
ASSESSING DIF WITH IRT-C    1 

 

Running head: ASSESSING DIF WITH IRT-C 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assessing the item response theory with covariate (IRT-C) procedure for ascertaining 

differential item functioning 

Louis Tay 

University of Illinois at Urbana-Champaign 

Jeroen K. Vermunt 

Tilburg University 

Chun Wang 

University of Illinois at Urbana-Champaign 

 

 

 

 

 

 

 

Address for correspondence:  

Louis Tay 

Department of Psychology 

University of Illinois at Urbana-Champaign 

603 East Daniel Street 

Champaign, Illinois 61820 

Email: sientay@illinois.edu 

 

 

 

mailto:sientay@illinois.edu


ASSESSING DIF WITH IRT-C    2 

 

Abstract 

We evaluate the item response theory with covariates (IRT-C) procedure for assessing 

DIF without preknowledge of anchor items (Tay, Newman, & Vermunt, 2011). This procedure 

begins with a fully constrained baseline model and candidate items are tested for uniform 

and/or non-uniform DIF using the Wald statistic. Candidate items are selected in turn based on 

high unconditional bivariate residual (UBVR) values. This iterative process continues until no 

further DIF is detected or the Bayes information criterion (BIC) increases. We expanded on the 

procedure and examined the use of conditional bivariate residuals (CBVR) to flag for DIF; 

aside from the BIC, alternative stopping criteria were also considered. Simulation results 

showed that the IRT-C approach for assessing DIF performed well, with the use of CBVR 

yielding slightly better power and Type I error rates than UBVR. Additionally, using no 

information criterion yielded higher power than using the BIC although Type I error rates were 

generally well controlled in both cases. Across the simulation conditions, the IRT-C procedure 

produced results similar to the Mantel-Haenszel and MIMIC procedures.  
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Assessing the item response theory with covariate (IRT-C) procedure for ascertaining 

differential item functioning 

Differential item functioning (DIF) occurs when the expected item score conditioned on 

the latent trait differs due to group membership. Because this issue is important to the fairness 

of psychological and educational tests, or the equivalence of scores in cross-cultural settings, a 

variety of methods have been proposed for assessing DIF (see review by Millsap & Everson, 

1993).  These include the Mantel-Haenszel approach (Holland & Thayer, 1988), the logistic 

regression method (Swaminathan & Rogers, 1990), the chi-square method (Lord, 1980), 

differences in area between item response curves (Raju, 1988), and likelihood-ratio test 

methods (Thissen, Steinberg, & Wainer, 1993). 

Although these methods for assessing DIF have conventionally been used, they can be 

limited when seeking to understand the sources of DIF in an international setting. Often, DIF is 

tested between countries when using these methods -- this implicitly assumes that country 

membership is the source of DIF. However, country membership may be a proxy for other 

differences such as wealth, rural-urban settings, language, or simply differences in the 

demography of a sample (Matsumoto & Yoo, 2006). In order to accurately assess the sources of 

DIF, or to control for potential confounds, we need to use methods that can incorporate multiple 

observed characteristics simultaneously. For this purpose, two methods have been proposed: the 

multiple indicators multiple cause (MIMIC) model for assessing DIF in a confirmatory factor 

analytic framework (Muthén, 1985, 1988) and the item response theory with covariates (IRT-C) 

model (Tay, Newman, & Vermunt, 2011). 

For detecting DIF, the utility of both MIMIC and IRT-C models are: (a) one can 

examine DIF across multi-categorical and continuous covariates; (b) DIF on multiple covariates 

can be examined simultaneously; (c) differences in latent means and variances across groups 

can be estimated and compared in the final model. Therefore, unlike conventional measurement 
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equivalence procedures utilizing multiple group comparisons (e.g., multiple group confirmatory 

factor analysis or IRT), potential sources of DIF and mean level differences can be examined in 

concert. For example, we can ascertain the degree to which DIF is attributable to gender, race, 

language, and/or socioeconomic status; and after controlling for sources of nonequivalence, the 

degree to which mean level differences are linked to gender, race, language, and/or 

socioeconomic status. Consequently, important sources of DIF can be identified and controlled 

simultaneously.  

In MIMIC models, an IRT model is fit to a matrix of polychoric correlations thereby 

using limited information. In IRT-C models, an IRT model is directly fit to the data thus 

utilizing full information. There are no large differences between limited information and full 

information methods in the estimation of parameters and standard errors (Forero & Maydeu-

Olivares, 2009). However, full information methods allow for more complex models (e.g., 

mixture models) which at times may not be identified with limited information methods (Bolt, 

2005). For example, a recent DIF study specified a three-parameter logistic model using the 

IRT-C approach (Tay, Drasgow, & Vermunt, 2011). 

Simulation studies have examined the power and Type I error rates of MIMIC models 

for assessing uniform and non-uniform DIF (e.g., Finch, 2005; Shih & Wang, 2009; Woods, 

2009a; Woods & Grimm, in press), but the proposal of an IRT-C model for assessing DIF (Tay, 

Newman, & Vermunt, 2011) is recent and there has not been a systematic examination of such 

an approach. Some simulations with MIMIC models have generally assumed that anchor items 

are known a priori (Woods, 2009a; Woods & Grimm, in press). In such a procedure, a MIMIC 

model is specified such that anchor items are constrained to be equal across groups while DIF 

parameters are estimated and tested with the Wald statistic (Woods, 2009a), or the likelihood-

ratio statistic where the constrained model is tested against the baseline (Thissen et al., 1993). 
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An IRT-C model can also be specified using such a procedure (Tay, Drasgow, & Vermunt, 

2011) producing well-controlled Type I error rates and high power for detecting DIF.  

