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Chapter 1

Introduction

Since many theories in the social sciences deal with processes of social
change, increasing attention is being given to the collection of longitudinal
data and to the development of methods for analyzing longitudinal data.
This book discusses techniques for analyzing a particular type of longitu-
dinal data: event history data. More precisely, it provides a general frame-
work for dealing with missing data problems in the analysis of event history
data. These missing data problems involve unobserved heterogeneity, mea-
surement error, and partial nonresponse. An important characteristic of
the approach that is presented is that it is based on using models which
were originally developed in the field of categorical data analysis.

In this introductory chapter, attention is given to the difference between
event history data and other types of longitudinal data, to methods for
analyzing event history data and their relationship with log-linear models,
and to the three above-mentioned missing data problems. In addition, an
outline of the book is presented.

1.1 Types of longitudinal data

Longitudinal data can be classified according to the type of information that
it provides about change and, as a result, the type of research questions
that can be answered using it. The term change refers to a change that
occurs in an individual’s scores on the variables of interest. Other terms
which can be used interchangeably with change are transition and event.

The least informative type of longitudinal data is time-series or trend
data. Time series are obtained by collecting the same type of information
at different points in time. But unlike other types of longitudinal data,
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there is a different sample of individuals at each point in time. As a result,
there is no information on individual changes, transitions, or events, but
only on net or aggregate changes in the population to be studied.

Panel data is obtained by investigating the same sample units at dif-
ferent points in time. Panel data, thus, provides information on the values
of the variables of interest at particular points in time. What is observed
is whether the value of a variable on one occasion equals its value on the
previous occasion. If these values are not equal, it is certain that the indi-
vidual concerned experienced at least one transition or event. On the other
hand, if the two values are equal, there may or there may not have occurred
events between the two points in time. As a result, panel data not only
provides information on net changes, but also partial information on gross
or individual changes.

Two types of longitudinal data which are more informative than panel
data but still less informative than event history data are event-count data
and event-sequence data (Tuma and Hannan, 1984:19-20). Event-count
data records the number of changes, transitions, or events that occur in
a particular time interval, while event-sequence data records the sequence
of values of the dependent variable of interest for each sample member.
Event-count data and event-sequence data can, for instance, be collected
by means of a panel design in which the number and sequence of events
between the previous and the current occasion is requested retrospectively.

Event history data is even more informative since it contains informa-
tion on the timing of changes, transitions, or events. In other words, event
history data records the number of events, their sequence, and the time at
which they occur. In experimental settings, it is generally possible to ob-
serve the subjects involved in the study continuously, which makes recording
the timing of events a rather straightforward procedure. In nonexperimen-
tal studies, it is more difficult to collect event history data. Sometimes,
event history data can be obtained from archives. Another possibility is
to gather data on the timing of events retrospectively. The best known
method is the life-history calendar which is a one-shot survey in which
information on different types of life-course events are collected simultane-
ously (Freedman et al., 1988). Another method for collecting event history
data retrospectively is by means of a panel design in which individuals are
questioned about the timing of events which occurred between subsequent
occasions.
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1.2 Methods for analyzing event history data

The general purpose of the analysis of event history data is to explain
why certain individuals are at a higher risk of experiencing the event(s)
of interest than others. This can be accomplished by using special types
of methods which, depending on the field in which they are applied, are
called failure-time models, life-time models, survival models, transition-
rate models, response-time models, event history models, duration models,
or hazard models. Here, the terms event history model and hazard model
are used interchangeably.

In hazard models, the risk of experiencing an event within a short time
interval is regressed on a set of covariates. Two special features distinguish
hazard models or event history models from other types of regression mod-
els: they make it possible to include censored observations in the analysis
and to use time-varying explanatory variables. An observation is called
censored if the event of interest did not occur before the end of the obser-
vation period. Censoring is, in fact, a form of partially missing information:
On the one hand, it is known that the event did not occur during a given
period of time, but, on the other hand, the time at which the event occurred
is unknown. Time-varying covariates are covariates that may change their
value during the observation period. The possibility of including covariates
which may change their value in the regression model makes it possible to
perform a truly dynamic analysis.

Event history models can be classified according to different types of
dimensions. The first distinction that can be made is based on the nature
of the dependent variable which is being modelled. The dependent vari-
able may be either discrete or continuous. While most of the work which
has been done in the field of event history analysis involves models for dis-
crete dependent variables, there are also methods for analyzing changes in
continuous dependent variables (Tuma and Hannan, 1984: Part 3; Allison,
1990). This book deals solely with models for discrete dependent variables.

The category of event history models for discrete dependent variables
can be subdivided into two subgroups: continuous-time methods and discrete-
time methods. As the terms indicate, the time variable is assumed to be
continuous in continuous-time methods, while in discrete-time methods it is
assumed to be discrete. In other words, the former type of methods assume
that events may occur at any point in time, while the latter type of methods
assume that changes occur at certain discrete time points. The category
of continuous-time methods can be subdivided on the basis of whether the
time dependence of the process being studied is parameterized. In paramet-
ric models, the time dependence is assumed to have a particular functional
form, while in the semi-parametric model proposed by Cox (1972), the time
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dependence remains unspecified, which means that it is not restricted at all.
In discrete-time models, it is possible to restrict the time dependence as in
parametric models or to leave it unspecified as in Cox’s model. This does
not, however, lead to fundamentally different types of models. Therefore,
it suffices to distinguish the following three main types of hazard models:
parametric continuous-time models, the Cox semi-parametric continuous-
time model, and discrete-time models.

The simplest situation in the analysis of event history data is that in
which there is only one type of event and each individual can experience
only one event, in other words, if there is a single nonrepeatable event. As
is demonstrated in Chapter 4, methods for analyzing event history data can
easily be adapted to deal with more complex situations, that is, situations
in which there are different types of events and in which individuals may
experience more than one event.

An important feature in the context of this book is the fact that hazard
models are strongly related to log-linear models for frequency tables. Both
the piecewise exponential survival model, which is a parametric continuous-
time model in which the risk of experiencing an event is assumed to be
constant within time intervals, and the Cox semi-parametric model can
be shown to be equivalent to log-linear models for the analysis of rates,
also known as log-rate models (Holford, 1980; Laird and Oliver, 1981). In
addition, it can be demonstrated that the discrete-time logit model, which
is the most frequently used discrete-time method, is a log-linear model in
the form of the modified path model proposed by Goodman (1973).

1.3 Missing data problems

This book deals with three types of missing data problems that may occur
in event history analysis: unobserved heterogeneity, measurement error,
and partial nonresponse.

Unobserved heterogeneity means that particular variables which explain
individual differences in the risk of experiencing the given event(s) being
studied cannot be included as covariates in the hazard model because they
are not observed. As is demonstrated in sections 4.6-4.8, unobserved het-
erogeneity can seriously distort the results of hazard models. It may lead
to spurious time dependence, spurious time-covariate interactions, spurious
time-varying covariate effects, spurious dependence between different types
of events, and spurious dependence between the events experienced by the
same observational unit.

Measurement error is another problem that is often conceptualized as a
missing data problem. In latent structure models, an individual’s true score
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on a variable which is measured erroneously is treated as a latent or unob-
served variable. Measurement error may distort the results obtained from
an event history model. Measurement error in the dependent variable gen-
erally leads to an overestimation of the amount of change that has occurred
since not only true change but also measurement error is contributing to
the observed change. Measurement error in the covariates used in an event
history model leads to biased parameter estimates.

In the case of unobserved heterogeneity and in the case of measurement
error, there are one or more variables which are completely unobserved, in
other words, which are missing for all subjects involved in the study. There
are, however, also situations in which information on particular variables is
partially missing, that is, observed for some persons and not observed for
others. As was mentioned above, censoring is a form of partially missing
data on the dependent variable. Although hazard models are well suited
for dealing with censored observations, the results are only valid if the
censoring mechanism is independent of the process being studied. There
may also be partially missing data in the covariates used in a hazard model.
It is well known that excluding the observations with partially missing
covariate values from the analysis may lead to biased parameter estimates
if the missing data are not missing completely at random.

The best solution to these three missing data problems is to prevent
them from occurring, that is, to observe all relevant explanatory variables,
to measure all variables without error, and to prevent partially missing
variables. If, however, there is missing data, the models which are used to
analyze the data have to be adapted to minimize the distortion caused by
missing information. In the field of event history modeling, a great deal of
work has been done on methods for dealing with unobserved heterogeneity
(Vaupel, Manton, and Stallard, 1979; Manton, Vaupel, and Stallard, 1981,
1986; Vaupel and Yashin, 1985; Heckman and Singer, 1982, 1984; Flinn
and Heckman, 1982; Trussell and Richards, 1985; Mare, 1994; Guo and
Rodriguez, 1994; Yamaguchi, 1986; Clayton and Cuzick, 1985; Heckman
and Honore, 1989). In addition, some work has been dedicated to covariates
which are measured with error (Gong, Whittemore, and Grosser, 1990)
and to covariates which are subject to partial nonresponse (Schluchter and
Jackson, 1989; Baker, 1994).

This book presents a general approach to missing data problems in event
history analysis which is based on the similarities between log-linear models
and event history models. Log-linear models which have been developed
for dealing with unobserved heterogeneity, measurement error, and partial
nonresponse are used to deal with the same kinds of missing data problems
in event history analysis. The general approach incorporates some of the
existing approaches as special cases, extends some existing approaches by
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making it possible to relax some of their basic assumptions, and leads to
some new applications, such as event history models with latent or indi-
rectly measured covariates and discrete-time logit models with measure-
ment error in the dependent variable of interest.

The general model consists of two parts: a model for the covariates
included in the model and a hazard model for the dependent process which
is to be studied. The hazard model may be either a log-rate model or a
discrete-time logit model. The model for the covariates is a modified path
model proposed by Goodman (1973). It has been shown that it is possible
to incorporate latent variables (Hagenaars, 1990) and partially observed
variables (Fay, 1986; Baker and Laird, 1988) in a modified path model.
Although the approach presented in this book is quite general, it has one
important limitation, which results from it being based on the use of log-
linear models: the missing information must be in categorical variables.
This implies that a non-parametric approach to unobserved heterogeneity is
used, that measurement error is dealt with by means of latent class models,
and that partially missing information may only occur in the dependent
variable and in covariates which are categorical.

1.4 An outline of this book

In addition to this introductory chapter, this book consists of four chapters.
Chapter 2 discusses log-linear models. The main purpose of this chapter is
to explain log-rate models, modified path models, and methods for obtain-
ing maximum likelihood estimates of the parameters of log-linear models
implemented in the `EM program (Vermunt, 1993), which, in turn, can be
used to estimate the general class of models discussed in this book. Chapter
3 shows how to incorporate variables with missing information in log-linear
models. It presents latent class models, modified path models with latent
variables, and log-linear models for nonresponse.

Chapter 4 deals with event history models. After the basic concepts
and the main types of hazard models are presented, some more advanced
topics are discussed, such as censoring, the use of time-varying covariates,
models for competing risks, and multivariate hazard models. Chapter 5
presents the general approach for dealing with missing data problems in
event history analysis. It shows how to combine the log-linear models with
latent variables and partially missing data discussed in Chapter 3 with the
log-rate and discrete-time logit models discussed in Chapter 4. In addition,
it presents a number of applications of models with unobserved hetero-
geneity, measurement error in the dependent variable, measurement error
in the covariates, partially missing information on the dependent variable,
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and partially observed covariate values.
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Chapter 2

Log-linear Analysis

Log-linear analysis has become a widely used method for the analysis of
multivariate frequency tables. There are several excellent textbooks which
give extensive overviews of categorical data analysis by means of log-linear
models (Bishop, Fienberg, and Holland, 1975; Goodman, 1978; Haberman,
1978, 1979; Fienberg, 1980; Agresti, 1990; Hagenaars, 1990). The aim of
this chapter is not to provide another overview of the field of log-linear
analysis, but to introduce those elements of log-linear modeling that are
necessary to understand the main chapters of this book.

Three topics deserve special attention: estimation by means of iterative
proportional fitting and uni-dimensional Newton, log-rate models, and log-
linear path models. Understanding iterative proportional fitting and uni-
dimensional Newton is important because these procedures for obtaining
maximum likelihood estimates are implemented in the `EM program (Ver-
munt, 1993), which was used to estimate all models discussed in this book.
Log-rate models are important because of their equivalence to piecewise
exponential survival models, which are extensively discussed in Chapter 4.
Lastly, it is important to thoroughly explain the less known log-linear path
model for at least two reasons. First, the discrete-time event history model
is a special case of this model. Second, most of the log-linear models with
missing data discussed in the following chapter are log-linear path models.

Some standard topics in log-linear modeling are introduced in the first
four sections of this chapter. In sections 2.1, 2.2, 2.3, and 2.4, atten-
tion is paid to saturated and non-saturated hierarchical log-linear mod-
els, sampling distributions, estimation procedures, and model selection, re-
spectively. Non-hierarchical log-linear models are discussed in section 2.5.
Log-rate models or models with a weight vector are presented in section
2.6. Section 2.7 demonstrates how to incorporate non-linear terms in a

9
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log-linear model. ‘Regression-analytic’ variants of the standard log-linear
model, i.e., the logit model and the multinomial response model, are pre-
sented in section 2.8. The final section deals with a ‘path-analytic’ causal
model for categorical data, Goodman’s modified path model (Goodman,
1973).

2.1 Hierarchical log-linear models

2.1.1 Saturated log-linear models

Suppose we have a frequency table formed by three categorical variables
which are denoted by A, B, and C, with indices a, b, and c. The number of
categories of A, B, and C is denoted by A∗, B∗, and C∗, respectively. Let
mabc be the expected frequency for the cell belonging to category a of A,
b of B, and c of C. The saturated log-linear model for the three-way table
ABC is given by

logmabc = u+ uAa + uBb + uCc + uABab + uACac + uBCbc + uABCabc . (2.1)

The consequence of specifying a linear model for the log of mabc is that a
multiplicative model is obtained for mabc, i.e.,1

mabc = exp
(
u+ uAa + uBb + uCc + uABab + uACac + uBCbc + uABCabc

)
= ττAa τ

B
b τ

C
c τ

AB
ab τACac τBCbc τABCabc . (2.2)

From Equations 2.1 and 2.2, it can be seen that the saturated model con-
tains all interactions terms among A, B, and C. That is, no a priori re-
strictions are imposed on the data. However, Equations 2.1 and 2.2 contain
too many parameters to be identifiable. Given the values for the expected
frequencies mabc, there is not a unique solution for the u and τ parame-
ters. Therefore, constraints must be imposed on the log-linear parameters
to make them identifiable. One option is to use ANOVA-like constraints,
namely,∑

a

uAa =
∑
b

uBb =
∑
c

uCc = 0 ,∑
a

uABab =
∑
b

uABab =
∑
a

uACac =
∑
c

uACac =
∑
b

uBCbc =
∑
c

uBCbc = 0 ,

1It should be noted that the log transformation of mabc is tractable because it restricts
the expected frequencies to remain within the admissible range. However, there are also
linear models for the analysis of categorical data (Grizzle, Starmer, and Koch, 1969). In
addition, models have been proposed which combine linear and log-linear constraints on
the expected frequencies (Haber and Brown, 1986; Lang and Agresti, 1994).
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∑
a

uABCabc =
∑
b

uABCabc =
∑
c

uABCabc = 0 .

This parameterization in which every set of parameters sums to zero over
each of its subscripts is called effect coding.2 It is the most often used pa-
rameterization in applications of log-linear modeling. In effect coding, the
u term denotes the grand mean of logmabc. The one-variable parameters
uAa , uBb , and uCc indicate the relative number of cases at the various levels of
A, B, and C as deviations from the mean. More precisely, they describe the
partial skewness of a variable, that is, the skewness within the combined
categories of the other variables. The two-variable interaction terms uABab ,
uACac , and uBCbc indicate the strength of the partial association between A
and B, A and C, and B and C, respectively. The partial association can
be interpreted as the mean association between two variables within the
levels of the third variable. And finally, the three-factor interaction param-
eters uABCabc indicate how much the conditional two-variable interactions
differ from one another within the categories of the third variable. In other
words, they describe the size of the discrepancy between the partial and
the conditional associations.

Another method to identify the log-linear parameters involves fixing the
parameters to zero for one category of A, B, and C, respectively. This pa-
rameterization, which is called dummy coding,3 is often used in regression
models with nominal regressors. Although the expected frequencies under
both parameterizations are equal, the interpretation of the parameters is
rather different. When effect coding is used, the parameters must be inter-

2Other terms which are sometimes used for this parameterization are marginal coding
and deviation from means parameterization (Willekens, 1994:123).

3This parameterization is sometimes also referred to as the partial method or reference
cell parameterization (Willekens, 1994:123).
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preted in terms of deviations from the mean, while under dummy coding,
they must interpreted in terms of deviations from the reference category
(Alba, 1987; Long, 1984).

2.1.2 Non-saturated hierarchical log-linear models

As mentioned above, in a saturated log-linear model, all possible interac-
tion terms are present. In other words, no a priori restrictions are imposed
on the model parameters apart from the identifying restrictions. However,
in most applications, the aim is to specify and test more parsimonious mod-
els, that is, models in which some a priori restrictions are imposed on the
parameters. Log-linear models in which the parameters are restricted in
some way are called non-saturated models. There are different kinds of re-
strictions that can be imposed on the log-linear parameters. One particular
type of restriction leads to the family of hierarchical log-linear models. Hi-
erarchical log-linear models are models in which the log-linear parameters
are fixed to zero in such a way that when a particular interaction effect
is included in the model, all lower-order effects containing a subset of the
indices of the effect concerned must also be included in the model. For ex-
ample, when a model contains the two-variable interaction term uABab , the
one-variable terms uAa and uBb must be included too. The opposite applies
as well. When a particular interaction term is fixed to zero, all higher-
order interaction terms containing all its indices must also be fixed to zero.
For example, if the partial association between A and B is assumed not
to be present, the three-variable interaction uABCabc must be fixed to zero as
well. Applying this latter restriction to Equation 2.1 results in the following
hierarchical log-linear model:

logmabc = u+ uAa + uBb + uCc + uACac + uBCbc .

Another example of a hierarchical log-linear model is the independence
model

logmabc = u+ uAa + uBb + uCc .

Hierarchical log-linear models are the most popular log-linear models be-
cause, in most applications, it is not meaningful to include higher-order
interaction terms without including the lower-order interaction terms con-
cerned (Agresti, 1990:144). Another reason is that it is relatively easy to
estimate the parameters of hierarchical log-linear models because of the ex-
istence of simple sufficient statistics (Bishop, Fienberg, and Holland, 1975).
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The estimation of the parameters of hierarchical log-linear models will be
discussed in the next subsections.

2.2 Sampling distributions

The above-mentioned log-linear models for the three-way frequency table
ABC are population models. However, since generally only a sample of
the population is observed, the parameters of a log-linear model that is
postulated for the population have to be estimated using the observed cell
counts nabc. The parameters of log-linear models are usually estimated by
means of the maximum likelihood method (ML). Some alternative meth-
ods are weighted least squares (Grizzle, Starmer and Koch (1969), mini-
mum chi-square (Berkson, 1968), and minimum discrimination information
(Berkson, 1972; Darroch and Ratcliff, 1972). A common element in these
methods is that the unknown parameters are found by maximizing (or
minimizing) some criterion or object function. The maximum likelihood
method estimates for the expected cell frequencies, m̂, and the parame-
ters of a log-linear model are obtained by maximization of the likelihood
function. To determine the likelihood function, it is necessary to make as-
sumptions about the sampling distribution of the observed cell counts of
a contingency table. In log-linear analysis, usually a Poisson distribution,
a multinomial, or a product-multinomial distribution is assumed (Bishop,
Fienberg and Holland, 1975:62-64; Agresti, 1990:36-39).

The Poisson sampling scheme assumes each observed cell count, nabc, to
be an independent Poisson random variable with one single parameter, the
mean mabc. This sampling scheme may be used for counting events which
occur independently of each other in time or in space. The probability
density function for the observed frequency in cell (a, b, c) is

f (nabc |mabc) =
exp (−mabc) (mabc)

nabc

nabc!
.

But, in most applications in social science, it may not be appropriate to use
a Poisson sampling scheme because under that sampling scheme, the sample
size N is assumed to be a Poisson random variable as well. This is generally
not a realistic assumption in social research since the sample size is fixed
by the sample design. However, given the total sample size N , the nabc
no longer have a Poisson distribution but a multinomial distribution with
parameters N and πabc, where πabc (mabc/N) denotes the probability of
belonging to cell (a, b, c) (Bishop, Fienberg and Holland, 1975:63; Agresti,
1990:37). The multinomial probability density for the observed cells in
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table ABC is

f (nabc|N ;πabc) =

(
N !∏

abc nabc!

)∏
abc

(πabc)
nabc ,

where the indices a, b, and c of
∏

indicate that the product is over all cell
entries.

The multinomial density function can be applied when a simple random
sample is taken from a population with fixed N . However, it is also possible
to condition on the observed marginal distribution of one or more variables
included in the model instead of on the total sample size N . This may
be useful when the observed cell counts of table ABC are obtained with
a stratified sample. For example, when a simple random sample is taken
within levels of A, it may be assumed that the observed frequencies in
every stratum come from A∗ independent multinomial distributions with
parameters Na (=

∑
bc nabc) and πbc|a. This sampling scheme is called

independent multinomial sampling or product-multinomial sampling. In
this case, the probability density function for the observed frequencies in
the cells with A = a is

f (nabc|Na;πabc) =

(
Na!∏
bc nabc!

)∏
bc

(πbc|a)nabc .

Independent multinomial sampling is especially useful for models in which
a distinction is made between dependent and independent variables, such
as in logit models and multinomial response models. In such cases, inde-
pendent binomial or multinomial sampling is assumed for each of the joint
categories of the independent variables.

The three sampling schemes discussed above are very strongly related:
multinomial sampling is equivalent to Poisson sampling with fixed N , and
product-multinomial sampling is equivalent to Poisson sampling with a
marginal distribution which has been fixed by the sampling design or by
the nature of the model to be estimated. The implication of this equiva-
lence is that in maximum likelihood estimation, a likelihood function based
on Poisson sampling may also be used in cases in which multinomial or
product-multinomial sampling is assumed. However, when a Poisson likeli-
hood is used instead of a multinomial or a product-multinomial likelihood,
the log-linear effects belonging to the fixed margins have to be included in
the model. For multinomial sampling, this implies including the u term, the
grand mean, in the model. In the above example of product-multinomial
sampling with fixed margins A, uAa has to be included. Note that in such
situations u and uAa are not random but fixed quantities.



2.3. MAXIMUM LIKELIHOOD ESTIMATION 15

2.3 Maximum likelihood estimation

After defining a particular log-linear model, estimates for the model param-
eters have to be obtained by means of the observed data and the assump-
tions implied by the model. Here, only maximum likelihood estimation will
be used. The likelihood function is the ‘probability’ function of the data,
i.e., the observed frequencies nabc, given the postulated sampling scheme
and the values of the (unknown) parameters. Maximum likelihood esti-
mates are those estimated parameter values that maximize the likelihood
function, or, in other words, that maximize the ‘probability’ or the likeli-
hood of occurrence of the observed data.

2.3.1 Sufficient statistic and likelihood equations

In this subsection, it is demonstrated how to obtain maximum likelihood
estimates for the expected frequencies for a specific hierarchical log-linear
model assuming a Poisson sampling scheme, which is the simplest sam-
pling scheme. Moreover, it can easily be transformed into a multinomial
or product-multinomial sampling scheme by including particular effects in
the log-linear model. Assuming Poisson distributed data, the kernel of the
log-likelihood function is

logL =
∑
abc

(nabc logmabc −mabc) , (2.3)

where the expected frequencies mabc are a function of the unknown u pa-
rameters. The kernel of the likelihood function is that part of the likeli-
hood function that depends on the parameters to be estimated. Therefore,
it is the only part that has to be considered. Moreover, the log-likelihood
function is presented instead of the likelihood function, since for most prob-
ability functions, including the Poisson and the multinomial, it is simpler
to maximize the log-likelihood function than the likelihood function itself.
Because the log of the likelihood function is a monotone function of it, this
does not make any difference for the estimated parameters values.

Suppose we want to find maximum likelihood estimates for the param-
eters of the hierarchical log-linear model

logmabc = u+ uAa + uBb + uCc + uABab + uBCbc . (2.4)

Substitution of Equation 2.4 into Equation 2.3 gives

logL =
∑
abc

nabc
(
u+ uAa + uBb + uCc + uABab + uBCbc

)
−
∑
abc

exp
(
u+ uAa + uBb + uCc + uABab + uBCbc

)
.
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By collapsing the cells which contain the same u parameter, the log-likelihood
function simplifies to

logL = n+++u+
∑
a

na++u
A
a +

∑
b

n+b+u
B
b +

∑
c

n++cu
C
c

+
∑
ab

nab+u
AB
ab +

∑
bc

n+bcu
BC
bc

−
∑
abc

exp
(
u+ uAa + uBb + uCc + uABab + uBCbc

)
, (2.5)

where a + is used as a subscript to denote that the observed frequencies
have to be collapsed over the dimension concerned. It can now be seen that
the observed marginals n+++, na++, n+b+, n++c, nab+, and n+bc contain
all the information needed to estimate the unknown parameters. Because
knowledge of the bivariate marginals AB and BC implies knowledge of
n+++ and of the univariate marginals A, B, and C, nab+ and n+bc are the
minimal sufficient statistics for the model given in Equation 2.4. These two
marginals AB and BC contain all the information necessary for estimating
the log-linear parameters of the model described in Equation 2.4.

In hierarchical log-linear models, the minimal sufficient statistics are
always the marginals corresponding to the interaction terms of the highest
order. For this reason, hierarchical log-linear models are mostly denoted
by their minimal sufficient statistics (Goodman, 1978; Agresti, 1990:166-
167; Hagenaars, 1990:50). The model given in Equation 2.4 may then
be denoted as {AB,BC}, the independence model as {A,B,C}, and the
saturated model as {ABC}.

To obtain maximum likelihood estimates for the model parameters of
Equation 2.4, it is necessary to find the parameter values that maximize the
log-likelihood function of Equation 2.5. This can be accomplished by differ-
entiating the log-likelihood function with respect to the unknown parame-
ters and setting the result equal to zero. Differentiating the log-likelihood
function concerned with respect to the u parameters gives

∂ logL
∂u

= n+++ −
∑
abc

mabc = n+++ −m+++ ,

∂ logL
∂uAa

= na++ −
∑
bc

mabc = na++ −ma++ ,

∂ logL
∂uBb

= n+b+ −
∑
ac

mabc = n+b+ −m+b+ ,

∂ logL
∂uCc

= n++c −
∑
ab

mabc = n++c −m++c ,
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∂ logL
∂uABab

= nab+ −
∑
c

mabc = nab+ −mab+ ,

∂ logL
∂uBCbc

= n+bc −
∑
a

mabc = na+c −ma+c .

Setting these derivatives to zero yields likelihood equations

n+++ = m̂+++ ,

na++ = m̂a++ ,

n+b+ = m̂+b+ ,

n++c = m̂++c ,

nab+ = m̂ab+ , (2.6)

n+bc = m̂+bc , (2.7)

where the m̂’s denote estimates for the expected marginal cell count con-
cerned. It can easily be seen that if the last two conditions are fulfilled, the
other four are fulfilled as well. Therefore, Equations 2.6 and 2.7 determine
the maximum likelihood estimates for the expected frequencies mabc and
the corresponding log-linear parameters. In other words, in the maximum
likelihood solution, the table containing the estimated expected frequen-
cies has the same marginals AB and BC as the table with the observed
frequencies. The same holds for any other hierarchical log-linear model.
In hierarchical log-linear models, the minimal sufficient statistics are equal
to the marginals which have to be reproduced according to the specified
model.

The other two sampling schemes mentioned above lead to the same
likelihood equations because the additional conditions are automatically
fulfilled. In the case of multinomial sampling,

∑
abc m̂abc has to be equal

to the total sample size N , or n+++. Moreover, when multinomial sam-
pling is assumed within the categories of A,

∑
bc m̂abc has to be equal to

na++. Thus, the inclusion of mean effect u in a log-linear model makes
the estimates under a Poisson sampling scheme identical to the ones ob-
tained under a multinomial sampling scheme. Furthermore, the inclusion of
effect uAa causes Poisson sampling to be identical to independent multino-
mial sampling within categories of A (Bishop, Fienberg and Holland, 1975;
Agresti, 1990).

2.3.2 The iterative proportional fitting algorithm

For some models, there are closed form solutions for the estimated expected
frequencies m̂abc, that is, the conditions given in the likelihood function can
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be fulfilled without using an iterative method. Actually, all log-linear model
which are decomposable graphical models have closed form solutions for the
estimated expected frequencies (Whittaker, 1990: section 10.4; Wermuth
and Lauritzen, 1983, 1990). Model {AB,BC} is such a model because it
implies the conditional independence of A and C given B. The estimated
expected frequencies for this model are found by

m̂abc =
m̂ab+m̂+bc

m̂+b+
=

nab+n+bc

n+b+
.

In the tradition of graphical modeling, where models have to be formulated
in terms of conditional independence, it is sometimes also written as

m̂abc = nab+pc|b = Npab+pc|b ,

where pab+ denotes the observed probability that A = a and B = b, and
pc|b the observed probability that C = c given B = b. The independence
model and the saturated model are other examples of models which have
closed solutions. In the saturated model, m̂abc = nabc.

When no closed form expression exists for m̂abc, maximum likelihood
estimates for the expected cell counts can be found by means of the iterative
proportional fitting algorithm (IPF) (Deming and Stephan, 1940; Fienberg
1970; Darroch and Ratcliff (1972). This a conceptually and computation-
ally simple procedure. Its basic principle is that the marginal constraints
from the likelihood equations are satisfied by adjusting the estimated ex-
pected frequencies. Often, this has to be done iteratively because there
is no guarantee that after fulfilling one set of conditions, the previous re-
strictions are still satisfied. The iterations continue until convergence is
reached, in other words, until the estimated expected frequencies do not
change more than an arbitrary small constant. The IPF algorithm can also
be applied to models for which closed formed expressions exist. In such
cases, the algorithm converges after two iterations when the table which
is being analyzed does not consist of more than six variables (Haberman,
1974:197).

Let m̂
(ν)
abc denote the estimated expected frequencies after the νth IPF

iteration. Before starting the first iteration, arbitrary starting values are
needed for the log-linear parameters that are in the model. In most com-
puter programs based on the IPF algorithm, the iterations are started with
all the u parameters equal to zero, in other words, with all estimated ex-

pected frequencies m̂
(0)
abc equal to 1. It is important to note that the m̂

(0)
abc

may not implicitly contain parameters that are not included in the model.
For the model in Equation 2.4, every IPF iteration consists of the following
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two steps:

m̂
(ν)′

abc = m̂
(ν−1)
abc

nab+

m̂
(ν−1)
ab+

,

m̂
(ν)
abc = m̂

(ν)′

abc

n+bc

m̂
(ν)′

+bc

,

where the m̂
(ν)′

abc and m̂
(ν)
abc denote the improved estimated expected frequen-

cies after imposing the restrictions of Equations 2.6 and 2.7, respectively.

Obtaining the log-linear parameters If there are no zero-estimated
expected frequencies, the log-linear parameters can easily be computed by
means of the estimated expected frequencies.4 When ANOVA-like con-
straints are imposed on the parameters, that is, when effect coding is used
to identify the parameters, the log-linear parameters can be computed in
two different ways. One method consists of calculating the average of the
log of the estimated expected frequencies given the values of the variables
appearing in the u parameters concerned and, subsequently, subtracting
the lower other effects (Bishop, Fienberg and Holland, 1975:16-17; Hage-
naars, 1990:38). In the other method, the parameters are calculated by
means of mean removal on the logs of the estimated expected frequencies
(Laird and Olivier, 1981). The latter method is explained in more detail
in Appendix A.1. The difference between the two methods is that in the
former, the lower-order effects are removed after calculating the mean of
the log m̂abc’s, while in the latter, an effect is directly removed from the
estimated expected frequencies, or, in other words, before calculating the
next set of parameters. Of course, both methods give identical values for
the parameter estimates.5

Although the IPF algorithm is very attractive because of its simplicity
and its computational efficiency, it has two serious disadvantages. In its
simplest form, it can handle only hierarchical log-linear models and it does
not supply standard errors for the parameter estimates.

4It should be noted that if the observed table contains zero cell counts, maximum like-
lihood estimates for the log-linear parameters may not exist (Haberman, 1974; Agresti,
1990:245). Maximum likelihood estimates do not exist if there are zero counts in the
sufficient marginal cells. However, even if all sufficient statistics are positive, maximum
likelihood estimates may not exist. A well-known example occurs in the case of the no-
three-variable interaction model for a 2-by-2-by-2 table. The parameters of this model
cannot be estimated if there is more than one zero observed frequency (Santner and
Duffy, 1989).

5Another method, which is explained in more detail in section 2.6 and in Appendix
A.2, is based on using the cumulated multipliers of the IPF iterations rather than the
estimated expected frequencies.
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2.4 Model selection

2.4.1 Testing goodness of fit

The goodness of fit of a postulated log-linear model can be assessed by
comparing the observed frequencies, n, with the estimated expected fre-
quencies, m̂. For this purpose, usually two chi-square statistics are used:
the likelihood-ratio statistic and the Pearson statistic. For a three-way
table, the Pearson chi-square statistic equals

X2 =
∑
abc

(nabc − m̂abc)
2

m̂abc
,

and the likelihood-ratio chi-square statistic is

L2 = 2
∑
abc

nabc log

(
nabc
m̂abc

)
. (2.8)

The number of degrees of freedom for a particular model is

df = number of cells− number of independent u parameters.

