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Abstract: Stepwise approaches for the estimation of latent variable models are

becoming increasingly popular, both in the context of models for continuous (fac-

tor analysis and latent trait models) and discrete (latent class and latent profile

models) latent variables. Examples include two-stage path analysis, structural-after-

measurement and Croon’s bias-corrected estimation of structural equation models,

and two- and three-step latent class and latent Markov modeling. These methods

have in common that the measurement/clustering part of the model is estimated

first, followed by the estimation of a — possibly complex – structural model. In this

paper, we review the existing approaches, which differ in how the information on the

latent variable(s) is used when estimating the structural model. We show that based

on these differences, stepwise latent variable modeling approaches can be classified
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into three main types: the fixed parameters, the single indicator, and the bias ad-

justment approach. We discuss similarities and differences between these approaches,

as well as between approaches proposed specifically for either continuous or discrete

latent variables. Special attention is paid to heterogeneous measurement error re-

sulting from missing data or measurement non-invariance, standard error estimation,

and software implementations.

Key words: Structural equation modeling; latent class analysis; composite scores;

measurement error; classification error; reliability; Croon’s bias correction

1 Introduction

Recently, we have seen a renewed interest in stepwise latent variable modeling ap-

proaches, which involve separating the estimation of the measurement and the struc-

tural parts of the model of interest. Examples for continuous latent variables include

Structural After Measurement (SAM) estimation (Rosseel and Loh, 2023), two-stage

path analyses (Lai and Hsiao, 2022), two-step latent trait modeling (Kuha and Bakk,

2023), and Measurement and Uncertainty Preserving ParamETric (MUPPET) mod-

eling (Levy, 2023; Levy and McNeish, 2024). Similar approaches have been proposed

for discrete latent variables, such as three-step latent class analysis (Bolck, Croon,

and Hagenaars, 2004; Vermunt, 2010) and two-step latent class analysis (Bakk and

Kuha, 2018).

Typically, two types of arguments are mentioned by authors contributing to the field

of stepwise latent variable modeling; that is, arguments related to model estimation
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and to model building. Regarding model estimation, separate estimation of the mea-

surement and the structural parameters yields fewer convergence problems, is less

affected by model misspecifications, and is computationally less demanding when

dealing with large models (Bartolucci et al., 2016; Perez Alonso, 2024; Rosseel and

Loh, 2023). In addition, stepwise model building, where one constructs measurements

for the variables of interest and subsequently uses these to investigate their relation-

ships, is also what most applied researchers prefer doing, among others to comply

with the standard practice in their field, to prevent interpretational confounding, or

to circumvent the need to remove cases with missing values on covariates (Burt, 1976;

Clouth et al., 2022; Levy, 2023; Vermunt, 2010). Given that most researchers use such

a strategy, stepwise latent variable modeling approaches have the potential to yield

great improvement over naive use of estimated latent variable scores in subsequent

analyses without accounting for their uncertainty (Rein et al., 2024).

As shown in Table 1, stepwise approaches have been developed for each of the four

types of latent variables models described by Bartholomew and Knott (1999) and

Lazarsfeld and Henry (1968). These are: 1) factor analytic models for continuous

latent variables and continuous observed indicators, 2) latent trait models for con-

tinuous latent variables and discrete observed indicators, 3) latent profile models for

discrete latent variables and continuous observed indicators, and 4) latent class mod-

els for discrete latent variables and discrete observed indicators. Latent trait models

are also referred to as item response theory (IRT) models or categorical factor ana-

lytic models, and latent profile and latent class models are also referred to as mixture

models.

The structural models for which stepwise approaches have been developed are some-
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times simple linear or logistic regression models in which a single latent variable serves

as dependent or independent variable, but can also concern more complex models,

such as path models containing multiple latent variables, latent Markov models or

dynamic factor models for longitudinal data, or latent variable models for multilevel

data.

Stepwise latent variable approaches appear in the literature under different names

such as Structural After Measurement (SAM) estimation, two-stage analysis, two-step

analysis, Croon’s bias-corrected estimation, Croon’s method, and three-step analysis.

However, the first step of all these approaches deals with the estimation of the mea-

surement model for the latent variables without accounting for the structural model.

The approaches differ from one another with respect to how the measurement model

parameters are used when estimating the parameters of the structural model. Based

on these differences, stepwise latent variable modeling approaches can be classified

into three main types, which we will refer to as the fixed parameters, the single indica-

tor, and the bias adjustment approach. Table 1 lists the most important contributions

to each of these.

In the fixed parameters approach, when estimating the parameters of the structural

model, the measurement model parameters are fixed to the values obtained in the

first step. Examples of this approach include Burt’s approach (Burt, 1976), global

SAM estimation (Rosseel and Loh, 2022), two-step latent trait analysis (Kuha and

Bakk, 2023), MUPPET modeling (Levy, 2023; Levy and McNeish, 2024), two-step

latent class analysis (Bakk and Kuha, 2018), and three-step latent Markov modeling

(Bartolucci et al., 2015).

The single indicator approach involves obtaining predictions for the latent variables
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using the parameters of the measurement model. The predicted scores are used

as single indicators when estimating the structural model, while accounting for their

unreliability or misclassifications. This is a rather old idea within the SEM framework,

and referred to as two-step SEM (Bollen, 1989). Lai and Hsiao (2021) showed how to

use this approach when the measurement model is a latent trait model instead of factor

analytic model, and refer to this approach as two-stage path analysis. Moreover, Lai

et al. (2023) showed how to apply two-stage path analysis when there is measurement

invariance. In the context of latent class and latent profile analysis, this approach

was proposed by Vermunt (2010) and Gudicha and Vermunt (2012), who refer to it as

three-step analysis with maximum likelihood adjustment for classification errors (see

also Asparouhov and Muthén, 2014). Somewhat related single indicator approaches

have been proposed by Savalei (2019) and Skrondal and Kuha (2012).