However, an issue commonly encountered in the detection of DIF is that anchor items 

between groups are not known before hand. Although there are ways to identify anchor items in 

two-group comparisons in MIMIC models (Woods, 2009b), identifying anchors across multiple 

covariates (e.g., race, gender, and socioeconomic status) is complicated. Indeed, we have 

argued that the primary utility of the MIMIC and IRT-C model is to identify DIF across 

multiple covariates simultaneously. In view of this, researchers have been examining the use of 

approaches that do not require known anchor items to MIMIC models but instead identify 

anchors through a scale purification approach (Wang, Shih & Yang, 2009). Following this line 

of research, the proposed IRT-C model and procedure (Tay, Newman & Vermunt, 2011) is 

used for assessing DIF without preknowledge of anchor items and it can be generalized to 

instances when there are multiple covariates.  

In this study, we examine the power and Type I error rates of the IRT-C approach when 

anchor items are unknown for assessing DIF. We compare this procedure to the Mantel-

Haenszel approach and the MIMIC approach where anchor items are assumed to be known 

(Woods, 2009a; Woods & Grimm, in press). We focus only on the simplest case: a two group 

comparison commonly undertaken in DIF studies.  Indeed, the robustness of this model in a two 

group instance is a minimal hurdle for conducting studies on more generalized cases (e.g., 

multiple groups, or assessing multiple covariates simultaneously). 

The IRT-C model 

A 2-parameter logistic model (2PLM) is utilized to describe the relationship between the 

probability of item endorsement and the latent trait level j . Let jiy denote the response of 

individual j, j = 1,…,J, on item i, i = 1,…,I; the probability of item endorsement is then 
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where ia and ib represent the item discrimination and item location respectively. DIF occurs 

when the expected score given the same latent trait j is different by virtue of observed 

characteristic (zj) (Hulin, Drasgow, & Parsons, 1983). For instance, an observed characteristic 

may be gender or race. DIF can be represented as 
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where the probability of item responding depends not only on j but also on  zj. The additional 

terms in equation (2), i jc z and i j jd z  represent  the direct and interaction effects for modeling 

uniform and non-uniform DIF, respectively. The significance of the terms ic and id from a 

likelihood-ratio test can be used to ascertain whether uniform and/or non-uniform DIF occurs. 

Because freely estimating the ic and id terms for every item across an observed characteristic (zj) 

would lead to an unidentified model, the DIF procedure proposed is such that in the initial 

model, all the ic and id terms are constrained to zero, leading to a fully constrained initial 

model. These coefficients are only estimated and tested for significance when DIF is likely to 

be found on an item. We elaborate on the IRT-C procedure for detecting DIF in the next 

section. 

One can extend equation (2) by including a vector of observed characteristics jz , or 

covariates, to include multiple observed categories and/or continuous variables. Thus, we can 

determine if DIF occurs across multiple groups (e.g., Kim, Cohen, & Park, 1995; Penfield, 

2001) or across (continuous) covariate patterns. In this paper, however, we focus only on the 

two-group case (i.e., a referent and a focal group) to determine whether the IRT-C model can be 
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used to detect DIF in a traditional manner because it is not known how well such a procedure 

fares in the first place. 

In the IRT-C model, the distributions of the latent traits across the observed groups are 

modeled as well in the testing of DIF as given by 

2( | ) ~ ( , )j j z zf z N        (3) 

where z and 2

z refer to the latent mean and variance corresponding to the observed 

characteristic z. For model identification, the referent group latent trait mean and variance are 

fixed to 0 and 1 respectively while the focal group latent trait parameters are freely estimated. 

At this juncture, we seek to clarify differences with some DIF procedures. First, we note 

that the IRT-C model is not merely an algebraic manipulation, but stems from a general latent 

variable modeling framework which enables the estimation of the additional coefficients 

associated with DIF (i.e., ic and id ) unachievable in prior IRT models. Second, the likelihood 

ratio test for DIF in the IRT-C model pertains to the coefficients associated with DIF (i.e., ic and 

id ) and is different from the likelihood ratio test (Thissen, Steinberg, & Wainer, 1993) between 

two models: the unconstrained and constrained models. Third, the IRT-C model is different 

from the logistic regression approach for testing DIF. In the IRT-C model, the observed score 

on an item varies as a function of the latent trait θ as shown in Equation 2. For logistic 

regression, the observed score on an item varies as a function of the total test score x.  

An examination of three DIF Procedures 

The IRT-C procedure. As mentioned earlier, freely estimating all the coefficients 

associated with DIF (i.e., ic and id ) would lead to an unidentified model. Therefore, the IRT-C 

procedure for assessing DIF begins with a fully constrained model in which all these 

coefficients are constrained to zero. Instead, the IRT-C procedure utilizes unconditional 
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bivariate residuals (UBVR) or conditional bivariate residuals (CBVR) to identify candidate DIF 

items. The equations for the UBVR and CBVR are shown in the Appendix. For values with 

large UBVRs, the parameters associated with DIF (i.e., ci or di in Equation 2) for a specific 

covariate are then estimated and tested for significance using the Wald statistic. 

A general description of the IRT-C procedure is as follows. A fully constrained baseline 

model is first specified in which all the items are set as invariant between the groups, or more 

generally, the (continuous) covariate patterns. Then, an iterative procedure is used to identify 

the presence of uniform and non-uniform DIF. At each stage, only the item with the largest 

UBVR or CBVR is tested for DIF using the Wald statistic. If DIF occurs, the initial fully 

constrained model is updated by allowing the identified item to be freely estimated across both 

groups. Using the updated model, the item flagged by UBVR or CBVR is tested for DIF. This 

process continues until no statistically significant DIF occurs or the model is less parsimonious 

as indicated from an information criterion. 

Starting from a fully constrained baseline model, the algorithm implemented is as 

follows: 

(a) For the current model (M0), the possible presence of DIF is determined by 

examining the UBVR or CBVR between each covariate and each indicator. The largest BVR is 

flagged and tested for DIF. For instance, if there are two covariates and 10 indicators, the item 

with the largest BVR in the 2 × 10 BVR matrix is flagged as possibly having DIF. See 

Appendix for an illustration. 

(b) In a subsequent model (M-NU [non-uniform]), both uniform and non-uniform DIF 

for the flagged item are specified; that is ci and di parameters are freely estimated across groups. 