When structural zeros occur in the estimated expected frequencies or when
some parameters cannot be estimated as a result of zeros in the sufficient
statistics, the calculation of the number of degrees of freedom is a bit more
complicated (Clogg and Eliason, 1987). In such cases, df can be obtained
by

df = number of non-zero fitted cells

− number of estimable u parameters.

Both chi-square statistics have asymptotic, or large sample, chi-square dis-
tributions when the postulated model is true. In the case of small sample
sizes and sparse tables, the chi-square approximation will generally be poor
(Read and Cressie, 1988; Agresti, 1990:246). Koehler and Larntz (1980)
and Koehler (1986) showed that X2 is valid with smaller sample sizes and
sparser tables than L2. They showed that the distribution of L2 is usually
poor when the sample size divided by the number of cells is less than 5
(Agresti, 1990:246). Therefore, when sparse tables are analyzed, it is best
to use both chi-square statistics together. When X2 and L2 have almost
the same value, it is more likely that both chi-square approximations are
good. Otherwise, at least one of the two approximations is poor. Haberman
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(1978: section 5.3) showed that when tables are sparse, both chi-square ap-
proximations are not only poor, but they also have different distributions.6

Recently, Read and Cressie (1988) introduced a family of statistics,

2

λ (λ+ 1)

∑
abc

nabc

[(
nabc
m̂abc

)λ
− 1

]
,

called power divergence statistics. This is equal to X2 for λ = 1 and L2 as
λ → 0. Read and Cressie recommended the statistic with λ = 2/3, which
they found less susceptible to effects of sparseness than X2 and L2 (Agresti,
1990:249). A simulation study of Collins et al. (1993) showed, however,
that in the context of latent class analysis X2 performs better than both
the Read-Cressie and the L2 statistic.

2.4.2 Comparison of models

The likelihood-ratio chi-square statistic is actually a conditional test for
the significance of the difference in the value of the log-likelihood function
for two nested models. Two models are nested when the restricted model
has to be obtained by only linearly restricting some parameters of the un-
restricted model. Thus, the likelihood-ratio statistic can be used to test
the significance of the additional free parameters in the unrestricted model,
given that the unrestricted model is true in the population. Assuming
multinomial sampling, L2 can be written more generally as

L2
(r|u) =

(
−2 logL(r)

)
−
(
−2 logL(u)

)
= 2nabc log π̂abc(u) − 2nabc log π̂abc(r)

= 2nabc log

(
m̂abc(u)

m̂abc(r)

)
,

where the subscript (u) refers to the unrestricted model and the subscript
(r) to the restricted model. Note that in Equation 2.8, a particular model
is tested against the completely unrestricted model, the saturated model.
Therefore, in Equation 2.8, the estimated expected frequency in the numer-
ator is the observed frequency nabc. The L2

(r|u) statistic has a large sample
chi-square distribution if the restricted model is approximately true. The
approximation of the chi-square distribution may be good for conditional

6An alternative approach is based estimating the sampling distributions of the statis-
tics concerned rather than using their asymtotic distributions. This can be done by
bootstrap methods (Langeheine, Pannekoek, and Van de Pol, 1996). These computa-
tionally intensive methods are becoming more and more applicable as computers become
faster.
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L2 tests between non-saturated models even if the test against the satu-
rated model is problematic, as in sparse tables (Haberman, 1977, 1978:325).
The number of degrees of freedom in conditional tests equals the number
of parameters which are fixed in the restricted model compared to the
unrestricted model. The L2

(r|u) statistic can also be computed from the

unconditional L2 values of two nested models,

L2
(r|u) = L2

(r) − L
2
(u) ,

with

df(r|u) = df(r) − df(u) .

Another approach to model selection is based on information theory.7 The
aim is not to detect the true model but the model that provides the most
information about the real world. The best known information criteria are
the Akaike information criterion (AIC) (Akaike, 1987) and the Bayesian
information criterion (BIC) (Schwarz, 1978; Raftery, 1986, 1993). These
two measures, which can be used to compare both nested and non-nested
models, are defined as

AIC = −2 logL+ 2npar , (2.9)

BIC = −2 logL+ (logN)npar , (2.10)

where npar denotes the number of unknown parameters. The lower the
AIC or BIC, the better a particular model, or the more information it
contains. It can be seen that the two information criteria give a different
weight to the parsimony of a model. In the context of log-linear modeling,
they are most often calculated as

AIC∗ = L2 − 2 df .

BIC∗ = L2 − logN df .

These are, in fact, conditional information indices which compare the model
of interest with the saturated model. For example, AIC∗ can also be ob-
tained by subtracting the value ofAIC for the saturated model, −2nabc log(nabc/N)+
2(number of cells), from the value of AIC for the model concerned.

For more extended overviews on model testing and model selection in
log-linear analysis, see Read and Cressie (1988), Agresti (1990: Chapter 7),
and Hagenaars (1990:56-68).

7An interesting approach which is not discussed here are R-squared measures for
categorical data based on different types of definitions of dispersion (Magidson, 1981;
Gilula and Haberman, 1994).
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2.5 Non-hierarchical log-linear models

So far, attention has been paid to only one special type of log-linear models,
the hierarchical log-linear models. As demonstrated, hierarchical log-linear
models are based on one particular type of restriction on the log-linear
parameters. But, when the goal is to construct models which are as parsi-
monious as possible, the use of hierarchical log-linear models is not always
appropriate. To be able to impose other kinds of linear restrictions on the
parameters, it is necessary to use more general kinds of log-linear models.

As demonstrated in Appendix B, log-linear models can also be defined
in a much more general way by viewing them as a special case of the gen-
eralized linear models (GLM) (Nelder and Wedderburn, 1972; McCullagh
and Nelder, 1983: Chapter 6, 1989). In its most general form, a log-linear
model can be defined as

logmi =
∑
j

βjxij , (2.11)

where i denotes a cell entry, βj is a particular u term, and xij is an element
of the design matrix.

The design matrix provides us with a very flexible tool for specifying
log-linear models with various restrictions on the parameters. Detailed
discussions on the use of design matrices in log-linear analysis can be found
in, for instance, Evers and Namboodiri (1977), Haberman (1978, 1979),
and Rindskopf (1990).

2.5.1 Possible specifications of the design matrix

Suppose we want to specify the design matrix for an hierarchical log-linear
model of the form {AB,BC}. Assume that A∗, B∗, and C∗, the number of
categories of A, B, and C, are equal to 3, 3, and 4, respectively. Because in
that case model {AB,BC} has 18 independent parameters to be estimated,
the design matrix will consist of 18 columns: 1 column for the mean effect
u, 7 ([A∗− 1] + [B∗− 1] + [C∗− 1]) columns for the one-variable terms uAa ,
uBb , and uCc , and 10 ([A∗−1]∗ [B∗−1]+ [B∗−1]∗ [C∗−1]) columns for the
two-variable interaction terms uABab and uBCbc . The exact values of the cells
of the design matrix, the xij , depend on the restrictions which are imposed
to identify the parameters. Suppose, for instance, that column j refers
to the one-variable term uAa and that the highest level of A, A∗, is used
as the (arbitrary) reference category. In effect coding, the element of the
design matrix corresponding to the ith cell, xij , will equal 1 if A = a, -1 if
A = A∗, and otherwise 0. On the other hand, in dummy coding, xij would
be 1 if A = a, and otherwise 0. The columns of the design matrix referring
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to the two-variable interaction terms can be obtained by multiplying the
columns for the one-variable terms for the variables concerned (Evers and
Namboodiri, 1977; Haberman, 1978).

The design matrix can also be used to specify all kinds of non-hier-
archical models. Actually, by means of the design matrix, three kinds of
linear restrictions can be imposed on the log-linear parameters: a parameter
can be fixed to zero, a parameter can be specified to be equal to another
parameter, and a parameter can be specified to be in a fixed ratio to another
parameter.

The first kind of restriction, fixing a parameter to zero, can be accom-
plished by simply deleting the column of the design matrix referring to the
effect concerned. Note that, in contrast to hierarchical log-linear models,
parameters can be fixed to be equal to zero without the necessity of deleting
the higher-order effects containing the same indices.

Imposing equality restrictions among parameters is likewise very simple.
Equality restrictions can be imposed by adding up the columns of the design
matrix which belong to the effects which are assumed to be equal. Suppose,
for instance, that we want to specify a model with a symmetric association
between the variables A and B, each having three categories. This implies
that

uABab = uABba .

When using effect coding, the design matrix for the unrestricted effect uABab
contains four columns, one for each of the parameters uAB11 , uAB12 , uAB21 ,
uAB22 . In terms of these four parameters, the symmetric association between
A and B implies that uAB12 is assumed to be equal to uAB21 . This can be
accomplished by summing the columns of the design matrix referring to
these two effects.8

As already mentioned above, parameters can also be restricted to be
in a fixed ratio to each other. This is especially useful when the variables
concerned can be assumed to be measured on a interval level scale, with
known scores for the different categories. Suppose, for instance, that we
want to restrict the one-variable effect of variable A to be linear. Assume
that the categories scores of A, denoted by a, are equidistant, that is, that
they take values 1, 2, and 3. Retaining the effect coding scheme, a linear

8Log-linear models with symmetric interaction terms may be used for various pur-
poses. In longitudinal research, they may be applied to test the assumption of marginal
homogeneity (Agresti, 1990:387-388; Hagenaars, 1990:156-162). Other applications of
log-linear models with symmetric association parameters are Rasch models for dichoto-
mous (Mellenbergh and Vijn, 1981; Kelderman, 1984) and polytomous items (Agresti,
1993) and for repeated categorical measurements (Conaway, 1989).
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effect of A is obtained by

uAa = (a− ā)uA .

Here, ā denotes the mean of the category scores of A, which in this case is
2. Moreover, uA denotes the single parameter describing the one-variable
term for A. It can be seen that the distance between the uAa parameters
of adjacent categories of A is uA. In terms of the design matrix, such a
specification implies that instead of including A∗ − 1 columns for the one-
variable term for A, one column with scores (a− ā) has to be included.

These kinds of linear constraints can also be imposed on the bivariate
interaction parameters of a log-linear model. The best known examples are
linear-by-linear interaction terms (Haberman, 1979: Chapter 6) and row-
or column-effect models (Goodman, 1979, 1984; Clogg, 1982; Clogg and
Shihadeh, 1994). When specifying a linear-by-linear interaction term, it
is assumed that the scores of the categories of both variables are known.
Assuming equidistant scores for the categories of the variables A and B and
retaining the effect coding scheme, the linear-by-linear interaction between
A and B is given by

uABab = (a− ā)(b− b̄)uAB .

Using this specification, which is sometimes also called uniform association,
the (partial) association between A and B is described by a single parameter
instead of using (A∗−1)(B∗−1) independent uABab parameters. As a result,
the design matrix contains only one column for the interaction between A
and B consisting of the scores (a− ā)(b− b̄).

A row association structure is obtained by assuming the column variable
to be linear. When A is the row variable, a row association is defined as

uABab = (b− b̄)uABa .

Note that for every value of A, there is a uABa parameter. Actually, there
are (A∗−1) independent row parameters. Therefore, the design matrix will
contain (A∗−1) columns which are based on the scores (b− b̄). The column
association model is, in fact, identical to the row association model, only
the roles of the column and row variable change.

2.5.2 Estimation

Finding maximum likelihood estimates for the parameters of non-hierarchi-
cal log-linear models is a bit more complicated than for the hierarchical
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log-linear model because the sufficient statistics are no longer equal to par-
ticular observed marginals. For GLMs, ML estimates for the model pa-
rameters may be obtained with Fisher’s scoring algorithm (McCullagh and
Nelder, 1983:31-34, 1989). If, as in the application used here, a canonical
link is used, the scoring algorithm is equivalent to the Newton-Raphson al-
gorithm (Agresti, 1990:114). The Newton-Raphson algorithm for obtaining
maximum likelihood estimates for the parameters of the general log-linear
model given in Equation 2.11 is explained in Appendix C.1.

The Newton-Raphson algorithm, which is implemented in, among oth-
ers, the GLIM program and Haberman’s FREQ program, has two strong
points: it converges in a few iterations and it supplies standard deviations
of the parameters as a by-product. However, when a model contains many
parameters, the necessary computation and inversion of the Hessian ma-
trix, the matrix of second-order derivatives to all parameters, is very time
consuming. Another weak point of the Newton-Raphson algorithm is that
it may become unstable when some estimated expected cell counts come in
the neighborhood of zero as a result of the fact that a particular log-linear
parameter goes to minus infinity.

An alternative to the Newton-Raphson algorithm is the uni-dimensional
Newton algorithm. It differs from the multi-dimensional Newton algorithm
in that it adjusts only one parameter at a time instead of adjusting them
all simultaneously. In that sense, it resembles IPF. Instead of using the
complete Hessian matrix, the uni-dimensional Newton algorithm uses only
the diagonal element belonging to the parameter to be updated (Andersen,
1990; Jensen, Johansen and Lauritzen, 1991).

Goodman (1979) presented a slightly different version of the uni-dimensional
Newton algorithm, which he used to estimate the uniform association mod-
els and the row and column association models discussed above (see also
Clogg 1982). Goodman’s algorithm, which is discussed in more detail in

Appendix D.1, is also implemented in the `EM program (Vermunt, 1993).
There it is used to estimate any log-linear model of the general form of
Equation 2.11. Experience with the `EM program shows that Goodman’s
algorithm is very stable, even when ‘bad’ starting values are used, such as
starting values of zero for all β parameters.

Generally, the uni-dimensional Newton algorithm needs more iterations
to converge than the Newton-Raphson algorithm. But the difference in
number of iterations depends greatly on the magnitude of the correlations
among the parameters because that is the information which is disregarded
by the uni-dimensional Newton algorithm. Experience with `EM shows
that when the parameters are not too highly correlated, approximately
two or three times as many iterations are needed by the uni-dimensional
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Newton algorithm. But, when the correlations within a particular set of
parameters are high, many more iterations may be needed. Because the uni-
dimensional Newton algorithm does not require computation and inversion
of the complete Hessian matrix, each iteration costs very little computer
time, even with many parameters.

In Appendix D.1, it is demonstrated that IPF is a special case of Good-
man’s version of the uni-dimensional Newton algorithm. Goodman’s uni-
dimensional Newton algorithm can be seen as a generalization of the IPF
algorithm discussed in the context of hierarchical log-linear models. There
is also another generalization of IPF, namely, the well known generalized
iterative scaling algorithm developed by Darroch and Ratcliff (1972). How-
ever, the uni-dimensional Newton algorithm is much more flexible in that
it does not force the values of the design matrix to be greater than or equal
to zero. Moreover, for most problems, the uni-dimensional Newton algo-
rithm converges in far fewer iterations than the generalized iterative scaling
algorithm (Goodman, 1979).

2.6 Log-rate models or log-linear models with
a weight vector

The general log-linear model discussed in the previous section can be ex-
tended to include an additional component, viz., a weight for each mi

denoted by zi (Haberman, 1978:43-61; Laird and Olivier, 1981). These
weights can be used to specify log-rate models, to perform a weighted anal-
ysis, to fix log-linear parameters to a particular value, and to analyze in-
complete tables.

The log-linear model with a weight vector is given by

log

(
mi

zi

)
=

∑
j

βjxij

which can also written as

logmi = log zi +
∑
j

βjxij ,

where the zi are fixed a priori. Sometimes the vector with elements log zi
is also called the offset matrix.

The specification of a zi for every cell of the contingency table can be
used for many different purposes. One possible use of a weight vector is for
specifying Poisson regression models for the number of events mi in which
one takes into account the population sizes or the length of the observation
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period. This leads to what is called a log-rate model, a model for rates
instead of frequency counts (Haberman, 1978; Willekens and Shah, 1983;
Clogg and Eliason, 1987). A rate is a count divided by some quantity, gen-
erally the size of the population exposed to some risk (Fleiss, 1981). As will
be demonstrated in Chapter 4, log-rate models are equivalent to piecewise
exponential survival models (Holford, 1976, 1980; Laird and Olivier, 1981).

The weight vector can also be used to correct for the sample design or
for selection resulting from nonresponse (Clogg and Eliason, 1987, Agresti,
1990:198). In that case, the zi must be set equal to the inverse of the
sampling weights. The offset matrix may also be used to incorporate fixed
effects in a log-linear model. This can be accomplished by adding the
values of the β parameters which attain fixed values to the corresponding
log zi’s. Lastly, the vector with weights may be used to analyze tables with
structural zeros, sometimes also called incomplete tables (Fienberg, 1972;
Haberman, 1979: Chapter 7). This can be accomplished by setting the zi’s
for the cells which are structurally zero equal to zero.

Estimation Log-linear models with a weight vector can be estimated
with the same estimation procedures used for the other log-linear models
discussed so far. The GLIM program and Haberman’s FREQ program,
which are both based on the Newton-Raphson algorithm, allow the user to
specify an offset matrix, or a weight vector. When using the IPF algorithm
or the uni-dimensional Newton algorithm, the only necessary modification
is that zi must be used as the starting value for the estimated expected fre-

quencies instead of starting with all m
(0)
i equal to one. It should be noted

that when using IPF, the log-linear parameters can no longer be calculated
by means of the estimated expected frequencies, but rather they must be
calculated by means of mi/zi. However, when particular zi are equal to
zero, an alternative procedure implemented in, for instance, the LOGLIN
program (Olivier and Neff, 1976) and the `EM program (Vermunt, 1993)
has to be used. This procedure which is based on using cumulated multipli-
ers rather than estimated expected cell frequencies is discussed in Appendix
A.2.

2.7 Models with log-multiplicative effects

Goodman’s row-column associations II The log-linear model is one
of the GLMs, that is, it is a linear model for the logs of the cell counts
in a frequency table. However, extensions of the standard log-linear model
have been proposed which imply the inclusion of non-linear terms, the best
known example being the log-multiplicative row-column association models,
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also denoted as RC association models type II, developed by Goodman
(1979, 1984) and Clogg (1982) (see also Clogg and Shihadeh, 1994). These
row-column association models differ from the association models discussed
in section 2.5 in that the row and column scores are not a priori fixed,
but are treated as unknown parameters which have to be estimated as
well. More precisely, a linear-by-linear interaction is assumed between two
variables, given the unknown column and row scores.

Suppose we have a model for a three-way frequency table ABC contain-
ing log-multiplicative terms for the relationships between A and B and B
and C. This gives the following log-multiplicative model:

logmabc = u+ uAa + uBb + uCc + µABa φABµABb + µBCb φBCµBCc . (2.12)

The φ parameters describe the strength of the association between the
variables concerned. The µ’s are the unknown scores for the categories
of the variables concerned. As in standard log-linear models, identifying
restrictions have to be imposed on the parameters µ. One possible set of
identifying restrictions on the log-multiplicative parameters which was also
used by Goodman (1979) is:∑

a

µABa =
∑
b

µABb =
∑
b

µBCb =
∑
c

µBCc = 0∑
a

(
µABa

)2
=
∑
b

(
µABb

)2
=
∑
b

(
µBCb

)2
=
∑
c

(
µBCc

)2
= 1 .

This gives row and column scores with a mean of zero and a sum of squares
of one. More recently, alternative identifying restrictions have been pro-
posed in which the µ’s are weighted, for instance, by the observed margins
(Becker and Clogg, 1989; Goodman, 1991).

On the basis of the model described in Equation 2.12, both more re-
stricted models and less restricted models can be obtained. One possible
restriction is to assume the row and column scores within a particular par-
tial association to be equal, for instance, µABa equal µABb for all a equal to
b (Goodman, 1979). Of course, this presupposes that the number of rows
equals the number of columns. Such a restriction is often used in the anal-
ysis of mobility tables (Luijkx, 1994). It is also possible to assume that the
scores for a particular variable are equal for different partial associations
(Clogg, 1982), for example, µABb = µBCb . Less restricted models may allow
for different µ and/or φ parameters within the levels of some other variable
(Clogg, 1982), for example, different values of µABa , µABb , or φAB within
levels of C. To test whether the strength of the association between the
variables father’s occupation and son’s occupation changes linearly with
time, Luijkx (1994) specified models in which the φ parameters are a linear
function of time (see also Wong, 1995).
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A general class of log-multiplicative effects As mentioned above,
the RC association models assume a linear-by-linear interaction in which
the row and column scores are unknown. Xie (1992) demonstrated that
the basic principle behind Goodman’s RC association models, i.e., linearly
restricting log-linear parameters with unknown scores for the linear terms,
can be applied to any kind of log-linear parameter. He proposed a general
class of log-multiplicative models in which higher-order interaction terms
can be specified in a parsimonious way.9 An example of such a model is

logmabc = u+ uAa + uBb + uCc + uABab φ
AB
c + uACac + uBCbc .

This model contains, apart from the one and two-variable interaction pa-
rameters for A, B, and C, a three-variable interaction term defined by
the multiplicative factor φABc . As can be seen, this three-variable interac-
tion term has a very specific form. Actually, the interaction term uABab is
assumed to be equal among levels of C, except for a multiplicative scal-
ing factor. In other words, the structure of the partial association AB is
equal among levels of C, but the strength of the partial association AB
differs among levels of C. This leads, of course, to a very parsimonious
specification of higher-order interaction terms. In this case, only C∗ − 1
instead of (A∗− 1)(B∗− 1)(C∗− 1) additional parameters are used for the
three-variable interaction term.

For the sake of simplicity, the interaction term uABab was not restricted.
However, using Xie’s approach, it is possible to restrict uABab as well. Xie
(1992) gave examples of a symmetric association, a linear-by-linear asso-
ciation, and different kinds of row and column associations. In its most
general form, the log-multiplicative model proposed by Xie can be written
as

logmi =
∑
k

∑
jk

βjkxijk

φkxik ,
where k is the index for the multiplicative terms and jk is the index for
an effect belonging to the kth multiplicative term. Of course, by setting

9Another type of generalization of the log-multiplicative models discussed above in-
volves describing the (partial) association between two categorical variables by means of
several sets of row and column scores (Goodman, 1986; Becker, 1989; Becker and Clogg,
1989; Clogg and Shihadeh, 1994: Chapter 5). These models are called RC(M) models,
where the M refers to the dimensionality of the model, that is, to the number of sets of
row and column scores that is used. RC(M) modeling is strongly related to correspon-
dence analysis (Goodman, 1986, 1991; Gilula and Haberman, 1988; Van der Heijden, De
Falguerolles, and De Leeuw, 1989) and other types of optimal scaling techniques (Van
de Geer, 1993).
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φk equal to one and also all xik equal to one, one can specify standard
log-linear terms.

Estimation Both the log-multiplicative association models proposed by
Goodman (1979) and Clogg (1982) and the log-multiplicative models pro-

posed by Xie can be estimated by means of the `EM program (Vermunt,
1993), in which the version of the uni-dimensional Newton algorithm pro-
posed by Goodman (1979) for estimating log-multiplicative models is imple-
mented (see Appendix D.2). As explained in section 2.5, in this procedure,
only one parameter is adjusted at a time, treating the other parameters as
fixed.

Of course, log-multiplicative models can also be estimated by means
of the Newton-Raphson algorithm. In that case, the complete matrix of
second partial derivatives has to be computed and inverted every itera-
tion. However, because of the strong dependencies among the parameters
appearing in the same interaction term, the Newton-Raphson algorithm
may have difficulties converging. This is a well known phenomenon when
applying Newton-Raphson to solve non-linear equations. Recently, Haber-
man (1995) proposed a stabilized Newton-Raphson algorithm for obtaining
maximum likelihood estimates in association models which overcomes these
convergence problems.

It must be noted that, in contrast to standard log-linear models, the
likelihood function for log-multiplicative models often contains local max-
ima. It is therefore advisable to estimate each model using different sets
of starting values. When different sets of starting values yield the same
parameter estimates, one can be more certain that the global maximum
likelihood solution has been found.

2.8 Logit models and multinomial response
models

In the log-linear models discussed so far, the relationships between the cat-
egorical variables are modelled without making a priori assumptions about
their ‘causal’ ordering: no distinction is made between dependent and inde-
pendent variables. However, one is often interested in predicting the value
of a categorical response variable by means of explanatory variables. The
logit model is such a ‘regression analytic’ model for a categorical depen-
dent variable. In the standard logit model, a binary dependent variable is
related to a set of categorical regressor variables (Goodman, 1972). When
the response variable has more than 2 categories, the model is called a
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multinomial logit model or multinomial response model (Haberman, 1979:
Chapter 6; Agresti, 1990: Chapter 9).

Suppose we have a response variable denoted by C and two categorical
explanatory variables denoted by A and B. Moreover, assume that both A
and B influence C, but that their effect is equal within levels of the other
variable. In other words, it is assumed that there is no interaction between
A and B with respect to their effect on C. This gives the following logistic
model for the conditional probability of C given A and B, πc|ab:

πc|ab =
exp

(
uCc + uACac + uBCbc

)∑
c exp

(
uCc + uACac + uBCbc

) . (2.13)

When the response variable C is dichotomous, the logit can also be written
as

log

(
π1|ab

1− π1|ab

)
= log

(
π1|ab

π2|ab

)
= (uC1 − uC2 ) + (uACa1 − uACa2 ) + (uBCb1 − uBCb2 )

= w + wAa + wBb .

It should be noted that the logistic form of the model guarantees that the
probabilities remain in the admissible interval between 0 and 1. Alter-
native transformations of π1|ab which also fulfill this requisite lead to the
probit model and the complementary log-log model (McCullagh and Nelder,
1983:75-77, 1989; Willekens, 1994:25-32).10

The logit model written as a log-linear model It has been shown
that the logit model given in Equation 2.13 is equivalent to a log-linear
model which includes the same u terms as the logit model concerned but
also an effect that fixes the marginal distribution of the independent vari-
ables (Goodman, 1972, Haberman, 1978, Fienberg, 1980, Agresti, 1990:152-
153). More precisely, it can be shown that the likelihood equations based
on independent multinomial sampling are equivalent to the likelihood equa-
tions based on a Poisson model, given that condition∑

c

mabc =
∑
c

nabc (2.14)

is fulfilled. The proof that the product-multinomial likelihood is equivalent
to the Poisson likelihood can be found in Appendix E.1.

10In the probit model, the conditional probabilities are transformed using the cumula-
tive normal distribution, while in the complementary log-log model, the transformation
of π1|ab would be log(− log(1− π1|ab)).
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Including the same parameters as those in the logit model given in
Equation 2.13 and ensuring that the condition given in Equation 2.14 is
fulfilled leads to the following log-linear model

logmabc = αABab + uCc + uACac + uBCbc , (2.15)

where

αABab = u+ uAa + uBb + uABab .

In other words, the logit model of Equation 2.13 is equivalent to log-linear
model {AB,AC,BC} for the frequency table with observed counts nabc.
Note that when using this formulation of a logit model, it does not matter
whether the response variables is dichotomous or not. If the response vari-
ables are polytomous, a log-linear or logit model of the form given in Equa-
tion 2.15 is sometimes also called a multinomial response model (Haber-
man, 1979: Chapter 6; Agresti, 1990: Chapter 9). According to Haberman
(1979), in its most general form, the multinomial response model may be
written as

logmik = αk +
∑
j

βjxijk , (2.16)

where k is used as the index for the joint distribution of the independent
variables and i as an index for the response variable.

Estimation The parameters of the multinomial response model can be
estimated using the same algorithms used for the log-linear models dis-
cussed in the previous sections, i.e., IPF, Newton-Raphson, and uni-dimensional
Newton. However, Haberman (1979) proposed a more efficient version of
the Newton-Raphson algorithm for estimating multinomial response mod-
els. This is necessary because the number of αk can become very large. In
fact, Haberman’s procedure uses a Newton-Raphson cycle to update the
βj parameters, followed by an IPF-like cycle to update the αk parameters.
The Newton-Raphson algorithm for multinomial response models which is
implemented in, among others, Haberman’s FREQ program and in SPSS
can be found in Appendix C.2.

Logistic regression Up to now, the independent variables used in the
logit model were assumed to be categorical. However, it is not a problem to
generalize the logit model to also allow for continuous regressors. A model
of the form given in Equation 2.13 containing continuous regressors gives
the well known logistic regression model. But also Haberman’s multinomial
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response model given in Equation 2.16 is equivalent to a multinomial logistic
regression model (McFadden, 1974; Agresti, 1990:313), i.e.,

πi|k =
exp

(∑
j βjxijk

)
∑
i exp

(∑
j βjxijk

) . (2.17)

The index k now denotes a particular observation instead of a cell in the
marginal distribution of the independent variables. So, a particular xijk
contains the value of observation k on the independent variable j for re-
sponse category i. Note that when k is an individual observation, the ex-
pected frequency mik appearing in Equation 2.16 is actually the probability
that observation k gives response i, where the αk parameters guarantee that
the estimated response probabilities add up to one for every observation.

The equivalence between logistic regression analysis and logit analysis
implies that programs for log-linear analysis which allow specification of a
design matrix can also be used to estimate logistic regression models. It
must, however, be noted that in that case the statistics L2 and X2 are not
appropriate for testing fit of models. But, conditional likelihood ratio tests
to compare models can still be performed (Haberman, 1974; Agresti, 1990).

2.9 Causal log-linear models

2.9.1 Goodman’s modified path models

In the previous section, a ‘regression analytic’ extension of log-linear anal-
ysis, i.e., the logit model, was discussed. This section presents a ‘path-
analytic’ extension of the logit model which was proposed by Goodman
(1973). He proposed a log-linear model which takes a priori information
on the causal ordering of the variables into account. The model, which he
called a modified path analysis approach, consists of specifying a series of
logit models for different marginal tables. As will be demonstrated below,
this model has some similarities with chain independence graphical models
for categorical data (Wermuth and Lauritzen, 1983, 1990).

Specifying a causal order Suppose we want to investigate the causal
relationships between six categorical variables denoted by A, B, C, D, E,
and F . Figure 2.1 shows the assumed causal ordering of these variables,
and the assumed relationships between these variables, where a pointed
arrow indicates that variables are directly related to each other, and a
‘knot’ that there is a higher order interaction. The variables A, B, and
C are exogenous variables. This means that neither their mutual causal
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order nor their mutual relationships are specified. The other variables are
endogenous variables, where E is assumed to be posterior to D, and F is
assumed to be posterior to E. From Figure 2.1, it can be seen that D is
assumed to depend on A and on the interaction of B and C. Moreover, E
is assumed to depend on A, B, and D, and F on B, C, D, and E.

Let πabcdef denote the probability that A = a, B = b, C = c, D = d,
E = e, and F = f . the information on the causal ordering of the variables
is used to decompose this joint probability into a product of marginal and
conditional probabilities (Goodman, 1973, Wermuth and Lauritzen, 1983).
In this case, πabcdef can also be written as

πabcdef = πabc πd|abc πe|abcd πf |abcde . (2.18)

This is a straightforward way to indicate that the value on a particular vari-
able can only depend on the preceding variables and not on the posterior
ones. For instance, E is assumed to depend only on the preceding variables
A, B, C, and D, but not on the posterior variable F . Therefore, the prob-
ability that E = e depends only on the values of A, B, C, and D, and not
on the value of F . Note that this representation can only be used to specify
recursive models. Recently, Mare and Winship (1991) presented a possible
approach to non-recursive models for categorical data which requires the
use of the latent variables techniques discussed in the next chapter.

Decomposing the joint probability πabcdef into a set of marginal and
conditional probabilities is only the first step in describing the causal re-
lationships between the variables under study. Generally, the aim of an
analysis is to reduce the number of parameters in some way, while the
right-hand side of Equation (2.18) contains as many unknown (conditional)
probabilities as observed cell frequencies. In other words, the model given
in Equation 2.18 is a saturated model in which it is assumed that a par-
ticular dependent variable depends on all its posterior variables, including
all the higher-order interaction terms. Generally, one is interested in more
parsimonious specifications of the conditional probabilities in which it is
possible to specify which variables influence each other and which do not.

Simple restrictions on probabilities The simplest way to specify more
parsimonious models is to restrict directly the conditional probabilities ap-
pearing in Equation 2.18. Suppose that, as depicted in Figure 2.1, E de-
pends on A, B, and D, but not on C. Because in that case πe|abcd = πe|abd,
in Equation 2.18, πe|abcd can be replaced by πe|abd. These kinds of restric-
tions are also applied in, for instance, discrete-time Markov models (Bishop,
Fienberg and Holland, 1975: Chapter 7; Van de Pol and Langeheine, 1990).
On the basis of the relationships depicted in Figure 2.1, a more restricted
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version of the general Equation 2.18 would be

πabcdef = πabc πd|abc πe|abd πf |bcde . (2.19)

However, as is shown below, this model is still not completely in agreement
with Figure 2.1.

The above-mentioned method of restricting the general model given in
Equation 2.18 is similar to the formulation of so-called chain independence
graphical models or block recursive graphical models (Whittaker, 1990: sec-
tion 3.6; Wermuth and Lauritzen, 1983, 1990). In a chain independence
graph, the variables are grouped in blocks which can be completely or-
dered. The relationships between variables within one block are assumed
to be symmetric, while the relationships between variables belonging to
different blocks are assumed to be asymmetric. This is depicted graphi-
cally by undirected and direct edges (arrows), respectively. Like any other
graphical model, a chain independence graphical model must be completely
formulated in terms of conditional independence.

The restrictions which are imposed on conditional probabilities in Equa-
tion 2.19 are in agreement with the conditional independence rules of chain
independence graphical models. For instance, E is assumed to be indepen-
dent of C given A, B, and D, whereas the effects of A, B, and D on E are
not restricted.