The bias adjustment approach involves obtaining predictions for the latent variables

using the parameters of the measurement model, and subsequently adjusting their

covariances (or associations) so that these represent the true latent variable covari-

ances. The adjusted covariances are used as if they were observed covariances when

estimating the structural model parameters. This method was originally developed

by Croon (2002) who derived the required adjustment for both factor analytic and

latent class models. Devlieger and Rosseel (2017) used this approach in what they

refer to as factor score path analysis. Although derived and implemented in a slightly

different manner, the recently proposed local SAM approach by Rosseel and Loh

(2023) can be seen as a special case of Croon’s method for continuous latent vari-

ables. Croon’s method for discrete latent variables was extended in various ways

by Bolck et al. (2004), Vermunt (2010), Gudicha and Vermunt (2011), and Bakk,

Tekle and Vermunt (2013), and is typically referred to as the Bolck-Croon-Hagenaars
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(BCH) approach.

The next three sections provide more details on the implementation of the three

types of stepwise estimation methods with factor analytic models, latent trait and

categorical factor analytic models, and latent class, latent profile, and mixture models.

Subsequently, we discuss topics such as heterogeneous measurement error resulting

from missing data or measurement non-invariance, standard error estimation, and

software implementations. We conclude with a short discussion.

2 Continuous latent and observed variables

2.1 Background

Assuming the data are centered, and therefore ignoring the mean structure, the regres-

sion equations defining the measurement and structural parts of a structural equation

model (SEM) for response vector y are:

y = Λη + ϵi (2.1)

η = Bη + ζi.

The free parameters are the factor loadings, residual covariances, regression coeffi-

cients, and residual factor covariances, which are collected in the matrices Λ, Θ, B

and Ψ. These yield the expected covariance matrix Σ as follows:

Σ = ΛV ar(η)Λ′ +Θ,

with

V ar(η) = (I−B)−1Ψ(I−B′)−1.
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The various stepwise approaches have in common that they first estimate the measure-

ment parameters Λ and Θ, while the structural parameters B and Ψ are estimated in

a next step of the analysis. The approaches differ in how the information on the mea-

surement parameters is used when estimating the structural parameters. Two of the

approaches make use of factor scores, either as single indicators or as an intermediate

step, to obtain an adjusted factor-score covariance matrix.

Let f be the factor scores which are obtained as f = Ay, withA being the factor-score

matrix. The most common type of factor score is the regression factor score, with

factor-score matrix

AR = ΦΛ′Σ−1, (2.2)

or, equivalently,

AR = (Φ−1 +Λ′Θ−1Λ)−1Λ′Θ−1.

Here Φ denotes the factor covariance matrix obtained from the measurement model.

This yields modal a posteriori (MAP) or expected a posteriori (EAP) estimates of

the factor scores. The posterior variance of the regression factor scores equals:

V arf = Φ−Φ′Λ′Σ−1ΛΦ. (2.3)

Maximum likelihood or Barlett factor scores are obtained with factor-score matrix

AB = (Λ′Θ−1Λ)−1Λ′Θ−1. (2.4)

Instead of using a factor-score matrix based on the measurement model parameters,

one may also use a simple sum score of the items as an estimate of the latent variable,

in which case the factor-score matrix equals AS = 1.
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2.2 Fixed parameters

To prevent what he refers to as interpretational confounding, Burt (1976) proposed

estimating the measurement model separately for each latent factor, and subsequently

estimating the structural model of interest with the measurement parameters – load-

ings and residual covariances – fixed. A similar but slightly more general fixed pa-

rameters approach was recently proposed by Rosseel and Loh (2023), who refer to

it as global SAM estimation. An important difference is that global SAM was pre-

sented as an estimation method, whereas Burt presented his approach as a modeling

method. In addition, the global SAM approach is more flexible in the sense that the

measurement model may be estimated jointly for all latent variables, separately for

each latent variable, or separately for blocks of latent variables. Moreover, the esti-

mator used for the measurement model can differ from the one used for the structural

model.

Another fixed measurement parameters approach called MUPPET modeling was pro-

posed by Levy (2023), who also stressed the issue of interpretational confounding.

MUPPET is a Bayesian two-step estimation approach for factor analytic models with

covariates and outcome variables. The Bayesian estimation framework allows ac-

counting for the uncertainty in the measurement parameters when estimating the

structural parameters.

2.3 Single indicator

The single indicator approach has been advocated among others by Lai and Hsiao

(2022) who refer to it as two-stage path modeling. Rein et al. (2024) proposed

using this approach in the context of latent vector autoregressive models for intensive
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longitudinal data subject to measurement error.

The single-indicator approach assumes that factor scores f are computed after es-

timating the measurement model, where A can be any type of factor-score matrix.

When estimating the structural parameters, the factor scores are used as indicators

for the latent variables η. Using f = Ay and substituting y by the measurement part

of the SEM defined in equation 2.1 yields:

f = AΛη +Aϵ = Λ∗η + ϵ∗, (2.5)

which shows how the factor scores are related to the true latent variable scores.

Moreover, this equation demonstrates factor scores f can serve as single indicators of

the latent variables η by using Λ∗ = AΛ as their “loading” matrix” and AΘA′ as

the covariance matrix Θ∗of their residuals ϵ∗ = Aϵ. In other words, the structural

parameters can be estimated using a SEM with a single indicator per factor, where

loadings and residual variances depend on the parameters of the measurement model

and the type of factor scores used.

The measurement model for the factor scores can also be written in terms of factor

covariances, which yields

V ar(f) = AΛV ar(η)Λ′A′ +AΘA′. (2.6)

The reliability of the factor scores equals:

ρ = diag

(
AΛV ar(η)Λ′A′

V ar(f)

)
(2.7)

that is, the ratio between the (appropriately weighed) true and the estimated factor

variance.