The statistical significance for non-uniform DIF di is determined using the Wald statistic. If the 

non-uniform DIF is significant, both ci and di will continue to be freely estimated and step (c) is 

skipped. Otherwise, only uniform DIF is examined with a subsequent model in step (c). 
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(c) In this model (M-U [uniform]), only uniform DIF is specified for the flagged item 

and examined for statistical significance using the Wald statistic. If the uniform DIF parameter 

ci is not significant, no DIF is found on the flagged item; the iterative procedure ends and M0 is 

selected as the final model. Otherwise, the item parameter ci will continue to be freely 

estimated. 

(d) If the interim models M-NU or M-U have BIC values that are higher than M0, the 

iterative procedure ends, and M0 is selected as the final model. To elaborate, if the BIC values 

are higher for the interim models, the original M0 model is preferred even if the ci and di 

parameters are significant. This is because the model with additional DIF is less parsimonious 

than M0. Otherwise, if the interim models have lower BIC values than M0, step (e) is 

undertaken. 

(e) The IRT-C is reestimated keeping only significant DIF effects from steps (b) and/or 

(c); that is, either M-NU or M-U replaces M0. Hence, the original model is updated with the 

interim model M-NU or M-U. This new model is then used to test for DIF in subsequent items. 

Steps (a) through (d) are then repeated until no DIF occurs as evaluated in step (c) or if the BIC 

values rises higher than the penultimate model (M0) as evaluated in step (d). 

The above procedure describes the stepwise process outlined by Tay et.al. (2011). In the 

initial proposal, only UBVRs were used to illustrate the testing of DIF. In our simulations, we 

examine several variants of this IRT-C procedure. First, we investigate the use of CBVRs and 

compare it to the UBVR. Second, we compare two different stopping criteria: (i) we substitute 

BIC with AIC3. Past research has shown that the AIC3 performs well for model selection with 

multivariate categorical responses: it is slightly more liberal than AIC and more conservative 

than BIC (Dias, 2004; Vermunt, van Ginkel, van der Ark, & Sijtsma, 2008). (ii) Instead of 

using the BIC, we do not use any information criteria and the iterative process stops only when 

no DIF occurs on the item (tested by the Wald statistic) with the largest BVR value. Therefore, 
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our simulations test three different stopping rules: no information criterion, AIC3, and BIC. In 

general, it is expected that the no information criterion condition would have higher power to 

detect DIF but also higher Type I error rates because the iterative procedure continues until no 

more DIF is detected; however, in the AIC3 and BIC condition, the iterative procedure ends a 

less parsimonious model is utilized even though DIF was detected. 

This proposed procedure is essentially a type of scale purification process. Wang, Shih, 

and Yang (2009) used a scale purification procedure with the MIMIC model. The analytic steps 

are as follows: First, using a fully constrained baseline model, they proposed that each item be 

tested for DIF in turn. Second, non-DIF items are used as anchor items. Third, all non-anchor 

items are tested for DIF. If all non-anchor items have DIF, the process ends. Otherwise, the 

second step (in this case, the set of anchor items is updated by including non-anchor items that 

do not exhibit DIF) and third step is repeated until all non-anchor items can be shown to have 

DIF. The procedure by Tay, Newman and Vermunt (2011) is different in that DIF is only tested 

for candidate items that have a large BVR. This limits the number of items that are tested for 

DIF. 

Importantly, because we are concerned with the practical testing of DIF, the procedure 

encompasses a type of scale purification, or the identification of anchor items. Therefore, our 

study merges two issues in the IRT-C procedure: a scale purification approach to identify 

anchor items (i.e., invariant items), and DIF detection with the IRT-C model when anchor items 

are identified. Our preference is to examine this in a single study as compared to two separate 

studies. This is because in practice, the set of anchor items that are invariant across groups is 

usually unknown. If a set of anchor items is known, it would be possible to estimate the 

coefficients associated with DIF (i.e., ic and id ) for all the non-anchor items and determine their 

significance in a single step (e.g., Tay, Drasgow, & Vermunt, 2011). 
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Mantel-Haenszel procedure. For the purpose of comparison, we calculated the Mantel-

Haenszel (MH) statistic to determine its power and Type I error rate for detecting DIF. The MH 

statistic was based on the formula from Narayanan and Swaminathan (1994). No correction for 

discontinuity was used because previous research has shown that this produces better control of 

Type I error rates (Paek, 2010). The MH statistic is considered because it is the most widely 

used and simplest DIF detection technique. More importantly, this procedure does not rely on 

any specific item response model. By only utilizing 2 by 2 contingency table, MH provides a 

useful benchmark for the current investigation. We are interested to see whether the IRT-C 

method, by using fully parametric approach, will perform better. 

MIMIC procedure. We used the MIMIC procedure described by Woods (2009a). In this 

procedure, it is presumed that a set of items decided from preliminary tests are designated as 

invariant across groups; these invariant items are termed “designated anchors”. A free-baseline 

model is specified such that all items are presumed to have DIF (with the exception of the 

designated anchors). The log-likelihood of the free-baseline model is subsequently compared to 

the log-likelihood of more constrained models where each studied item, formerly presumed to 

have DIF, is constrained to be equivalent across groups. In this manner, DIF for each item can 

be evaluated using the -2 difference in the log-likelihoods between the free-baseline and 

constrained model, which has an approximate χ
2
-distribution with 1 degree-of-freedom.  

For the purposes of our study, we prefer the designated anchor MIMIC approach as 

compared to the scale purification MIMIC approach. This is because we want to compare the 

IRT-C procedure to the best possible MIMIC alternative. Possible inaccuracies from scale 

purification may lower the accuracy of the MIMIC procedure. 

Summary 

Tay, Newman, and Vermunt (2011) illustrated the use of IRT-C to assess DIF: items 

that have high UBVRs are tested for DIF iteratively until a stopping criteria based on the BIC is 
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reached. We examine several variants of the IRT-C procedure (2 BVR types × 3 stopping 

criteria). We use a simulation study to evaluate the power and Type I error rates for assessing 

DIF with the IRT-C approach and compared it to the Mantel-Haenszel and MIMIC procedures. 