Specifying more restricted models by means of the procedure applied in
Equation 2.19 has, however, one important disadvantage. The dependent
variable must always be related to the joint independent variable. The
variable E, for instance, depends on the joint variable ABD, that is, the
variable which is obtained by combining the levels of A of B and D. There-
fore, for every combination of A, B, and D, a separate parameter is included
to describe the probability that E = e. Thus, when a particular variable is
thought to influence the dependent variable concerned, all higher-order in-
teractions with the other independent variables are automatically included
in the model as well.

Logit parameterization Goodman’s modified path analysis approach
consists of using a log-linear or logit parameterization of the marginal and
conditional probabilities appearing in Equation 2.18 rather than using the
simple restrictions described above (Goodman, 1973). Since in these logit
models it is possible to exclude certain higher-order interactions, such an
approach leads to more parsimonious causal models for categorical data.11

11An alternative approach proposed by Arminger (1996) is based on using probit rather
than logit models for the endogenous variables in the path model.
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While only simple hierarchical log-linear models will be here used, the re-
sults presented apply to other kinds of log-linear models as well, including
the log-multiplicative models discussed in section 2.7.

A system of logit models consistent with the path model depicted in
Figure 2.1 leads to the following parameterization of the conditional prob-
abilities appearing in Equation 2.18:

πabc =
exp

(
uAa + uBb + uCc + uABab + uACac + uBCbc + uABCabc

)∑
abc exp

(
uAa + uBb + uCc + uABab + uACac + uBCbc + uABCabc

) ,
πd|abc =

exp
(
uDd + uADad + uBDbd + uCDcd + uBCDbcd

)∑
d exp

(
uDd + uADad + uBDbd + uCDcd + uBCDbcd

) ,
πe|abcd =

exp
(
uEe + uAEae + uBEbe + uDEde

)∑
e exp

(
uEe + uAEae + uBEbe + uDEde

) ,
πf |abcde =

exp
(
uFf + uBFbf + uCFcf + uDFdf + uEFef

)
∑
f exp

(
uFf + uBFbf + uCFcf + uDFdf + uEFef

) .
It can be seen that the model for the marginal distribution of the exoge-
nous variables A, B, and C is a saturated model since it contains all the
interaction terms among A, B, and C. It would also have been possible
to specify a non-saturated model for relationships between the exogenous
variables. In the next three equations, D, E, and F appear as dependent
variables, respectively. Variable D depends on A, B, and C, and there is
a three-variable interaction between B, C, and D. Moreover, E depends
on A, B, and D, but there are no higher-order interactions between E and
the independent variables. And finally, F depends on B, C, D, and E.
It is clear that this recursive system of logit equations contains far fewer
parameters than the restricted model given in Equation 2.19.

Since specifying a logit model for conditional probabilities is equiva-
lent to specifying a log-linear model for a frequency table in which the
marginal distribution of the independent variables is treated as fixed, the
logit equations given above can also be written as log-linear models. For in-
stance, the logit model for πe|abcd is equivalent to the log-linear logit model
{ABCD,AE,BE,DE} for (marginal) frequency table ABCDE, or

logmabcde = αABCDabcd + uEe + uAEae + uBEbe + uDEde ,

where mabcde denotes an expected frequency in marginal table ABCDE.
Moreover, αABCDabcd denotes the effect which fixes the marginal distribution
of the dependent variables.

Thus, specifying a causal log-linear model for a set of categorical vari-
ables can be simply accomplished by specifying separate log-linear models
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for different marginal tables or subtables. The marginal tables are formed
by the variables used in the previous marginal table and the variable which
appears as the dependent variable. In this case, log-linear or logit models
have to be specified for tables ABC, ABCD, ABCDE, and ABCDEF .
Goodman (1973) showed how to specify separate log-linear models for dif-
ferent marginal tables (see also Hagenaars, 1990:75-82). He subsequently
showed how to obtain the overall expected frequencies with an equation
similar to Equation 2.18. Note that the probabilities in Equation 2.18 can
easily be obtained by means of the expected frequencies. For instance,

πe|abcd =
mabcde∑
emabcde

. (2.20)

A remark has to be made with respect to marginal tables for which the
logit models or the equivalent log-linear models have to be specified given
the assumed causal order among the variables. Suppose that, contrary to
what is depicted in Figure 2.1, the variables E and F are assumed to be
independent of one another given a person’s scores on the posterior variables
A, B, C, and D. In other words, it is assumed that there is no direct effect
of E on F . In that case, the modified path model described above may also
be specified in a slightly different manner, that is, it is possible to combine
the logit models for D and E into a single modified path step with two
dependent variables. This follows from the collapsibility theorem (Bishop,
Fienberg, and Holland, 1975:47, Agresti, 1990:151-152) which states that
if two variables are assumed to be conditionally independent, the sizes of
their relationships with the remaining variables may be estimated in the
table in which the other conditionally independent variable is included or
not. Thus, if two variables are conditionally independent of one another,
their relationships with the other variables may be estimated either in the
same table or in separate tables. The possibility of specifying the same
model in alternative ways as a result of collapsibility is a feature that will
be encountered several times in the next chapter which presents models
with latent variables.

Combining the two kinds of restrictions Above, two different ways
of restricting the conditional probabilities of a modified path model were
presented, viz., assuming that a variable does not depend on one or more
of the preceding variables and assuming that particular higher-order inter-
action terms are zero. But actually, it is simpler and computationally more
efficient to combine the two ways of restricting the conditional probabil-
ities because it often reduces the dimensionality of the tables one has to
work with. More precisely, the model can be restricted as in Equation 2.19,
and then the conditional probabilities appearing in this equation can be
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restricted via a logit parameterization. This leads to a (small) modification
of the procedure proposed by Goodman.

Let us look at the model for dependent variable E. Because E does not
depend on C, πe|abcd can be replaced by πe|abd. Therefore, the log-linear
restrictions which were imposed on πe|abcd can now be imposed directly on
πe|abd, or equivalently, the log-linear model that was specified for marginal
table ABCDE can now be specified for marginal table ABDE. It should
be noted that this result also follows from the collapsibility theorem. Since
C and E are conditionally independent, the effects of A, B, and D on E
may be estimated after collapsing the table over C. Specifying log-linear
model {ABD,AE,BE,DE} for marginal table ABDE gives

logmabde = αABDabd + uEe + uAEae + uBEbe + uDEde ,

where mabde denotes an expected frequency in the marginal table ABDE.
Thus, by imposing restrictions in two steps, the parameters can be esti-
mated in the marginal table which includes only the independent variables
which are really used. This two-step procedure may not only reduce the
size of a problem, but it also has another important advantage: It prevents
fitted zeros when the observed table contains zeros in the fixed margin
ABCD, but not in the margin ABD.

Continuous exogenous variables So far, all variables included in the
modified path model were assumed to be categorical, which is in agreement
with the way Goodman presented his modified path model. However, it
is also possible to include continuous exogenous variables in modified path
models. In fact, this extension is analogous to what was discussed in the
context of the logit model. When the variables A, B, and C are continuous
rather than categorical, and when, as in Figure 2.1, D, E, and F are
mutually ordered endogenous variables, a modified path model is obtained:

πdef |xdjkxejkxfjk
= πd|xdjk

πe|xejkd πf |xfjkde ,

where xdjk, xejk, and xfjk denote the observed value of person k on exoge-
nous variable j for D = d, E = e, and F = f , respectively. In this case, the
marginal distribution of the exogenous variables cannot be restricted by
means of a log-linear model. The conditional probabilities can, of course,
be restricted via a general logit model or logistic regression model of the
form given in Equation 2.17.

2.9.2 Estimation and testing

Goodman (1973) demonstrated that the maximum likelihood estimates for
the log-linear parameters and the expected frequencies in the various sub-
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models of a modified path model can be estimated separately for each
submodel. This results from the fact that when the parameters of the var-
ious submodels are distinct, the likelihood can be factorized into submodel
specific parts which may be maximized separately:

logL =
∑
abcdef

nabcdef log (πabcdef ) ,

=
∑
abc

nabc+++ log (πabc) +
∑
abcd

nabcd++ log
(
πd|abc

)
+
∑
abcde

nabcde+ log
(
πe|abcd

)
+
∑
abcde

nabcdef log
(
πf |abcde

)
.

In Appendix E.2 it is shown that the likelihood equation for a parameter of
a modified path model is identical to the likelihood equation for a parameter
of a logit model which has the same structure as the modified path step
concerned.

The factorization of the likelihood makes it possible to estimate the
parameters of a modified path model by means of standard programs for
log-linear or logit analysis. The `EM program (Vermunt, 1993) has extra
facilities for defining submodels without actually having to ‘input’ them.
In `EM , the model specification consists of defining the subtables and the
subtable-specific log-linear models. The log-linear models can be of the
form of the general multinomial response model given in Equation 2.16. In
addition, log-multiplicative interaction terms can be used in the modified
path model. So, in fact, any kind of log-linear model can be specified for
each subtable.

Restrictions across modified path steps As previously mentioned,
the parameters of the different submodels can be estimated separately as
long as they are distinct, but, when equality restrictions are imposed on
parameters coming from different submodels, the parameters of the mod-
ified path model must be estimated simultaneously. In `EM , two types
of equality restrictions can be imposed on parameters appearing in differ-
ent modified path steps: Log-linear or logit parameters can be assumed
to be equal, and (conditional) probabilities can be assumed to be equal.
As demonstrated in Appendix E.3, the likelihood equation for a log-linear
parameter appearing in different submodels is simply the sum of the con-
tributions of the submodels concerned.

Equality and fixed-value restrictions on the (conditional) probabilities
can be imposed by means of a rather simple procedure proposed by Good-
man in the context of latent class analysis (Goodman, 1974b). Van de Pol
and Langeheine (1990) demonstrated that Goodman’s procedure can be
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used to constrain any type of conditional probability appearing in (mixed
and latent) Markov models. They implemented the algorithm in their PAN-
MARK program (Van de Pol, Langeheine, and De Jong, 1989). This proce-
dure, which is described in Appendix F, consists of replacing the conditional
probabilities which are assumed to be equal by their weighted mean. Mooi-
jaart and Van der Heijden (1992) demonstrated, however, that Goodman’s
algorithm does not always work properly. They proposed estimating latent
class models with equality and fixed-value restrictions on the probabilities
by adding Lagrange multipliers to the log-likelihood function to be maxi-
mized. In `EM , the same type of solution is implemented for estimating
modified path models with these types of constraints on the parameters
(see Appendix F).

Testing The factorization of the contribution of the submodels to the log-
likelihood function can also be used for testing. Goodman (1973) proposed
testing the models separately by means of the likelihood-ratio chi-square
statistic. The overall test for the complete model can be obtained by adding
up the L2 values and the degrees of freedom of the separate submodels.
This is an important feature if the modified path model is estimated with
standard programs for log-linear analysis.

This testing procedure can, however, only be applied when the model is
specified in the way Goodman did, that is, when every subtable contains all
the variables of the previous subtable and when no restrictions are imposed
on the parameters across modified path steps. In other cases, the L2 for the
complete model has to be computed by means of the estimated probabilities
π̂abcde.

2.9.3 Discrete-time Markov models

The modified path model is strongly related to the discrete-time Markov
model. Actually, the discrete-time Markov model, which can be used for
the analysis of multi-wave panel data, is a special case of the modified path
model presented above (Vermunt, Langeheine, and Böckenholt, 1995). This
can be demonstrated by means of an example. Suppose that Sl denotes the
state occupied at time point l and that sl denotes a category of Sl. For the
sake of simplicity, it will be assumed that there are observations for only
four points in time, that is, 1 ≤ l ≤ 4. In a first-order Markov model, the
state occupied at a L = l is assumed to depend only on the state occupied
at L = l−1 (Anderson and Goodman, 1957; Bishop, Fienberg and Holland,
1975:261-267; Markus, 1979), or, in terms of our modified path model,

πs1s2s3s4 = πs1 πs2|s1 πs3|s2 πs4|s3 .
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Especially in Markov models, it is important to be able to restrict the
parameters to be equal across modified path steps. The most common set
of restrictions,

πs2|s1 = πs3|s2 = πs4|s3 ,

gives rise to a stationary or time-homogeneous Markov model. These equal-
ity restrictions can also be imposed indirectly by restricting the log-linear
parameters of different modified path steps to be equal, that is, by param-
eterizing

πsl|sl−1
=

exp
(
uSl
sl

+ u
Sl−1Sl
sl−1sl

)
∑
sl

exp
(
uSl
sl + u

Sl−1Sl
sl−1sl

) ,
and restricting

uS2
s2 = uS3

s3 = uS4
s4 ,

uS1S2
s1s2 = uS2S3

s2s3 = uS3S4
s3s4 .

Equivalently, higher-order Markov chain models can be specified. The only
difference is that in such models, the value of Sl depends not only on Sl−1,
but also on the state occupied on earlier occasions (Bishop, Fienberg and
Holland, 1975:267-270; Van de Pol and Langeheine, 1990).

Covariates In most cases, Markov models are used only for descriptive
purposes. However, with the modified path analysis approach, it is easy
to incorporate explanatory variables into a Markov model.12 Suppose, for
instance, that one has three explanatory variables denoted by A, B, and
C. Given a first-order Markov chain, the following modified path model is
obtained:

πabcs1s2s3s4 = πabc πs1|abc πs2|abcs1 πs3|abcs2 πs4|abcs3 .

This is also the way covariates can be incorporated into a Markov model
using the PANMARK program (Van der Pol, Langeheine and De Jong,

12Diggle, Liang, and Zeger (1994) distinguished three types of regression models for
longitudinal data: marginal models, random effects models, and transition models.
Markov models, as well as the event history models which are discussed in Chapter
4, belong to the family of transition models. Random effect models can be specified with
the latent class models presented in the next chapter. For the estimation of marginal
models, however, one needs methods which are outside the scope of this book, such
as generalized estimating equations (GEE) (Liang and Zeger, 1986; Lipsitz, Laird, and
Harrington, 1991) or the maximum likelihood methods proposed by Lang and Agresti
(1994) and Bergsma (1997).



2.9. CAUSAL LOG-LINEAR MODELS 43

1989). However, as demonstrated above, when using a modified path model,
it is possible to use a logit parameterization for the conditional probabilities
appearing in the Markov model with exogenous variables. Together with
the possibility to restrict parameters across points in time, this results in
rather flexible and parsimonious regression models for the states occupied
at different points in time.13

Suppose that the variables A and B influence the state occupied at the
first point in time, but that there is no three-variable interaction between
A, B, and S1. Furthermore, suppose that B influences the value of Sl and
that C influences the size of the association between Sl−1 and Sl. In other
words, Sl−1, B, and C have direct effects on Sl, and there is a three-variable
interaction between C, Sl−1, and Sl. This yields the following logit models
for πs1|abc and πsl|abcsl , respectively:

πs1|abc =
exp

(
uS1
s1 + uASl

asl
+ uBSl

bsl

)
∑
s1

exp
(
uS1
s1 + uASl

asl + uBSl

bsl

) ,
πsl|abcsl−1

=
exp

(
uSl
sl

+ uBSl

bsl
+ uCSl

csl
+ u

Sl−1Sl
sl−1sl + u

CSl−1Sl
csl−1sl

)
∑
sl

exp
(
uSl
sl + uBSl

bsl
+ uCSl

csl + u
Sl−1Sl
sl−1sl + u

CSl−1Sl
csl−1sl

) ,
where πs1|abc may be replaced by πs1|ab and πsl|abcsl−1

by πsl|bcsl−1
. This

modified path model can be simplified by assuming the log-linear parame-
ters for the transition probabilities to be time independent or, equivalently,
by assuming πsl|bcsl−1

does not depend on l. As will be demonstrated in sec-
tion 4.8, parameterizing the discrete-time Markov model as a modified path
model yields a model which is equivalent to a specific type of discrete-time
event history model.

13Recently, Gilula and Haberman (1994) proposed a similar approach for analyzing
categorical panel data, which they called conditional log-linear models.
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Figure 2.1: Modified path model



Chapter 3

Log-Linear Analysis With
Latent Variables and
Missing Data

In the discussion of the various types of log-linear models in the previous
chapter, it was implicitly assumed that the values of all variables used in
the analysis were observed for all subjects being studied. In social research,
however, it is often the case that some variables are completely or partially
unobserved. This chapter extends the log-linear models discussed in the
previous chapter so that they can be applied even if there are missing data.

Completely unobserved variables occur in latent structure models. These
are models which can be used to correct for measurement error in observed
variables (Bartholomew, 1987; Heinen, 1996). The categorical variant of
the latent structure models, which was first proposed by Lazarsfeld (1950a,
1950b), is called latent class analysis. Latent structure models for data of
different measurement levels have in common that they are all based on the
assumption of local independence. The manifest variables which are used
as indirect measures for the latent variable(s) are assumed to be mutually
independent given the score on the latent variable concerned. In a latent
class model, the existence of a categorical latent variable is postulated,
which accounts for the relationships between a set of categorical manifest,
or observed, variables.

The latent class model is a member of the family of finite mixture mod-
els (Everitt and Hand, 1981; Titterington, Smith, and Makov, 1985). In
finite mixtures models, it is assumed that the population being studied is
composed of a number of subpopulations which are not observed. In other

45
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words, the observed data is a mixture of the data of a finite number of sub-
groups, but it is not observed which subgroup a particular person belongs
to. Furthermore, the parameters of the postulated model within these sub-
populations are assumed to differ in some respect. The latent class model
is a finite mixture model in which the observed variables are assumed to be
mutually independent within subpopulations and to have different marginal
distributions among subpopulations. Although only applications in the field
of log-linear modeling are presented here, it must be noted that the finite
mixture approach is applicable to any type of statistical method.

Several important extensions of Lazarsfeld’s latent class model have
been proposed, such as models for more than one latent variable (Goodman,
1974a, 1974b; Haberman, 1979:558-560), models with external or explana-
tory variables (Goodman, 1974a, 1974b; Haberman, 1979:542-544), models
for multiple-group analysis (Clogg and Goodman, 1984, 1985, 1986), and
models with direct effects among indicators (Hagenaars, 1988). The most
extended model is, however, Hagenaars’s modified Lisrel model (Hagenaars,
1985, 1990, 1993), in which all of the other latent class models are viewed
as special cases. The modified Lisrel model is a log-linear path model in
which some of the variables are unobserved. It resembles the well-known
LISREL model for continuous data (Jöreskog and Sörbom, 1988) in that a
measurement model for the latent variables is specified simultaneously with
a structural model for the relationships among the latent variables and the
manifest variables used as structural variables (Vermunt, 1994, 1996).

Correcting for measurement error in observed variables is not, however,
the only application of log-linear models with latent categorical variables.
Another well-known application of such finite mixture models is correction
for unobserved heterogeneity (Wedel and DeSarbo, 1994, 1995). The term
unobserved heterogeneity refers to a ‘regression’ model in which specific
explanatory variables are not observed. By introducing an unobserved re-
gressor, an attempt can be made to eliminate or decrease the bias caused by
not observing important regressors given certain appropriate assumptions.
Formann (1992) presented a logit model with a latent regressor which was
assumed to be independent of the other explanatory variables. He called
the model a mixed logistic regression model. Also, a mixed variant of the
discrete-time Markov discussed in the previous chapter has been proposed
(Poulsen, 1982; Van de Pol and Langeheine, 1990). These ’mixed’ models
are, likewise, special cases of the modified Lisrel model (Vermunt, 1996).

Apart from measurement error and unobserved heterogeneity, one is of-
ten confronted with another kind of missing data problem in social research,
the problem of partially observed variables. The term partially observed or
partially unobserved variable denotes that a variable is not observed for all
persons. In survey research, partially observed variables are generally the
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result of item nonresponse. However, this kind of missing data can also
be caused by the data collection design itself: it could be too expensive or
impossible to gather all information for all persons.

Fuchs (1982) proposed a method which makes it possible to estimate
the parameters of a log-linear model using incomplete data. However, this
method is based on the assumption that the mechanism causing the missing
data can be ignored when estimating the parameters of interest (Little and
Rubin, 1987). More recently, a variant of the log-linear path model has been
developed which makes it possible to simultaneously model the mechanism
causing the nonresponse and the relationships among the variables of inter-
est (Fay, 1986, 1989; Baker and Laird, 1988; Vermunt, 1988, 1996). Using
this approach, it is also possible to estimate parameters within the context
of nonignorable response
mechanisms.

From a statistical point of view, partially unobserved variables can
be handled in the same fashion as completely unobserved covariates. In
fact, a partially observed variable is manifest for some individuals and
latent for others (Winship and Mare, 1989). Therefore, the same esti-
mation procedures can be used to estimate the parameters of log-linear
models with unobserved or with partially observed variables. As will be
shown in this chapter, there is no difficulty in dealing with both kinds
of missing data simultaneously (Hagenaars, 1985, 1990; Vermunt, 1988,
1994).

The remainder of this chapter consists of two sections, the first of which
focusses on log-linear models with latent variables. It deals with the classi-
cal and log-linear latent class model, the most important extensions of the
standard latent class model, modified Lisrel models, and mixture models
for dealing with unobserved heterogeneity. Log-linear models with variables
subject to nonresponse are described in section 3.2. Attention is given to the
different kinds of response mechanisms and to Fuchs’s and Fay’s methods for
dealing with partially observed
variables.

3.1 Latent variables

3.1.1 Latent class analysis

As many concepts in the social sciences are difficult or impossible to mea-
sure directly, several directly observable variables, or indicators, are often
used as indirect measures of the concept to be measured. The values of the
indicators are assumed to be determined only by the unobservable value
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of the underlying variable of interest and by measurement error. In latent
structure models, this principle is implemented statistically by assuming
probabilistic relationships between latent and manifest variables and by
the assumption of local independence. Local independence means that the
indicators are assumed to be independent of each other given a particular
value of the unobserved or latent variable; in other words, they are only
correlated because of their common cause.

Latent structure models can be classified according to the measurement
level of the latent variable(s) and the measurement level of the manifest
variables (Bartholomew, 1987; Heinen, 1993:3-10, 1996). In factor analysis,
continuous manifest variables are used as indicators of one or more contin-
uous latent variables. In latent trait models, a continuous latent variable
is assumed to underlie a set of categorical indicators. Finally, when both
the manifest and the latent variables are categorical, a latent class model
is obtained. Note that a categorical variable does not need to be a nomi-
nal variable; it can also be an ordinal or a discrete interval variable. The
latent class model was originally proposed by Lazarsfeld (1950a, 1950b),
while its practical applicability is to a large extent the result of the work by
Goodman (1974a, 1974b) and Haberman (1979: Chapter 10). Although all
variables are treated as nominal variables in the unrestricted latent class
model, restricted latent class models have been proposed which make it pos-
sible to make a priori assumptions on the order and the distances among
the categories of the latent and manifest variables (Rost, 1988; Croon, 1990;
Formann, 1992; Heinen, 1996; Vermunt and Georg, 1995).

Unrestricted latent class model The latent class model can be pa-
rameterized in two different ways. It is possible to use either the classi-
cal parameterization in terms of (conditional) probabilities introduced by
Lazarsfeld (Lazarsfeld, 1950a, 1950b; Lazarsfeld and Henry, 1968: Chapter
3), which is also used by Goodman (1974a, 1974b), or the log-linear param-
eterization introduced mainly by Haberman (1979: Chapter 10). Suppose
there is, as depicted in Figure 3.1, a latent class model with one latent
variable W with index w and 4 indicators A, B, C, and D with indices a,
b, c, and d. Moreover, let W ∗ denote the number of latent classes. The
basic equations of the latent class model are

πabcd =

W∗∑
w=1

πwabcd , (3.1)

in which

πwabcd = πwπabcd|w = πwπa|w πb|w πc|w πd|w . (3.2)
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Figure 3.1: Latent class model

Here, πwabcd denotes the probability of being in cell (w, a, b, c, d) of the joint
distribution WABCD. Furthermore, πw is the probability of belonging to
latent class w and πabcd|w is the probability of having a particular observed
response pattern given W = w. The other π parameters are conditional
response probabilities. For instance, πa|w is the probability of being in
category a of variable A, given that one belongs to latent class w.

As can be seen from Equation 3.1, the latent class model assumes that
the population can be divided into W ∗ exhaustive and mutually exclusive
classes. Therefore, the joint probability of the observed variables can be
obtained by summation over the latent dimension. The classical parame-
terization of the latent class model proposed by Lazarsfeld (1950a, 1950b)
is given in Equation 3.2. It can be seen that the observed variables A, B,
C, and D are postulated to be mutually independent given a particular
score on the latent variable W .

Note that Equation 3.2 is very similar to the modified path models dis-
cussed in the previous chapter. Actually, it is a modified path model in
which one variable is unobserved. Because the latent class model is com-
pletely defined in terms of conditional independence, it is also a graphical
model (Wermuth and Lauritzen, 1990).

Haberman (1979: Chapter 10) demonstrated that the unrestricted la-
tent class model given in Equation 3.2 is formally identical to the hierar-
chical log-linear model {WA,WB,WC,WD}, written as

logmwabcd = u+ uWw + uAa + uBb + uCc + uDd + uWA
wa + uWB

wb + uWC
wc

+ uWD
wd , (3.3)

in which mwabcd = N πwabcd. Equation 3.3 contains, in addition to the
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overall mean and the one-variable terms, only the two-variable interaction
terms between the latent variable W and the manifest variables. As none
of the interactions between the manifest variables are included, it can be
seen that they are assumed to be conditionally independent of each other.

The relation between the parameters of the two different parameteriza-
tions of the latent class model, that is, between the conditional probabili-
ties appearing in Equation 3.2 and the log-linear parameters appearing in
Equations 3.3, is (Haberman, 1979:551; Heinen 1993:13-22)

πa|w =
exp

(
uAa + uWA

wa

)∑
a exp (uAa + uWA

wa )
. (3.4)

It should be noted that this is the same type of logit parameterization of
a conditional probability that is used in modified path models. Moreover,
since the indicators are assumed to be independent of one another given W ,
it does not matter whether the relationships between W and the indicators
are estimated by specifying a separate logit model for each indicator or by
specifying a log-linear model for the full table mwabcd. This follows from
the collapsibility theorem (see section 2.9).

Restricted latent class models If it is not necessary to impose fur-
ther restrictions on the parameters, the two formulations of the latent class
model are completely equivalent. However, if the model is restricted in
some way, the parameterization choice depends on the type of restrictions
that have to be imposed. Because of the possibility of applying a reparam-
eterization, particular kinds of restrictions can be used under both param-
eterizations though others are specific to one of the two parameterizations.

It should be noted that in writing the latent class model in terms of con-
ditional probabilities in combination with logit models for these conditional
probabilities, a combined parameterization is obtained which is similar to
the modified path model discussed in the previous chapter. Actually, For-
mann’s linear logistic latent class model combines the two parameteriza-
tions discussed above (Formann, 1982, 1992). Formann specified the latent
class model in terms of latent and conditional probabilities, for which the
probabilities are parameterized as in Equation 3.4. This type of formu-
lation makes it possible to combine restrictions on the probabilities with
restrictions on the log-linear, or linear logistic, parameters.

Restrictions which are typical of the classical latent class model are
fixed-value and equality restrictions on the latent and conditional response
probabilities (Goodman, 1974a, 1974b; Mooijaart and Van der Heijden,
1992). On the other hand, in the log-linear latent class model, it is com-
mon to impose linear restrictions on the log-linear parameters, such as equal
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effects of the latent variable among indicators, linear-by-linear interactions,
and row and/or column effects. Besides these more standard restrictions,
there are many other types of linear and non-linear restrictions which can be
imposed on the probabilities. Croon (1990), for instance, demonstrated the
implementation of particular kinds of inequality restrictions on the condi-
tional response probabilities leading to an ordinal latent class model. More-
over, although not yet implemented in the context of latent class analysis,
the general model developed by Lang and Agresti (1994) would make it
possible to combine a large variety of linear and log-linear restrictions on
(sums of) probabilities in latent class models.

Sometimes, it is possible to translate equality restrictions on probabili-
ties into equality restrictions on log-linear parameters. As can be seen from
Equation 3.4, for instance, equal conditional response probabilities among
indicators can also be obtained by specifying both the one-variable terms
for the indicators concerned and their two-variable interaction terms with
the latent variable as equal. Equal conditional probabilities are, however,
a rather restrictive assumption. Using the log-linear parameterization, it
is also possible to impose a weaker type of restriction on the conditional
response probabilities, that is, equal strength of association between the
latent variable and the various indicators. This can be accomplished by
constraining the two-variable interactions appearing in Equation 3.3 to be
equal among indicators. Although there is no exact correspondence, the
imposition of equality restrictions of this type on the item parameters is
similar to the work by Jöreskog (1971) on parallel and tau-equivalent items
in the context of factor analysis (see also Mellenbergh, 1994). If the condi-
tional response probabilities are equal among items, the items may be called
parallel, while they may be called tau equivalent if only their two-variable
interactions with the latent variable are equal.

Another restriction that is often used in classical latent class analysis is
the fixing of particular conditional response probabilities to zero. Such a
restriction can, among other things, be used to construct latent Guttman
scales (Clogg and Sawyer, 1981; Clogg and Goodman, 1986) and to define
quasi-latent variables (Hagenaars, 1990:117-119). Fixing a probability to
zero is equivalent to setting the log-linear parameters associated with it to
minus infinity. This can be accomplished by incorporating structural zero-
expected frequencies in the log-linear model (Haberman, 1979:554-556).

Restrictions specific to the log-linear parameterization are linear-by-
linear effects and row and/or column effects. These restrictions are useful
if either the latent variable or the manifest variables or both can be as-
sumed to be interval-level variables (Heinen, 1996; Rost, 1988). Heinen
(1996) demonstrated that when the latent variable is discretized, most la-
tent trait models can be written as latent class models with restrictions on



52CHAPTER 3. LOG-LINEAR ANALYSISWITH LATENT VARIABLES ANDMISSING DATA

the log-linear parameters. For instance, a discrete variant of the well-known
Rasch model for item analysis is obtained by specifying a latent class model
with a certain number of latent classes in which the two-variable interaction
parameters between the latent variable and the indicators are specified as
linear-by-linear and equal among indicators. Within the log-linear model-
ing framework, it is even possible to specify models with log-multiplicative
interaction terms. This option can be used, for instance, to specify a dis-
crete Rasch model with random scores for the categories of the latent vari-
able. Lindsay, Clogg, and Grego (1991) called this model a semi-parametric
Rasch model.

3.1.2 Extensions of the standard latent class model

Several important extensions of the standard latent class model have been
developed. Some of these are specific for either the classical or the log-linear
formulation of the latent class model, while others can be implemented
under both parameterizations. Below, the most important extensions de-
veloped within the framework of either the classical or the log-linear latent
class model are discussed. Moreover, it is demonstrated that these extended
latent class models can also be formulated as modified path models, that is,
in terms of conditional probabilities which are possibly subjected to logit
restrictions.

Models with several latent variables Goodman (1974a, 1974b) and
Haberman (1979:558-560) showed how to specify latent class models with
more than one latent variable. This led to a model which is analogous to
a factor analytic model with more than one factor. Latent class models
with several latent variables can be specified either by imposing equality
restrictions on the conditional probabilities or by formulating a log-linear
model.

Suppose there is a model with four indicators and two latent variables,
in which A and B are indicators of the latent variable W , and C and D of
the latent variable Y . Moreover, assume W and Y are related to each other.
This results in the log-linear latent class model {WY,WA,WB, Y C, Y D}
which is displayed in Figure 3.2, or

logmwyabcd = u+ uWw + uYy + uAa + uBb + uCc + uDd + uWY
wy + uWA

wa

+ uWB
wb + uY Cyc + uY Dyd . (3.5)

Just as in the standard latent class model, additional restrictions can be
imposed on the log-linear parameters in this model. Note that it is not only
possible to restrict the item parameters but also the relationships between
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Figure 3.2: Latent class model with 2 latent variables

the latent variables. In a model with three latent variables, for instance, a
no-three-variable interaction model can be specified for the latent variables.
Hagenaars (1986) proposed symmetry and quasi-symmetry models for the
associations between the latent variables.

In terms of conditional probabilities, the latent class model of Equation
3.5 can be written as

πwyabcd = πwy πa|w πb|w πc|y πd|y .

Models with external variables Another extension of the ordinary la-
tent class model is the incorporation of external variables in the model (Ha-
genaars, 1985, 1990:113-119, 1993). Since external variables are manifest
variables which are not indicators, the assumption of conditional indepen-
dence does not need to hold for these variables. Clogg (1981), for exam-
ple, applied latent class models with external variables to specify multiple-
indicator multiple-cause models (MIMIC) for categorical data. These mod-
els resemble the well-known MIMIC models for continuous data presented
by Jöreskog and Goldberger (1975).

Clogg (1981) specified the MIMIC model for categorical data using the
classical parameterization of the latent class model. However, this param-
eterization is limited with respect to the models that can be postulated
for the relationships among the external variables and the latent variables:
Only a saturated model and particular kinds of independence models can be
specified for these variables. When using the log-linear parameterization, it
is possible to specify any kind of non-saturated model for the relationships
among the external and the latent variables.



54CHAPTER 3. LOG-LINEAR ANALYSISWITH LATENT VARIABLES ANDMISSING DATA

I

J

W

A

B

C

-��
�
��

�
��

��*

HHH
HHH

HHHHj

H
HHH

HHH
HHHj

��
��

�
��

�
��*

�

�

-

-

Figure 3.3: Latent class model with external variables

Suppose there is a MIMIC model with two external variables I and J
and one latent variable W with three indicators A, B, and C. Moreover,
assume that the external variables influence W and that there is no three-
variable interaction among I, J , and W . The MIMIC model concerned,
which is depicted in Figure 3.3, is equivalent to log-linear latent class model
{IJ, IW, JW,WA,WB,WC}, or

logmwabcij = u+ uIi + uJj + uWw + uAa + uBb + uCc + uIJij + uIWiw + uJWjw

+ uWA
wa + uWB

wb + uWC
wc .