A useful feature of regression factor scores obtained from the measurement model
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for a single factor (or by ignoring factor correlations) is that their fixed loading and

residual variance a′
Rλ and a′

RΘaR can be computed from the individual factor scores

and their variances. Moreover, the fixed loading a′
Rλ equals the factor score reliability

ρ, which in turn equals the ratio between the variance of the factor scores and the true

factor variance, var(f)/ϕ. Using the definition of aR from equation 2.2, the expected

variance of regression factor scores can be expressed as follows:

var(f) = a′
RΣaR = ϕλ′Σ−1ΣΣ−1λϕ = ϕλ′Σ−1λϕ = a′

Rλϕ. (2.8)

Using equation 2.7 for a single factor and noting that ϕ = var(η), we obtain

ρ =
(a′

Rλ)
2ϕ

var(f)
=

(a′
Rλ)

2ϕ

a′
Rλϕ

= a′
Rλ.

Multiply by ϕ/ϕ yields

ρ =
a′
Rλϕ

ϕ
=

var(f)

ϕ
.

This shows the reliability of regression factor scores equals the ratio between the

estimated and the true factor variance. Using this equation, the factor score variance

var(f) can be decomposed as follows:

var(f) = ϕρ = ϕρρ+ ϕρ(1− ρ),

which is a special case of the more general equation 2.6, with ρ = a′
Rλ and the

ϕρ(1 − ρ) = a′
RΘaR . This shows that using the single indicator approach with

regression factor scores involves fixing their loading to ρ and their residual variance

to ϕρ (1− ρ).

Another important characteristic of regression factor scores is that their true factor

variances ϕ can be derived from the factor scores and their variances as follows:

ϕ = var(f) + varf . (2.9)
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where varf represents the posterior variance of the individual’s factor scores (see

equation 2.3). Equation 2.9 follows from the definition of var(f) in equation 2.8

and the application of the definition in equation 2.3 to a single factor, which yields

varf . Note that this equation is equivalent to the Expectation step for obtaining the

expected factor covariance matrix when using the Expected-Maximization algorithm

for maximum likelihood factor analysis.

In summary, stepwise SEM using regression factor scores as single indicators involves

fixing their loadings and residual variances to ρ and ϕρ(1 − ρ), respectively. The

quantities ρ and ϕ can be computed from the factor scores and their variances, thus

without knowledge of original measurement model parameters. This is a very conve-

nient since factor scores and their variances are standard output provided by software

for factor analysis.

With Barlett factor scores, the fixed loading and residual variance equal 1 and a′
BΘaB,

respectively. When applied to a single factor at a time, Barlett and regression scores

are proportional to one another; that is, Barlett scores are 1/ρ times larger than

regression scores. This implies their loading is 1/ρ times larger and their residual

variance 1/ρ2 times larger. This yields a loading of 1 and a residual variance of

ϕ(1− ρ)/ρ.

Instead of using factor scores, the single indicator approach can also be applied using

a simple sum score of the items. In that case, aS = 1, implying λ∗ = a′
Sλ and θ∗ =

a′
SΘaS are simple sums of loadings and residual covariances from the measurement

model for the factor concerned. The sum score reliability computed by applying

equation 2.6 for a single factor yields the familiar omega reliability for composite

scores (McDonald, 1999; Raykov, 1997). Note that this correction for the unreliability
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of sum scores requires estimating the measurement model. Somewhat related is the

work by Oberski and Satorra (2013) and Savalei (2019), who proposed using the single

indicator approach with composite scores with a known reliability ρ. This involves

fixing their loading and residual variance to 1 and var(f)(1− ρ), respectively.

Other related work concerns the improved regression calibration by Skrondal and

Kuha (2012), which can be used to correct for covariate measurement error in regres-

sion models. It involves using EAP factor scores as predictors while accounting for

their uncertainty using their posterior variances. In fact, these authors make use of

the fact that the total variance of the true latent factor equals the sum of the variance

of the estimated factor scores and their posterior variance (see equation 2.9).

2.4 Bias adjustment

The approach proposed by Croon (2002) involves obtaining factor scores and their

covariance matrix V ar(f), and subsequently computing the adjusted factor covariance

matrix V ar(η). This matrix is used as input when estimating the parameters of the

structural model. Croon’s method can be best understood by writing the relationship

between the factor scores and the true factors defined in equation 2.5 as follows:

AΛη = f −Aϵ,

or, in terms of covariances, as

AΛV ar(η)Λ′A′ = V ar(f)−AΘA′.

This shows V ar(η) can be obtained from V ar(f) as follows:

V ar(η) = (AΛ)−1(V ar(f)−AΘA′)(Λ′A′)−1.
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Note that Croon (2002) derived this formula in scalar form for each of the elements

of the factor covariance matrix V ar(η), and, moreover, assumed the measurement

models were estimated separately for each factor involved. The more general form

given here allows for the simultaneous estimation of the measurement models of all

factors, which is required when there are cross-loadings or correlated residuals among

items loading on different factors (Hayes and Usami, 2020). As can be seen, the terms

AΛ and AΘA′ are the same as those appearing in the derivation of the single indi-

cator approach, which shows among others that for regression factor scores, Croon’s

correction can be applied without knowledge of the original measurement model pa-

rameters when there are no cross-loadings or correlated errors. Note also that with

Barlett factor scores, Croon’s correction formula simplifies to

V ar(η) = V ar(f)−ABΘA′
B.

Based on this equation, Hoshino and Bentler (2013) proposed equating the diagonal

elements of V ar(η) to the estimated factor variances from the first step and the off-

diagonal elements to the corresponding entries in V ar(f). This works because the

off-diagonal elements of ABΘA′
B equal 0 as long as there are no cross-loadings or

residual correlations between items loading of different factors. Somewhat related is

the work by Skrondal and Laake (2001) who showed that unbiased linear regression

coefficients can be obtained without any bias adjustment of V ar(f) by using regression

factor scores for predictors and Barlett factor scores for outcome variables.