In addition, an advantage of the IRT-C approach is the ability to test for specific types of DIF 

(uniform or non-uniform). We evaluate whether the IRT-C approach has sufficient power to 

detect specific types of DIF. Also, because the IRT-C approach estimates the focal group latent 

mean, we examine how well this is recovered with the root-mean-squared-error (RMSE). 

Method 

Simulation parameters. In an initial study, we examined conditions in which we had test 

lengths of 10 and 20 items, and sample sizes of 250, 500, 1000, and 2000. Because the results 

were consistent, we used a fixed sample size of 500 respondents in the reference group and a 

scale length of 10 items in this study. This sample size and test length used was consistent with 

conditions used in past simulation studies examining traditional DIF methods (e.g., Meade et 

al., 2007; Stark et al., 2006) and the MIMIC model (e.g., Woods, 2009a). We chose to focus on 

other factors that may affect DIF detection; these included the examination of different focal 

group sample sizes, percentage of DIF, the various types of DIF, and latent mean differences 

between the reference and focal group. Readers interested in finding out more about the initial 

findings can require for more details from the corresponding author. 

The simulation parameters varied in this study were focal group sample size (250 or 

500), percentage of DIF (20% or 40%), DIF conditions (11 conditions which will be 

explicated). Altogether, there were a total of 44 simulation conditions. Initial simulations where 

we included (non-)differences in latent means between groups (θmean.focal= 0, or θmean.focal=-0.3) 

and (non-)difference in latent trait standard deviations (θsd.focal = 1, θsd.focal = .8) were shown to 

be similar. Hence, we did not vary differences in the latent standard deviations between the 

reference and focal group and the latent mean for the focal group was set to -.30. Within each 
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condition, 200 simulations were undertaken for each of procedure: the IRT-C (all 6 variations), 

the Mantel-Haenszel, and the MIMIC procedure.  

Data generation. For a traditional 2PLM, given by 

* *

1
( | )

1 exp( 1.702 [ ])
ji j

i j i

P y
a b





  

,    (4) 

item discriminations *

ia are sampled from a truncated normal (mean=1.2, sd=0.3) with lowest 

and highest possible values set to 0.5 and 1.7 respectively; and *

ib values are sampled from a 

uniform (-2, 2) distribution. Final generated item parameters ia and ib are given by 

transformations 

*1.702i ia a  and * *1.702i i ib a b     

These values were taken to emulate item parameters commonly encountered in self-reported 

typical behaviors.  

Differential item functioning conditions. Apart from a condition where we did not 

simulate DIF, we simulated 10 different other DIF conditions which varied with respect to three 

factors (a) the occurrence of uniform and/or non-uniform DIF, (b) the amount of DIF (small or 

large), and (c) whether DIF was non-compensatory or compensatory. Table 1 presents how the 

three design factors were crossed to produce the 10 DIF conditions. 

Non-compensatory DIF: Following similar procedures in emulating DIF used in 

previous 2PLM (see equation 12) simulations, non-uniform DIF was simulated by deducting a 

value of .40 from *

ia  for the focal DIF items (e.g., Finch & French, 2008). Two types of 

uniform DIF were simulated: small or large uniform DIF effects were specified by adding a 

value of .40 or .80, respectively, to the *

ib focal DIF items (e.g., Rogers & Swaminathan, 1993). 

Compensatory DIF: Similar to procedures used by Meade and colleagues (2007), 

compensatory DIF was simulated by specifying DIF that occurs in opposing directions for half 
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of the DIF items. For a scale length of 10 in which both uniform and small non-uniform DIF are 

specified, a value of .40 would be subtracted from *

ia  for one DIF item, but added to *

ia for 

another DIF item; similarly, a value of .40 would be subtracted from *

ib  for one DIF item, but 

added to the *

ib value for another DIF item. 

In both the IRT-C and Mantel-Haenszel procedures, DIF items were randomly selected 

– for a test length of 10 items – from all items; by contrast, because the first item on the scale 

was the designated anchor item for the MIMIC procedure, the choice of DIF items fell on the 

remaining 9 items. We note that this led to slightly different datasets between the former 

procedures and the MIMIC procedure. However, we did not think that this would lead to 

systematic differences because all the items were randomly generated in each replication. After 

simulating DIF on the selected items using the traditional 2PLM, these DIF item parameters 

were then transformed into the 2PLM metric. The software Latent GOLD was used to generate 

the data based on the specified item parameters and latent distributions for the comparison 

groups piped from the statistical software R (2008). 

 Estimation. Latent GOLD was used for the maximum likelihood (ML) estimation of 

item parameters and latent trait means and standard deviations, as well as for the computation 

of the UBVR and CBVR values. With the exception of increasing the number of quadrature 

points from the standard of 10 to 50, all the default settings were used. 

Results 

The simulation results showed that the IRT-C procedure, using the AIC3 stopping 

criterion produced results (i.e., power, Type I error, and RMSE of the estimated focal latent 

mean) that were very similar to those of the no information criterion condition. This implied 

that using the AIC3 to select a final model coincided with that of the no information criterion 

rule. Further, the UBVR and the CBVR produced similar results although the CBVR had 
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slightly higher power; across the simulation conditions, the power for CBVR is on average 

higher by around .04 and there is no difference in the averaged Type I error rates. Thus, we 

only present illustrative results where the CBVR was used across two stopping criteria: no 

information criteria and the BIC. Tables 1 to 4 present the simulation results in which we 

compare the power and Type I error rates of the IRT-C procedure with the Mantel-Haenszel 

and MIMIC procedures. 

Comparing IRT-C stopping rules. When there was a moderate proportion of DIF items 

on the test (i.e., percentage of DIF  was 20%), the no information criterion stopping rule 

produced Type I error rates that were closest to the nominal Type I error rate of .05 whereas the 

BIC stopping criterion had Type I error rates close to .01. By contrast, when there was a large 

proportion of DIF items (i.e., percentage of DIF  was 40%), the BIC stopping criterion had 

Type I error rates close to .05 and the no information criterion stopping rule had a higher Type I 

error rate that averaged .10. In both conditions however, the power to detect DIF was higher for 

the no information criterion stopping rule. This suggests that the IRT-C procedure with no 

information criterion performed relatively better. 