In terms of conditional probabilities, it can be written as

πwabcij = πij πw|ij πa|w πb|w πc|w ,

in which πw|ij is restricted by a logit model without a three-variable in-
teraction term. Although above the external variables were assumed to be
exogenous variables, it is also possible to use external variables as depen-
dent variables.

Models for several subpopulations Other extensions are latent class
models for several subpopulations which may differ with respect to the
latent distribution and the relationships between the latent variables and
their indicators (Hagenaars, 1990:127-135). This is comparable to simul-
taneous factor analysis in several populations (Jöreskog, 1971; Sörbom,
1974). Clogg and Goodman (1984, 1985) presented what they called a
simultaneous latent structure model using the classic parameterization of
the latent class model. McCutcheon (1987) applied this model to compare
latent distributions at different points in time.
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Simultaneous latent class analysis involves incorporating a group vari-
able in the model. This group variable may influence the latent distribution
and the conditional response probabilities. If G denotes the group variable
in a latent class model with latent variable W and indicators A, B, and C,
the multi-group latent class model can be written as

πwabcg = πg πw|g πa|wg πb|wg πc|wg .

Note that this unrestricted multiple-group model is equivalent to log-linear
model {GWA,GWB,GWC}. A specification of this kind implies that the
latent distribution, the distributions of the indicators, and the relationships
between the latent variable and the indicators are all assumed to be different
among subpopulations.

However, often one wants to impose restrictions on the parameters
across groups. An example of a restricted model is the log-linear model
{GW,WA,WB,WC,GA,GB,GC}. In this model, it is assumed that
the latent and manifest distributions differ among groups, but that the
strengths of the relationships between the latent variable and the indica-
tors are the same for all of the subpopulations. An even more restrictive
model is {GW,WA,WB,WC}. Here, the measurement part of the model
is assumed to be equal for all subgroups. In terms of conditional probabil-
ities, this model can also be written as

πwabcg = πg πw|g πa|w πb|w πc|w .

Actually, this model tests the assumption of invariance of the latent con-
struct (Jöreskog, 1971), which is a vital test if the aim is to compare the
latent distributions of different groups. Latent distributions can only be
compared when the latent variable has the same meaning for all subpopu-
lations, which often implies that one wants the relationships between the
latent variable and the items to be equal among subgroups.

Local dependence models The log-linear latent class model can also
be used to specify models in which particular indicators are related to one
another. Hagenaars (1988) demonstrated how to specify these so-called lo-
cal dependence models. Figure 3.4 shows an example of a local dependence
model, i.e., model {WA,WB,WC,WD,CD}. In this model with one la-
tent variable and four indicators, there is a direct association between the
indicators C and D. In terms of conditional probabilities, the model can
be written as

πwabcd = πw πa|w πb|w πcd|w , (3.6)
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where πcd|w is restricted by means of a no-three-variable interaction log-
linear model. These local dependence models are analogous to factor ana-
lytic models with correlated error terms (Sörbom, 1975).

3.1.3 Causal log-linear models with latent variables

Some extensions of the standard latent class model were discussed in the
previous subsection. A limitation of these extensions is that they were
all developed within the framework of either the classical or the log-linear
latent class model. Therefore, it is not always possible to postulate the
desired a priori causal order among the variables incorporated in the model.
But, as was demonstrated, all these extended latent class models can be
written as modified path models in which one or more variables are not
observed. This subsection presents the general formulation of the modified
path model with latent variables which was proposed by Hagenaars (1985,
1990:135-142, 1993). Because of the analogy with the LISREL model for
continuous variables (Jöreskog and Sörbom, 1988), Hagenaars called it a
modified Lisrel approach.1

Suppose we want to investigate the causal relationships between six
categorical variables denoted by E, F , G, H, W , and Y , where W and Y
are latent variables. Figure 3.5 shows the assumed causal order and the
assumed direct relations of the variables. It can be seen that the variables
E, F , and G are exogenous variables. The others are endogenous, where
H is assumed to be posterior to W , and Y is assumed to be posterior to
H. Moreover, A and B serve as indicators for the latent variable W , and
C and D serve as indicators for Y .

The probability of belonging to cell (e, f, g, w, h, y, a, b, c, d) of the joint
distribution of all the variables included in the model is denoted as πefgwhyabcd.
As demonstrated in section 2.9, the a priori information on the causal order
of the variables can be used to decompose πefgwhyabcd as follows:

πefgwhyabcd = πefg πw|efg πh|efgw πy|efgwh πabcd|wy . (3.7)

The only difference between a modified path model containing only ob-
served variables and the modified Lisrel model described in Equation 3.7 is
that the latter contains an additional component in which the relationships
between the latent variables and their indicators are specified (Hagenaars,
1993; Vermunt, 1994, 1996), in this case πabcd|wy. This part will be called
the measurement part of the model, while the other part will be called the
structural part of the model. On the basis of the relationships between the

1Another Lisrel-like approach to ordinal categorical data which is more similar to the
standard LISREL model is the model proposed by Muthén (1984).
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variables depicted in Figure 3.5, the model represented in Equation 3.7 can
be written in a more restricted form as

πefgwhyabcd = πefg πw|efg πh|efw πy|fgwh πa|w πb|w πc|y πd|y . (3.8)

As in a modified path model containing only observed variables, the prob-
abilities appearing in Equation 3.8 can be restricted further by means of
a logit parameterization or by the equivalent log-linear parameterization
proposed by Goodman (1973). For instance, in accordance with the rela-
tionships depicted in Figure 3.5, πw|efg has to be restricted as follows:

πw|efg =
exp

(
uWw + uWE

we + uWF
wf + uWG

wg + uWFG
wfg

)
∑
w exp

(
uWw + uWE

we + uWF
wf + uWG

wg + uWFG
wfg

) ,
or equivalently, by means of log-linear model

logmefgw = αefg + uWw + uWE
we + uWF

wf + uWG
wg + uWFG

wfg .

This model contains direct effects of E and F and G on W , where there is
an interaction between F and G with respect to their effects on W .

Some other special cases As was shown in the previous subsection, all
extensions which have been proposed for the standard latent class model
are special cases of the modified Lisrel model. There are, however, other
models which are special cases of the modified Lisrel model.

Hagenaars (1988) specified a local dependence model in which he as-
sumed the relationships between indicators to be asymmetrical. Suppose
we want to specify a local dependence model like the one depicted in Fig-
ure 3.4, but now with a direct effect of C on D instead of a symmetrical
relationship. Such a model is equivalent to a modified path model of the
form

πwabcd = πw πa|w πb|w πc|w πd|wc ,

where πd|wc is restricted by a no-three-variable interaction model. Although
in this case the model with an asymmetrical direct relationship between
indicators gives the same model fit as the symmetrical specification used in
Equation 3.6, this is not always the case. Moreover, even though the model
fit is the same, the estimated effect of W on C will be different in the two
specifications.

Another special case of the modified Lisrel model is the latent budget
model which was proposed by Van der Heijden, Mooijaart, and De Leeuw



58CHAPTER 3. LOG-LINEAR ANALYSISWITH LATENT VARIABLES ANDMISSING DATA

(1992). A latent budget model is a kind of MIMIC model in which one
set of variables is used as a joint explanatory variable and another set of
variables is used as a joint response variable or observed budget. When A
denotes the joint explanatory variable, B, the observed budget, and W , the
latent budget, the latent budget model is given by

πawb = πa πw|a πb|w ,

where the marginal distribution of A, πa, is not restricted, and where πw|a
and πb|w can be restricted via fixed-value or equality restrictions on the
conditional probabilities or via a logit parameterization.

In the previous chapter, it was shown that the discrete-time Markov
model is a special case of the modified path model. Therefore, it is not
surprising that the discrete-time latent Markov model is a special case of
the modified Lisrel model. The discrete-time latent Markov model was
originally proposed by Wiggins (1955, 1973), while more recently Poulsen
(1982), Van de Pol and De Leeuw (1986), Van de Pol and Langeheine (1990),
and Collins and Wugalter (1992) contributed to the practical applicability
of the latent Markov model. Suppose that Sl denotes the observed state at
time point l and that sl denotes a category of Sl. Moreover, let Φl denote
the true state at time point l with values φl. For the sake of simplicity, it will
be assumed that there are observations for only 3 points in time, 1 ≤ l ≤ 3.
In that case, a first-order latent Markov model can be represented as follows:

πs1s2s3φ1φ2φ3
= πφ1

πφ2|φ1
πφ3|φ2

πs1|φ1
πs2|φ2

πs3|φ3
,

where some restrictions have to be imposed on either the transition prob-
abilities πφl|φl−1

or the conditional response probabilities πsl|φl
to make

the model identifiable (Van de Pol and Langeheine, 1990). Explanatory
variables can be incorporated in the model in the same way as in mani-
fest Markov models (Vermunt and Georg, 1995; Vermunt, Langeheine, and
Böckenholt, 1995).

As in modified path models, every conditional probability in modified
Lisrel models may be parameterized by means of a multinomial logit model
of the general form

πi|k =
exp

(∑
j βjxijk

)
∑
i exp

(∑
j βjxijk

) , (3.9)

where i denotes a level of the response variable, k, a level of the joint
explanatory variable, and j, a particular effect. This implies that, as was
demonstrated for modified path models, modified Lisrel models can also be
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used with continuous exogenous variables. Dayton and Macready (1988)
and Van der Heijden and Dessens (1994) proposed a latent class model with
continuous covariates. In their model, the latent proportions are regressed
on one or more continuous explanatory variables using a logistic regression
model. Assuming that the latent variable W has 3 indicators A, B, and C,
in our notation, such a model can be written as

πabcdw|k = πw|xwjk
πa|wxajk

πb|wxbjk
πc|wxcjk

,

where xwjk, xajk, xbjk, and xcjk denote the observed value for person k on
the exogenous variable j for W = w, A = a, B = b, and C = c, respec-
tively. These conditional probabilities can, of course, be restricted using the
multinomial logit model or the logistic regression model given in Equation
3.9. Note that this modified path model with a latent variable is, in fact,
more general than the model proposed by Dayton and Macready because
the conditional response probabilities may also depend on the continuous
covariates.

3.1.4 Unobserved heterogeneity

Above, one particular application of log-linear models with latent variables
models was discussed, i.e., correcting for measurement error in observed
variables. However, log-linear models with latent variables can also be
used to correct for unobserved heterogeneity. The term unobserved het-
erogeneity is generally used in the context of regression models.2 It means
that particular variables that influence the dependent variable are not mea-
sured and can therefore not be used as covariates in the regression model
(Heckman and Singer, 1982, 1984). One possible solution in such situations
is to include in the regression model a latent unobserved covariate which
is assumed to capture (part of) the unobserved causes of the phenomenon
under study (Wedel and DeSarbo, 1994, 1995).

From a technical point of view, the main difference between the latent
class models discussed in the previous subsections and the finite mixture
models which are used to correct for unobserved heterogeneity is that in
the latter, the latent variable incorporated in the model does not have indi-
cators. Since this makes the models more difficult to identify, models with
unobserved heterogeneity will generally be rather restrictive. Moreover, the
results obtained from mixture models may be sensitive to the choice of the
identifying restrictions.

2Other terms that are sometimes used to describe this phenomenon are omitted vari-
able bias (Chamberlain, 1985) and overdispersion (MCCullagh and Nelder, 1983).
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Follman and Lambert (1989) and Formann (1992) proposed a logit
model with a non-parametric unobserved heterogeneity component. For-
mann called this model a mixed logistic regression model. In this model, the
existence of a categorical latent variable is assumed which may influence
not only the dependent variable but also the effect of the other indepen-
dent variables on the dependent variable. An important assumption of the
model is that the mixture distribution is independent of the other explana-
tory variables.3

Suppose we want to explain C using the observed variables A and B
and the unobserved variable W as regressors. In that case, the mixed logit
model is given by

πwabc = πw πab πc|abw , (3.10)

where the probability πc|abw has to be restricted in some way because,
otherwise, the model is not identified. One possibility is to postulate a
logit model in which all regressors influence C through the two-variable
effects, but in which all higher-order interaction terms are absent.

Another model for categorical data in which a latent variable is used
to correct for unobserved heterogeneity is the discrete-time mixed Markov
model (Poulsen, 1982, Langeheine and Van de Pol, 1990, 1994). In this
model, it is assumed that the observed transition probabilities are actu-
ally a mixture of the transition probabilities of several unobserved groups.
This is equivalent to assuming that there is an unobserved variable which
influences the transition probabilities. The mixed Markov model can be
identified without further restrictions when a first-order Markov model is
postulated within the unobserved subgroups. Suppose that Sl denotes the
state occupied at time point l, that sl denotes a category of Sl, and that
1 ≤ l ≤ 4. Assuming that W is the latent variable, the mixed Markov can
be written as

πws1s2s3s4 = πw πs1|w πs2|ws1 πs3|ws2 πs4|ws3 . (3.11)

It should be noted that the well-known mover-stayer model (Goodman,
1961) is a special case of the mixed Markov model. It is obtained by
restricting the probabilities πsl|wsl−1

to be equal to zero if Sl 6= Sl−1 for
one latent class.

Van de Pol and Langeheine (1990) extended the mixed Markov by incor-
porating observed covariates. Moreover, they combined the mixed Markov

3These models are sometimes also called random-effects logistic regression models
(Willekens, 1994). The approach that is used here is a non-parametric random-effects
approach because the distribution of the latent variable which is included in the regression
model is not parameterized. Sections 4.8 and 5.2 explain the different ways of handling
unobserved heterogeneity in the context of event history analysis in more detail.
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model and the latent Markov model into one general model which they
called the mixed Markov latent class model.

From Equations 3.10 and 3.11, it can easily be seen that both the mixed
logistic regression model and the mixed Markov model are also special cases
of the modified Lisrel model. The same applies to Van de Pol and Lange-
heine’s extensions of the mixed Markov model. Other examples of mixture
models that can be dealt with within the context of modified path analysis
with latent variables are the mixed Rasch model proposed by Rost (1990)
and models for analyzing ranking data (Croon, 1989; Croon and Luijkx,
1993; Böckenholt, 1996) and other types of choice data (Kamakura, Wedel,
and Agrawal, 1992).

3.1.5 Estimation and testing

Obtaining maximum likelihood estimates of the parameters of latent class
models, log-linear models with latent variables, and modified Lisrel mod-
els is a bit more complicated than for log-linear models in which all vari-
ables are observed. Several estimation methods can be used to estimate
the parameters of the models discussed in the previous subsections. The
best known methods are the Newton-Raphson algorithm, including vari-
ants such as Fisher’s scoring algorithm and other quasi-Newton algorithms,
and the Expectation-Maximization (EM) algorithm. Lazarsfeld and Henry
(1968:101-105) have already demonstrated how to apply Fisher’s scoring
method to estimate latent class models, while Goodman (1974a, 1974b)
was the first to use the EM algorithm for estimating latent class models.

Computer programs Fisher’s scoring algorithm is implemented in the
LAT program which was developed by Haberman (1979: Appendix A.2),
while Haberman’s NEWTON program is based on the Newton-Raphson
algorithm (Haberman, 1988). These programs were developed to estimate
latent class models using a log-linear parameterization. Mare and Winship
(1989) showed that with a complicated reparameterization, it is also pos-
sible to estimate modified path models by means of NEWTON. The other
widely available programs for latent class analysis are all based on the EM
algorithm. Clogg’s MLLSA program can be used to estimate the classical
latent class model, including some of its extensions discussed above (Clogg,
1977). Hagenaars and Luijkx’ LCAG program can be used to estimate
classical latent class models and modified Lisrel models with hierarchical
log-linear models (Hagenaars and Luijkx, 1990). The DILTRAN program
can be used to estimate latent class models with different types of linear
restrictions on the log-linear parameters or, more precisely, discrete latent
trait models (Heinen and Vermaseren, 1992). The PANMARK program
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was especially developed for estimating latent and mixed Markov models,
but it can also be used to estimate classical latent class models (Van de
Pol, Langeheine and De Jong, 1989).

The `EM program is the most general program for estimating log-linear
models with latent variables (Vermunt, 1993) since it combines all the fea-
tures of the above-mentioned programs. It can be used to estimate modi-
fied Lisrel models which, as was shown in the previous section, are the most
general models of which all other models are special cases. By means of
`EM , equality, fixed-value, and particular kinds of inequality restrictions
can be imposed on the (conditional) probabilities appearing in a modified
path model with latent variables. In addition, a general multinomial logit
parameterization of the conditional probabilities can be used in which log-
multiplicative effects can be included. It is also possible to use cumulative
link functions leading to models for ordinal dependent variables, that is,
cumulative logit, probit, complementary log-log, and log-log models.

Newton-Raphson and Fisher’s scoring The Newton-Raphson algo-
rithm and Fisher’s scoring algorithm are strongly related gradient search
methods. The difference between them is that Fisher’s scoring algorithm
uses the expected information matrix, or Fisher’s information matrix, while
Newton-Raphson uses the observed information matrix to determine the
optimal step size to improve the parameter estimates. When all variables
of a log-linear model are observed, the procedures are equivalent because,
in that case, the observed and the expected information matrix are iden-
tical (Agresti, 1990:114; Heinen, 1993:287). The main advantage of using
Fisher’s scoring algorithm rather than Newton-Raphson to estimate the pa-
rameters of models with latent variables is that the expected information
matrix can be obtained from the first-order derivatives of the log-likelihood
function. Therefore, it is no longer necessary to compute the second-order
derivatives. Appendix G explains how to obtain the expected information
matrix for modified path models with latent variables. It must be noted
that this version of Fisher’s scoring algorithm for estimating modified path
models with latent variables has not yet been implemented in a computer
program.

The main advantage of using Newton Raphson or Fisher’s scoring in
comparison with the EM algorithm is that they converge very fast when
the model does not contain too many parameters, and, moreover, they
provide standard deviations of the parameter estimates as a by-product.
A major disadvantage is that they need starting values which are close
to the final solution to converge to the maximum likelihood solution (Ha-
genaars, 1988; Heinen, 1993:65). Therefore, Haberman (1988) proposed



3.1. LATENT VARIABLES 63

a so-called stabilized Newton-Raphson algorithm, which he implemented
in his NEWTON program (Haberman, 1988). Although in most kinds
of latent class models this algorithm performs better, in particular types
of restricted latent class models, convergence is still problematic (Heinen,
1993:65). Another disadvantage of the Newton algorithms is that when a
model contains many parameters, they may become very time consuming
because of the necessity to compute and to invert the Hessian matrix or
the expected information matrix at every iteration. And finally, numerical
problems may occur when some estimated cell counts go to zero, that is,
when some log-linear parameters go to minus infinity.

The EM algorithm The EM algorithm appears to be a good alterna-
tive (Dempster, Laird, and Rubin, 1977). The main advantage of the EM
algorithm compared with the Newton methods is that it does converge to
at least a local maximum under relatively weak conditions, even with bad
starting values (Wu, 1983). Generally, random starting values are good
enough. Furthermore, the EM algorithm is both conceptually and compu-
tationally very simple. The main disadvantages are that it may need many
iterations to converge and that it does not give estimates of the standard
deviations of the parameter estimates. However, since every EM iteration
is performed relatively fast, it is not problematic that many more iterations
are needed than with the Newton methods. Moreover, standard errors for
the parameter estimates can be computed afterwards, for instance, by com-
puting the inverse of the expected information matrix. The ideal algorithm
would be a composite algorithm which starts with a number of EM itera-
tions and which, when it is close enough to the final solution, at which point
the EM becomes slow and Newton methods become more stable, switches
to one of the Newton algorithms (Titterington, Smith, and Makov, 1985;
Guo and Rodriguez, 1992).4

The EM algorithm is a general iterative estimation procedure which can
be used when there are missing data (Dempster, Laird, and Rubin, 1979).
In log-linear models with latent variables, the scores on the latent variables
are missing. Each EM iteration consists of two steps. The E(xpectation)
step involves computing the expected complete data, given the observed
data and the ‘current’ parameter estimates. In the M(aximization) step,
the complete data likelihood function is maximized. This implies computing

4In the `EMprogram (Vermunt, 1993), standard errors of the log-linear parame-
ters are based on a numerical approximation of the observed information matrix (see
Appendix G). In addition, it is possible to switch to the Newton-Raphson, Broyden-
Fletcher-Goldfarb-Shanno (BFGS), or Levenberg-Maquardt method after some EM it-
erations. For an extended discussion of these algorithms see Press et al. (1986).
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updated estimates of the model parameters as if there were no missing data.
These EM iterations continue until convergence is reached.

Suppose one wants to obtain maximum likelihood estimates for the
model parameters of the modified Lisrel model presented in Equations 3.7
and 3.8. Assuming multinomial sampling, this involves maximizing the
following incomplete data log-likelihood function

logL(π) =
∑

efghabcd

nefghabcd log
∑
wy

π̂efgwhyabcd . (3.12)

Here, π̂efgwhyabcd denotes the estimated probability of belonging to cell
(e, f, g, w, h, y, a, b, c, d) in joint distribution of the observed and unobserved
variables. Note that in Equation 3.12, the estimated probabilities are col-
lapsed over the dimensions that are missing, i.e., the dimensions pertaining
to the latent variables W and Y .

In the E step of the EM algorithm, the expectation of the complete
data log-likelihood, given the incompletely observed data and the ‘current’
parameter estimates is computed, i.e.,

logL∗(π) =
∑

efgwhyabcd

n̂efgwhyabcd log π̂efgwhyabcd .

This log-likelihood function is sometimes also called the complete data like-
lihood. In this equation, n̂efgwhyabcd denotes an estimated cell count in the
frequency table including the latent dimensions. Thus, the E step involves
computing estimates for the unobserved frequencies of the table including
the latent dimensions, i.e.,

n̂efgwhyabcd = nefghabcd π̂wy|efghabcd , (3.13)

in which π̂wy|efghabcd is the estimated probability that W = w and Y = y,
given A = a, B = b, C = c, D = d, E = e, F = f , and G = g, in
other words, the probability of the missing data given the observed data,
evaluated using the estimated probabilities resulting from the previous EM
iteration. The quantity π̂wy|efghabcd is sometimes also called the posterior
probability.

In the M step, the complete data log-likelihood function given in Equa-
tion 3.13 is maximized to obtain improved parameter estimates, or equiv-
alently, improved estimated probabilities π̂efgwhyabcd. In fact, the model
parameters are updated using the n̂efgwhyabcd’s as if they were observed cell
counts. For that purpose, the estimation procedures are the same as those
used in the case of log-linear models without missing data. In the M of the
EM algorithm as implemented in the `EM program (Vermunt, 1993), it is
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possible to use IPF, uni-dimensional Newton, and the methods proposed
by Goodman (1974b) to estimate unrestricted and restricted conditional
probabilities. For more information about these estimation procedures, see
the subsections on IPF and uni-dimensional Newton in Chapter 2 and the
Appendices E and F.

The new estimates for the estimated probabilities π̂efgwhyabcd are again
used in a new E step to obtain new estimates for the frequencies in the
complete table. The EM iterations continue until convergence is reached,
for instance, until the log-likelihood function given in Equation 3.12 in-
creases less than a specified minimum value or until the parameters no
longer change significantly.

It has been proven that the EM algorithm converges to a local maximum
under rather weak conditions (Wu, 1983). However, there is no guarantee
that the global maximum of the likelihood function will actually be found.
Therefore, it is recommended that the model of interest be estimated us-
ing different sets of starting values (Hagenaars, 1990:112; Formann, 1992).
When all runs lead to the same value of the likelihood function, it is more
certain that the global maximum has been found. On the other hand, if
different solutions are found using different sets of starting values, the so-
lution with the highest likelihood value is to be preferred. But, as with
any kind of model which is known to have local maxima, one can never
be completely sure that the global maximum of the likelihood function has
been found.

Modifications of EM The algorithm used in `EM is a modified version
of the true EM algorithm because the M step consists of only one iteration.
Generally, therefore, the complete data likelihood is not maximized but only
improved within a particular M step. This is a special case of the GEM
algorithm which states that every increase in the complete data likelihood
also leads to an increase of the incomplete data likelihood that actually has
to be maximized (Dempster, Laird, and Rubin, 1977; Little and Rubin,
1987). Rai and Matthews (1993) called this version of the EM algorithm
the EM1 algorithm.

The algorithm which is used in `EM is also a special case of the ECM
algorithm (Meng and Rubin, 1993), in which the M step is replaced by
a conditional maximization (CM) step. Conditional maximization means
that instead of improving all the parameters simultaneously, subsets of
parameters are updated fixing the others at their previous values. This is
exactly what is done using IPF and the uni-dimensional Newton algorithm.
Meng and Rubin (1993) state that such simple and stable linear convergence
methods are often more suitable for the M (or CM) step of the EM (or
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ECM) algorithm than superlinear converging but less stable algorithms as
Newton-Raphson.

In most situations, this GEM, EM1 or ECM algorithm converges in
about the same number of (EM) iterations as the true EM algorithm. This
means that when the M step needs more than one (M) iteration to con-
verge, the modified EM algorithm is faster than the true EM algorithm.
However, experience with `EM has shown that sometimes it is more effi-
cient to perform more than one M iteration. This is true in models in which
the uni-dimensional Newton algorithm takes numerous iterations in order
to converge. As was mentioned in the previous chapter, if the parameters
are highly correlated, this algorithm requires a large number of iterations
in order to converge. In such cases, it may be more efficient to perform,
for instance, five M iterations when using `EM , especially if the M step is
faster than the E step.

Identifiability It is well known that the parameters in models with latent
variables cannot always be uniquely determined. Of course, as in log-linear
models without latent variables, it is necessary that the number of indepen-
dent parameters does not exceed the number of observed frequencies. In
models with latent variables this is not a sufficient condition for identifia-
bility. According to Goodman (1974b), a sufficient condition for local iden-
tifiability is that the information matrix is positive definite (see Appendix
G). Therefore, when using Fisher’s scoring method or Newton-Raphson to
estimate the parameters of a log-linear model with latent variables, the iden-
tifiability of a model is automatically checked. Some programs which are
based on the EM algorithm, such as PANMARK (Van de Pol, Langeheine,

and De Jong, 1988) MLLSA (Clogg, 1977), and `EM , also make it possi-
ble to check the identification of the parameters. Another way of checking
identifiability when using the EM algorithm is to estimate the given model
using different sets of starting values. If different sets of starting values re-
sult in the same value for the log-likelihood function but different parameter
estimates, the model is not identifiable (Hagenaars, 1990:112).

Testing Log-linear models with latent variables can be tested in the same
fashion as the log-linear models discussed in the previous chapter. Both the
likelihood-ratio chi-square statistic L2 and the Pearson chi-square statistic
X2 may be used to compare the observed frequencies with the estimates
of the expected manifest frequencies. The estimated expected frequencies
m̂efgwhyabcd can be obtained by multiplying the estimated probabilities
π̂efgwhyabcd by the sample size N. The likelihood-ratio chi-square statistic
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can be obtained by

L2 = 2
∑

efghabcd

nefghabcd log
nefghabcd∑

wy m̂efgwhyabcd
.

Note that the m̂efgwhyabcd have to be collapsed over the latent dimen-
sions to obtain the estimated expected frequencies in the observed table
EFGHABCD.

As in the case of log-linear models without latent variables, conditional
tests may be used to compare nested models. However, it should be noted
that although latent class models with different numbers of latent classes
are nested, they cannot be tested against each other using conditional L2

tests. The reason for this is that the more parsimonious model, the model
with fewer latent classes, can only be expressed as a restricted version of the
less parsimonious model by fixing one or more latent proportions to zero.
The asymptotic theory no longer holds because these latent proportions are
on the boundary of the parameter space (Titterington, Smith, and Makov,
1985; Formann, 1992).5 Everitt (1988) examined the distribution of the
conditional L2 statistic for pairs of nested latent class models and found
that L2 was not distributed as χ2. The use of theAIC andBIC information
criteria does not resolve the testing problem because they rely on the same
regularity conditions as the chi-square statistics (Heinen, 1993:73).

3.2 Nonresponse

The previous section discussed one type of missing data problem in log-
linear analysis, that is, how to formulate models when one or more variables
are completely unobserved. In this section, attention is given to another
type of missing data problem. Log-linear models are presented which can
be used when the scores on particular variables are partially missing.

In most studies, the values of one or more variables are missing for
subsets of the original sample. It is common practice in such cases to use
only the complete observations in the analysis. This leads to less powerful
statistical tests and, if the nonresponse is selective, to biased parameter es-
timates. However, methods have been developed which can also make use
of partially observed information in fitting log-linear models. These meth-
ods are analogous to methods developed to deal with partially observed
continuous data (Marini, Olsen, and Rubin, 1979; Allison, 1987; Muthén,
Kaplan, and Hollis, 1987).

5It should be noted that this does not only hold for the latent proportions, but for
any probability appearing in the models discussed so far. It is never allowed to use a
conditional L2 test to investigate whether a probability equals zero.
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Suppose there is a four-way contingency table composed of the variables
A, B, C, and D, for which the values of C, D, or both are missing for a
part of the sample. On the basis of the nonresponse patterns, it is possible
to divide the observations into four subgroups. Subgroup AB consists of
the subjects for which only the values of A and B are known; for subgroup
ABC, only A, B, and C are observed; for subgroup ABD, C is missing;
and finally, for subgroup ABCD, all variables are observed. The observed
frequencies for these four subgroups will be denoted as nab, nabc, nabd, and
nabcd, respectively. The sizes of the subgroups will be denoted as NAB ,
NABC , NABD, and NABCD, respectively.

3.2.1 Assumptions about the response mechanism

Different kinds of assumptions can be made with regard to the mechanism
causing the missing data. Generally, three basic types of mechanisms are
distinguished: missing completely at random (MCAR), missing at random
(MAR), and not missing at random (NMAR) (Rubin, 1976; Little, 1982;
Little and Rubin, 1987). MCAR means that the nonresponse is independent
of the variables included in the analysis. In other words, when the missing
data is MCAR, the probability of having a particular pattern of nonresponse
is assumed to be equal for each cell of the ‘hypothetical’ complete table.
The much less restrictive MAR assumption implies that the probability of
having a particular pattern of nonresponse depends only on the observed
variables in the nonresponse pattern or subgroup concerned. For example,
MAR means that for a given individual who only has a missing value on
D (subgroup ABC), the probability of nonresponse on D may depend on
A, B, and C, but not on D. For an individual who has missing values on
both C and D (subgroup AB), the probability of not observing C and D
may only depend on A and B. If the missing data are not MAR or MCAR,
they are NMAR. This occurs when the probability of having a particular
pattern of nonresponse depends on the variables with missing values in
the nonresponse pattern concerned. For example, the response mechanism
is MCAR if for subgroup ABC the probability of nonresponse on D also
depends on D, or if for subgroup AB the probability of nonresponse on
both C and D also depends on C, D, or both.

Besides the distinction between MCAR, MAR, and NMAR response
mechanisms, there is another strongly related distinction when dealing with
partially observed data, that is, whether the missing data mechanism is ig-
norable or nonignorable for likelihood-based inference. According to Rubin
(1976), the missing data mechanism is ignorable for likelihood-based infer-
ence if two conditions are fulfilled, namely, if the missing data are MAR and
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if the parameters of the structural model6 and the parameters associated
with the response mechanism are distinct (see also Little, 1982, and Little
and Rubin, 1987). The condition that the two sets of parameters must be
distinct means that no restrictions may be imposed between the parameters
of the structural model and the parameters describing the response mech-
anism. As is demonstrated below, this condition is almost always fulfilled.
Therefore, for practical applications, ignorability can be equated to MAR.

The consequence of ignorability is that the parameter estimates are
identical regardless of the precise ignorable mechanism causing the missing
data, and that, therefore, the response mechanism can be ignored when
estimating the structural parameters. This is possible because in that case,
the likelihood can be factored into a part containing the structural parame-
ters and a part containing the information on the missing data mechanism.
On the other hand, such a factorization is impossible when the response
mechanism is NMAR or when the two sets of parameters are not distinct,
and, therefore, the response mechanism is nonignorable.

Assuming a multinomial sampling scheme for the same variables and
subgroups as above, estimation of a log-linear model with partially observed
data involves maximizing the following incomplete data likelihood

logL(π,θ) =
∑
abcd

nabcd log πabcd θABCD|abcd

+
∑
abc

nabc log
∑
d

πabcd θABC|abcd

+
∑
abd

nabd log
∑
c

πabcd θABD|abcd

+
∑
ab

nab log
∑
cd

πabcd θAB|abcd ,

where

θABCD|abcd + θABC|abcd + θABD|abcd + θAB|abcd = 1 .

Here, θABC|abcd, θABC|abcd, θABD|abcd, and θAB|abcd denote the conditional
probability of belonging to subgroup ABCD, ABC, ADC, and AB, re-
spectively, given that A = a, B = b, C = c, and D = d. The θ’s, or the
response probabilities, contain the parameters associated with the response
mechanism. The missing data are MAR if the θ’s are independent of the

6The term structural model is used to denote the model for the variables which
relationships we are interested in. In the context of this section, the structural model
will be a (causal) log-linear model.
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missing variables in the subgroup concerned, that is, if

θABC|abcd = θABC|abc , (3.14)

θABD|abcd = θABD|abd , (3.15)

θAB|abcd = θAB|ab , (3.16)

θABCD|abcd = 1− θABC|abc − θABD|abd − θAB|ab . (3.17)

In that case, the likelihood function can be factored into a component
which depends solely on the log-linear parameters and a component which
depends solely on the response mechanism:

logL(π,θ) = logL(π) + logL(θ) ,

where

logL(π) =
∑
abcd

nabcd log πabcd +
∑
abc

nabc log
∑
d

πabcd

+
∑
abd

nabd log
∑
c

πabcd +
∑
ab

nab log
∑
cd

πabcd ,

and

logL(θ) =
∑
abcd

nabcd log θABCD|abcd +
∑
abc

nabc log θABC|abc

+
∑
abd

nabd log θABD|abd +
∑
ab

nab log θAB|ab .