Croon’s bias adjustment has been extended for dealing with various types of more

complex structural models, such as for micro-macro multilevel analysis (Croon and

van Veldhoven, 2007), multilevel path analysis (Devlieger and Rosseel, 2019), and

path models with latent interactions (Cox and Kelcey, 2021).
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Although the local SAM approach by Rosseel and Loh (2023) is similar to Croon’s

approach, it uses a slightly different starting point. In local SAM, we rewrite equation

2.5 as follows

AΛη = A(y − ϵ),

where A is referred to as the mapping matrix. It should be chosen such that AΛ = I,

which yields

η = A(y − ϵ),

or, in terms of covariances,

V ar(η) = A(V ar(y)−Θ)A′. (2.10)

The form of A depends on the estimation method used to find V ar(η); for example,

with maximum likelihood (ML) estimation, it coincides with the Barlett factor-score

matrix AB (see equation 2.6). It can easily be verified that ABΛ = I . Note that

local SAM differs from Croon’s approach in that it does not obtain factor scores as

an intermediate step, but that instead V ar(η) is computed directly from y. As in

Croon’s approach, the structural model is estimated using V ar(η) as input data.

Recently, Perez Alonso et al. (2024) proposed a rather advanced application of the

SAM approach; that is, they used it for estimation of a mixture multigroup SEM.

Their measurement model consists of a multiple group factor analysis (for many

groups) and their structural model uses the group-specific factor covariances in a

mixture model aimed at clustering the groups based on their structural parameters.

Similar to Croon’s method and local SAM, Gerbing and Anderson (1987) and Lance

et al. (1988) proposed estimating the structural parameters using V ar(η) as data

matrix. However, rather than using bias-adjusted factor scores or a mapping matrix,
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they used the fact V ar(η) equals the step-one factor covariance matrix Φ when the

measurement models for all latent variables appearing in the structural model are

estimated as a single block with a free factor covariance matrix.

3 Continuous latent and categorical observed variables

3.1 Background

When the latent variables are continuous and the observed variables are ordinal cate-

gorical, the measurement model may take on the form of a categorical factor analysis

(CatFA). As factor analysis with continuous observed variables, CatFA involves esti-

mating a linear factor model, but with the observed variables’ polychoric correlation

matrix instead of their covariance matrix as input data. Parameters are typically

estimated by diagonally weighted least squares (DWLS).

With continuous latent variables and categorical observed variables, the measurement

model may also be a latent trait or IRT model, typically estimated using marginal

maximum likelihood. A unidimensional latent trait model for response pattern yi can

be defined as follows:

P (yi) =

∫
P (yi|η)f(η)dη =

∫ J∏
j=1

P (yij|η)f(η)dη,

where the probability of the response of person i on item j conditional on the latent

trait value η, P (yij|η), is modeled using a logit or a probit model in which the latent

trait enters as predictor. EAP estimates of the latent trait scores and their posterior
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variances are defined as follows:

fi = E(η|yi) =

∫
ηP (yi|η)f(η)dη

P (yi)

varfi = var(η|yi) =

∫
η2P (yi|η)f(η)dη

P (yi)
− E(η|yi)

2.

Since there is no closed form expression for the integral, it has to be solved either

numerically or by Monte Carlo simulation.

3.2 Fixed parameters

One particular fixed parameters approach for dealing with continuous latent variables

and categorical observed variables is the global SAM approach. Although not men-

tioned explicitly by Rosseel and Loh (2023), their global SAM approach can also be

applied in combination with a CatFA for dichotomous or ordinal items. This method

is implemented in the lavaan package in R.

Kuha and Bakk (2023) proposed a two-step approach which involves fixing the latent

trait measurement parameters defining the conditional response probabilities P (yij|η)

when estimating the structural part of the model. In its most general form, their

structural model consisted of a path for multiple latent variables (with fixed mea-

surement models), with in addition observed predictors affecting the latent variables

and observed outcomes affected by the latent variables.

The MUPPET approach for factor analytic models has recently been extended to

allow for latent trait type measurement models (Levy and Neish, 2024). MUPPET

uses a two-stage Bayesian estimation method for dealing with covariates and outcome

variables.
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3.3 Single indicator

Lai and Hsiao (2022) showed how the single indicator approach they refer to as two-

stage path analysis can be used with latent variable scores obtained from a latent trait

model. They proposed using EAP trait scores, which are IRT based equivalents of

regression factor scores. Related work was done by Wang et al. (2019), who applied

the single indicator approach to deal with measurement error in MAP latent trait

scores used as the outcome variable in a linear mixed effects model.

As explained in the context of the continuous indicators case, with regression (and

thus EAP) factor scores we can fix the loading of the factor scores to their reliability

ρ and their residual variance to φρ(1−ρ). However, different from the factor analytic

case, the reliability of IRT trait scores varies across individuals because their posterior

variance of the EAP scores, varfi , varies across response patterns. More specifically,

Lai and Hsiao (2022) proposed using

λ∗
i = ρi = 1− varfi

φ
(3.1)

and

θ∗i = φρi(1− ρi)

as fixed loading and residual variance for person i. Note that, similar to the factor

analysis case, φ can be obtained from the individual factor scores and their variances;

that is, by using varf = E(varfi) in equation 2.9.

Note that the single indicator approach using latent trait scores would be much sim-

pler and, moreover, computationally less demanding if we replace varfi in the equation

3.1 by varf = E(varfi); that is, if we ignore the heterogeneity of the measurement

error when estimating the structural parameters. Lai and Hsiao (2022) indicated that
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unmodeled heterogeneity may affect estimation in a path model, but at this time it

is unclear how this might occur. Most likely, it has little impact as long as the mea-

surement error heterogeneity is uncorrelated with the other variables appearing in

the structural model.