Comparing IRT procedures. When there was a moderate proportion of DIF items on the 

test, the IRT-C procedure with no information criterion performed the best in that the Type I 

error rates were well controlled and there was high power relative to the other procedures. The 

Mantel-Haenzsel procedure had elevated Type I error rates around .10 and similar power to the 

IRT-C procedure with no information criterion. The MIMIC model had Type I error rates that 

were close to the nominal Type I error rates but power was slightly lower than the IRT-C 

procedure. In particular, when only non-uniform DIF was present (conditions 2 and 3 in Tables 

1 to 2), the IRT-C procedure without the use of information criteria substantially outperformed 

the MIMIC procedure for detecting DIF. For example, Table 1 shows that the power for the 

IRT-C procedure was around 0.55 whereas power for the MIMIC procedure was around 0.25.  
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When there were a large proportion of DIF items on the scale, the MIMIC procedure 

outperformed the IRT-C procedure with no information criterion. For the IRT-C procedure, the 

Type I error rates were on average close to .10 but the Type I error rates for the MIMIC 

procedure were well controlled at 0.05. On average, these two procedures yielded similar power 

across the various DIF conditions. Interestingly, when DIF was compensatory, the IRT-C 

procedure with no information criterion generally had higher power than the MIMIC procedure 

and Type I error rates close to the nominal Type I error rate as well. This demonstrated that the 

IRT-C procedure was better when DIF was compensatory. Both the MIMIC and IRT-C 

procedures outperformed that Mantel-Haenzsel procedure because of its high Type I error rates.  

Power to detect specific forms of DIF. In addition to detecting DIF on an item, we 

evaluated the power of the IRT-C procedure to detect specific forms of DIF (i.e., uniform or 

non-uniform) as shown in the column “Power.Form”. Overall, the power to detect the exact 

form of DIF on an item was lower than the power to detect any type of DIF. Nevertheless, this 

was because the power to specifically detect non-uniform DIF was substantially lower; power 

to specifically detect uniform DIF was comparable to power for detecting any type of DIF.  

RMSE of the estimated focal latent mean. Overall, the IRT-C procedure as implemented 

in Latent GOLD 4.5 accurately estimates differences in the latent means when DIF is accurately 

accounted for. When there was a moderate proportion of DIF on the test, the RMSEs of the 

focal latent mean for the IRT-C procedure were low and consistent across all the simulated 

conditions at around .10. When there was a large proportion of DIF on the test, the average 

RMSE was 0.15 for the IRT-C procedure as compared to the former 0.10. This is expected 

because accurately detecting DIF in items (when there is a moderate proportion of DIF items) 

in turn leads to more accurate estimates of focal group mean theta and hence lower RMSE 

values. 

Discussion 
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To our knowledge, this is the first simulation study to establish that the IRT-C 

methodology can be used to ascertain DIF. We examine several variations of the IRT-C 

procedure to determine which best controls for the Type I error rates while giving reasonable 

power. In view of this, we determined the power and Type I error rate for detecting DIF with 

the IRT-C using either UBVR or CBVR. We found that CBVR generally performed equally 

well or better than UBVR across a variety of DIF conditions. Further, non-uniform DIF is better 

detected with CBVR, and the power and Type I error rates are better for non-compensatory DIF 

conditions, especially when the proportion of DIF items in a scale is large. Different stopping 

criteria for the IRT-C iterative procedure were also examined. Using AIC3 as a stopping 

criterion produced results that were equivalent to not using any information criteria and hence 

we do not advocate its use. The primary difference between the using no information criteria 

and the BIC criterion is the degree to which the Type I error rates are controlled for: using the 

BIC stopping rule leads to a more conservative Type I error rate whereas the not using 

information criteria leads to better control of the Type I error rate. 

The IRT-C procedure performed relatively well compared to the two other established 

DIF techniques – the Mantel-Haenszel and the MIMIC procedure. When there is a small 

proportion of items on the scale that have DIF, the IRT-C procedure without the use of 

information criteria performs the best in that the Type I error rates are well controlled at 0.05 

across all the DIF conditions simulated and it has the highest power, especially to detect non-

uniform DIF. However, when a large proportion of items on the scale have DIF, the IRT-C 

procedure does not control well for the Type I error rates in some occasions resulting in an 

averaged Type I error rate of around 0.10 whereas the MIMIC procedure had good control of 

the Type I error rates at 0.05 across the simulated DIF conditions. 

Why does the IRT-C procedure have less control over the Type I error rates (compared 

to the MIMIC procedure) in the case of a large proportion of items exhibiting DIF? One reason 
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is that the MIMIC procedure using a free baseline approach in which the designated anchor 

item is simulated to be invariant across groups. This ensures that the metrics are correctly 

linked across groups. However, for the IRT-C procedure, it uses a constrained baseline 

approach without any designated anchors. When 40 percent of the items are consistently biased 

in the same direction, the metrics are not accurately linked. Therefore, when there is non-

compensatory DIF, the IRT-C procedure does not fair as well; however, when there is 

compensatory DIF, the IRT-C procedure still performs reasonably well and often has higher 

power than the MIMIC procedure. 

One advantage of the IRT-C procedure as currently proposed is that one does not need 

to have a predetermined set of invariant anchors. In practice, the appropriate set of anchors may 

sometimes be difficult to ascertain and the incorrect set of anchors (on which some may have 

DIF) could result in less control of Type I error rates. Further, a separate procedure is necessary 

to pre-identify anchor items before undertaking the IRT-DIF MIMIC procedure (see Woods, 

2009b). 

Limitations and Future Research 

 Although past research on DIF usually focuses on the detection of DIF in general, one 

advantage of the IRT-C procedure is detecting specific forms of DIF (i.e., uniform or non-

uniform). This is an important direction because recent theory and research suggests that the 

causes of uniform and non-uniform DIF on multiple-choice tests are distinct (Penfield, 2010).  