If, in addition, no restrictions are imposed across the parameters determin-
ing the θ’s and the parameters determining the π’s, the two parts may be
maximized separately. This means that the structural parameters can be
estimated without estimating the parameters of the response mechanism.
For this reason, the response mechanism is called ignorable for likelihood-
based inference.

The constraints imposed on the θ’s in Equations 3.14-3.17 to make the
response mechanism ignorable are the least restrictive ones. There are
as many free θ’s as observed frequencies in the subgroups with partially
observed data. Actually, a ‘saturated’ MAR model is assumed for the
response mechanism. In other words, it is a model which uses all the
additional degrees of freedom obtained by using the partially observed data.
Of course, it is also possible to impose more restrictive constraints on the
θ’s. Assuming the θ’s to be equal for every value of A, B, C, and D, for
instance, provides MCAR missing data. There are several ‘non-saturated’
MAR models which are less restrictive than the MCAR model but more
restrictive than the ‘saturated’ MAR model. All of these MAR models lead
to the same parameter estimates for the structural model.
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3.2.2 Fuchs’s approach

Extending earlier work by Chen and Fienberg (1974), Hocking and Ox-
spring (1971, 1974), and Chen (1979) on the treatment of missing data in
the analysis of categorical data, Fuchs (1982) demonstrated how to estimate
the parameters of a log-linear model by means of the EM algorithm in cases
in which the nonresponse is ignorable (Dempster, Laird, and Rubin, 1977).
As always, the E step of the EM algorithm involves computing the condi-
tional expected complete data likelihood. Because of the ignorability of the
response mechanism, only the part depending on the log-linear parameters
needs to be considered, or

logL∗(π) =
∑
abcd

n̂abcd log π̂abcd .

This involves obtaining estimates for the frequencies in the complete table
ABCD by

n̂abcd = nabcd + nabc π̂d|abc + nabd π̂c|abd + nab π̂cd|ab .

In the M step, improved estimates for the probabilities π̂abcd are obtained by
maximizing the complete data likelihood using n̂abcd as if you were dealing
with observed frequencies.

It should be noted that when applying the above-mentioned procedure,
caution should be exercised if there are observed zeros in the sufficient
statistics for the subgroup for which all variables are observed. In such
cases, the starting values may determine the final estimates of particular
parameters (Fuchs, 1982).

To test the fit of a postulated log-linear model, Fuchs proposed obtaining
the θ’s as follows:

θABCD = NABCD/N ,

θABC = NABC/N ,

θABD = NABD/N ,

θAB = NAB/N

which is, in fact, equivalent to assuming that the missing data is MCAR.
This leads to the following likelihood chi-square statistic,

L2 = 2
∑
abcd

nabcd log
nabcd

m̂abcd θABCD
+ 2

∑
abc

nabc log
nabc∑

d m̂abcd θABC

+ 2
∑
abd

nabd log
nabd∑

c m̂abcd θABD
+ 2

∑
ab

nab log
nab∑

cd m̂abcd θAB
.
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It can be seen that the estimated expected frequencies for the complete
table, m̂abcd, are proportionally divided over the subgroups. Since this
amounts to assuming that the missing data are MCAR, this L2 statistic
simultaneously tests the fit of the postulated log-linear model and the va-
lidity of the MCAR assumption. This is, however, not a problem because
the fit of the log-linear model of interest can be tested indirectly by means
of a conditional L2 test. For that purpose, the saturated model, model
{ABCD}, has to be estimated. Since the saturated model itself fits per-
fectly, the L2 that is obtained for this log-linear model only tests the validity
of the MCAR assumption. By subtracting the L2 value of the saturated
log-linear model from the L2 value of the model of interest, one obtains a
test for the model of interest. This is a test under the weakest ignorable
type of missing data, that is, MAR nonresponse.

3.2.3 Fay’s approach

Sometimes one is interested in testing assumptions about the ignorable re-
sponse mechanism itself. Also, it is possible that one wants to specify a
nonignorable response mechanism. In such cases, the method proposed by
Fuchs is not appropriate. Chen and Fienberg (1974) proposed a method
for relaxing the MCAR assumption by simultaneously modeling and testing
the log-linear model for the variables of interest and the response model.
They demonstrated how to estimate the θ parameters under different types
of ignorable response mechanisms. Nordheim (1984) considered nonignor-
able response mechanisms, or NMAR missing data, for a partially observed
binary response variable. By fixing the θ’s to particular values, he evaluated
the sensitivity of the parameters of the structural model to the assumptions
about the response mechanism.

Causal models for nonresponse using indicator variables Little
(1985), Fay (1986), and Baker and Laird (1988) presented methods based on
defining response indicators for the variables which are partially observed.
Using these methods, it is possible to specify either ignorable or nonignor-
able response mechanisms. Little (1985) used hierarchical log-linear models
for the joint distribution of two ordinary variables and two response indi-
cators (see also Winship and Mare, 1989). Fay (1986) and Baker and Laird
(1988) used recursive causal log-linear models, or modified path models, in
which the response indicators are treated as dependent variables. Below,
the procedure which was proposed independently by Fay and by Baker and
Laird is presented using the same example as above.

Let R and S denote two response indicators, in which R indicates
whether C is observed or not observed and S indicates whether D is ob-
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served or not observed. If variable C is observed, R takes the value 1,
otherwise R takes the value 2. If variable D is observed, S equals 1, and
if D is missing, S equals 2. It is clear that the different subgroups can be
identified by the levels of R and S. If a given individual has R = 1 and
S = 2, then C is observed and D is missing, which means that individual
belongs to subgroup ABC.

The procedure proposed by Fay (1986, 1989) consists of using these
response indicators together which the other variables in a modified path
model. More precisely, a log-linear path model is used to specify both a
model for the structural variables and a model for the response mechanism.
According to Fay, the response indicators may never appear as independent
variables in a logit equation in which a structural variable or a research
variable is explained. This can easily be accomplished by specifying the
model for the structural variables in the first modified path steps and the
response model in the last steps. The modified path model for the joint
distribution of the structural variables A, B, C, and D, and the response
indicators R and S could, for instance, be

πabcdrs = πabcd πrs|abcd , (3.18)

where πrs|abcd denotes the probability that R = r and S = s, given an
individual’s scores on A, B, C, and D. In fact, these π’s have the same
meaning as the θ’s. Note that it is also possible to split πrs|abcd into two
separate modified path steps: πr|abcd and πs|abcdr. This is necessary if R and
S are time ordered, for instance, if R and S indicate whether a respondent
participated in the first or the second wave of a panel study, respectively.
Of course, the structural model may also be in the form of a modified path
model.

The conditional probability πrs|abcd may be restricted by means of a
logit model. Suppose that the probability of responding on C (the score on
R) depends on D and that the probability of responding on D (the score on
S) depends on C. Moreover, as in the case of MCAR nonresponse, assume
that R and S are related. This leads to the following logit model for the
joint distribution of R and S

πrs|abcd = πrs|cd =
exp

(
uRr + uSs + uRSrs + uRDrd + uSCsc

)∑
rs exp

(
uRr + uSs + uRSrs + uRDrd + uSCsc

) . (3.19)

It can be seen that the dependence of R on D and of S on C involves in-
cluding the interaction terms uRDrd and uSCsc in the model for the response
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mechanism. Note that the inclusion of the interaction term uRSrs in the
response model fixes the margin RS, or equivalently, the sizes of the sub-
groups.

Ignorable versus nonignorable response mechanisms It should be
noted that there is not always a simple one-to-one correspondence between
the log-linear models for the response mechanism and the classification of
types of missing data discussed above. For instance, in the case of the log-
linear model for nonresponse specified in Equation 3.19 one would perhaps
expect that the missing data are assumed to be MAR, which would imply
that the response mechanism is ignorable, since the variables with missing
data do not influence their own response indicators. Nonetheless, the miss-
ing data are assumed to be NMAR. This can be seen by writing down the
response probabilities for the different values of R and S in the terms of
log-linear parameters, i.e.,

θABCD|abcd = π11|cd =
exp

(
uR1 + uS1 + uRS11 + uRD1d + uSC1c

)∑
rs exp

(
uRr + uSs + uRSrs + uRDrd + uSCsc

) ,
θABC|abcd = π12|cd =

exp
(
uR1 + uS2 + uRS12 + uRD1d + uSC2c

)∑
rs exp

(
uRr + uSs + uRSrs + uRDrd + uSCsc

) ,
θABD|abcd = π21|cd =

exp
(
uR2 + uS1 + uRS21 + uRD2d + uSC1c

)∑
rs exp

(
uRr + uSs + uRSrs + uRDrd + uSCsc

) ,
θAB|abcd = π22|cd =

exp
(
uR2 + uS2 + uRS22 + uRD2d + uSC2c

)∑
rs exp

(
uRr + uSs + uRSrs + uRDrd + uSCsc

) .
Because of the appearance of the parameter uRDrd in its logit expression,
θABC|abcd is not independent of the value of D. The same argument ap-
plies to θABD|abcd and θAB|abcd which both depend on C and D as well.
Actually, all the response probabilities are influenced by both C and D be-
cause the response probabilities must sum to unity within every level of the
joint variable CD, which is accomplished by the scaling factor appearing
in the denominator of the logit equations. As a result, the missing data are
NMAR. This phenomenon, which is also mentioned by Winship and Mare
(1989), occurs because the response probabilities depend on variables with
missing data. Even if the variables C and D do not have a direct effect on
their own response indicators, the parameter estimates for the structural
model differ from the estimates under an ignorable response model. This
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means that the response mechanism is nonignorable. So, it is necessary to
be cautious when labeling log-linear response models as MAR or ignorable.
These terms refer only to the fact that the response mechanism can be ig-
nored for likelihood based inference about the structural parameters, and,
consequently, they do not always have the expected substantive meaning.

The most restrictive ignorable response mechanism is obtained when
the log-linear response model does not incorporate interaction effects be-
tween the structural variables and the response indicators, that is, when
the data are postulated to be MCAR. In the example, this would imply
that πrs|abcd = πrs. On the other hand, the least restrictive mechanism
which is still ignorable is obtained when the response indicators depend on
all variables which are observed for all persons, including all their higher
order interaction terms. In this case, the most extended ignorable log-
linear response model is obtained by assuming that πrs|abcd = πrs|ab, which
is equivalent to a ’non-saturated’ MAR mechanism. A ‘saturated’ MAR
model cannot be specified with a log-linear model for πrs|abcd. Such a model
can only be obtained by imposing the restrictions described in Equations
3.14-3.17 directly on the response probabilities.

Monotone patterns of nonresponse When the nonresponse follows a
monotone pattern, is it possible to formulate a log-linear path model for
the response mechanism which is equivalent to a ‘saturated’ MAR model,
or, in other words, a response model which uses all the additional degrees
of freedom obtained by using the partially observed data. A monotone
pattern of nonresponse means that the variables can be ordered in such a
way that a missing score on one particular variable implies having missing
scores on all subsequent variables too. Such patterns of nonresponse occur
often in social research, especially in panel studies, where nonresponse at
one point in time often implies nonresponse at the next points in time.

Suppose we have data from a panel study in which A, B, C, and D are
measurements of the same variable at four points in time. Moreover, assume
that there are four subgroups: A, AB, ABC, and ABCD. Subgroup A only
participated on the first occasion, subgroup AB on the first and the second
occasion, subgroup ABC on the first three occasions, and subgroup ABCD
on all four occasions. This yields a monotone or nested missing data pattern
since if B is missing, C and D are missing as well, and if C is missing, D is
missing as well. Let R, S, and T be the response indicators for B, C, and
D, respectively. In this case, a ‘saturated’ MAR model is obtained when

πrst|abcd = πr|a πs|abr πt|abcrs .

As a result of the monotone pattern of the missing data, certain probabili-
ties are structurally equal to one. More precisely, if R = 2, S = 2 as well,
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and if S = 2, T = 2 too. Therefore, πS2|ab2 = 1 and πT2|ab12 = πT2|ab22 = 1.
Using this additional information, the θ’s are given by

θABCD|abcd = π111|abcd = πR1|a π
S
1|ab1π

T
1|abc11 ,

θABC|abcd = π112|abcd = πR1|a π
S
1|ab1π

T
2|abc11 ,

θAB|abcd = π122|abcd = πR1|a π
S
2|ab1 ,

θA|abcd = π222|abcd = πR2|a .

It can easily be seen that the missing data are MAR, since the probability of
belonging to a particular subgroup depends only on the observed variables
in the subgroup concerned.

Estimation via the EM algorithm Let us return to the model rep-
resented in Equations 3.18 and 3.19. Maximum likelihood estimation of
the parameters of this model involves maximizing the following incomplete
data log-likelihood function,

logL(π) =
∑
abcd

nabcd log πabcdπ11|abcd +
∑
abc

nabc log
∑
d

πabcdπ12|abcd

+
∑
abd

nabd log
∑
c

πabcdπ21|abcd +
∑
ab

nab log
∑
cd

πabcdπ22|abcd .

The simultaneous estimation of the model for the relationships between A,
B, C, and D and the model for the response mechanism can be accom-
plished via the EM algorithm. In the E step, the conditional expectation
of the complete data, that is, the unobserved frequencies n̂abcdrs, have to
be computed by means of

n̂abcd11 = nabcd ,

n̂abcd12 = nabc π̂d|abc12 ,

n̂abcd21 = nabd π̂c|abd21 ,

n̂abcd22 = nab π̂cd|ab22 .

Note that unlike the E step for models with latent variables (see Equation
3.13), here the posterior probabilities are subgroup specific because each
subgroup has different missing data to be estimated.

In the M step, improved estimates for the parameters of the modified
path model are obtained by maximizing the complete data log-likelihood

logL∗(π) =
∑
abcdrs

n̂abcdrs log πabcd πrs|abcd .
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Testing The model can be tested by means of the likelihood-ratio statistic

L2 = 2
∑
abcd

nabcd log

(
nabcd
m̂abcd11

)
+ 2

∑
abc

nabc log

(
nabc∑

d m̂abcd12

)
+ 2

∑
abd

nabd log

(
nabd∑
c m̂abcd21

)
+ 2

∑
ab

nab log

(
nab∑

cd m̂abcd22

)
.

This is a simultaneous test for the structural model and the response model.
The assumptions regarding the response mechanism and the structural
model can be tested separately by means of conditional tests. The number
of degrees of freedom is

df = number of cells− number of independent u parameters ,

where the number of cells is the sum of the number of cells of all subgroups,
and the number of independent u parameters is the sum of the number of
independent parameters of the structural model and the response model.

Latent variables and nonresponse As demonstrated by Hagenaars
(1985, 1990:257), Fuchs’s method can also be used to deal with nonre-
sponse in latent class models and other types of log-linear models with
latent variables. In that case, there is a double missing data problem,
namely: partially unobserved and completely unobserved variables. The
same kind of solution was used by Vermunt (1988, 1994, 1996) to make
Fay’s method applicable to log-linear path models with latent variables
(see also Hagenaars, 1990:260).

Suppose we want to estimate a model which apart from the completely
and partially observed variables A, B, C, and D contains the latent vari-
ables W and Y . In that case, the E step of the EM algorithm changes
into

n̂wyabcd11 = nabcd π̂wy|abcd11 ,

n̂wyabcd12 = nabc π̂wyd|abc12 ,

n̂wyabcd21 = nabd π̂wyc|abd21 ,

n̂wyabcd22 = nab π̂wycd|ab22 .

Note that for each subgroup, both the values of the missing variables and
the values of the latent variable are estimated. The M step proceeds in the
same way as discussed above.

Computer programs Several programs have been developed which can
be used to estimate log-linear models with partially observed variables. In
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the LCAG program (Hagenaars and Luijkx, 1990), the method developed
by Fuchs is implemented, including Hagenaars’s extension for models with
latent variables. Although it is rather complicated, LCAG can also be
used to specify models with response indicators (Vermunt, 1988). In the

`EM program (Vermunt, 1993), Fay’s method is the standard way to treat
partially observed data. Moreover, models which contain both partially and
completely unobserved variables can be handled by the extension of Fay’s
method presented above. In addition, Haberman’s NEWTON program,
which uses a Newton algorithm instead of EM, can be used to estimate
models with partially observed data (Haberman, 1988).
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Figure 3.4: Local dependence model
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Chapter 4

Event history analysis

The main characteristic of event history data is that it provides informa-
tion on the times at which individual transitions between a number of dis-
crete states occurred. Because of the growing availability of event history
data, techniques for analyzing this kind of data are becoming increasingly
popular in the social sciences. There are many textbooks which describe
the fundamentals of this type of model (Kalbfleisch and Prentice, 1980;
Cox and Oakes, 1984; Lawless, 1982; Tuma and Hannan, 1984; Blossfeld,
Hamerle, and Mayer, 1989; Lancaster, 1990; Yamaguchi, 1991; Courgeau
and Lelièvre, 1992; Blossfeld and Rohwer, 1995). The aim of this chapter is
to give an overview of event history models, to investigate the relationship
between event history models and the log-linear models discussed in Chap-
ter 2, and to discuss all kinds of problems associated with the analysis of
event history data.

The first section discusses the characteristics of event history data and
explains the necessity of special techniques for analyzing this kind of data.
Section 4.2 deals with the basic statistical concepts. Models for the anal-
ysis of event history data, or hazard models, are introduced in section
4.3. After discussing the choice of the dependent variable and presenting a
classification of hazard models, attention is given to the three main types
of hazard models: parametric models, Cox’s semi-parametric model, and
discrete-time models.

Section 4.4 discusses the relationship between event history models and
the log-linear models presented in Chapter 2. More precisely, it shows that
particular kinds of event history models are equivalent to the log-rate model
which was presented in section 2.6.

While sections 4.3 and 4.4 deal strictly with the simplest kinds of haz-
ard models, that is, models for a single non-repeatable event with time-
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constant covariates, the last four sections of this chapter illustrate how the
main principles of hazard modeling can be generalized to more complex sit-
uations. Furthermore, a number of problems associated with the analysis
of event history data are discussed, some of which can be solved by means
of the event history models with latent variables and missing data which
are discussed in the next chapter.

Section 4.5 discusses the issue of censoring. Censoring is a form of
missing data which is inherent to event history data. Section 4.6 deals with
the potentials and pitfalls of dynamic modeling. Event history models are
dynamic models because of the possibility of regressing the hazard rate
on different kinds of time variables, on time-varying covariates, and on
interactions between time and covariates. It is shown that the problems of
selection bias, unobserved heterogeneity, and reverse causation can hamper
the causal interpretation of effects.

Section 4.7 presents models which can be used when there are different
types of events. These models are often called competing risks models. The
most general class of event history models, i.e., multivariate hazard models,
are presented in section 4.8. Included in the family of multivariate hazard
models are models for repeatable events, multiple-state models, models for
clustered observations, and models for different types of life-course events.
Special attention is given to the relationship between discrete-time multiple-
state models and the modified path models discussed in Chapter 2, and to
the problem of dependence among events.

It should be noted that in this chapter it is assumed that all covariates
are fully observed. Event history models with partially or totally missing
covariates are presented in Chapter 5. However, when discussing particular
problems associated with event history modeling, the use of models with
unobserved variables are sometimes mentioned as a possible solution.

4.1 Why event history analysis?

In order to understand the nature of event history data and the purpose
of event history analysis, it is important to understand the following four
elementary concepts: state, event, duration, and risk period (Yamaguchi,
1991:1-3). These concepts are illustrated below using an example from the
analyses of marital histories.

The first step in the analysis of event histories is to define the rele-
vant states which are distinguished. The states are the categories of the
‘dependent’ variable the dynamics of which we want to explain. At every
particular point in time, each person occupies exactly one state. In the
analysis of marital histories, four states are generally distinguished: never
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married, married, divorced, and widow(er). The set of possible states is
sometimes also called the state space (Tuma and Hannan, 1984:45).

An event is a transition from one state to another, that is, from an
origin state to a destination state. In this context, a possible event is
‘first marriage’, which can be defined as the transition from the origin
state, never married, to the destination state, married. Other possible
events are: a divorce, becoming a widow(er), and a non-first marriage. It
is important to note that the states which are distinguished determine the
definition of possible events. If only the states married and not married were
distinguished, none of the above-mentioned events could have been defined.
In that case, the only events that could be defined would be marriage and
marriage dissolution.

Another important concept is the risk period. Clearly, not all persons
can experience each of the events under study at every point in time. To
be able to experience a particular event, one must occupy the origin state
defining the event, that is, one must be at risk of the event concerned.
The period that someone is at risk of a particular event, or exposed to a
particular risk, is called the risk period. For example, someone can only
experience a divorce when he or she is married. Thus, only married persons
are at risk of a divorce. Furthermore, the risk period(s) for a divorce are
the period(s) that a subject is married. A strongly related concept is the
risk set. The risk set at a particular point in time is formed by all subjects
who are at risk of experiencing the event concerned at that point in time.

Using these concepts, event history analysis can be defined as the anal-
ysis of the duration of the nonoccurrence of an event1 during the risk pe-
riod (Yamaguchi, 1991:3). When the event of interest is ‘first marriage’,
the analysis concerns the duration of nonoccurrence of a first marriage, in
other words, the time that individuals remained in the state of never being
married. In practice, as will be demonstrated in section 4.3, the dependent
variable in event history models is not duration or time itself but a rate.
Therefore, event history analysis can also be defined as the analysis of rates
of occurrence of the event during the risk period. In the first marriage ex-
ample, an event history model concerns a person’s marriage rate during the
period that he/she is in the state of never having been married.2

Why is it necessary to use a special type of technique for analyzing event
history data? Why is it impossible to relate the incidence of an event
within the period of the study to a set of covariates simply by means of, for

1Other terms which are used instead of duration are waiting time, sojourn time, and
failure time.

2While the aim of event history analysis is explaining the occurrence of events, re-
cently, Allison (1994) proposed methods for estimating the effects of events.



84 CHAPTER 4. EVENT HISTORY ANALYSIS

instance, a logit model, in which the binary dependent variable indicates
whether a particular event occurred within the observation period or not?
This is, in fact, what is generally done in the analysis of categorical data
collected by means of a two-wave panel. If using such a logit modeling
approach were a good strategy, it would not be necessary to use special
types of methods for analyzing event history data. However, as will be
demonstrated below, such an approach has some significant drawbacks.

Suppose there are data on intra-firm job changes of the employees work-
ing at company ‘C’ which have to be used to explain individual differences
with regards to the timing of the first promotion. In other words, the aim
of the study is to explain why certain individuals in company ‘C’ remained
in their first job longer than others. A single binary dependent variable
could be defined indicating whether a given individual received a promo-
tion within, for instance, the first five years after gaining employment in the
company concerned. This dependent variable could be related to a set of
covariates, such as age, work experience, job level, educational level, family
characteristics, and work-related attitudes by means of a logit model.

Although such a simple logit approach can be quite valuable, it has four
important drawbacks (Yamaguchi, 1991:9). All of them result from the
fact that the choice of the period in which the event may have occurred
or not is arbitrary. The first problem is that it leads to a severe loss of
information since the information on the timing of a promotion within the
five-year period, on the promotions that occur after the five-year period,
and on the duration of the nonoccurrence of promotions after the five-year
period is not used.

The second problem of the approach with a single binary dependent
variable is that it does not allow the covariate effects to vary with time; in
other words, it cannot contain covariate-time interactions. Suppose that the
effect of the variable educational level changes with time, or more precisely,
that highly-educated employees have a higher probability of being promoted
in the first three years that they work at company ‘C’, while less educated
individuals have a higher probability after three years. In that case, the
results will heavily depend on the choice of the length of the time interval.
If a short time interval is used, a strong positive effect of the educational
level will be found, while longer intervals will lead to a smaller positive
effect or perhaps even to a negative effect of the same explanatory variable.

The third disadvantage to the logit approach is that it cannot deal with
time-varying covariates. An example of a covariate that can change its
value during the five-year period is the number of children that someone
has. It may be of interest to test whether the number of children a woman
has influences the probability of getting promoted. It is clear that in a real
dynamic analysis, it must be possible to use covariates which change their
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value over time.
The last problem of the simple logit model is that is cannot deal with

observations which are censored within the five-year period. In this case,
there may be two types of censored observations: individuals who leave be-
fore working five years at the company concerned and before getting a first
promotion, and individuals who had worked less than five years at company
‘C’ and had not yet been promoted at the time that the data were collected.
These two types of observations have in common that they provide the in-
formation that the event of interest did not occur during a given period of
time, but they do not provide information on whether the event does oc-
cur during the remaining part of the five-year period. Actually, censoring
is a form of partially missing data. When using the logit approach, it is
not clear what should be done with such censored observations. Ignoring
the censored observations implies that the information on non-promotion
during a given period of time is not used. On the other hand, incorporat-
ing the censored observations in the analysis as observations on individuals
that did not experience an event adds information, namely, that they would
not have experienced an event if they had worked for at least five years at
company ‘C’.

Clearly, special techniques are needed which overcome these disadvan-
tages of the simple logit approach discussed above and which fully use the
richness of event history data. Before presenting these models, some basic
concepts have to be introduced.

4.2 Basic statistical concepts

The manner in which the basic statistical concepts of event history models
are defined depends on whether the time variable T , indicating the duration
of nonoccurrence of an event, is assumed to be continuous or discrete. Of
course, it seems logical to assume T to be a continuous variable. However,
in many situations this assumption is not realistic for two reasons. Firstly,
in many cases, T is not measured accurately enough to be treated as strictly
continuous. An example of this is measuring the duration variable age of
the mother in completed years instead of months or days in a study on the
timing of the first birth. This will result in many women having the same
score on T , which is sometimes also called grouped ‘survival’ times.

Secondly, the events of interest can sometimes only occur at particular
points in time. Such an intrinsically discrete T occurs, for example, in
studies on voting behavior. Since elections take place at particular points
in time, changes in voting behavior can only occur at particular points in
time. Therefore, when analyzing individual changes in voting behavior, the
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time variable must be treated as a discrete variable. However, if we want to
explain changes in political preference rather than in voting behavior, we
again have a continuous time variable since political preference may change
at any point in time.

4.2.1 Continuous time

Suppose T is a continuous non-negative random variable indicating the
duration of nonoccurrence of the event under study, in other words, the
time that the event under study occurred. Let f(t) be the probability
density function of T , and F (t) the distribution function of T . As always,
the following relationships exist between these two quantities,

f(t) = lim
∆t→0

P (t ≤ T < t+ ∆t)

∆t
=

∂F (t)

∂t
,

F (t) = P (T ≤ t) =

∫ t

0

f(u)d(u) .

The survival probability or survival function, indicating the probability of
nonoccurrence of an event until time t, is defined as

S(t) = 1− F (t) = P (T ≥ t) =

∫ ∞
t

f(u)d(u) .

Another important concept is the hazard rate or hazard function, h(t),
expressing the instantaneous risk of experiencing an event at T = t, given
that the event did not occur before t. The hazard rate is defined as

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

=
f(t)

S(t)
, (4.1)

in which P (t ≤ T < t+ ∆t|T ≥ t) indicates the probability that the event
will occur during [t ≤ T < t+∆t], given that the event did not occur before
t. The hazard rate is equal to the unconditional instantaneous probability
of having an event at T = t, f(t), divided by the probability of not having
an event before T = t, S(t). It should be noted that the hazard rate itself
cannot be interpreted as a conditional probability. Although its value is
always non-negative, it can take values greater than one. However, for small
∆t, the quantity h(t)∆t can be interpreted as the approximate conditional
probability that the event will occur between t and t+ ∆t.

Because the functions f(t), F (t), S(t), and h(t) give mathematically
equivalent specifications of the distributions of T , it is possible to express
both S(t) and f(t) in terms of h(t). Since f(t) = −∂S(t)/∂t, Equation 4.1
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implies that

h(t) =
−∂ logS(t)

∂t
.

By integrating and using S(0) = 1, that is, no individual experienced an
event before T = 0, the important relationship

S(t) = exp

(
−
∫ t

0

h(u)d(u)

)
, (4.2)

is obtained. From Equations 4.1 and 4.2, it can be seen that the density
f(t) can also be written as a function of the hazard rate:

f(t) = h(t)S(t) = h(t) exp

(
−
∫ t

0

h(u)d(u)

)
. (4.3)

Thus, both the survival function and the density function of T can be
written in terms of the hazard function.

4.2.2 Discrete time

Suppose T is a discrete random variable indicating the time of occurrence of
an event, and tl is the lth discrete time point, where 0 < t1 < t2 < . . . < tL∗ ,
with L∗ indicating the total number of time points. If the event occurs
at tl, this means that the event did not occur before tl, in other words,
that the duration of nonoccurrence of an event equals tl−1. It should be
noted that this is slightly different from the continuous-time situation in
which T indicates both the time that an event occurs and the duration of
nonoccurrence of an event.

The probability of experiencing an event at T = tl is given as

f(tl) = P (T = tl) .

The survivor function, which indicates the probability of having an event
neither before nor at T = tl,

3 is

S(tl) = P (T > tl) =

L∗∑
k=l+1

f(tk) .

3It should be noted that some authors define the survival probability in discrete-time
situations as the probability of not having an event before tl: S(tl) = P (T ≥ tl).
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An important quantity in the discrete-time situation is the conditional prob-
ability that the event occurs at T = tl, given that the event did not occur
prior to T = tl. It is defined as

λ(tl) = P (T = tl|T ≥ tl) =
f(tl)

S(tl−1)
.

Similar to the way f(t) and S(t) are expressed in terms of h(t) in continuous
time, f(tl) and S(tl) can be expressed in terms of λ(tl). Since f(tl) =
S(tl−1)− S(tl),

λ(tl) =
S(tl−1)− S(tl)

S(tl−1)
= 1− S(tl)

S(tl−1)
. (4.4)

Rearrangement of this equation results in

S(tl) = S(tl−1) [1− λ(tl)] .

Once again, using S(0) = 1 leads to the following expressions for S(tl) and
f(tl):

S(tl) =

l∏
k=1

[1− λ(tk)] , (4.5)

f(tl) = λ(tl)S(tl−1) = λ(tl)

l−1∏
k=1

[1− λ(tk)] . (4.6)

Because λ(tl) is defined in much the same way as the continuous-time haz-
ard rate h(t), it is sometimes called a hazard rate (Yamaguchi, 1990:17;
Blossfeld, Hamerle, and Mayer, 1989:106). This is, however, not completely
correct since a hazard rate is an instantaneous (conditional) probability,
and therefore a continuous-time quantity. Nevertheless, it is possible to
calculate the hazard rate h(t) from λ(tl) and vice versa. As can be seen
from Equation 4.4, the conditional probability of experiencing an event at
tl equals one minus the probability of surviving between tl−1 and tl. Using
h(t), this can also be expressed as follows:

λ(tl) = 1− exp

(
−
∫ tl

tl−1

h(u)d(u)

)
. (4.7)

If the hazard rate is assumed to be constant in time interval tl and if
the length of time interval tl is 1, the expression in Equation 4.7 can be
simplified to

λ(tl) = 1− exp (−h(tl)) .
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This gives the following hazard rate in time interval tl:

h(tl) = − log (1− λ (tl)) (4.8)

The quantity h(tl) could be called a discrete-time hazard rate, or an ap-
proximation of the hazard rate in the lth discrete time interval. Note that
the relationship between h(t) and λ(tl) as expressed in Equation 4.7 is only
meaningful if the event can occur at any point in time, that is, if time is a
continuous variable which is measured discretely.

4.3 Hazard rate models

4.3.1 The form of the dependent variable

As defined above, the duration of nonoccurrence of the event under study in
an event history model is related to a set of covariates. However, to be able
to formulate a regression analytic model for event history data, it first has
to be decided which is the best form of the dependent variable. There are
at least four candidates for this purpose, namely, duration or time (T ), the
density of T (f(t) or f(tl)), the survival function (S(t) or S(tl)), and the
hazard rate (h(t)) or, in discrete time, the conditional probability λ(tl). It
is clear that the best candidate is the one which overcomes all the problems
associated with the simple logit approach discussed in section 4.1. This
means that an event history model must make it possible to

1. use all the information on the duration of the nonoccurrence of an
event,

2. specify time dependent effects of covariates (covariate-time interac-
tions),

3. use time-varying covariates,

4. use censored observations.

The simplest solution seems to be to use T or some transformation of T ,
such as log T , as the dependent variable in an ordinary regression model.
Models in which log T is linearly regressed on a set of covariates are known
as accelerated failure-time models (Cox and Oakes, 1984: section 6.3; Lan-
caster, 1990:40). Accelerated failure-time models use all the information on
the duration of nonoccurrence of an event. Moreover, censored observations
can be dealt with by estimating the models using maximum likelihood with
missing data. In accelerated failure-time models, it is, however, not possi-
ble to let the effects of covariates change with time nor to use time-varying
covariates.
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As was demonstrated in the previous section, the remaining candidates
give equivalent descriptions of the information on the duration of nonoc-
currence of an event. Like T or log T , the density function, the survival
function, and the hazard rate fulfill the first and last requisite. As in accel-
erated failure-time models, the censoring problem is solved by using maxi-
mum likelihood methods for obtaining estimates of the model parameters.
With respect to the second and third requisite, that is, with respect to the
dynamic character of event history analysis, the most natural dependent
variable seems to be the hazard rate. Modeling the hazard rate is a logical
dynamic extension of the simple logit approach presented above in which
the probability of occurrence of an event in a period of five years was mod-
elled. By modeling the hazard rate, it becomes possible to regress it both on
covariates and on time. When time is entered as an independent variable in
the model, it is a rather straightforward procedure to include time-covariate
interactions, that is, to allow the covariate effects to be time dependent.
Moreover, the hazard rate at T = t can be related to the covariate values
at T = t, which means that the covariates may be time-varying.