3.4 Bias adjustment

Although not described in the Rosseel and Loh (2023) paper, their local SAM ap-

proach is available in the lavaan package for categorical variables. First CatFA models

are estimated using DWLS and subsequently equation 2.10 is applied with a Barlett

mapping matrix and V ar(y) replaced by the polychoric correlation matrix. The

structural model is estimated with V ar(η) serving as the input data matrix.

Although not proposed in the literature yet, it also seems possible to implement

Croon’s approach with EAP trait scores from IRT measurement models. We saw

that with regression factor scores a′λ = λ∗ = ρ and a′Θa = θ∗ = ϕρ(1 − ρ). This

suggests that the trait score covariance matrix can be corrected using λ∗ and θ∗,

defined as

λ∗ = ρ = 1− E(varfi)

φ

θ∗ = φρ(1− ρ),

with

φ = var(f) + E(varfi).

This adjustment does not account for the heterogeneous measurement error. It is

also possible to apply the correction with individual-specific λ∗
i and θ∗i ; that is, by

applying Croon’s correction formula separately to the individual contributions to the

factor-score covariance matrix and taking their average. For a variance, this would
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be

var(η) = E{[fi − E(f)]2/ρ2i − φi(1− ρi)/ρi},

and for a covariance between two factors η1 and η2

var(η1, η2) = E{[f1i − E(f1)][f2i − E(f2)]/[ρ1iρ2i]}.

Hoshino and Bentler (2013) indicated their stepwise procedure using maximum like-

lihood factor scores can also be applied with IRT type measurement models. As was

explained above for factor analytic models, their approach involves equating the di-

agonal elements of V ar(η) to the estimated true factor variances from the first step

and the off-diagonal elements to the factor score covariances.

4 Categorical latent variables

4.1 Background

Denoting the single discrete latent variable by η, a particular class by c and the

number of classes by C, a latent class measurement model for P (yi), the probability

of the response pattern of individual i, can be defined as follows:

P (yi) =
C∑
c=1

P (η = c)P (yi|η = c) =
C∑
c=1

P (η = c)
J∏

j=1

P (yij|η = c).

Here P (η = c), P (yi|η = c), and P (yij|η = c) represent the class proportion, the

probability of the response pattern, and the probability of a particular response on

item j for class c. A latent profile or a mixture model for continuous responses has

the same structure, but with P (yi), P (yi|η = c) and P (yij|η = c) being probability

densities instead of probabilities.
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The above formula is the one for a simple latent class measurement model. The

most common extension containing a structural part involves including covariates xi

affecting class membership:

P (yi|xi) =
C∑
c=1

P (η = c|xi)
J∏

j=1

P (yij|η = c).

Other common extensions containing a structural part are models with a distal out-

come zi affected by class membership,

P (yi, zi) =
C∑
c=1

P (η = c)
J∏

j=1

P (yij|η = c)P (zij|η = c),

and models with multiple latent variables affecting each other, for example, η1 affect-

ing η2,

P (yi) =
C∑
c=1

P (η1 = c1)P (η2 = c2|η1 = c1)

J1∏
j=1

P (yij|η1 = c1)

J1+J2∏
k=J1+1

P (yij|η2 = c2),

The structural parameters of interest are the regression coefficients defining P (η =

c|xi), P (zij|η = c), and P (η2 = c2|η1 = c1), respectively, which as explained next can

be estimated in a stepwise manner.

Latent class predictions fi based on the latent class measurement model can be ob-

tained based on the posterior membership probabilities P (η = c|yi), which are ob-

tained as follows:

P (η = c|yi) =
P (η = c)P (yi|η = c)

P (yi)
.

The standard practice is to assign individuals to the class with the largest posterior

probability, which yields MAP estimates. Other options are random assignment or

proportional assignment (Bolck et al., 2004). As shown by Bolck et al. (2004), the
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assignment method used defines the values of P (f = d|yi), the probability of being

assigned class d conditional on the response pattern. Modal assignment gives a value

of 1 for the class with the largest posterior probability and 0 for the other classes,

whereas random and proportional assignment give values equal to the posterior prob-

abilities.

4.2 Fixed parameters

Bakk and Kuha (2018) proposed a two-step latent class analysis approach, which

involves fixing latent class measurement parameters defining the conditional response

probabilities P (yij|η = c) when estimating the structural model. In fact, one fixes

P (yi|η = c), the probability of a full response pattern given class membership to its

estimate from the first step. The structural models considered by Bakk and Kuha

were regression models in which a single latent variable serves as either predictor or

outcome variable. Xue and Bandeen-Roche (2002) proposed the same approach for a

latent variable serving as the outcome variable, but motivated by applications where

the first step was based on a much larger sample than the second.

Applications of the fixed parameters approach with more complex structural models

concern the three-step latent Markov model by Bartolucci et al. (2015) and the two-

step multilevel latent class model by Di Mari et al. (2023). In both applications,

the first step involves estimating the measurement model parameters, ignoring the

(longitudinal or multilevel) dependence structure in the data.

Although not yet mentioned in the literature, the fixed measurement parameters

approach can also be used with continuous response variables, that is, with latent

profile and other types of mixture models, without any modification. In that case,
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the fixed parameters in the estimation of the structural model of interest are the

class-specific means and (co)variances defining the multivariate densities f(yi|η = c).