Although the IRT-C procedure detects uniform DIF well, it does not detect non-uniform DIF as 

well. Therefore, more research is needed to determine how to improve power for detecting non-

uniform DIF with the IRT-C procedure. Interestingly, it appears the mere detection of DIF in 

items, rather than the detection of specific forms of DIF, is sufficient to ensure an accurate 

estimation of the latent mean difference between groups. However, future research can examine 
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whether predictive validities would be affected to the degree that non-uniform DIF is 

undetected.   

 Both the IRT-C and the MIMIC procedures allow the use of multiple covariates and 

multiple categories. This is an advantage over traditional DIF statistics in which we are limited 

to a single categorical variable (i.e., two-group or multiple group comparisons). With IRT-C 

and the MIMIC model, it is possible to ascertain whether DIF occurs in one variable (e.g., age) 

over another variable (e.g., gender). Although this study and past research suggests that for a 

dichotomous covariate (i.e., two-group case), the IRT-C and the MIMIC model works well, 

more research needs to examine whether DIF can be detected in the case where multiple 

covariates are used.  

One of the first few studies examining the MIMIC model for DIF assessment began 

with the use of dichotomous data (Woods, 2009a, 2009b). Similarly, because this is the first 

study that seeks to validate the IRT-C procedure, we chose to focus on dichotomous data with a 

range of DIF conditions. We sought to determine how well uniform or nonuniform DIF were 

detected, the stopping rule that would work best, and the type of BVR that is most sensitive to 

DIF.  Given that the IRT-C procedure performs well with dichotomous data, more research 

needs to examine whether the results would generalize to polytomous data. 

More research can also examine whether the IRT-C can be applied to a testing context. 

For instance, the 3-parameter logistic model (3PLM) is commonly used in large scale 

educational testing. To our knowledge, one advantage of the IRT-C method is that it can model 

3PLM responses, unlike the MIMIC method. Recent research shows that the 3PLM IRT-C 

procedure effectively detects DIF and accurately recovers the latent means of different 

covariate groups (Tay, Drasgow, & Vermunt, 2011). 

 The IRT-C procedure is based on the null hypothesis statistical testing paradigm. This 

can be a limiting particularly when the sample size is large as many items can be flagged for 
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DIF despite minuscule DIF effect sizes.  Although the null hypothesis statistical testing 

paradigm to examining DIF is widely used in many traditional statistical testing methods, we 

propose that more research can focus on procedures that incorporate the evaluation of DIF 

effect sizes in addition to statistical testing (cf. Steinberg & Thissen, 1996). 

Conclusion 

 To our knowledge, this is the first IRT analog to the MIMIC procedure for detecting 

DIF. This study has shown that the IRT-C procedure can be as, or even more effective than the 

Mantel-Haenzsel or MIMIC procedures for detecting DIF. One advantage of this approach is 

that anchor items do not need to be known a priori. We advocate the use of the IRT-C method 

and encourage more research in this area. 
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Table 1 

Comparison of DIF procedures: 20% DIF and 250 focal group members  

 

     IRT-C 

Mantel-

Haenszel MIMIC 

     No information criteria BIC stopping rule 

Condition C
a
 a

b
 b

c
 Power 

Power. 

T1E 

RMSE 

Power 

Power. 

T1E 

RMSE 

Form θf.mean Form θf.mean Power T1E Power T1E 

1 - - - - - 0.05 0.09 - - 0.01 0.09 - 0.04 - 0.05 

2 N -0.4 0 0.55 0.39 0.05 0.10 0.35 0.23 0.01 0.10 0.27 0.07 0.25 0.05 

3 Y -0.4 0 0.55 0.35 0.04 0.10 0.32 0.19 0.01 0.09 0.36 0.05 0.26 0.04 

4 N 0 0.4 0.67 0.64 0.05 0.11 0.45 0.44 0.01 0.11 0.64 0.08 0.49 0.06 

5 Y 0 0.4 0.71 0.69 0.04 0.10 0.53 0.50 0.01 0.10 0.81 0.05 0.57 0.06 

6 N -0.4 0.4 0.57 0.09 0.05 0.09 0.32 0.07 0.01 0.09 0.50 0.08 0.52 0.07 

7 Y -0.4 0.4 0.67 0.13 0.05 0.10 0.46 0.11 0.01 0.10 0.62 0.05 0.49 0.07 

8 N 0 0.8 0.96 0.92 0.05 0.09 0.94 0.90 0.01 0.09 0.92 0.19 0.92 0.05 

9 Y 0 0.8 0.98 0.95 0.04 0.10 0.98 0.93 0.01 0.10 0.97 0.06 0.93 0.04 

10 N -0.4 0.8 0.75 0.30 0.05 0.09 0.52 0.19 0.02 0.10 0.89 0.21 0.90 0.08 

11 Y -0.4 0.8 0.82 0.24 0.05 0.10 0.74 0.21 0.01 0.10 0.89 0.07 0.83 0.05 

    0.72 0.47 0.05 0.10 0.56 0.38 0.01 0.10 0.69 0.09 0.61 0.06 

 

Note. For comparison, no DIF was simulated in Condition 1; 
a
 Was compensatory DIF 

simulated? 
b
 Degree of a-parameter DIF simulated for focal group; 

c
 Degree of b-parameter DIF 

for focal group; Power represents the proportion of items in which DIF was significant 

averaged across the replications; Power.Form represents power to detect the exact form of DIF 

simulated; T1E represents the Type I error rates; RMSE θf.mean represents the root mean squared 

error of the estimated focal latent mean against that of the simulated focal latent mean.
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Table 2 

Comparison of DIF procedures: 20% DIF and 500 focal group members  

 

     IRT-C 

Mantel-

Haenszel MIMIC 

     No information criteria BIC stopping rule 

Condition C
a
 a

b
 b

c
 Power 

Power. 

T1E 

RMSE 

Power 

Power. 

