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Male 

9 21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Male 

9 22 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Male 

9 23 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Male 

9 24 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Male 

12 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Male 

12 13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Male 

12 14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 Male 

12 15 0 0 0 1 0 0 0 0 0 0 0 0 0 1 Male 
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Table 3: Parameter estimates and goodness of fit statistic for the discrete event time models fitted to adolescents’ relationships data 

  Model 1 Model 2 Model 3 Model 4 

Covariate  

Parameter 

Log odds 

(estimates) 

baseline 

hazard 

Log odds 

(estimates) 

baseline 

hazard 

Log odds 

(estimates) 

baseline 

hazard 

Log odds 

(estimates) 

Baseline 

hazard 

12D  
12α  -4.949 0.0070 -5.062 0.0063 -4.780 0.0083 -4.872 0.0076 

13D  13α  -21.203 0.0000 -21.312 0.0000 -21.053 0.0000 -21.135 0.0000 

14D  
14α  -4.241 0.0142 -4.353 0.0127 -4.071 0.0168 -4.158 0.0157 

15D  15α  -2.454 0.0791 -2.566 0.0714 -2.274 0.0933 -2.360 0.0863 

16D  16α  -1.747 0.1484 -1.851 0.1358 -1.552 0.1748 -1.625 0.1645 

17D  17α  -1.319 0.2110 -1.421 0.1945 -1.165 0.2378 -1.236 0.2251 

18D  18α  -1.130 0.2442 -1.232 0.2258 -0.978 0.2733 -1.043 0.2606 

19D  19α  -1.591 0.1692 -1.683 0.1567 -1.363 0.2038 -1.418 0.1950 

20D  20α  -0.531 0.3703 -0.625 0.3486 -0.318 0.4212 -0.364 0.4100 

21D  21α  -0.738 0.3234 -0.823 0.3051 -0.417 0.3972 -0.447 0.3901 

22D  
22α  -1.897 0.1304 -1.956 0.1239 -1.564 0.1731 -1.543 0.1761 

23D  23α  -1.735 0.1500 -1.785 0.1437 -1.389 0.1996 -1.360 0.2042 

24D  
24α  -0.981 0.2727 -1.011 0.2668 -0.670 0.3385 -0.656 0.3416 

youth-centrism 

(YC, yes=1) 

 

1β  

  

 

 

0.310 

    

0.483 

 

Gender (G) 

(male=1) 

 

2β  

     

-0.542 

  

-0.592 

 

Education (E) 

(high=1) 

 

3β
 

     

-0.112 

  

-0.059 

 

-2LL  645.979 643.933 623.299 619.356 
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Table 4: Polynomial representations for time period in a baseline discrete event time model for adolescents’ relationships data  

Difference in  

-2LL in comparison to  

 

 

Polynomial model for the baseline logit hazard  

 

Number of  

parameters 

 

 

-2LL 
Previous 

model 

General 

model 

Linear )12()((logit 100 −+= ll periodbath

 

2 704.967  58.988  

Quadratic 

2

2

100

)12(

)12()((logit

−+

−+=

l

ll

periodb

periodbath

 

3 663.291 41.676 17.312 

cubic 

3

3

2

2

100

)12(

)12(

)12()((logit

−+

−+

−+=

l

l

ll

periodb

periodb

periodbath

 

4 660.710 2.581 14.731 

General 
242412120 ))(logit( TTth l αα ++= L  13 645.979   

 