4.3 Single indicator

For latent class models with covariates, Bolck et al. (2004) derived the relationship

between P (η = c|xi) and P (fi = d|xi); that is, between the true class distribution

given covariates xi and the corresponding assigned class distribution given xi. It has

the following form:

P (fi = d|xi) =
C∑
c=1

P (η = c|xi)P (fi = d|η = c). (4.1)

As noted by Vermunt (2010), this is the equation of a latent class model with co-

variates xi, where the class assignments fi serve as the single indicator with P (fi =

d|η = c) defining its quality (the amount of classification errors). Vermunt (2010)

proposed estimating this single indicator model by maximum likelihood treating

P (fi = d|η = c) as fixed parameters, and called it the three-step ML method. It

uses another important result from Bolck et al. (2004); that is, P (fi = d|η = c) can

be obtained from the measurement model parameters as follows:

P (f = d|η = c) =
∑
y

P (y|η = c)P (f = d|y) =
∑

y P (y)P (η = c|y)P (f = d|y)
P (η = c)

.

Vermunt (2010) proposed a slight modification of this formula, which involves replac-

ing P (y) by its empirical distribution in the data set at hand. This yields:

P (f = d|η = c) =

∑N
i=1

1
N
P (η = c|yi)P (f = d|yi)

P (η = c)
. (4.2)

Important advantages of this modification are: 1) it prevents the possibility of sum-

ming over a very large numbers of data patterns; 2) as shown by Gudicha and Ver-

munt (2013), it also works with latent profile and other mixture models for continuous
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observed variable, where the summation over all possible y takes the form of a multi-

variate integral; 3) irrespective of the type of classification rule, it allows computing

the classification error probabilities P (f = d|η = c) using the posteriors P (η = c|yi)

of the N persons in the data file, which is standard output provided by latent class

analysis software.

As shown by Bakk et al. (2013), the three-step ML approach can not only be used

for latent class models with covariates, but also for latent class models with a distal

outcome and SEM-like models with multiple discrete latent variables. Moreover, this

stepwise modeling approach has been used with latent Markov models (Di Mari et

al., 2016; Vogelsmeier et al., 2023a), multilevel latent class models (Lyrvall et al.,

2024), latent class tree models (van den Bergh and Vermunt, 2019), and inverse

propensity weighting for the estimation of the causal effect of a treatment on latent

class membership (Clouth et al., 2022, 2023).

A similar stepwise approach for investigating the relationship between class member-

ship and a distal outcome zi was proposed by Lanza et al. (2013). They proposed

including zi as covariate in the step-one latent class model, which gives posterior

class membership probabilities containing information on its association with the la-

tent classes. For the structural model estimation, they use in fact a single indicator

approach with proportional class assignment, but without the need to correct classi-

fication errors.

4.4 Bias adjustment

The BCH method (Bolck et al., 2004) is a bias adjustment approach for latent class

and latent profile models. Similar to the single indicator approach, it is based on
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equation 4.1 which shows the relationship between P (η = c|xi) and P (fi = d|xi).

What the BCH approach does is to adjust P (fi = d|xi) so that it becomes P (ηi =

c|xi), which is the same as what Croon’s method does for continuous latent variables.

The derivation of the adjustment by Bolck et al. (2004) starts by writing equation 4.1

in matrix form: F = HD, with F, H, andD containing the P (fi = d|xi), P (η = c|xi),

and P (f = d|η = c), respectively. It can now easily be seen that H = FD−1. This

shows the adjustment involves multiplying the P (fi = d|xi) with the inverse of the

matrix with elements P (f = d|η = c).

As shown by Vermunt (2010), the BCH approach can be conceptualized as an analysis

of an expanded data set with C records per person with weight wic. Denoting the

elements of D−1 by gdc, the weight wic is obtained as follows:

wic =
C∑

d=1

P (f = d|yi)gdc.

Note that the class assignment probabilities P (f = d|yi) enter not only in this for-

mula, but also in the formula for P (f = d|η = c) from equation 4.2. Vermunt (2010)

proposed estimating the structural parameters – the logistic regression coefficients

defining P (ηi = c|xi) – by pseudo maximum likelihood using weights wic, and using

cluster robust standard errors to account for the multiple records per person and the

weighting.

The three-step BCH approach can also be used with distal outcome models (Bakk et

al., 2013). In fact, it has been shown to be superior to the three-step ML approach

when the outcome variable is a continuous variable (Bakk and Vermunt, 2016). Bolck

et al. (2004) and Bakk et al. (2013) showed how to apply this approach with multiple

latent variables. Lê et al. (2024) proposed using the BCH approach together with

inverse propensity weighting for the estimation of the causal effect of latent class
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membership on an outcome variable.

5 Remaining topics

In this section, we discuss various remaining topics which are relevant for the practical

application of stepwise latent variable modeling approaches. These include heteroge-

neous measurement or classification error resulting from measurement non-invariance

and missing data on the latent variable indicators, correction of standard error esti-

mates for the stepwise modeling, and software implementing stepwise modeling ap-

proaches.

5.1 Heterogeneous measurement or classification error

When discussing the implementation of the single indicator approach with IRT type

measurement models (Lai and Hsiao, 2022), we already touched upon the topic of

heterogeneous measurement error. Our tentative conclusion was that ignoring the

heterogeneous nature of the measurement errors probably has little impact on the

structural parameter estimates as long as it is uncorrelated with the other variables

appearing in the structural model.

Another situation in which measurement or classification errors are heterogeneous

occurs when there is missing data on the response variables y. More specifically, each

possible missing data pattern has its own λ∗ and Θ∗ values or its own P (fi = d|η =

c) values, where the quality of the estimated latent variable scores decreases when

the proportion of missing values increases. Alagöz and Vermunt (2022) investigated

whether one can ignore the classification error heterogeneity caused by missing values
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in stepwise latent class modeling. Based on a simulation study, their conclusion was

that classification error heterogeneity can indeed be ignored as long as a missing

at random (MAR) mechanism holds for the y variables concerned. An example of

a situation in which the MAR assumption is violated occurs when, conditional of

the observed y variables, covariates (which are not used in the measurement model)

affect the probability of having missing values. For the continuous latent variable

case, the effect of ignoring measurement error heterogeneity caused by missing data

has not been investigated. But most likely the same condition holds here; that is, it

can be ignored as long as we can assume the missing data is MAR when estimating

the step-one model. Heterogeneous measurement and classification errors also occurs

when the step-one model accounts for measurement non-invariance or differential item

functioning. In that case, the terms λ∗ and Θ∗ or the P (fi = d|η = c) used in the

single indicator and bias adjustment approaches vary across groups with differences

in their measurement model parameters. Lai et al. (2023) proposed a two-stage

multiple-group path analysis in which the measurement model is a multiple-group

factor analysis model and in which group-specific values are used for λ∗ and Θ∗ when

estimating the multiple-group path model. Vermunt and Magidson (2021) looked

in more detail into the latent class analysis case with measurement non-invariance