Besides the hazard rate, f(t) and S(t) can also be used as dependent
variables in an event history model. However, contrary to the hazard rate,
it is prohibitively complicated to take the dynamic character of the process
under study into account when modeling either the unconditional (instan-
taneous) probability of experiencing an event at T = t or the survival
probability. As was mentioned above, the hazard rate at T = t depends
only on the conditions at T = t, that is, on the covariate effects and co-
variate values at T = t. On the other hand, both S(t) and f(t) depend on
the circumstances encountered between T = 0 to T = t or, more precisely,
on the covariate effects and covariate values on the hazard rates between
T = 0 and T = t. This can be seen in Equations 4.2 and 4.3, which describe
the relationships between the survival, density, and hazard function.

Because of the necessity of cumulating the covariate effects between
T = 0 and T = t if the covariate effects change with time or if there are
time-varying covariates, it is, compared to h(t), relatively difficult to regress
S(t) or f(t) on a set of covariates. It is for this reason that the hazard
rate is generally used as the dependent variable in event history models.
Sometimes, S(t) is used for this purpose when there are only time-constant
covariates which effects do not change with time. The same arguments in
favor of using h(t) as the dependent variable in the continuous-time case
do also apply for λ(tl) in the discrete-time case.

Here, attention is focussed solely on event history models in which h(t)
or λ(tl) is used as the dependent variable. These regression models are also
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called hazard rate models or simply hazard models.4

4.3.2 Types of hazard models

The classification which is used in most textbook on hazard modeling is
the distinction between parametric models, Cox’s semi-parametric model,
and discrete-time models (see, for example, Kalbfleisch and Prentice, 1980;
Blossfeld, Hamerle, and Mayer, 1989; Yamaguchi, 1991). Parametric mod-
els and Cox’s semi-parametric model are used for continuous-time event
history data.

The two continuous-time methods differ from each other with respect
to the treatment of the time dependence of the hazard rate. In paramet-
ric models, the time dependence is assumed to have some known func-
tional form. Well-known parametric models are the exponential model, the
Weibull model, the Gompertz model, and the log-logistic model (Lawless,
1982; Blossfeld, Hamerle, and Mayer, 1989:50-55). On the other hand, if
the time dependence is not parameterized, i.e., if no model is specified for
the time dependence, a semi-parametric hazard model is obtained. Because
the semi-parametric hazard model was first proposed by Cox (1972), it is
often called the Cox semi-parametric hazard model or the Cox proportional
hazard model; the meaning of the term proportional will be explained be-
low.

The distinction between parametric and semi-parametric models is not
as relevant when dealing with discrete-time models. The reason for this is
that both the parametric and semi-parametric models can be specified with
the same discrete-time methods. More precisely, by specifying one time pa-
rameter for every discrete time point, a model is obtained that is similar to
the semi-parametric hazard model, while more parsimonious specifications
of the time dependence, such as polynomials, lead to models similar to the
parametric hazard models (Allison, 1982; Yamaguchi, 1991:17).

Another related approach to the analysis of event history data is the use
of non-parametric methods. These methods, such as demographic life-table
methods (Elandt-Johnson and Jonhson, 1980; Namboodiri and Suchindran,
1987) and Kaplan-Mayer’s (1958) product-limit estimates for the hazard
rates, have in common that the dependence of the hazard rate on covariates
is not parameterized. In that sense, they are not real models but tools for
the description of event history data. Since these methods fall outside the
scope of this book, they will not be discussed in further detail.

4It should be noted that the term hazard model is not always correct in discrete-time
situations because there we often model the conditional probability λ(tl) instead of the
hazard rate.
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Two special families In addition to the three above-mentioned types
of hazard models, two special families can be distinguished: proportional
hazard models and log-linear hazard models (Lancaster 1990:42-43).

Let h(t|x) be the hazard rate at T = t for an individual with covariate
vector x. When all regressors are time-invariant, a model of the form

h(t|x) = k1(t)k2(x) , (4.9)

in which k1(t) and k2(x) are the same functions for all individuals is called
a proportional hazard model. The reason for this is that the hazard rates
for two persons with regressor vectors x1 and x2 are in the same ratio,
k2(x1)/k2(x2), for all t. Proportional hazard models can be defined as
models in which the effect of T and the total effect of X on the hazard rate
are multiplicative and in which there are no interaction effects between T
and X.

The concept of proportional hazard rates is especially relevant for Cox’s
semi-parametric model. The development of this model is based on the
feature that if the hazard rate can be assumed to be proportional, a large
simplification of inference in event history models is achieved. More pre-
cisely, the proportionality assumption makes it possible to estimate the
unknown parameters of k2(x) without the necessity of specifying k1(t).

Although Cox’s regression model is the best-known proportional haz-
ard model, some of the parametric hazard models also lead to proportional
hazard rates. Parametric models in which the effect of T and X is mul-
tiplicative, such as the Weibull model, are proportional hazard models if
the effect of T is assumed to be the same for all values of X. As the time
variable is treated in the same way as any other time-varying covariate in
discrete-time models, it depends on the inclusion of interaction terms be-
tween T and X whether a particular discrete-time model is a proportional
hazard model or not.

Another special family of hazard models include the log-linear type.
They have the form

log h(t|x) =

J∑
j=1

βjkj [t,x(t)] . (4.10)

Here, kj [t,x(t)] denotes some known function either of T or of the time-
varying or time-constant covariates X(t). The βjs are the log-linear pa-
rameters which can be effects of T , X, or both. Thus, a hazard rate model
is called log-linear if the log of the hazard rate is a linear function of time
effects and covariate effects.

It should be noted that these two special families are not exclusive
categories. A proportional hazard model may also be a log-linear hazard



4.3. HAZARD RATE MODELS 93

model, namely, if k2(x) = exp(
∑
j βjx). On the other hand, if there are no

time-covariate interaction effects, a log-linear hazard model will also be a
proportional hazard model.

Some parametric models, such as the exponential, the piecewise expo-
nential, and the Weibull models, are log-linear or can be reparameterized
to be log-linear. Cox’s regression model is, likewise, log-linear. In discrete-
time methods, either a log-linear specification for the hazard rate or a logit
specification for the conditional probability of experiencing an event at a
particular point in time is used. While the concept of proportional hazard
rates was especially relevant for the development of Cox’s semi-parametric
model, the special family of log-linear hazard models is particularly relevant
in the context of this book because it deals with event history analysis by
means of log-linear analysis techniques. As will be demonstrated in section
4.4, log-linear hazard models are, to a great degree, related to the standard
log-linear models which were discussed in Chapter 2.

In summary, three fundamentally different types of hazard models were dis-
tinguished: parametric hazard models, Cox’s semi-parametric proportional
hazard model, and discrete-time models. These models will be presented
in the next subsections. It was also shown that two special families can be
distinguished which contain models belonging to these three main types.

4.3.3 Parametric hazard models

Let h(t|x) be the value of the hazard rate at T = t for an individual with
covariate values x. As mentioned above, parametric hazard models as-
sume a particular functional form for the relationship between T and the
value of the hazard rate. There are many parametric models, such as expo-
nential, piecewise exponential, Weibull, Gompertz-Makeham, log-logistic,
log-normal, gamma, and inverse Gaussian models, the names of which refer
to the functional form which is chosen for one of the basic functions h(t),
f(t) or F (t). In most textbooks on hazard models, a great deal of attention
is given to parametric hazard models (Elandt-Johnson and Johnson, 1980;
Kalbfleisch and Prentice, 1980; Cox and Oakes, 1984; Lawless, 1982; Bloss-
feld, Hamerle, and Mayer, 1989; Lancaster, 1990). Here, a few of the best
known parametric models are presented to illustrate the main principles un-
derlying parametric methods, and to show some of the parameterizations
which belong to the special families of proportional hazard and log-linear
hazard models. For the simplicity of exposition, it will be assumed that the
covariates are time-invariant. In section 4.6, it will be demonstrated how
to apply the hazard models which are presented below when some of the
covariates are time-varying.
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The exponential survival model is the simplest parametric hazard model.
It assumes exponential survival, or a time-constant hazard rate, i.e.,

h(t|x) = exp

 J∑
j=0

βjxij

 .

Here, βj is an unknown parameter and xij is the value of covariate j for
subject i. Thus, the hazard rate depends only on the values of the covariates
X. Note that β0 is the intercept which implies that xi0 must be one for all
persons.

One possible extension of the rather restrictive exponential survival
model leads to the piecewise exponential survival model, in which the haz-
ard rate is assumed to be constant within time periods. In other words, the
hazard rate is a step function of T . Suppose the time axis is split into L∗

time periods with upper limits tl, such that 0 < t1 < t2 . . . < tL∗ . More-
over, let dl denote one of the L∗ indicator variables taking the value 1 if
tl−1 < t ≤ tl, and otherwise the value 0. This gives the following hazard
model:

h(t|x) = exp

 J∑
j=1

βjxij +

L∗∑
l=1

αldl

 . (4.11)

Note that the intercept β0 is not included in the model in order to identify
all αl parameters. As a result, the αl parameters can be interpreted as the
log hazard rate of an individual for which all covariates are equal to zero.
When the number of time intervals increases, it makes less sense to treat
this model as parametric (Lancaster, 1990:43). As will be demonstrated
in section 4.4, when the number of time intervals equals the number of
distinct times that events occur, a piecewise exponential survival model is
equivalent to a semi-parametric hazard model.

Another popular extension of the exponential model is the Weibull
model, which describes the monotonous time dependence of the hazard
rate by means of one additional parameter. It parameterizes the hazard
rate as

h(t|x) = exp

 J∑
j=0

βjxij

αtα−1 ,

for α > 0. Sometimes it is reparameterized as

h(t|x) = exp

 J∑
j=0

β′jxij + α′ log t

 ,
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in which α′ = α − 1, β′0 = lnα + β0, and, for j = 1 to J , β′j = βj . As is
shown in the last equation, the hazard rate depends on T in the Weibull
model, or equivalently, the log hazard rate on log T . If α equals 1, the
Weibull model becomes an exponential model. Values for α smaller than
1 indicate that the hazard rate declines as T increases, while values larger
than 1 indicate that the hazard rate increases as T increases.

In the Gompertz-Makeham model, the hazard rate is given as

h(t|x) = α1 + exp

 J∑
j=0

βjxij + α2t

 ,

with α1 ≥ 0. The difference with the Weibull model is that the log hazard
rate depends on T instead of log T . The α1 parameter denotes a lower
boundary of the hazard rate. By fixing α1 = 0, a simpler model is obtained
which is called the Gompertz model, in which the log of the hazard rate is
simply a linear function T .

A possible extension of the Gompertz model is a model in which the
time dependence of the hazard rate is parameterized by a higher order
polynomial function of T . Such models can be used when there is a non-
monotonous time dependence of the hazard rate. A polynomial model of
degree K is

h(t|x) = exp

 J∑
j=0

βjxij +

K∑
k=1

αkt
k

 ,

in which the αk’s are the parameters associated with the time dependence of
the hazard rate. Instead of T , it also possible to use a polynomial function
of lnT (Clayton, 1983). In that case, an extension of the Weibull model is
obtained.

It can be seen that all parametric hazard models presented so far, ex-
cept for the Gompertz-Makeham model, are both proportional and log-
linear hazard models. They are proportional because the total effect of the
covariates influences the hazard rate multiplicatively and, moreover, there
are no time-covariate interaction effects. Note that the proportionality as-
sumption can be relaxed by allowing the α parameters to depend on the
values of particular covariates. The models are log-linear because the log
of the hazard rate is a linear function of time effects and covariate effects.

An example of a hazard model which is neither proportional nor log-
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linear is the log-logistic model. This is defined as

h(t|x) =
α
[
exp

(∑J
0 βjxij

)]α
tα−1

1 +
[
exp

(∑J
0 βjxij

)
t
]α ,

for α > 0. The log-logistic function can be used to describe non-monot-
onous hazard rates, or more precisely, hazard rates that first increase then
subsequently decrease with time. The model is nonproportional because
the size of the hazard rate does not simply result from a multiplication of
the total covariate effect and the time effect.5 It is likewise not log-linear
because the log of the hazard rate is not a simple linear function of time
and covariate effects.

Estimation The parameters of parametric hazard models are generally
estimated by means of the maximum likelihood method. Let ti be either
the time that individual i experienced an event or the time that individual
i was censored, that is, either individual i’s survival or censoring time. Let
δi be a censoring indicator taking the value 0 if case i is censored and the
value 1 if case i experienced an event. When the censoring mechanism can
be assumed to be independent (Lagakos, 1979; Kalbfleisch and Prentice,
1980:119-122), in other words, when the missing data can be assumed to
be ignorable for likelihood-based inference, the likelihood function to be
maximized can be written as

L =

N∏
i=1

f(ti|xi)δiS(ti|xi)1−δi =

N∏
i=1

h(ti|xi)δiS(ti|xi)

=

N∏
i=1

h(ti|xi)δi exp

(
−
∫ ti

0

h(u|xi)du
)
, (4.12)

In section 4.5, which deals with censoring, it will be explained under which
conditions this likelihood function is correct. When these conditions are
fulfilled, the contribution to the likelihood function of a person who ex-
perienced an event is f(ti|xi). Since only information on survival until ti
is available for censored observations, their contribution to the likelihood
function is S(ti|xi).

For most parametric models, there is a tractable expression for the
survival function appearing in the likelihood function. With regard to the
models presented above, numerical integration in order to compute the

5Recently, Brüderl and Diekman proposed several generalizations of the log-logistic
model, one of which is yields proportional hazard rates.
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likelihood equations is only necessary for the polynomial model (Rohwer,
1993). The likelihood equations can be solved by the Newton-Raphson
algorithm or one of its variants (Petersen, 1986). In the case of log-linear
hazard models, it is also possible to use a simpler conditional maximization
method which is discussed in section 4.4 (Aitkin and Clayton, 1980).

The parametric models discussed above can be estimated by means of
standard programs for event history analysis. The best known program is
Tuma’s RATE program (Tuma, 1979). Recently, Rohwer (1993) introduced
his TDA program which at this moment is probably the most complete
for estimating parametric hazard models. In a series of working papers
accompanying the TDA program, Rohwer gave an excellent overview of
the different parametric models and of the technical details on obtaining
maximum likelihood estimates of their parameters by means of the Newton-
Raphson algorithm. Using either RATE or TDA, it is possible to specify
models in which the duration parameters (the α’s) depend on the covariate
values.

4.3.4 Cox’s semi-parametric hazard model

The use of the parametric models discussed above requires that the dis-
tributional form of T is known. However, in many situations, there is no
a priori information on the time dependence of the process under study.
That is the main reason that Cox’s semi-parametric hazard model, which
does not parameterize the time dependence of the process, is so popular
in many research fields. More precisely, it involves an unspecified function
of T in the form of an arbitrary baseline hazard function. The relation-
ship between the covariates and the hazard rate is parameterized using a
log-linear model, which leads to

h(t|x) = h0(t) exp

 J∑
j=1

βjxij

 , (4.13)

in which h0(t) is the unspecified baseline function. Note that the effect of
T , h0(t), is not allowed to depend on the covariate values as a result of the
proportionality assumption. Although the model represented in Equation
4.13 seems to be very simple, the main problem associated with it is how
to estimate the β parameters without the necessity of specifying h0(t). Cox
(1972, 1975) proposed solving this problem by means of what he called
partial likelihood estimation.6

6The procedure is called partial likelihood because some information in the data is
not used for parameter estimation. More precisely, only the order in which events occur
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Estimation Assume that all events occur at distinct times, in other
words, that there are no tied durations.7 To compute the partial likeli-
hood function, the observations must be ordered on the basis of the length
of the duration ti, that is, t1 < t2 < t3 . . . < tN . The partial likelihood
function is formulated as

LPL =

N∏
i=1

[
h(ti|xi)∑N
k=i h(ti|xk)

]δi
=

N∏
i=1

 h0(ti) exp
(∑

j βjxij

)
∑N
k=i h0(ti) exp

(∑
j βjxkj

)
δi

=

N∏
i=1

 exp
(∑

j βjxij

)
∑N
k=i exp

(∑
j βjxkj

)
δi , (4.14)

in which h(ti|xk) is the hazard rate for subject k at T = ti, ti is either the
survival or censoring time of subject i, and δi is a censoring indicator.

The partial likelihood is a product of conditional probabilities. Given
that an event occurred at ti, the ith conditional probability represents the
likelihood that the event will occur for the particular subject who actually
had the event at T = ti rather than for any other subject who was at
risk T = ti (Yamaguchi, 1991:106). Note that the individuals who are at
risk at ti are those with a survival or censoring time which is greater than
or equal to ti. Since the partial likelihood is affected only by the relative
order of durations, information about the exact time that the events and
censorings occur is lost. It can be seen that the unspecified baseline hazard
h0(t) cancels out from the partial likelihood function described in Equation
4.14.

By maximizing the partial likelihood as if it were an ordinary likelihood
function, maximum partial likelihood estimates for the β parameters are
obtained without the necessity of estimating the unspecified baseline hazard
function. Although particular information is lost when using this method,
it has been proven that it has all the essential properties, such as con-
sistency and asymptotic normality, under quite broad conditions (Tsiatis,
1981; Andersen and Gill, 1982).

By using only the order in which the events occurred and by assuming
the hazard rate to be proportional, the partial likelihood provides a sim-
ple estimation procedure for the covariate effects without the necessity of

is used, which means that the length of the time intervals between events is disregarded
(Cox and Oakes, 1984: section 8.4).

7Two durations are called tied if the two people concerned experienced the event of
interest at the same point in time. Ties are problematic in the partial likelihood method
because it is based on the observed order between events and the order between tied
observations cannot be determined. Note that if T is strictly continuous, ties cannot
occur.
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specifying the time dependence of the hazard rate. The semi-parametric
hazard model does, however, have two weak points: the proportionality
assumption is unrealistic in most applications and the non-availability of
time effects is problematic if one is interested in the duration dependence
of the hazard rate. A simple solution for these two problems is the inclu-
sion of a time-varying covariate indicating time or duration in the model
(Cox and Oakes, 1984:73; Yamaguchi, 1991:107-108). The time depen-
dence of the hazard rate can be detected by estimating the effect of this
time-varying covariate on the hazard rate. The proportionality assumption
can be relaxed by specifying models with interactions between ‘time’ and
other covariates.

Because time changes continuously, in practice, time can only be used
as a time-varying covariate if it is treated as discrete. This means that if
time is included as a covariate in a semi-parametric hazard model, a model
is obtained that is very similar to both the piecewise exponential survival
model described in Equation 4.11, in which the hazard rate is assumed to be
constant within time intervals (see also section 4.4), and the discrete-time
methods which are presented in the next section.

Ties Above, the possibility that two persons have the same survival times,
or in other words, that there are ties in the data, was disregarded. However,
since duration is always measured discretely, in practice, equal durations
frequently occur. Several modifications of the partial likelihood method
have been proposed to deal with ties. The solution proposed by Peto (1972)
and Breslow (1974) on somewhat different grounds is the one which is
used most often. In the case of ties, the data must be ordered such that
t1 ≤ t2 ≤ t3 . . . ≤ tN . Because some ti are equal, the summation over the
risk set in the denominator of Equation 4.14 has to be changed. Instead
of starting from k = i, it must start from the smallest k for which tk = ti:
Everyone with either the same or a greater value of T than i belongs to the
risk set at T = ti. This principle can be formulated in several equivalent
fashions, such as

LPL =

N∏
i=1

 exp
(∑

j βjxij

)
∑
k∈(tk≥ti) exp

(∑
j βjxkj

)
δi , (4.15)

or

LPL =

N∗∏
i∗=1

exp
(∑

j βjsi∗j

)
[∑

k∈(tk≥ti∗ ) exp
(∑

j βjxkj

)]ni∗ . (4.16)
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Compared to Equation 4.14, in the first expression (4.15), only the index of
the summation in the denominator is changed to include all cases in the risk
set for which tk ≥ ti. The second, somewhat more complicated expression
(4.16) is the one which is used most often. There, N∗ denotes the number
of distinct times at which one or more events occurred, t∗i a particular time
at which one or more events occurred, si∗j is the sum of the values of the
jth covariate for all individuals who experience an event at T = ti∗ , and
finally, ni∗ is the number of events at T = ti∗ .

In section 4.4, the solution for ties as proposed by Breslow (1974) is
discussed in more detail. The resulting proportional hazard model is shown
to be equivalent to a proportional piecewise exponential survival model
with as many time categories as different observed times at which events
occurred.

4.3.5 Discrete-time models

When the time variable is measured rather crudely, which leads to many
ties in the data, or when the process under study is intrinsically discrete, it
is more appropriate to use one of the discrete-time event history models.8

These models involve regressing the conditional probability of occurrence
of an event in the lth time interval, given that the event did not occur
before this period, denoted by λ(tl), on a set of covariates. It must be
noted that when these probabilities are relatively small for all values of T
and X, the parameters of discrete-time models and continuous-time models
are very similar. The reason for this is that the hazard rate h(t) and λ(tl)
have almost the same value if the hazard rate is small. On the basis of the
relationship between h(t) and λ(tl) given in Equation 4.8, it can be seen
that values of .1, .2, and .5 for λ(tl) correspond with values of .105, .223, and
.693 for h(t). This means that if all λ(tl) are smaller than .1, discrete-time
methods provide good approximations of continuous-time methods.

There are several ways to parameterize the dependence of the condi-
tional probability of experiencing an event on time and on covariates. The
most popular choice is the logistic regression function (Cox, 1972; Myers,
Hankley, and Mantel, 1973; Brown 1975; Thompson 1977; Allison, 1982)

λ(tl|x) =
exp

(
αl +

∑
j βjxij

)
1 + exp

(
αl +

∑
j βjxij

) ,
8For applications of discrete-time event history models in situations in which the

time dimensions is intrinsically discrete see, for example, Mare (1994) and Van Rees and
Vermunt (1996).
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which leads to the well-known discrete-time logit model

log

[
λ(tl|x)

1− λ(tl|x)

]
= αl +

∑
j

βjxij .

Although the logistic regression model is a somewhat arbitrary choice, it
has several advantages: It constrains λ(tl|x) to between 0 and 1, and it is
computationally convenient because of the existence of sufficient statistics.

On the other hand, as is demonstrated below, if one assumes that the
data are generated by a continuous-time proportional hazard model, it is
preferable to use the complementary log-log transformation for λ(tl) (Al-
lison, 1982). It can be derived from Equation 4.7, that the conditional
probability of experiencing an event in tl can be written in terms of the
hazard rate as

λ(tl|x) = 1− exp

(
−
∫ tl

tl−1

h(u|x)d(u)

)
.

If there is no information on the variation of the hazard rate within the time
intervals, it seems reasonable to assume that the hazard rate is constant
within each interval tl, or that

λ(tl|x) = 1− exp (−h(tl|x)∆tl) , (4.17)

in which ∆tl denotes the length of the lth time interval. This amounts to as-
suming exponential survival within every particular time interval. Suppose
the following log-linear and proportional hazard model is postulated:

h(tl|x)∆tl = exp

αl +
∑
j

βjxij

 . (4.18)

Substitution of Equation 4.18 into Equation 4.17 yields

λ(tl|x) = 1− exp

− exp

αl +
∑
j

βjxij

 .
Rearrangement of this equation yields what is known as the complemen-
tary log-log transformation of the conditional probability of experiencing
an event at tl,

log [− log (1− λ(tl|x))] = αl +
∑
j

βjxij .
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The β parameters can now be interpreted as the covariate effects on the
hazard rate under the assumption that h(tl) is constant within each of the
L∗ time intervals. Since h(tl|x)∆tl appears at the left-hand side of Equation
4.18 instead of h(tl|x), the estimates for the baseline hazard rates or the
time parameters must be corrected for the interval lengths ∆tl. The correct
time parameter for the lth time interval equals αl − ln(∆tl).

If the model is a proportional hazard model, that is, if there are no
time-covariate interactions, the β parameters of a complementary log-log
model are not sensitive to the choice of the interval lengths since ∆tl is
completely absorbed into αl. This is the main advantage of this approach
compared to the discrete-time logit model, which is not only sensitive to
the choice of the length of the intervals, but also requires that the intervals
be of equal length (Allison, 1982). The reason for this is that the interval
length influences the probability that an event will occur in the interval con-
cerned, and therefore also the logit of λ(tl). Although the complementary
log-log model can handle unequal interval lengths in proportional hazard
models with one parameter for each time interval, unequal time intervals
are problematic when the time dependence is parameterized or when the
model is nonproportional (Allison, 1982). Thus, as long as the duration pa-
rameters are treated as nuisance parameters, as in a Cox regression model,
unequal interval lengths are allowed. If, however, the time dependence itself
becomes the object of study, the time intervals must be of equal length.

Estimation Cox (1972) proposed a partial likelihood estimator for the
discrete-time logit model which is analogous to the partial likelihood esti-
mator for continuous-time data (see Equation 4.14). However, discrete-time
models are generally estimated by means of maximum likelihood methods
(Allison, 1982). From Equations 4.5 and 4.6, it is known that

f(tl|x) = λ(tl|x)

l−1∏
k=1

[1− λ(tk|x)] =
λ(tl|x)

1− λ(tl|x)

l∏
k=1

[1− λ(tk|x)] ,

S(tl|x) =

l∏
k=1

[1− λ(tk|x)] .

Just as in continuous-time models, f(tl|x) is the contribution to the likeli-
hood function for an individual who experienced an event and S(tl|x) for
an individual who was censored. Let N denote the sample size, and let li
denote the time interval in which the ith person experienced an event or
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was censored. In that case, the likelihood function can be written as

L =

N∏
i=1

[(
λ(tli |xi)

1− λ(tli |xi)

)δi li∏
k=1

(1− λ(tk|xi))

]
.

Let yi be a vector of li indicator variables taking the value 1 if person i
experienced an event in T = tl, and otherwise taking the value 0. In fact,
the first li − 1 elements of yi are zero and the last one is equal to the
censoring indicator δi. Using this vector yi instead of δi, the likelihood
function becomes

L =

N∏
i=1

li∏
k=1

[(
λ(tk|xi)

1− λ(tk|xi)

)yik
(1− λ(tk|xi))

]
.

This is, actually, the likelihood function for regression models for binary
response variables (Brown, 1975; Allison, 1982). The only difference is that
there is not one observation per individual but li observations per individ-
ual, that is, one observation for each time interval in which the individual
concerned belongs to the risk set. Therefore, discrete-time logit models can
be estimated by means of standard software for logistic regression analysis.
The input should not consist of one record per individual but one record for
every period that an individual belongs to the risk set. These records are
sometimes called person-period records. When all covariates are categor-
ical, discrete-time logit models can also be estimated using standard log-
linear analysis programs, such as ECTA (Fay and Goodman, 1975), FREQ

(Haberman, 1988), GLIM (Baker and Nelder, 1978), and `EM (Vermunt,

1993). In `EM , a special option is implemented which makes it possible
to use person or episode records as input instead of person-period records.
The program generates the contingency table which is used to obtain the
parameter estimates. The complementary log-log model can be estimated
by means of GLIM (Baker and Nelder, 1978).

4.4 Event history analysis using log-linear
models

Particular parametric hazard models as well as Cox’s semi-parametric haz-
ard model are based on a log-linear parameterization of the time and covari-
ate dependence of the hazard rate. This section discusses the relationship
between the log-linear models for frequency tables discussed in Chapter 2
and log-linear hazard models. It is shown that log-linear hazard models
can also be written as ordinary log-linear models.
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The piecewise exponential survival model (see Equation 4.11) is one of
the hazard models which belongs to the log-linear family. In this continuous-
time hazard model, the hazard rate is assumed to be constant within time
intervals. Holford (1980) demonstrated that the likelihood function for a
piecewise exponential survival model is proportional to both a Poisson and
a multinomial likelihood function. The consequence is that when all co-
variates are categorical, the same estimation and testing procedures can be
used as in log-linear models for contingency tables or, more precisely, as in
log-rate models (see section 2.6) (Holford, 1976, 1980; Laird and Olivier,
1981). Laird and Olivier (1981) demonstrated how to apply the log-rate
model using grouped event history data. Thus, log-rate models, like the
discrete-time methods discussed above, can be used to approximate the
results of continuous-time models.

In addition to the piecewise exponential survival model, Cox’s semi-
parametric model (see Equation 4.13) can also be written as an ordinary
log-linear model. Holford (1976) demonstrated that Breslow’s maximum
likelihood procedure for Cox’s model (Breslow, 1972, 1974) is equivalent
to a piecewise exponential survival model with as many time categories as
distinct observed times at which events occur. Laird and Olivier (1981) and
Whitehead (1980) showed how to estimate Cox’s semi-parametric hazard
model using standard log-linear analysis programs.

Aitkin and Clayton (1980) and Clayton and Cuzick (1985) demon-
strated how to estimate a general class of log-linear hazard models by a
two-step conditional-maximization procedure which they implemented in
GLIM (Baker and Nelder, 1978). This conditional maximization procedure
makes use of the fact that, given the values of the parameters describing
the duration dependence of the hazard rate, the likelihood function for any
log-linear hazard model is equivalent to the Poisson likelihood function.

Below, piecewise exponential survival models, Breslow’s maximum like-
lihood approach to Cox’s semi-parametric model, and the estimation of a
general class of log-linear hazard models by means of log-linear Poisson
models are discussed.

4.4.1 Piecewise exponential survival models

The piecewise exponential survival model, or piecewise constant hazard
model, described in Equation 4.11 can also be written down using the
notation introduced in Chapter 2. Let Z denote the time variable, z a
particular value of Z, and Z∗ the number of categories of Z. The starting
and end points of the Z∗ time intervals are (0, t1], (t1, t2], . . . , (tZ∗−1,∞], in
which the round brackets ‘(’ express that the starting points are excluded
from the intervals and the square brackets ‘]’ express that the end points
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are included. The end point of the last interval may also be assumed to be
equal to the longest observed duration or the longest duration to be used
in the analysis instead of ∞.

Suppose there is a hazard model with 2 categorical covariates A and B.
Let habz denote the constant hazard rate in the zth time interval for an
individual with A = a and B = b. The saturated log-linear model for the
hazard rate habz, or the saturated piecewise exponential survival model, is

log habz = u+ uAa + uBb + uZz + uABab + uAZaz + uBZbz + uABZabz , (4.19)

in which the u terms are log-linear parameters which are constrained by
means of ANOVA-like restrictions. A proportional variant of the piecewise
exponential survival model is obtained by assuming the two-variable and
higher-variable interaction terms involving Z to be equal to zero, i.e.,

log habz = u+ uAa + uBb + uZz + uABab . (4.20)

As demonstrated in the previous section (see Equation 4.12), maximum
likelihood estimates for the parameters of parametric continuous-time mod-
els can be obtained by maximizing

L =

N∏
i=1

h(ti|xi)δi exp

(
−
∫ ti

0

h(u|xi)du
)
.

If the hazard rate is constant within each of the Z∗ time intervals, the
likelihood function can also be written as

L =

N∏
i=1

Z∗∏
z=1

h(z|xi)δiz exp (−h(z|xi)eiz) ,

in which eiz denotes the total time that individual i belongs to the risk
set in time interval z. It is also called the exposure time. Generally, eiz is
equal to tz − tz−1 for the time intervals before individual i experienced an
event or was censored, equal to ti − tz−1 for the time interval in which an
event or censoring occurred, and equal to zero for the other time intervals.
Furthermore, δiz is an indicator variable taking the value 1 if person i
experienced an event in time interval z, and otherwise 0.

Since A, B, and Z are categorical variables, the number of events and
the total exposure times can be represented in a cross-tabulation. Let nabz
denote the number of events and Eabz the total exposure time in time
interval z for A = a and B = b. The tables with observed numbers of
events nabz and with the total exposure times Eabz are generally called the
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occurrence matrix and the exposure matrix. They are obtained by

nabz =

N∑
i=1

δiz γiab

Eabz =

N∑
i=1

eiz γiab

in which γiab is an indicator variable taking the value 1 if person i has A = a
and B = b, and otherwise 0. When cross-tabulated events and exposure
times are used rather than the individual data, the likelihood function for
a piecewise exponential survival model with covariates A and B can be
written as

L =
∏
abz

hnabz

abz exp (−habzEabz) . (4.21)

As will be demonstrated below, this likelihood function (4.21) is propor-
tional to a Poisson likelihood function.

Suppose there is a frequency table for the variables A, B, and Z with
observed cell counts nabz which, conditional on Eabz, are Poisson distributed
with means mabz. In other words, there is a Poisson model for the rates
mabz/Eabz, which is a log-rate model as discussed in section 2.6. Under the
Poisson sampling scheme, the likelihood function is proportional to

Lp =
∏
abz

mnabz

abz exp (−mabz)

=
∏
abz

(habzEabz)
nabz exp (−habzEabz) ,

in which habz denotes the Poisson rate mabz/Eabz. It can now be seen that
the likelihood function for the observed Poisson counts nabz given Eabz is
proportional to the likelihood function described in Equation 4.21, i.e.,

Lp = L
∏
abz

Enabz

abz .