T1E 

RMSE 

Form θf.mean Form θf.mean Power T1E Power T1E 

1 - - - - - 0.05 0.08 - - 0.01 0.07 - 0.05 - 0.07 

2 N -0.4 0 0.67 0.49 0.06 0.08 0.49 0.37 0.01 0.08 0.36 0.09 0.33 0.04 

3 Y -0.4 0 0.62 0.44 0.06 0.09 0.45 0.33 0.01 0.08 0.45 0.06 0.33 0.05 

4 N 0 0.4 0.80 0.77 0.05 0.09 0.64 0.62 0.01 0.08 0.80 0.11 0.68 0.05 

5 Y 0 0.4 0.84 0.80 0.06 0.08 0.74 0.72 0.01 0.08 0.92 0.05 0.69 0.05 

6 N -0.4 0.4 0.68 0.17 0.06 0.08 0.57 0.15 0.01 0.07 0.68 0.13 0.71 0.06 

7 Y -0.4 0.4 0.72 0.22 0.06 0.08 0.67 0.24 0.01 0.07 0.69 0.06 0.62 0.06 

8 N 0 0.8 1.00 0.95 0.04 0.08 0.98 0.92 0.01 0.08 0.97 0.31 0.97 0.05 

9 Y 0 0.8 1.00 0.95 0.04 0.08 1.00 0.94 0.01 0.08 0.99 0.08 0.98 0.04 

10 N -0.4 0.8 0.81 0.39 0.05 0.08 0.73 0.33 0.01 0.08 0.95 0.32 0.95 0.06 

11 Y -0.4 0.8 0.90 0.39 0.05 0.07 0.82 0.39 0.00 0.08 0.94 0.07 0.88 0.04 

    0.80 0.55 0.05 0.08 0.71 0.50 0.01 0.08 0.77 0.12 0.71 0.05 

 

Note. For comparison, no DIF was simulated in Condition 1; 
a
 Was compensatory DIF 

simulated? 
b
 Degree of a-parameter DIF simulated for focal group; 

c
 Degree of b-parameter DIF 

for focal group; Power represents the proportion of items in which DIF was significant 

averaged across the replications; Power.Form represents power to detect the exact form of DIF 

simulated; T1E represents the Type I error rates; RMSE θf.mean represents the root mean squared 

error of the estimated focal latent mean against that of the simulated focal latent mean. 



ASSESSING DIF WITH IRT-C    29 

 

Table 3 

Comparison of DIF procedures: 40% DIF and 250 focal group members  

 

     IRT-C 

Mantel-

Haenszel MIMIC 

     No information criteria BIC stopping rule 

Condition C
a
 a

b
 b

c
 Power 

Power. 

T1E 

RMSE 

Power 

Power. 

T1E 

RMSE 

Form θf.mean Form θf.mean Power T1E Power T1E 

1 - - - - - 0.05 0.09 - - 0.01 0.09 - 0.04 - 0.09 

2 N -0.4 0 0.36 0.22 0.09 0.11 0.15 0.09 0.03 0.11 0.13 0.12 0.21 0.05 

3 Y -0.4 0 0.44 0.25 0.07 0.12 0.29 0.18 0.01 0.10 0.33 0.07 0.24 0.05 

4 N 0 0.4 0.39 0.36 0.15 0.21 0.24 0.23 0.07 0.19 0.40 0.20 0.52 0.05 

5 Y 0 0.4 0.70 0.67 0.08 0.12 0.52 0.50 0.02 0.13 0.80 0.06 0.53 0.05 

6 N -0.4 0.4 0.39 0.05 0.12 0.11 0.18 0.03 0.04 0.11 0.34 0.21 0.53 0.07 

7 Y -0.4 0.4 0.63 0.16 0.07 0.11 0.46 0.13 0.02 0.12 0.59 0.06 0.49 0.06 

8 N 0 0.8 0.76 0.73 0.23 0.34 0.68 0.65 0.20 0.37 0.81 0.58 0.94 0.04 

9 Y 0 0.8 0.97 0.92 0.07 0.13 0.95 0.91 0.03 0.14 0.97 0.09 0.93 0.05 

10 N -0.4 0.8 0.52 0.13 0.13 0.15 0.32 0.09 0.08 0.14 0.80 0.56 0.89 0.07 

11 Y -0.4 0.8 0.81 0.27 0.08 0.13 0.72 0.24 0.03 0.12 0.91 0.09 0.81 0.07 

    0.60 0.38 0.10 0.15 0.45 0.30 0.05 0.15 0.61 0.19 0.61 0.06 

 

Note. For comparison, no DIF was simulated in Condition 1; 
a
 Was compensatory DIF 

simulated? 
b
 Degree of a-parameter DIF simulated for focal group; 

c
 Degree of b-parameter DIF 

for focal group; Power represents the proportion of items in which DIF was significant 

averaged across the replications; Power.Form represents power to detect the exact form of DIF 

simulated; T1E represents the Type I error rates; RMSE θf.mean represents the root mean squared 

error of the estimated focal latent mean against that of the simulated focal latent mean. 
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Table 4 

Comparison of DIF procedures: 40% DIF and 500 focal group members  

 

     IRT-C 

Mantel-

Haenszel MIMIC 

     No information criteria BIC stopping rule 

Condition C
a
 a

b
 b

c
 Power 

Power. 

T1E 

RMSE 

Power 

Power. 