(see also Clouth et al., 2023). Their conclusion was that group-specific classification

errors P (fi = d|η = c) should be accounted for when the grouping variable is itself

part of the structural model. In other words, if the grouping variable is not used in

the structural model, the heterogeneous classification errors can be ignored. Most

likely, this same conclusion applies in the continuous latent variable case.

It should be noted that whether to account for or to ignore heterogeneous measure-

ment or classification error is not an issue in the fixed parameters approach, since
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it does not involve estimation of the latent variables scores as an intermediate step.

Instead, one fixes the measurement parameters, which may differ per group if one

accounted for measurement non-invariance in the first step.

5.2 Standard error computation

In the fixed parameters and the single indicator approach, we treat either the esti-

mated parameters from the measurement model or functions of these as known when

estimating the structural model parameters. As shown by Rosseel and Loh (2023)

and Oberski and Satorra (2013) for the continuous latent variable case and by Bakk

and Kuha (2019) and Bakk et al. (2014) for the discrete latent variable case, stan-

dard errors can be corrected for the fact that these are in fact estimates with their

own sampling variation when the structural parameters are estimated by maximizing

a log likelihood, which known as pseudo-maximum likelihood estimation (Gong and

Samaniego, 1981).

Let ΣS contain the uncorrected covariances of the parameters of the structural model,

ΣM the covariances of the measurement parameters or, in the single indicator case,

of functions of these, H the second derivatives towards the free parameters, and

C towards the free parameters with respect to the fixed parameters. The adjusted

covariance matrix of the structural parameters, Σ∗
S, is obtained as follows:

Σ∗
S = ΣS +H−1CΣMC′H−1.

In the single indicator approach ΣM can be obtained from the covariances of the

measurement parameters using the delta method. Bakk et al. (2014) illustrated this

for the latent class analysis case; that is, for the three-step ML procedure in which

ΣM contains the covariances of the logP (fi = d|η = c)/P (fi = c|η = c) terms. It
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should be noted that when dealing with dependent observations such as in multilevel

latent class models (Lyrvall et al., 2024), latent Markov models (Di Mari et al., 2016;

Vogelsmeier, et al., 2023a), and latent vector autoregressive models (Rein et al., 2024),

ΣM will be a cluster-robust parameter covariance matrix.

Similar types of standard error corrections are not available for the bias adjustment

approach. This is why, for example, the lavaan package reports global SAM based

standard errors when using the local SAM procedure. However, when applying the

BCH approach for discrete latent variables, one should account for the fact that the

expanded data set contains multiple records per person and, moreover, BCH weights.

As proposed by Vermunt (2010), this can be dealt with using complex sampling (or

cluster-robust) standard errors.

As an alternative to the frequentist approach of fixing measurement model parameters

to their first-stage point estimates and subsequently adjusting the standard error

estimates, one may use Bayesian multiple-stage estimation, as done in MUPPET

modeling. This involves dealing with parameter uncertainty by accounting for the full

first-stage posterior parameter distribution when estimating the structural parameters

(Levy, 2023; Levy and McNeish, 2024). Similar Bayesian estimation methods could

be developed for single indicator and bias adjustment approaches. For example, in

the single indicator approach, instead of using a single set of latent variable scores

obtained with point estimates of the measurement parameters, one could use multiple

sets of latent variable scores drawn from their posterior distribution while accounting

for the uncertainty of the measurement parameters.
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5.3 Software implementations

Most of the stepwise approaches we discussed are available in latent variable model-

ing software. However, with some additional some effort, each of the approaches can

be implemented without specific stepwise modeling routines. The fixed measurement

and single indicator approaches can be implemented in SEM or latent class analy-

sis software that allows imposing fixed value constraints on the model parameters.

Slightly more tedious to implement is the heterogeneous measurement case result-

ing from an IRT type measurement model, for which Lai and Hsiao (2022) provided

example code for OpenMx (Neale et al., 2016). The bias adjustment approach for

continuous latent variables involves creating an adjusted factor covariance matrix,

which can subsequently be used as input data for any structural modeling software.

For categorical latent variables, one should create an expanded data set containing

the BCH weights, after which any type of structural model can be estimated using

a weighted analysis. The only requirement is that the routine used to estimate the

structural model accepts negative weights.

LatentGOLD (Vermunt and Magidson, 2016, 2024) is one of the programs that con-

tains options for stepwise latent variable modeling. For latent class models, it imple-

ments each of the three approaches, which it refers to as the Bakk-Kuha, ML, and

BCH adjustment methods. In version 6.1, it also implements the single indicator

approach for continuous latent variables, where the step-one model can be either a

factor analysis or latent trait analysis. After estimation of the measurement model

of interest, one saves the posterior probabilities or the logdensities of the latent class

model, or the EAP factor scores and their standard errors from the factor analytic

or IRT model to an output data file. This information suffices to set up the struc-
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tural model, where it is possible to indicate that the measurement or classification

errors are heterogeneous across levels of a grouping variable. For latent class models,

the most common types of structural models (including latent Markov models) are

available via the Step3 point-and-click module. Other stepwise latent class models,

such as path models for multiple discrete latent variables and multilevel latent class

models, can be specified via the syntax system. The structural model for continuous

latent variables should always be specified with LatentGOLD’s syntax system, where

not only a simple regression or path model can be specified, but also a more complex

model, such as a mixture multiple group SEM (Perez Alonso, 2024) or a dynamic

factor model (Rein et al., 2024).