Since Enabz

abz is a constant that does not depend on the unknown parameters
which are to be estimated, piecewise exponential survival models with cat-
egorical covariates can be estimated with the same estimation methods as
are used for the log-rate models discussed in section 2.6. Moreover, piece-
wise exponential survival models can be written as log-rate models. For
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instance, the proportional piecewise constant hazard model described in
Equation 4.20 can also be formulated as

log

(
mabz

Eabz

)
= u+ uAa + uBb + uZz + uABab ,

or

logmabz = logEabz + u+ uAa + uBb + uZz + uABab , (4.22)

where mabz is the expected number of events in time interval z among
persons with A = a and B = b. From Equation 4.22, it can easily be
seen that the piecewise exponential survival model is equivalent to the log-
rate model discussed in section 2.6. As in a log-rate model, the log of the
expected cell frequency is a linear function of a cell-specific constant and a
set of log-linear parameters.

Grouped duration data The log-rate model can also be used with
grouped duration data, which occur when there is only information on
the discrete time interval in which events and censorings occurred, in other
words, when the exact value of ti is not known, but only that tz−1 < ti < tz.
This implies that there is no exact information on the length of the indi-
vidual exposure times in the interval in which censoring or an event occurs.
This makes it necessary to approximate a person’s exposure time in this
interval. Generally, it is assumed that on average censorings and events
occur in the middle of the time interval concerned (Laird and Olivier, 1981;
Yamaguchi, 1991:81 ; Xie, 1994). Thus, the only modification that is neces-
sary in situations in which the observed durations are grouped is that when
computing the exposure matrix E for the interval in which an event or
censoring occurred, eiz is not equal to ti− tz−1, but equal to (tz − tz−1)/2.

This simple approximation procedure amounts to assuming that both
events and censorings are uniformly distributed within the discrete time
interval in which they occur. It is equivalent to assuming linear survival
within time intervals for events, which is not completely in accordance
with the postulated piecewise exponential survival model. However, if the
hazard rates are not too high, the resulting bias will be small.9 Of course,

9Suppose that we know that the event of interest occurred in a time interval of length
∆z and that h(tz) is the size of the constant hazard rate in this interval. In that case,
the mean fraction of ∆z that an individual is exposed to the event of interest equals
1 + 1/(∆zh(tz)) − 1/[1 − exp(−∆zh(tz))] (Chiang, 1984:139; Willekens, 1990). This
quantity is close to .5 for almost all relevant values of h(tz) and ∆z . For instance, if
∆z = 1, it ranges from .492 when h(tz) = .1 to .459 when h(tz) = .5. Therefore, Petersen
(1991) concluded with respect to the approximation of exposure times: ‘Thus, a good
rule of thumb is to assign the duration that lies at the midpoint of the window within
which the true duration lies.’
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when there is additional information on the timing of events and censorings
within particular time intervals, this information can be used to get better
approximations of the true exposure times (Yamaguchi, 1991:84).

As mentioned in the previous section, discrete-time logit models and
discrete-time complementary log-log models can also be used to approxi-
mate continuous-time hazard models when there are grouped duration data.
However, the logit specification is an arbitrary one which, moreover, is sen-
sitive to the choice of the length of the time intervals. The complementary
log-log transformation approximates the continuous-time proportional haz-
ard model in that it assumes exponential survival within time categories,
and the occurrence of censorings at the end of the time intervals. How-
ever, unequal time intervals are problematic when the time dependence
is restricted in some way or when the hazard rate is assumed to be non-
proportional. The main advantage of the log-rate model compared to the
complementary log-log model is that unequal time intervals are never prob-
lematic. Another advantage is that log-rate models can be estimated using
widely available programs for log-linear analysis.

Non-hierarchical models Until now, only hierarchical log-rate models
have been given consideration. However, by using a more general formu-
lation, it is also possible to specify non-hierarchical models. In its most
general form, the log-rate model can be written as

logmiz = logEiz +
∑
j

βjxizj , (4.23)

in which xizj denotes an element of the design matrix and βj a particular
log-linear parameter. The index i refers to a category of the joint variable
formed by all the independent variables, and z to a category of the time
variable. From the appearance of the index z in xizj , it follows that the
design matrix also includes the time variable and that covariate effects may
be time dependent.

Perhaps the most interesting kinds of restrictions that can be imposed
with the design matrix appearing in the general model given in Equation
4.23 are restrictions on the time parameters. Yamaguchi (1991:75-77) pro-
posed approximating the Gompertz and Weibull models by means of a step-
functional characterization of t and ln(t). Suppose that the first parameter
in Equation 4.23, β1, is the intercept and that the second parameter, β2,
is the restricted time effect. Furthermore, let z̄ denote the middle of the
zth time interval, z̄ = (tz−1 + tz)/2. An approximation of the Gompertz
model is obtained by specifying the elements xiz2 of the design matrix to
be equal to z̄. In a Weibull model, we would replace z̄ by log z̄. It is also
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possible to use higher-order polynomials of z̄ or (log z̄) to describe the time
dependence of the hazard rate. Moreover, these restricted time effects can
also be used in time-covariate interaction terms.

Recently, Xie (1994) presented another parsimonious method of spec-
ifying time-covariate interactions in log-rate models. He proposed using
a log-multiplicative parameterization of time-covariate interaction terms.
In fact, it is an application of the row and column effects model type II
discussed in section 2.7 (Goodman, 1979; Clogg, 1982).

Contrary to what is stated by Holford (1980) and Laird and Olivier
(1991), log-rate models can also be used when particular covariates are
continuous. In the same fashion that a logistic regression model is ob-
tained from a logit model by including continuous covariates (see section
2.8), the log-rate model given in Equation 4.23 can be used with continu-
ous covariates. In that case, individual data have to be analyzed instead
of cross-tabulated data, which implies that the index i appearing in Equa-
tion 4.23 denotes a particular observation rather than a level of the joint
independent variables, which also means that Eiz = eiz and niz = δiz.

Testing In addition to the estimation procedures available for log-linear
modeling, the testing procedures can also be used in log-rate models. The
estimated expected number of events, mabz, can be compared with the
observed number of events, nabz, using either the Pearson’s chi-squared
statistic or the likelihood-ratio chi-squared statistic (see section 2.4). As in
logistic regression models, the fit of hazard models with continuous covari-
ates cannot be tested because of sparseness of the ‘table’ which is analyzed.
Nevertheless, it is possible to test the significance of particular effects by
means of conditional likelihood-ratio chi-squared tests (see section 2.4).

Computer programs Hierarchical log-rate models, such as the one rep-
resented in Equation 4.22, can be estimated using log-linear analysis pro-
grams which are based on the IPF algorithm. However, the program must
calculate the parameters using mean removal on the cumulated multipliers
of the IPF cycles in order to get correct parameter estimates (see Ap-

pendix A.1). The LOGLIN (Olivier and Neff, 1976) and `EM (Vermunt,
1993) programs use this procedure. Log-rate models of the general form
described in Equation 4.23 can be estimated using programs for log-linear
analysis which use a Newton algorithm, such as FREQ (Haberman, 1979)

and SPSS Log-linear. In `EM , such models are estimated by means of
the uni-dimensional Newton algorithm. A special feature of `EM is that,
as opposed to standard programs for log-linear analysis, the user does not
need to supply the occurrence and exposure matrices as input since these
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are generated by the program itself, where the exposure time within the
time interval in which censorings or events occur can be specified by the
user. Moreover, it is possible within `EM to estimate models which contain
the log-multiplicative interaction terms proposed by Xie (1994).

4.4.2 Estimation of Cox’s semi-parametric model

Breslow (1972, 1974) proposed estimating the β parameters and the baseline
hazard rate h0(t) of the Cox semi-parametric model (see Equation 4.13)
simultaneously by means of maximum likelihood. Holford (1976) and Laird
and Olivier (1981) demonstrated that Breslow’s approach was a special case
of the piecewise exponential survival model, that is, a proportional model
with as many time intervals as distinct observed times at which events
occurred.

Breslow’s approach is as follows. First, as in the partial likelihood ap-
proach, the N cases must be ordered according to their observed durations
ti. Then, the time axis has to be divided into Z∗ intervals, where Z∗ equals
the number of distinct times that events occurred. The end points of the
time intervals, denoted by tz, correspond with the durations at which events
occur. Each censoring is assumed to have occurred at the nearest preceding
event and the hazard rate is assumed to be constant within time intervals
just as it would be in a piecewise exponential survival model. An equivalent
approach is to assume the hazard rate to be zero everywhere except at the
observed times at which events occur (Cox, 1972; Holford, 1976; Laird and
Olivier, 1981). The latter approach does not require shifting the censored
observation to the nearest previous event.

Suppose there is a semi-parametric hazard model, or equivalently, a
piecewise exponential survival model of the form

h(z|x) = h0(z) exp

 J∑
j=1

βjxij

 , (4.24)

in which h0(z) denotes the baseline hazard rate in time interval z. Note
that the hazard rate is assumed to be proportional since the model does
not contain interactions between the covariates and time.

The likelihood function for the model described in Equation 4.24 can
be obtained by substituting h(z|x) into Equation 4.21, i.e.,

L =

N∏
i=1

Z∗∏
z=1

h(z|xi)δiz exp (−h(z|xi)eiz)
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=

N∏
i=1

Z∗∏
z=1


h0(z) exp

∑
j

βjxij

δiz

exp

h0(z) exp

∑
j

βjxij

 eiz

 , (4.25)

in which eiz equals tz − tz−1 if subject i neither experienced an event nor
was censored before tz, in other words, if subject i belongs to the risk set at
Z = z. Setting the first order derivatives of the log likelihood with respect
to h0(z) equal to zero yields the following maximum likelihood estimate for
h0(z):

h0(z) =

∑N
i=1 δiz∑N

i=1 exp
(∑

j βjxij

)
eiz

. (4.26)

Substitution of this estimate of h0(z) into Equation 4.25 yields

L =

N∏
i=1

Z∗∏
z=1

(
N∑
i=1

δiz

)δiz
exp

(
N∑
i=1

δiz

) exp
(∑

j βjxij

)
∑N
i=1 exp

(∑
j βjxij

)
eiz

δiz .
As only one δiz is 1 for each i, the product over z is redundant. Because
eiz = 0 for all persons who are not at risk, the sum over i in the denominator
consists of the persons at risk at Z = z. Note that eiz takes the same value
for every person at risk, tz−tz−1. This leads to the following simplification:

L =

N∏
i=1

 exp
(∑

j βjxij

)
∑
k∈(tk≥ti) exp

(∑
j βjxkj

)
δi C , (4.27)

where

C =

N∏
i=1

Z∗∏
z=1

(
N∑
i=1

δiz

)δiz
exp

(
N∑
i=1

δiz

)(
1

tz − tz−1

)δiz
.

It can be seen that, with the exception of the constant C, Equation 4.27
is equivalent to both Equation 4.14 and Equation 4.15. This implies that
if the data contains no ties, a proportional piecewise exponential survival
model in which the end points of the time intervals are defined by the event
times and in which the censorings are assumed to occur at the nearest
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preceding event time is equivalent to Cox’s semi-parametric model. If the
data contains ties, the maximum likelihood approach leads to the solution
for ties proposed by Breslow (1972, 1974), which is described in Equation
4.15.

The consequence of the equivalence with the exponential survival model,
and therefore with the log-rate model, is that Cox’s semi-parametric model
can be estimated using standard programs for log-linear analysis. White-
head (1980), for instance, showed how to estimate the Cox model with the
GLIM program using a log-linear Poisson model.

4.4.3 Estimating log-linear hazard models with log-
linear Poisson models

Above, it was demonstrated that both the piecewise exponential survival
model and the Cox model can be estimated by means of log-linear analysis
techniques. Aitkin and Clayton (1980) proposed estimating the parameters
of a general class of continuous-time log-linear hazard models using the
equivalence between the Poisson likelihood and the likelihood for log-linear
hazard rate models.

Let h(t) denote the baseline hazard and H(t) denote the cumulative

baseline hazard,
∫ t

0
h(u)d(u), belonging to a particular parametric hazard

model. If the hazard model is log-linear, the likelihood function can be
written down as

L =

N∏
i=1

h(t) exp

∑
j

βjxij

δi exp

−H(ti) exp

∑
j

βjxij


=

N∏
i=1

[
mδi
i exp (−mi)

]
[h(ti)/H(ti)]

δi ,

in which

mi = H(ti) exp

∑
j

βjxij

 .

The first term in the likelihood function, mδi
i exp (−mi), is equivalent to the

kernel of the likelihood function for N independent Poisson variates δi with
means mi. The second term does not contain β parameters. It depends
only on the α parameters associated with the duration dependence of the
process.
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Aitkin and Clayton (1980) proposed estimating the α and β parameters
by means of a simple two-step conditional maximization method. First,
the β parameters can be estimated using the log-linear Poisson, or log-rate,
model given the current estimates for the unknown parameters determining
H(ti), i.e.,

logmi = logH(ti) +
∑
j

βjxij , (4.28)

in which H(ti) is treated as a weight vector, or in the GLIM terminology
used by the authors, logH(ti) is an offset. In the second step, new estimates
for the α parameters must be obtained. Of course, the exact relationship
between H(t) and α depends on the parametric model that is chosen (see
below). This two step algorithm continues until convergence is reached.

Although the hazard rate is assumed to be proportional in the model
given in Equation 4.28, it is also possible to make the α parameters de-
pendent on covariate values. However, then h(ti) and H(ti) are subgroup
specific. If y is used as an index for the variable interacting with the time
dependence, h(ti) and H(ti) have to be replaced by hy(ti) and Hy(ti) in all
of the given formulas.

The simplest log-linear hazard model is the exponential model in which
the cumulated baseline hazard, H(t), equals t. As a result, the estimates
for the β parameters can be obtained by using log ti as a fixed effect in
a log-linear model in which the censoring indicator δi is treated as an ob-
served Poisson count. The second step is not necessary because the second
part of the likelihood function presented above does not contain unknown
parameters. More precisely, it equals 1/ti.

As h(t) = αtα−1 and H(t) = tα in Weibull models, α log t must be
used as an offset when obtaining new βj ’s in the first step of a particular
iteration. In the second step, a new α is obtained by

α =
N∑N

i=1 (mi − δi) log ti
.

Although the expressions for H(ti) and the α parameters may become more
complicated, the same principles apply to any parametric hazard model
which belongs to the log-linear family.

Clayton and Cuzick (1985) demonstrated that a similar two step maxi-
mization method can be used to obtain maximum likelihood estimates for
the parameters of Cox’s semi-parametric proportional hazard model. Sup-
pose that there are N∗ distinct times that events occur, which are denoted
by ti∗ . As demonstrated above, the maximum likelihood estimates for the
baseline hazard parameters can be obtained using Equation 4.26. If, as Cox
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did, it is assumed that the hazard rate is zero everywhere except where an
event occurs, the formula for the baseline parameters can be simplified to

h0(ti∗) =
ni∗∑

tk≥ti∗ exp
(∑

j βjxij

) , (4.29)

in which ni∗ indicates the number of events in ti∗ . The cumulated haz-
ard function for person k with observed survival time tk, H(tk), equals∑
ti∗≤tk h0(ti∗). Again, the algorithm consists of two conditional maxi-

mization steps. First, new estimates of the β parameters are obtained by
means of a log-linear Poisson model for the censoring indicator δk in which
logH(tk) is used as a fixed effect. In the second step, new h0(ti∗) are cal-
culated by means of Equation 4.29. These quantities are used to obtain
a new H(tk) for each person. Contrary to the procedure presented above,
Clayton and Cuzick (1985) called this two step procedure an EM algorithm,
in which the computation of h0(ti∗) and H(tk) form the E step. The rea-
son for this is that the cumulated hazard rate H(tk) can be seen as an
unobservable quantity in the semi-parametric hazard model.

æ

4.5 Censoring

Event history techniques are used to explain individual differences in the
duration of nonoccurrence of a particular event. For that purpose, it is
necessary that there be, in addition to information on the covariates deter-
mining the process under study, information on the calendar time of entry
into the risk set (τb) and on the calendar time of occurrence of the event
(τe). The duration of nonoccurrence of an event, T , is defined as τe− τb. It
often occurs that information is missing on τb, τe, or both for some of the
subjects involved in the study. This means that T is also unknown. Ob-
servations with this type of missing data are called censored observations.
One of the strong points of hazard models is that they can deal with several
kinds of censored observations. As in the log-linear models for nonresponse
discussed in Chapter 3, hazard models make it possible to include particu-
lar types of partially observed data in the analysis under certain plausible
assumptions.

It is possible to illustrate the different kinds of (missing) observations
that can occur by giving a hypothetical example. Suppose the aim of a
study is to explain the duration preceding the first promotion of employees
of a particular company. For that purpose, data are collected from τ0 to
τ1, in which τ again denotes calendar time. The period from τ0 to τ1
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τ0 τ1

A *

B o

C *

D *

E *

F *

Figure 4.1: Six different types of observations

is called the observation period. Figure 4.1 depicts six different types of
observations. A solid line indicates the risk period, an ‘*’ at the right hand
side of a line indicates that risk period ended because of the occurrence of
the event under study, and an ‘o’ indicates that a person has been removed
from the risk set as a result of the occurrence of an event other than the
event of interest.

Person A started working at the company after τ0 and experienced the
event, the first promotion, before τ1. Therefore, the complete duration
of nonoccurrence of the event of interest is known for observation A. Ob-
servations B and C are examples of right-censored cases. It is known for
observations B and C when they entered into the risk set, but it is not
known when they will experience their first promotion. Although both
cases are right-censored, their censoring has different causes. Observation
C is censored because the observation period ended, while observation B is
censored as a result of the occurrence of another event which removed it
from the risk set, for example, a voluntary job change to another employer.
Case D is (fully) right-censored, since neither the time of entry into the risk
set nor the time of occurrence of an event is known. This case represents
a future employee of the company. Case E is an individual who was given
his first promotion before the start of the observation period. It is a (fully)
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left-censored case. Like case D, both the time of entry into the risk set
and the time of experiencing an event are unknown. Finally, case F is a
left-censored observation. It represents an individual who started working
at the company before τ0 and who experienced an event during the obser-
vation period. Since the time of entry into the risk set is unknown, it is also
unknown how long it took for an event to occur. It must be noted that for
cases like F, information on the time of entry into the risk set is sometimes
collected retrospectively.

Hazard models can deal with right-censored observations under quite
mild conditions. Left censoring is a more complicated matter. However,
when τb is known, there is a simple solution for left censoring which is
comparable to the way in which right-censored observations are dealt with.
It is important that the procedures which are used for handling right- and
left-censored observations satisfy two conditions: they must use as much
of the available information as possible, and they must prevent sample
selection bias as much as possible. Selection bias means that individuals
with certain values of the dependent variable, in this case the duration
of nonoccurrence of an event, have a higher or lower probability of being
included in the sample than other persons.

4.5.1 Right censoring

There are at least three possible approaches to right censoring problem
(Tuma and Hannan, 1984:119): 1] ignoring censored observations and ana-
lyzing only the cases who experienced an event; 2] treating censored obser-
vations as though events occurred at the censoring times; 3] using methods
of estimation that make use of the partially observed information while
making certain assumptions with regards to censoring mechanism which
are analogous to response mechanisms.

The first solution may lead to a considerable loss of information, since
it neglects the information that a particular person did not experience an
event during a particular period. Moreover, deleting the censored obser-
vation from the analysis may lead to sample selection bias, because cen-
sored observations generally have longer durations than noncensored ob-
servations. In other words, the hazard rate for censored cases during the
risk period will be lower than the hazard rate for noncensored cases. Thus,
by deleting the censored cases, the estimated hazard rates for groups with
large numbers of censored cases will be biased upwards.

The second solution, in which the times at which the event of interest
occurred are treated as censoring times is even worse because nonexistent
or wrong information is added to the data. Therefore, recoding non-events
as events will generally make the results of the analysis meaningless.
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The best way to deal with right-censored cases is to use estimation meth-
ods which use this type of partially observed data under certain plausible
assumptions. As is shown below, it is relatively easy to use right-censored
observations for parameter estimation as long as the missing data mech-
anism can be assumed to be ignorable for likelihood-based inference (see
also section 3.2).

Censoring mechanisms In the fields of engineering, medicine, and the
biological sciences, a great deal of attention has been given to right censor-
ing (Kalbfleisch and Prentice, 1980:39-41; Lawless, 1982). In these fields,
hazard models are often used to analyze data collected by means of experi-
mental designs. Experimental studies in which, for instance, a new type of
apparatus or a new lung cancer medication are tested, generally prevent the
occurrence of left-censored data, but right-censored data are unavoidable
for two reasons. First, the experiment is generally ended before all of the
apparatus fail or all of the subjects die. Second, other events may occur
which remove machines or persons from the risk set. A machine may fail
as a result of another cause than the one of interest, and an individual’s
cause of death may not be lung cancer.

If there are right-censored observations, it is relatively easy to derive the
likelihood function if, at each t given the covariate values x, the censoring
rate is independent of the rate of occurrence of the event under study, in
other words, if individuals are not censored because they appear to have
high or low risks of experiencing an event. Actually, this is analogous to
assuming MAR (missing at random) nonresponse in a panel study with a
monotonous missing data pattern. In the context of panel analysis, non-
response is said to be MAR if, for someone who responded at T = t − 1,
the probability of nonresponse at T = t is independent of the values of the
variables at T = t, though it may depend on the values of the variables be-
fore T = t (see section 3.2). The same formulation can be applied to right
censoring, which is, likewise, a monotonous missing data pattern. The data
are MAR if, for someone who is at risk at T = t, the probability of censor-
ing in the interval [t, t+ ∆t] is independent of the state occupied at t+ ∆t,
given the observed covariate values. Since the state occupied at t + ∆t is
determined by the hazard rate at T = t for someone who is at risk at T = t,
it can also be said that the censoring rate must be conditionally indepen-
dent of the hazard rate. In the biometrical literature, this form of censoring
is most often referred to as independent right censoring (Kalbfleisch and
Prentice, 1980:120) or non-informative right censoring (Lagakos, 1979).

In experimental settings, conditional independence between the hazard
rate and the censoring rate is usually fulfilled. Two well-known special cases



118 CHAPTER 4. EVENT HISTORY ANALYSIS

of independent censoring which often occur in experimental studies are
Type I censoring and Type II censoring (Kalbfleisch and Prentice, 1980:39-
41; Lawless, 1982). Type I occurs when a study is stopped after a fixed
time period, while Type II entails that a study continues until a particular
number of events have occurred. In both cases, all censored observations
are censored at the same value of T . It is clear that in neither of these cases
is the censoring rate related to the hazard rate of the event under study
since all persons at risk have the same probability of being censored, that
is, a probability of zero before the point in time that censoring occurs and a
probability of one at the point in time that censoring occurs. However, one
cannot be sure that the censoring mechanism is independent of the process
under study if observations are censored as a result of other kinds of events,
such as other causes of failure or other causes of death.

The mechanism causing the censoring of observation C in Figure 4.1
is very similar to Type I censoring since observation C is censored as a
result of the cessation of the observation period. However, contrary to the
experimental context on which Type I censoring is based, observations like
C enter into the risk set at the different points in calendar time (τb) in a
survey context. As a result, both the duration in which censoring occurs
(t = τ1−τb) and the censoring rate will depend on τb. More precisely, there
is, depending on τb, a probability of one or zero that a given individual will
be censored at a particular t. The implication of this is that the censoring
mechanism is not MAR if the hazard rate also depends on τb.

This can be illustrated by means of an example. Suppose that, as a
result of an increase in the labor supply of young people, the company
being studied changed its promotion policy. More precisely, it made it more
difficult to obtain a promotion during the first three years of employment.
The result would be that the hazard rate of being promoted at the beginning
of an individual’s career would depend on τb, that is, on whether a given
individual’s employment started before or after the moment that the policy
changed. Because the censoring times of cases like C (τ1 − τb) depend on
τb as well, this leads to a dependency between the censoring rate and the
hazard rate. The solution to this problem is, however, very simple. The
only thing that has to be done is to include τb as one of the regressors in the
hazard model. By controlling for the calendar time of entry into the risk
set, a form Type I censoring is obtained within the subgroups of persons
who enter into the risk set at the same τb.

In general terms it can be stated that if censoring occurs at a particular
calendar time, which is the most common type of censoring in social science
research, the censoring mechanism and the process under study will have
one potential common cause, i.e., the calendar time of entry into the risk
set or the causes associated with that calendar time, such as the altered
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policy in the example. In demography, such an effect is called a cohort
effect (see also section 4.6). Controlling for the calendar time of entry into
the risk set or the causes associated with it makes the censoring mechanism
(conditionally) independent of the duration distribution. In other words, it
makes the missing data MAR.

The right censoring of observation D is the result of the same censoring
mechanism applied to case C: The time at which the event of interest occurs
is unknown because of the cessation of the observation period. Therefore,
the same solution applies to this type of censored observations. However,
it should be noted that if the time of entry into the risk set influences
the hazard rate, the results of the study cannot be generalized to other
observation periods. If, for example, an effect is found of the variable birth
cohort on the hazard rate in a study on fertility behavior, the results cannot
be generalized to future birth cohorts. Moreover, if an interaction effect is
found between the time variable and cohort, the results cannot even be
generalized to the same cohorts beyond the age at which they have been
censored. In fact, this is a type of selection bias which is inherent in the
study of social change.

Observation B is also right-censored but by a very different mechanism.
It is removed from the risk set because an event other than the event of
interest occurred during the observation period. In this case, the valid-
ity of the assumption of (conditionally) independent censoring depends on
whether the event that led to censoring and the event under study have
common causes which are not controlled, for instance, because they are not
observed. If person B was removed from the risk set because he died as
result of an accident, it can safely be assumed that censoring is independent
of the event of getting promoted. If, however, person B stopped working at
the company because of health problems, the independence of the censoring
rate and the hazard rate of getting promoted is less clear. It is probable
that less healthy individuals not only have a higher risk of losing their jobs,
but also have a lower risk of getting promoted. If it is possible to control
for health, again a (conditionally) independent censoring mechanism can
be obtained, assuming that health is the only common cause of the two
types of events. There are many other events that can lead to the type B
censoring, such as a voluntary or involuntary move to another employer or
retirement. The same arguments apply to these events. It is necessary to
identify all of the causes that these ‘censoring events’ have in common with
getting a promotion in order to be able to assume that the missing data
are MAR.

The problems associated with the type B censoring are the same which
occur when analyzing competing-risks data. Actually, the various kinds
of events leading to censoring can be seen as risks which compete with the
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event under study. Section 4.7 discusses models for competing risks in more
detail, including the problem of unobserved common risk factors leading to
dependent risks.

Estimation Let T denote the time that an event or censoring occurred,
and let δ denote a censoring indicator taking the value 1 if an event oc-
curred and 0 if an observation was censored. If censoring can be assumed
to be conditionally independent of the occurrence of an event, the joint
probability density of the observed data, T and δ, is

P (T = t, δ = 1|x) = f(t|x) [1−G(t|x)]

for non-censored cases, and

P (T = t, δ = 0|x) = g(t|x) [1− F (t|x)]

for censored cases (Lagakos, 1979). Here, f(t|x) and F (t|x) are the density
and the distribution function of the time that an event occurs (duration),
given x, and g(t|x) and G(t|x) are the density and the distribution function
of the censoring time, given x. The fact that censoring is independent, or
equivalently, that the missing data are MAR, makes it possible to obtain the
joint density of T and δ by multiplying the contributions of the censoring
and duration distributions. For instance, the probability of experiencing an
event at T = t and observing this is obtained by multiplying the probability
of an event taking place at T = t and the probability of not being censored
before T = t.

Using the joint density of T and δ given above yields the following
likelihood function:

L =

N∏
i=1

{f(ti|xi) [1−G(ti|xi)]}δi {g(ti|xi) [1− F (ti|xi)]}1−δi . (4.30)

Here, f(ti|xi) [1−G(ti|xi)] is the contribution to the likelihood function
of case i if the event was experienced. It denotes the product of the in-
stantaneous probability of experiencing an event at ti, given x, and the
probability of not being censored before ti, given x. The contribution of a
censored observation to the likelihood function is g(ti|xi) [1− F (ti|xi)].

The likelihood function represented in Equation 4.30 can be broken
down into a segment which depends on the determinants of the duration
process of interest, and a segment which depends on the censoring mecha-
nism, i.e.,

L =

N∏
i=1

{
f(ti|xi)δi [1− F (ti|xi)]1−δi

}{
g(ti|xi)1−δi [1−G(ti|xi)]δi

}
.
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In order to be able to ignore the censoring mechanism when estimating
the parameter of the hazard model an additional assumption has to be
made, that is, that the parameters of the censoring model are distinct from
the parameters of the hazard rate model. In other words, it must not
be necessary to place restrictions between the time and covariate effects
on the hazard rate and the time and covariate effects on the censoring
rate. Note that the same assumption is made in the case of ignorable
nonresponse, which was previously defined as the missing data being MAR
and the parameters of the response mechanism and the parameters of the
model of interest being distinct (see section 3.2).

If the parameters determining the duration distribution and the param-
eters determining the censoring distribution are distinct, maximum likeli-
hood estimates for the parameters of the postulated hazard model can be
obtained by maximizing the first part of the likelihood function

L =

N∏
i=1

f(ti|xi)δi [1− F (ti|xi)]1−δi ,

which can also be written completely in terms of the hazard rate h(ti|xi)

L =

N∏
i=1

h(ti|xi)δi exp

(
−
∫ ti

0

h(u|xi)du
)
.

Using the missing data terminology introduced in Chapter 3, the missing
data mechanism is ignored for likelihood-based inference about the param-
eters of interest. Instead of using the term independent censoring, it would
be possible to use the term ignorable censoring mechanism. Analogous to
the case of nonresponse, the censoring mechanism is nonignorable if the
censoring times and the survival times are correlated, in other words, if
the probability of missing data depends on the value of the variable for
which the scores are missing, or if the censoring mechanism and the pro-
cess under study have common parameters (Rubin, 1976). If the censoring
mechanism is nonignorable, the censoring and the event under study have
to be analyzed simultaneously. This will be discussed in the next chapter.

4.5.2 Left censoring

Left censoring is a more complicated problem than right censoring. There
are at least three possible strategies for dealing with left-censored obser-
vations: 1] deleting all left-censored observations; 2] treating τ0 as τb, and
3] using estimation methods which make it possible to use left-censored
observations.
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The first strategy, deleting the left-censored observations (Allison, 1984),
is the simplest of the three. Unlike the deletion of right-censored observa-
tions, this procedure does not result in biased parameter estimates (Yam-
aguchi 1991:7; Guo, 1993). The reason for this is that ignoring left-censored
cases does not introduce selection with regards to T (Ridder, 1984). On the
contrary, it prevents selection bias as will be demonstrated below. However,
there is one important disadvantage to deleting the left-censored observa-
tions. It can lead to a huge loss of information, especially if the observation
period is relatively short in comparison to the average survival time. In
such cases, there will not only be a large number of left-censored observa-
tions, but they will also provide unique information on the hazard rates
for durations which are longer than the observation period τ1 − τ0. Thus,
the procedure is only recommendable if a small proportion of the sample is
left-censored, even though deletion of left-censored cases does not introduce
bias.

The second option is to assume that left-censored cases entered into the
risk set at τ0, that is, to assume that τb = τ0. This amounts to assum-
ing that the duration of nonoccurrence of an event, T , is equal to τe − τ0.
Clearly, this solution is only correct if the hazard rate is time independent.
Unfortunately, the assumption of a constant hazard rate, or exponential
survival, is often unrealistic while erroneously assuming an exponential sur-
vival distribution may lead to severe bias in parameter estimates (Heckman
and Singer, 1985, 1986; Guo, 1993).

The third alternative is to use left-censored observations in the analysis
as was done in the case of right-censored cases. There are, however, two
problems associated with using left-censored observations for parameter
estimation: It may introduce selection bias and it can prove difficult when
the times of entry into the risk set are unknown.

Sample selection bias occurs whenever a sample is selected on the basis
of the values of an endogenous variable (Heckman, 1979). Actually, left-
censored cases are a selective sample of the individuals who entered into the
risk set before τ0. They form the group with lower hazard rates between
τb and τ0, the group with longer survival times T . For example, a sample
of individuals who are unemployed at τ0 will contain a relatively large
proportion of persons who have a low probability of getting a job at short
unemployment durations. This phenomenon is sometimes called length-
bias sampling (Cox 1962, Flinn and Heckman, 1982). Using left-censored
observations in the analysis may lead to a downwards bias of the duration
effect for short durations. Therefore the deletion of all left-censored cases
from the analysis prevents sample selection bias.

In left-censored cases, the exact time of entry into the risk set, τb, is often
unknown. Sometimes, however, τb is known but there is no information on
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the values of the time-varying covariates between τb and τ0. The latter
situation is most likely to occur when the data are collected by means of a
panel design in which an individual’s time of entry into the state occupied at
τ0 is requested retrospectively. In the promotion-duration example, it would
certainly be possible to obtain information on the date that employees
started working at the company. On the other hand, collecting information
on time-varying covariates may not be possible. Of course, if it were possible
to collect all necessary information for both E and F, there would no longer
be any left-censored cases.

It is clear that the solution to the left censoring problem depends on
what is known about τb. In order to prevent biased estimates, moreover, the
solution has to take into account that left-censored observations may have
lower hazard rates or higher survival probabilities in the preobservation
period than persons who entered into the risk set at the same point in time
and who experienced the event before the start of the observation period.

Unknown τb Left-censored observations are more difficult to deal with
when their time of entry into the risk set is unknown. Heckman and
Singer discussed extensively what they call the ‘problem of initial condi-
tions’ (Heckman and Singer, 1985, 1986). Ridder’s work on the distribution
of survival data also provided an important contribution to the treatment
of left-censored observations (Ridder, 1984). More recently, Hamerle (1991)
gave a comprehensive overview of methods for handling left-censored data.