T1E 

RMSE 

Form θf.mean Form θf.mean Power T1E Power T1E 

1 - - - - - 0.06 0.08 - - 0.01 0.07 - 0.04 - 0.09 

2 N -0.4 0 0.49 0.31 0.12 0.11 0.27 0.20 0.03 0.10 0.22 0.17 0.28 0.06 

3 Y -0.4 0 0.55 0.37 0.08 0.11 0.39 0.29 0.02 0.10 0.43 0.07 0.33 0.04 

4 N 0 0.4 0.61 0.57 0.15 0.17 0.38 0.36 0.07 0.18 0.58 0.29 0.67 0.06 

5 Y 0 0.4 0.81 0.78 0.07 0.10 0.66 0.63 0.01 0.11 0.91 0.06 0.69 0.06 

6 N -0.4 0.4 0.54 0.09 0.14 0.10 0.30 0.06 0.04 0.09 0.51 0.32 0.66 0.08 

7 Y -0.4 0.4 0.67 0.27 0.06 0.09 0.56 0.23 0.03 0.10 0.70 0.09 0.56 0.05 

8 N 0 0.8 0.80 0.76 0.25 0.37 0.79 0.75 0.19 0.34 0.89 0.74 0.97 0.03 

9 Y 0 0.8 0.98 0.92 0.06 0.12 0.98 0.91 0.03 0.14 0.99 0.12 0.98 0.05 

10 N -0.4 0.8 0.73 0.25 0.11 0.12 0.54 0.21 0.08 0.14 0.90 0.69 0.96 0.06 

11 Y -0.4 0.8 0.88 0.46 0.05 0.09 0.82 0.45 0.03 0.09 0.94 0.12 0.89 0.05 

    0.71 0.48 0.11 0.13 0.57 0.41 0.05 0.13 0.71 0.25 0.70 0.06 

 

Note. For comparison, no DIF was simulated in Condition 1; 
a
 Was compensatory DIF 

simulated? 
b
 Degree of a-parameter DIF simulated for focal group; 

c
 Degree of b-parameter DIF 

for focal group; Power represents the proportion of items in which DIF was significant 

averaged across the replications; Power.Form represents power to detect the exact form of DIF 

simulated; T1E represents the Type I error rates; RMSE θf.mean represents the root mean squared 

error of the estimated focal latent mean against that of the simulated focal latent mean. 
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Appendix 

Bivariate Residuals 

 Differential item functioning (DIF) can be determined by the use of a fully constrained 

baseline approach (see Stark, Chernyshenko, & Drasgow, 2006). Using this constrained 

baseline model, it was proposed that large unconditional bivariate residuals (UBVR) between 

covariates (or grouping variables) and items are an indication of DIF (Tay, Newman & 

Vermunt, 2011). For values with large UBVRs, the parameters associated with DIF (i.e., ci or di 

in Equation 2) are then estimated and tested for significance using the Wald statistic. For 

example, the table below shows the second item may have DIF on the first covariate (z1) 

because it has the largest UBVR value. Subsequently, the parameters c2 or d2 for z1 are freely 

estimated and tested for significance. 

 Item (i) 

Covariate (z) i = 1 i = 2 i =3 … i = 10 

z1 1.01 4.52 3.65  1.41 

z2 2.61 3.12 3.87  1.59 

 

The UBVR implemented in Latent GOLD 4.5 (LG; Vermunt & Magidson, 2008) is a 

Pearson χ
2
-type measure reflecting the discrepancy between observed and expected cell counts 

in the two-way table cross-tabulating a covariate (or an observed grouping variable) and an 

item. In fact, it quantifies the z-y association that is not explained by the specified IRT model. 

As indicated by Vermunt and Magidson (2005), an UBVR is a lower bound for the reduction of 

the -2 log-likelihood when including the ci term (see Equation 2) into the IRT model. This is an 

approximation for the Lagrange multiplier test described by Glas (1998; 1999), and is similar to 

modification indices used in structural equation modeling (Saris, Satorra, & Sörbom, 1987; 

Sörbom, 1989). It should be noted that the use of χ
2
 statistics from marginal two-way tables has 

not only been proposed for model modification, but also for goodness-of-fit testing of IRT 

models (Bartholomew & Tzamourani, 1999; Cai, Maydeu-Olivares, Coffman, & Thissen, 2006; 

Drasgow, Levine, Tsien, Williams, & Mead, 1995). 

 

For each covariate, the formulation of the UBVR is as follows. Let ),( gzryn i   and 

),( gzrym i  be the observed and expected cell entries in the table cross-tabulating the 

grouping variable and item i, where g and r  refer to a particular group and response option for 

item i, respectively. Assuming that there are G groups and that the items have R response 

categories, the UBVR for item i is defined as follows: 

 
2

,

1 1

( , ) ( , )

( , )

R G
i i

uncondional i

r g i

n y r z g m y r z g
BVR

m y r z g 

    


 
  .  (5) 

The expected cells entries in relevant two-way tables are defined as follows: 





J

j

jjjii dgzfryPgzrym
1

),|()|(),(  y ,   (6) 

that is, by integrating over the latent trait θ. However, because no close from expression exists 

for the integral, this is solved numerically using K quadrature nodes yielding the following 

approximation  
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
 


J

j

K

k

jjkkjii gzryPgzrym
1 1

),|()|(),( y .   (7) 

The term jjk gz y,|(  ) is the posterior probability associated with the k
th

 quadrature 

node. It is the same probability as needed in the computation of the derivatives required for the 

marginal maximum likelihood estimation of the IRT-C model. 

The observed cell counts are obtained by counting the number of persons with ryi   

and gz  , which can be expressed as follows: 

 
1

( , ) ( , )
J

i ji j

j

n y r z g I y r z g


         (8) 

where I(•)  equal 1 if the expression is true and 0 otherwise. BVR values can be expected to be 

inflated when a single set of item parameters does not fully account for the observed cell 

entries, which may be an indication of DIF.  

 

In the computation of the UBVR, one integrates out the latent trait before computing the 

discrepancy between observed and expected frequencies. A disadvantage of such a procedure is 

that information on non-uniform DIF (on the fact that the trait-response relationship may differ 

across groups) gets lost (cf. Van den Wollenberg, 1982). To deal with this issue, we propose 

and examine an alternative discrepancy measure – the conditional BVR (CBVR) -- that is 

implemented as follows: 

  
 
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where  



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J
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1
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and 

1

( , | ) ( , | ) ( | , )
J

i k ji j k k j j

j

n y r z g I y r z g z g   


      y  (11) 

Note that )|,( ki gzrym  is in fact an expected cell count in the three-way cross-

table of group, item i and a node of integration, and )|,( ki gzryn   is an estimate of the 

corresponding observed cell entry. This proposed residual has recently been implemented in 

Latent GOLD 5.0. 

 

 

 