Mplus (Asparouhov and Muthén, 2014) implements the ML (single indicator) and

BCH (bias adjustment) approaches for latent class models in an automated form for

simple structural models (covariates and distal outcomes). However, it also allows

saving BCH weights to an output file and using these weights in subsequent analysis

for the estimation of more complex structural models with latent classes. The BCH

approach is also available as SAS and Stata functions for dealing with covariates and

distal outcomes (Dziak et al., 2017, 2022).

R packages implementing stepwise latent variable models include lavaan (Rosseel,

2012), multilevLCA (Lyrvall et al., 2023), lmfa (Vogelsmeier et al., 2023b), and

tidySEM (van Lissa, 2019). Lavaan implements the fixed parameters and bias adjust-

ment approaches for factor analysis and CatFA measurement models, and refers to

these as global and local SAM. The multilevLCA package implements standard and

multilevel latent class analysis with covariates for binary response variables estimated

using a two-step (or fixed parameters) approach. The lmfa package implements the
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single indicator approach for a continuous-time latent Markov model with covariates

for intensive longitudinal data, where the first step is a mixture factor analysis. Fi-

nally, tidySEM contains a BCH function for estimating structural models in which

the latent classes are treated as the grouping variable.

In addition to full R packages, various recent publications include R code which

allows researchers to apply the newly proposed method concerned with their own

data. Examples include two-step path modeling (Lai and Hsiao, 2022), MUPPET

(Levy, 2023; Levy and McNeish, 2024), mixture multiple-group SEM (Perez Alonso,

2024), and stepwise latent vector autoregressive modeling (Rein et al., 2024).

6 Discussion

An overview of stepwise latent variable approaches was provided. It was shown that

similar approaches have been proposed for factor analytic, latent trait, and latent class

type measurement models. These involve using fixed measurement parameters, latent

variable predictions as single indicators, and Croon’s or similar bias adjustments of

the latent variable predictions. We explained the logic underlying these approaches

with the appropriate references, as well as references to applications in combination

with more complex structural models. Moreover, we explained Croon’s method can

also be implemented with IRT based measurement models.

Special attention was paid to the issue of heterogeneous measurement and classifica-

tion errors, which occurs with IRT models, with missing values on the latent variable

indicators, and with measurement non-invariance. When a grouping variable causing

the measurement invariance is also used in the structural model, the heterogeneity
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should clearly be taken into account. In most other situations it appears that the

heterogeneity can be ignored, but this is something that needs further investigation.

We showed how to obtain standard errors corrected for the stepwise estimation. How-

ever, it has also been reported that this correction is not needed or that it may even

yield too conservative tests if the measurement or classification errors are not large,

and the sample is not small. This issue is also a topic requiring further investigation.

Moreover, work remains to be done for the bias adjustment approaches for which

standard error correction is not yet available. Interesting is the Bayesian MUPPET

modeling approach, which accounts for the stepwise estimation in a rather straightfor-

ward manner. Similar Bayesian estimation methods may be developed for application

in conjunction with single indicator or bias adjustment approaches. Another popular

approach for improved standard error estimation in stepwise modeling is bootstrap-

ping, which surprisingly has not yet been investigated in the context of stepwise latent

variable modeling.

We discussed software implementations of the stepwise approach, which include La-

tentGOLD, Mplus, R packages and code written in R, as well as functions written

for Stata and SAS. Given that this is a lively field of research, surely, more software

for stepwise latent variable modeling will become available in the near future.
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Table 1: Types of stepwise approaches for different measurement models

Measurement model

Stepwise approach Factor analysis Latent trait and categorical factor
analysis

Latent class, latent profile and
mixture analysis

Fixed parameters global SAM (Rosseel and Loh,
2023); MUPPET (Levy, 2023)

global SAM (Rosseel and Loh,
2023); two-step latent trait (Kuha
and Bakk, 2024); MUPPET (Levy,
2023)

two-step latent class (Bakk and
Kuha, 2018), three-step latent
Markov (Bartolucci et al. (2015),
two-step multilevel latent class (Di
Mari et al., 2023)

Single indicator two-step path analysis (Lai and
Hsiao, 2023), improved regression
calibration (Skrondal and Kuha,
2012), stepwise latent vector au-
toregressive modeling (Rein et al.,
2024)

two-step path analysis (Lai and
Hsiao, 2023) , latent trait measure-
ment error correction (Wang et al.,
2019)

three-step ML latent class (Ver-
munt, 2010; Bakk et al. 2013),
three-step ML mixture model clus-
tering (Gudicha and Vermunt,
2013), three-step latent Markov
(Di Mari et al., 2018), three-step
multilevel latent class (Lyrvall et
al., 2024), three-step mixture mod-
eling (Asparouhov and Muthén
(2014)

Bias adjustment local SAM (Rosseel and Loh,
2023), Croon’s correction (Croon,
2002), factor score regression
(Hayes and Usami, 2020; Hoshino
and Bentler, 2013), factor score
path analysis (Devlieger and
Rosseel, 2017), multilevel factor
score regression (Croon and van
Veldhoven, 2007; Devlieger and
Rosseel, 2017); Croon’s bias cor-
rected latent interactions (Cox
and Kelcey, 2021), mixture multi-
group SEM (Perez Alonso, 2024)

local SAM (Rosseel and Loh,
2023), factor score regression
(Hoshino and Bentler, 2013),
Croon’s correction (this paper)

three-step BCH latent class (Bolck
et al., 2004; Vermunt, 2010; Bakk
and Vermunt, 2016), three-step
BCH mixture model clustering
(Gudicha and Vermunt, 2013)
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