Let R denote the length of the risk period before τ0, R = τ0 − τb, and
let S denote the length of the risk period after τ0, S = τe − τ0. The total
survival time T is R + S. According to Ridder (1984), the joint density of
function of R and S is given by

f(r, s|x, s > 0) =
g(τ0 − r|x)f(r + s|x)∫∞
0
g(τ0 − r|x)S(r|x)dr

. (4.31)

Here, g(τ0−r|x) denotes the probability that someone with covariate values
x will enter into the risk set at τ0−r, that is, at τb. S(r|x) denotes the prob-
ability of surviving until T = r and f(r + s|x) is equivalent to f(t|x), that
is, the density of T . In the denominator of Equation 4.31, the probability
of entering into the risk set at τ0 − r and surviving until τ0 is integrated
over all possible r. This results in the marginal probability of entering into
the risk set before τ0 and surviving to τ0. The numerator expresses the
probability of entering into the risk set at τ0− r and experiencing an event
at r + s which is t.

The density of S, given x, the density of a left-censored survival time,
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is obtained by integrating f(r, s|x, s > 0) over r, the unobserved part of T ,

f(s|x, s > 0) =

∫∞
0
g(τ0 − r|x)f(r + s|x)dr∫∞

0
g(τ0 − r|x)S(r|x)dr

. (4.32)

Thus, the marginal density of S equals the probability of entering into the
risk set before τ0 and experiencing an event at T = t = r + s, divided by
the probability of entering into the risk set before τ0 and surviving until τ0.
This density no longer depends on the unknown values of R.

Unfortunately, the likelihood contribution on the basis of f(s|x, s > 0)
not only involves the survival distribution of interest, but also depends on
g(τ0 − r|x), i.e., the distribution of the calendar time of entry into the risk
set (τb). Therefore, the parameters of interest cannot be estimated without
making additional assumptions with regard to entry rates g(τ0−r|x), except
if there is some external information by which to estimate the entry rates
empirically (Tuma and Hannan, 1984:132). In the analysis of the timing of
divorces, for example, statistics on marriage rates may be used to estimate
the rates of entry into the risk set for the event divorce.

One possible simplifying restriction is to assume that T is exponen-
tially distributed. In that case, Equation 4.32 simplifies to h(s|x)e−h(s|x)s,
which is the same result obtained by the second solution for left censoring
discussed above. This involves setting the time of entry into the risk set
arbitrarily equal to τ0 for all left-censored cases, and, moreover, assuming
exponential survival. As was mentioned previously, erroneously assum-
ing an exponential distribution, which is a quite common ‘solution’ to the
left censoring problem, may lead to severe bias in the parameter estimates
(Heckman and Singer, 1985, 1986).

Another possibility is to assume that the rate of entry is time invariant,
i.e., that g(τ0 − r|x) = g(x). In that case, Equation 4.32 simplifies to

f(s|x, s > 0) =

∫∞
0
f(r + s|x)dr∫∞

0
S(r|x)dr

=

∫∞
0
f(r + s|x)dr

E(T |x)
.

After making further parametric assumptions on the distribution of T (see
section 4.3), this yields a likelihood function for estimating the parameters
related to T which can be solved without too many problems. However,
the validity of the results depends to a large degree on the validity of the
assumption of a constant entry rate, given x (Guo, 1993).

Known τb If there is information on the time of entry into the risk set
of left-censored observations, things are much less complicated. But, as
mentioned above, treating left-censored observation in the same fashion as
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the other cases leads to an underestimation of the hazard rates for short
durations. The only way to prevent this form of selection bias is to take the
selection mechanism into account when estimating the model’s parameters.
In this case, we must take into account that a person can only belong to
the sample if he/she did not experience the event of interest before τ0. This
can simply be accomplished by constructing the likelihood function with
the conditional density of T given survival up to R rather than with the
unconditional density of T (Tuma and Hannan, 1984:130-131). When R
is known, this leads to the conditional maximization approach which was
first proposed by Lancaster (Lancaster, 1979; Hamerle, 1991; Guo, 1993).
The result is that only the information on a given individual which is not
selective, that is, the survival information between r and t (or between τ0
and τe), is used for estimating the parameters.

The conditional density of a left-censored case which, as in the case of
F in Figure 4.1, experiences an event in the observation period is defined
as (Lancaster, 1979; Tuma and Hannan, 1984; Guo, 1993)

f(t|T > r,x) =
h(t|x)S(t|x)

S(r|x)
=

h(t|x) exp
(
−
∫ t

0
h(u|x)du

)
exp

(
−
∫ r

0
h(u|x)du

)
= h(t|x) exp

(
−
∫ t

r

h(u|x)du

)
. (4.33)

This conditional density is almost equal to the density for a noncensored
observation. The only difference is that the ordinary survival probability
is replaced by a conditional survival probability: The hazard rate is not
integrated from 0 to t, but from r to t.

Apart from preventing selection bias, this procedure has the further
advantage that no information is needed on the values of time-varying co-
variates between T = 0 and T = r. Since the conditional density function
depends only on the covariate values in the observation period, the required
data corresponds exactly to the data collected during the observation pe-
riod. In that sense, the conditional density approach resembles the way in
which period life tables are constructed (Guo, 1993).

Hamerle (1991) showed that the conditional density function used in the
conditional likelihood method (Equation 4.33) can be also obtained by con-
ditioning the joint density of R and S (Equation 4.31) on the marginal den-
sity of R without making additional assumptions with regard to g(τ0−r|x).
Nevertheless, Ridder (1984) and Hamerle (1991) criticized the conditional
likelihood approach. It would lead to considerable loss of efficiency because
the information on R would only be used for eliminating selection bias and
not for estimating the parameters of interest. More precisely, by condition-
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ing on R and X, the information in the joint distribution of (R,X) is ne-
glected. On the other hand, Guo (1993) states that there are two important
disadvantages to using the joint density of R and S when R is known: The
results may depend on the time-homogeneity assumption about g(τ0− r|x)
and the procedure can only be used when all covariates are time-invariant.
Thus, if it is taken into account that no assumptions need to be made on
the distribution of τb, that the method can be used for estimating models
with time-varying covariates, and that obtaining maximum likelihood es-
timates only requires a small modification of the standard procedures, it
seems reasonable to state that when τb is known, the conditional likelihood
method is preferable.

Computer programs The conditional maximization method for left-
censored observations can be implemented using standard computer pro-
grams for estimating hazard models. It can be applied in continuous-time
hazard models if the program concerned can deal with episode records. An
episode record has a starting time that does not need to be equal to zero
and an end time which does not need to be equal to t. Rohwer’s TDA
program is one such example (Rohwer, 1993). Since discrete-time methods
always use episode records, that is, one record for every discrete time in-
terval that a person is at risk, the conditional maximization procedure can
easily be implemented in discrete-time hazard models. The only thing that
has to be done is deleting all person-period records from T = 0 to T = r
for all left-censored observations.

In section 4.4, it was shown that the likelihood function for piecewise
exponential survival models equals

L =

N∏
i=1

Z∗∏
z=1

h(z|xi)δiz exp (−h(z|xi)eiz)

=
∏
abz

θnabz

abz exp (θabzEabz) ,

where eiz denotes the total time that person i belongs to the risk set in
time interval z, and Eabz denotes the total exposure time in time interval
z for persons with covariates values A = a and B = b. When applying the
conditional likelihood approach in combination with a piecewise exponential
survival model, the exposure times eiz are equal to zero until the time
interval containing r, that is, until tz−1 < r ≤ tz. Of course, the changes
in eiz will also influence the cross-tabulated exposure times in Eabz. The
only difference between the ordinary maximum likelihood method and the
conditional maximum likelihood is that left-censored observations do not
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contribute to the total exposure times before T = r. In the `EM program
(Vermunt, 1993), this procedure is implemented by allowing the user to
specify the time of entry into the risk set.

æ

4.6 Time-varying covariates, time, and time-
covariate interactions

Until this point it was assumed, for the sake of simplicity, that the values
of the explanatory variables used in hazard models do not change their
values during the observation period. The only variable that was allowed
to change its value was the time variable itself. However, dynamic analysis
by means of event history analysis techniques not only implies that the
hazard rates may change over time, but also that the values and the effects
of covariates may change over time.

This section explains how to use time-varying covariates in hazard mod-
els. Special attention is paid to two special types of time-varying covariates:
time and time-covariate interactions. Furthermore, some of the problems
associated with the use of time-varying covariates are discussed.

4.6.1 Time-varying covariates

The chance to include explanatory variables which may change their values
during the observation period is one of the great advantages of event history
models. It is also one of the most difficult aspects of event history modeling
since various mistakes can be made in the causal interpretation of the ef-
fects of time-varying covariates (Chamberlain, 1985; Lancaster, 1990:23-31;
Yamaguchi, 1991:130-134).

Of course, as is true in all nonexperimental research, the initial dis-
tribution of the time-varying covariates may introduce selection bias when
important covariates are not included in the model. However, selection bias
may occur even if persons are randomized into the different categories of a
time-varying covariate at T = 0, that is, if the covariate concerned is not
correlated at T = 0 with possibly unobserved confounding factors. Dur-
ing the observation period, people may take on particular covariate values
more often than other values as a result of unmeasured risk factors which
are common for the covariate process and the dependent process.10 More

10Following Yamaguchi (1991:133), the term covariate process will be used to denote
the changes which occur in the values of the time-varying covariates, and the term depen-
dent process to denote the transitions in the dependent variable in the study concerned.



128 CHAPTER 4. EVENT HISTORY ANALYSIS

precisely, there may be unobserved factors that influence both the tran-
sitions in the time-varying covariates and the hazard rate of the event of
interest. As a result, a part of the sample has both a higher probability of
occupying a particular covariate state and a higher hazard rate. In such
cases, the effect of a time-varying covariate on the hazard rate of the event
under study is, at least partially, spurious.

Another possible pitfall with respect to the causal interpretation of the
effects of time-varying covariates is the problem of reverse causation. One
would expect that determining the causal order between covariates and the
dependent process under study would be simpler in the case of dynamic
analysis of event history data than in the case of static analysis. However,
this is only true for the covariates that do not change their value during the
observation period. Time-dependent covariates may be subject to reverse
causation, that is, the process under study may influence the covariate pro-
cess. The covariate process may be either influenced by the state occupied
at the different points in time or by the size of the hazard rate. The former
is called state dependence, the latter, rate dependence (Tuma and Hannan,
1984:268; Yamaguchi, 1991:137-139). Both forms of reverse causation may
severely bias the results obtained from an event history analysis.

Exogenous versus endogenous covariates The problems of selection
bias (or spuriousness) and reverse causation which are associated with the
use of time-dependent covariates can be clarified using the distinction be-
tween exogenous and endogenous (time-varying) covariates proposed by
Lancaster (1990:23-31). Endogenous covariates may be subject to spu-
riousness and reverse causation, while exogenous covariates do not have
these problems. Lancaster derived the distinction between endogenous and
exogenous covariates by writing down the joint probability distribution of
the covariate process and the dependent process under study. Assume, for
the sake of simplicity, that an event or censoring can only occur at discrete
points in time and that there is only one time-varying covariate. Let tl
be the lth from L∗ discrete time points, x(tl) a value on the time-varying
covariate at the lth time interval, and x(0, tl) a complete covariate path
from T = 0 through T = tl. The joint probability of surviving through
T = tl and having observed covariate values x(0, tl) can be written as

P (x(0, tl), T > tl) =

{
l∏

k=1

P (x(tk)|T > tk−1, x(0, tk−1))

l∏
k=1

[1− λ(tk|x(0, tk))]

}
, (4.34)
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and the joint probability of experiencing an event at T = tl and having
covariate values x(0, tl)

P (x(0, tl), T = tl) =

{
l∏

k=1

P (x(tk)|T > tk−1, x(0, tk−1))

λ(tl|x(0, tl))

l−1∏
k=1

[1− λ(tk|x(0, tk))]

}
. (4.35)

According to Lancaster (1990:28), the nature of a time-varying covariate is
determined by the factor

P (x(tl)|T > tl−1, x(0, tl−1)) , (4.36)

which describes the probability of having a particular covariate value at
T = tl, given survival through T = tl−1 and the covariate path between
T = 0 and T = tl−1. Now, a covariate is exogenous if and only if

P (x(tl)|T > tl−1, x(0, tl−1)) = P (x(tl)|x(0, tl−1)) (4.37)

for all tl. Thus, a covariate is exogenous if the covariate process is inde-
pendent of the process under study, that is, if the probability of having a
particular value on a time-dependent covariate at time point tl does not
depend on the condition T > tl−1, given the covariate history through
T = tl−1. In other words, an individual who did not experience an event
at or before T = tl−1 must have the same probability of having a partic-
ular value on a time-dependent covariate in T = tl as an individual who
experienced an event at or before T = tl−1, even after controlling for the
covariate path through T = tl−1. Note that the condition that x(tl) is
independent of survival through T = tl−1 is equivalent to stating that x(tl)
is independent of the state occupied at T = tl−1.

As can be expected, a covariate that is not exogenous is endogenous.
This occurs whenever the covariate process is in some way related to the
dependent process under study, that is, whenever experiencing of the event
at or before tl−1 helps to predict an individual’s covariate value at T = tl,
even after controlling for the complete covariate path up to tl−1, x(0, tl−1).

Chamberlain (1985) and Croughley and Pickles (1989) defined exogene-
ity in slightly different terms as

f(s(tl)|x(0, tL∗)) = f(s(tl)|x(0, tl)) ,

where s(tl) denotes the state that a person occupies at the lth time point.
Thus, exogeneity implies that the state occupied at a particular moment in
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time depends only on current and past covariate scores. On the other hand,
if future covariate values possess additional predictive power, the exogene-
ity condition is not fulfilled. Note that this formulation of exogeneity is an
inversion of Lancaster’s formulation. While Equation 4.37 shows that sur-
vival up to tl does not predict future covariate values, Equation 4.38 states
that future covariate values do not predict survival up to tl. Of course,
these two seemingly different formulations are completely equivalent.

Covariates which take their values independently of whether a person sur-
vived or not are always exogenous. Kalbfleisch and Prentice (1980:121-
122) called these covariates external covariates. They distinguished three
types of external covariates, namely, time-constant covariates, defined co-
variates, and ancillary covariates. Time-constant covariates do not change
their values during the observation period. Defined covariates are time-
varying covariates for which the values are determined in advance for each
subject at the different points in time. Examples of defined covariates are
time variables, such as age and duration, factors which are under control in
an experimental setting, and interaction terms between time variables and
time-constant covariates. Ancillary covariates are the output of a stochas-
tic process that is external to the individuals under study, such as macro-
level variables which influence the individual risk of becoming unemployed.
Time-constant, defined, and ancillary covariates have in common that their
values are not influenced by whether a person survives up to T = tl−1.
Moreover, external covariates have in common that they are defined, that
is, that they have a value, irrespective of whether an event occurred or not.

Covariates which are defined only if the event under study does not occur,
that is, the values can only be determined as long as a person survives, are
by definition endogenous because the expression P (x(tl)|x(0, tl−1)) at the
right-hand side of Equation 4.37 is a probability that cannot be evaluated
at all values of T (Lancaster, 1990). Examples are an individual’s wage
in a study of the length of employment spells or an individual’s general
condition in a clinical trial. After all, upon becoming unemployed a per-
son has no wage and after dying no general condition measure is available.
Kalbfleisch and Prentice (1980:122-124) referred to such covariates as inter-
nal covariates. They defined an internal covariate as a time measurement
taken on an individual that, as a result, requires survival of the individual
for its existence. According to Kalbfleisch and Prentice (1980:124), inter-
nal covariates often act as intermediate variables. For instance, a medical
treatment or another type of intervention may have an effect on the hazard
rate of dying from a particular disease. However, after controlling for the
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time-varying covariate general condition, the effect may disappear. This
may result from an indirect effect of the treatment on the risk of dying,
that is, the treatment may improve the general condition and thus lower
the risk of dying. The use of internal covariates can help to understand the
process more precisely, but to understand the ongoing process completely
the changes in the internal covariates themselves also have to be studied.
For this reason, Manton, Woodbury, and Stallard (1988) strongly advocated
models in which not only the process of interest – in their case mortality
from different causes – is modelled, but in which also the evolution of risk
factors is modelled. This makes it possible to improve the prediction of the
effects of intervention in risk factors on the size of the hazard rate.

There are also covariates which are not defined externally to an individual
subject, but which are not necessarily endogenous. For instance, in a study
of unemployment, a person’s marital status may be either an exogenous or
endogenous covariate. The marital status is not internal according to the
definition by Kalbfleisch en Prentice (1980) because it is still defined after
an individual becomes unemployed. Whether marital status is endogenous
or exogenous depends on whether the employment history up to T = tl−1

helps us to predict an individual’s marital status at tl or not. Endogeneity
can either be the result of reverse causation between employment and mar-
ital status, for instance because being employed makes the probability of
a divorce smaller, or be the result of some common unobserved covariates
which influence both the hazard of becoming unemployed and the hazard
of divorce, such as, for instance, the stability of an individual’s lifestyle.

Another example of a covariate that can be either exogenous or endoge-
nous is the time-varying covariate of pregnancy in an analysis of the event
marriage. The relationship between pregnancy and marriage may be the
result of one of the following causal processes: pregnancy may be a reason
to marry, women with a higher likelihood of marriage may have a higher
risk of becoming pregnant, or the decision to marry and become pregnant
may be taken simultaneously. In the first case, there is a direct effect of
pregnancy on the hazard rate of marriage, which means that individuals
with a high risk of premarital pregnancy at a young age will, as a result,
have a higher risk of marrying young. In the second case, there may be
reverse causation. More precisely, the rate of becoming pregnant may de-
pend on the size of the rate of getting married. The latter case involves
a spurious effect resulting from the fact that the rate of getting pregnant
and the marriage rate are influenced by the same unobserved factors. It
is not only difficult to determine which kind of process is at work, but an
additional problem is that the three kinds of processes may each be valid
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for different subgroups.

4.6.2 Different dimensions of time

The previous sections discussed various methods for modeling the time
dependency of the process under study. However, no attention was given
to the operationalization of the variable time or to the interpretation of
its effect. The operationalization of the time dependency of the hazard
rate depends on the substantive research question which is to be answered.
Hazard rates may be related to different kinds of time dimensions, such as
age, calendar time, duration, and experience (Tuma and Hannan, 1984:189-
197). However, normally, it is not correct to assume that the time variable
has a direct causal effect on the hazard rate. Time dependence will generally
be the result of unobserved factors which change in some systematic way
together with the time dimension involved.

A time variable which is very often used, particularly in demographic
research, is age. Age is, for instance, related to marriage, birth, and death
rates. It seems plausible to explain the age dependence of marriage rates
from social norms about the best age to marry. Birth rates are related to
age both as a result of social norms and due to the physiological capacity
to reproduce. In that case, there is a mixture of two types of age effects
which can only be separated when at least one of them is operationalized
in different fashion. And finally, death rates are related to age as a result
of changing physiological conditions as individuals grow older.

Another time variable is calendar time or period. This variable gener-
ally indicates changing unmeasured macro conditions which influence the
individual hazard rates. Divorce rates may be correlated to calendar time
because of changed laws or changing social norms. In addition, the pe-
riod dependence of the rate of becoming unemployed may be caused by
fluctuations in the economy.

The time spent in the risk set, or duration, is also a useful time dimen-
sion. In the analysis of unemployment spells, a negative duration depen-
dence is often found. This is explained by the fact that employers prefer
to employ individuals who have only been unemployed for a short period
of time. Duration is equivalent to the stigmatization of unemployment by
society. The dependence of, for instance, divorce rates on the duration
of marriage may be the result of a number of psychological aspects which
influence the strength of a relationship.

Tuma and Hannan (1984:195) mentioned experience as another possible
time variable. Experience is the total time spent in a particular state.
Generally, it differs from duration only for the second and subsequent spells.
In the analysis of employment spells, experience is the total time that an
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individual has been employed.
The last time dimension mentioned by Tuma and Hannan (1984:191)

is cohort. Contrary to the above-mentioned time variables, cohort is not a
time-varying variable. It is a variable that is constant during each particular
spell. The variable cohort is often used in demographic research, but is
useful in other fields as well. Cohort is generally defined as the period
of entry into the risk set. Therefore, it is sometimes also called period-
cohort. In the case of some specific life-course events, such as first marriage
and first birth, it is simply someone’s birth date or birth year. In the
analysis of divorce, cohort may be the year of marriage, also referred to
as a marriage-cohort. In the analysis of the length of the first job search
after leaving school, cohort may be either the date of leaving school or
the individual’s year of birth. Generally, the variable cohort is used as
an indicator for cumulated circumstances or experiences that particular
subgroups of persons have in common.

Another constant time variable which is similar to cohort is the age at
the entry into the risk set. It is also called the age cohort. The age at
which an individual becomes unemployed may influence the hazard rate of
becoming employed. The age that a women has her first child may influence
the hazard rate of the second birth. Like the other time variables that were
mentioned, this variable also serves as a correlate for particular unobserved
factors.

Often, several time dependencies are at work simultaneously. For in-
stance, divorce rates may depend on age, period, age at marriage, year
of marriage, and duration of marriage. Unemployment rates may depend
on age, experience, duration, and period. However, the number of time
dependencies that can be included in a model is limited as a result of
the well-known collinearity which also occurs in age-period-cohort models
(Tuma and Hannan, 1984:196-197; Mason and Fienberg, 1985; Hagenaars,
1990:326-332).

A serious problem associated with the interpretation of the effects of time
variables is that the observed time dependence may not only be the result of
unobserved factors which change simultaneously with the time dimension
being used in a particular model, but may also be influenced by unob-
served factors which do not change with time. This is generally referred to
as unobserved heterogeneity (Vaupel, Manton, and Stallard, 1979; Heck-
man and Singer, 1982, 1984; Trussell and Richards, 1985) and can easily
be demonstrated. Suppose there are two subgroups with constant but dif-
ferent hazard rates. In that case, the relative size of the group with a lower
hazard rate will increase with time. As a result, the mean hazard rate will
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decrease with time. This means that if this source of heterogeneity remains
unobserved, there will be spurious negative time dependence (Ridders and
Elbers, 1982).

The negative duration dependence of the hazard rate of becoming em-
ployed may result from the fact that those who are more capable find a
job more easily, rather than from the fact that stigmatization by employers
takes place. In addition, divorce rates may go down because individuals
who know each other for a longer period before marrying have lower di-
vorce rates, rather than because the quality of the relationship improves
with the duration of marriage.

In general, unobserved heterogeneity leads to either an underestimation
of positive time dependence or an overestimation of negative time depen-
dence. An important difference with static regression models is, however,
that in event history models unobserved factors influence the results even if
they are uncorrelated with the observed variables at the time of entry into
the risk set, that is, at T = 0. Although unobserved heterogeneity has the
strongest impact on the duration effect, it may also influence the effects of
observed covariates on the hazard rate.

4.6.3 Time-varying covariate effects

A strong point of event history models is that the effects of covariates may
change with time, or equivalently, that the time effects may depend on
covariate values. Such models, which are obtained by including interaction
terms between time variables and covariates, are called nonproportional
hazard models. Note that time-covariate interactions are also time-varying
covariates.

These time-covariate interaction effects can be interpreted in different
manners. The simplest interpretation is that the time dependence differs
for subgroups. In other words, the unobserved factors which are associated
with the time dimension concerned differ or function in a different manner
for different observed subpopulations. For instance, women with different
educational levels have their first child at different ages. This can occur
because the social norm explanation for the effect of age only applies to
less educated women. Highly educated woman may postpone the birth of
their first child because they want to participate in the labor force and are
subsequently confronted with both norms and physiological factors which
determine the maximum age for starting a reproductive career.

On the other hand, time-covariate interaction effects can be interpreted
as covariate effects that change with time. For instance, the interaction ef-
fect between age and educational level on the rate of first birth also means
that the effect of the educational level on the rate of first birth changes with
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age. Suppose that at younger ages a higher educational level is a barrier to
starting the reproductive career because the costs of having a child are too
high. As time goes on, the relative costs for better educated women will
go down in comparison to the costs for less educated women who have not
yet had children. This phenomenon may lead to higher first-birth rates for
less educated women than for highly educated women, but only at younger
ages. At older ages, the birth rates may be equal for both groups, or may
actually be higher for better educated women.

As is the case with time dependence itself, the interpretation of time-
covariate interactions is not always straightforward: a significant interaction
term between time and a time-constant covariate may also be the result of
unobserved heterogeneity. Spurious time-covariate interaction effects occur
when there is an unobserved variable which is correlated with the observed
covariate concerned. This is the classic form of selection bias. In that case,
the differences between the hazard rates for the categories of the observed
covariate decline with time. The problem is even more complicated, since
differences may still increase, but it is less so than if there is no selection
bias.

For example, the interaction term between educational level and age
discussed above will at least partially be the result of unobserved factors
which are correlated with educational level. Suppose that the ethnic group
that a woman belongs to influences her educational level: women from eth-
nic minorities, on average, have lower educational levels than women from
the ethnic majority. This implies that at age 18, the proportion of childless
women from an ethnic minority will be higher in the less educated group
than in the more educated group. In addition, suppose that the variable
‘ethnic group’ is not observed and that women from ethnic minorities have
higher first-birth rates than women from the ethnic majority. As a result,
the proportion of women belonging to an ethnic minority in the risk set,
thus without children, will decrease with age. However, since the less ed-
ucated group contains more women belonging to an ethnic minority, the
hazard rate for those with lower levels of education group will decrease
faster than the hazard rate for the better educated group. This leads to a
spurious age-education interaction.

Another example could be the interaction effect found between type of
union (married/unmarried) and the duration of the union in the analysis
of union dissolution. What is found is that at short durations unmarried
couples have a much higher risk on separating than married couples, but
at longer durations the difference between married and unmarried couples
disappears (Manting, 1994). It is almost certain that this interaction effect
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is caused by unobserved factors which are strongly associated with the type
of union such as, for instance, the stability of the relationship which could
be operationalized as ‘how long a couple has known each other at the start
of the union’. If it were possible to control for such a factor, the difference
in the duration of union between cohabiting couples and married couples
might become much smaller.

4.6.4 Unobserved heterogeneity, selection bias, and spu-
rious relationships

Above it was shown that the presence of unobserved heterogeneity may
introduce bias in the parameters of hazard models in a number of different
ways. In summary, unobserved heterogeneity usually has a downwards ef-
fect on the time dependence, even if the unobserved factors are uncorrelated
with the values of covariates included in the model at T = 0. Moreover,
covariate effects will be biased as well since the unobserved variables and
the observed variable become correlated after T = 0. When the unobserved
variable is related to other covariates at T = 0, that is, when there is some
form of selection bias, spurious interaction effects between T and X will
be found. Finally, the effect of (endogenous) time-varying covariates may
be spurious as a result of the presence of unobserved risk factors which
influence both the covariate process and the dependent process.

Of course, it is important to be aware of these phenomena. However,
it would be even more useful to have instruments which could be used to
minimize the distortion resulting from this type of problem. Various au-
thors (Heckman and Singer, 1982, 1984; Vaupel, Manton, and Stallard,
1979) have proposed including a latent variable or a random effect in the
hazard model to tackle the problem of unobserved heterogeneity. Normally,
a latent variable with either a parametric or non-parametric distribution
function is assumed to exist which is uncorrelated with the observed co-
variate values at T = 0. Under weak conditions, such a latent variable
makes it possible to separate spurious from true time dependence (Elbers
and Ridder, 1982; Heckman and Singer, 1984).

Spurious time dependence is, however, only one source of bias intro-
duced by unobserved factors. The above-mentioned approach is limited
because it does not allow the latent variable to be related to observed co-
variates. Therefore, it cannot be used to eliminate selection bias in general.
Chapter 5 presents a more general approach which makes it possible to
model the relationships between unobserved categorical or non-parametric
covariates and observed covariates, including the initial states of the time-
dependent covariates and the dependent process. This approach also makes
possible the elimination of specific forms of selection bias.
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Spurious effects of time-varying covariates, or selection bias in time-
varying covariates, can be tackled by simultaneously analyzing the depen-
dent process and the covariate process by means of the multivariate hazard
models, which are discussed in section 2.7. By incorporating a latent vari-
able which influences both the covariate process and the dependent process,
it is possible to identify common unobserved risk factors and to recover the
true effect of a time-varying covariate. This is only possible, of course, if
the correlation between the dependent process and the covariate process
does not result from reverse causation. In Chapter 5, these latent variable
approaches are discussed more extensively.

4.6.5 Reverse causation

As mentioned previously, the causal interpretation of the effects of endoge-
nous time-varying variables can be hampered by the existence of one of two
forms of reverse causation, namely, state dependence or rate dependence
(Tuma and Hannan, 1984:268).

State dependence occurs whenever the transition rates of the covariate
process depend on the state occupied in the dependent process of interest.
It leads to a correlation of the duration in the risk period with the state
dependent covariate (Yamaguchi, 1991:137-139). In these circumstances,
the time dependence and the effect of the covariate concerned can easily
be confused. In other words, bias will be introduced in the covariate effect
whenever the duration dependence is not modelled correctly. The only
solution to this problem is a careful specification of the duration dependence
of the process. The bias caused by state dependence is difficult to prevent
because in many situations the time dependence is unknown.

Suppose employment status is used as a time-varying covariate in an
analysis of the risk of divorce, and additionally it is known that married
individuals have a lower risk of becoming unemployed than individuals who
are not married. The result will be that the risk set will contain more
employed people at longer durations than at shorter durations, not only
because employed individuals have a lower risk of divorce, but also because
married people have a higher probability of being employed. This leads to
a correlation between duration and the time-varying covariate employment
status.

Rate dependence, which means that the hazard rate of the covariate pro-
cess depends on the value of the hazard rate of the dependent process, is an
even more difficult form of reverse causation to tackle. Rate dependence can
be illustrated by means of an example. In hazard models for the first birth,
the employment status of a women is often used as a time-dependent co-
variate (Vermunt, 1991). What is generally found is that employed women
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have lower hazard rates of having children, while women who are not in
the labor force have much higher rates. This effect may, however, be par-
tially caused by the fact that some women stop working some time before
the birth of their first child. They stop working because having children is
seen as incompatible with a career. Thus, when a woman decides to have
children, the hazard rate of first birth increases and, as a result of rate
dependence, the risk of leaving the state of employment increases as well.

Yamaguchi (1991:138-139) mentioned a similar case. He found that
people tended to stop using marijuana some time before they got married
because of the perceived incompatibility of marijuana use and marriage.
The consequence is that if using marijuana is used as a time-varying co-
variate for marriage, the effect will be, at least partially, the result of reverse
causation: The hazard rate of abstinence from marijuana smoking increases
as the hazard rate of getting married increases.

Actually, rate dependence results from a person’s capacity to anticipate
future or desired situations. When there is rate dependence, the causal or-
der of events will no longer be in agreement with their time order (Marini
and Singer, 1988). According to Yamaguchi (1991:139), a possible solution
for rate dependence is to use a time-lag large enough for a possible rate de-
pendent time-dependent covariate to make anticipation less probable. The
main disadvantage of such an approach is that a true effect may disappear
as a result of a too large time-lag. In fact, the only real solution is to
perform additional research on the decision-making process governing the
covariate value and the value of the dependent variable in order to under-
stand the nature of the reverse causation. Do women stop working because
they plan to have a baby? Do marijuana users stop using marijuana be-
cause they plan to marry? Such questions can only be answered by asking
the actors concerned about their behavioral intentions (Marini and Singer,
1988:378; Willekens, 1991).

4.6.6 Estimation of hazard models with time-varying
covariates

As demonstrated by Lancaster (1990:29-31), the estimation of hazard mod-
els with time-varying covariates is straightforward if the condition of exo-
geneity is fulfilled. In that case, Equation 4.36, which describes the depen-
dence of the covariate process on the dependent process, does not contain
information on the hazard parameters. More precisely, it is simply the
marginal probability of the observed covariate path x(tl). Therefore, the
individual contribution to the likelihood function can be based on the sec-
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ond part of Equations 4.34 and 4.35, i.e.,

l∏
k=1

[1− λ(tk|x(tk))] , (4.38)

λ(tl|x(tl))

l−1∏
k=1

[1− λ(tk|x(tk))] . (4.39)

These are probabilities given covariate values, which is the same inter-
pretation as if all of the covariates are time-constant. However, if some
time-dependent covariates are endogenous, this is not true. In that case,
the expressions given in Equations 4.38 and 4.39 are factors in the joint
probability of T and x(tl), and are not probabilities conditional on the co-
variate path. According to Lancaster (1990:30), neglecting the last term
of Equations 4.34 and 4.35 when the covariates are endogenous leads to a
partial likelihood solution which can be seriously inefficient. In addition,
if the endogeneity of time-varying covariates results from selection bias or
reverse causation, the effects of these covariates will be biased.

Continuous time For continuous time, the likelihood function for a haz-
ard model with time-varying covariates is given by

L =

N∏
i=1

h(ti|x(ti))
δi exp

(
−
∫ ti

0

h(u|x(ui))du

)
. (4.40)

Equation 4.40 can also be written down in terms of episodes in which the
covariates do not change their values. Let Ki be the number of episodes,
Ki − 1 the number of times that a change occurs in the covariate values of
person i, and tki the time point at with the kth change occurs. Moreover,
t0i is the time point at which the first episode starts and tKi is the survival
or censoring time. The censoring indicators δki are equal to 0 for all ki < Ki

and have the usual meaning for ki = Ki, that is, all episodes except the
last one are always treated as censored. In terms of these Ki episodes for
subjects i, the likelihood equals

L =

N∏
i=1

Ki∏
k=1

h(tki |xki)δki exp

(
−
∫ tki

tki−1

h(u|xki)du

)
. (4.41)

The advantage of splitting each record into Ki episodes is that these N∗ =∑N
i=1Ki episodes can be analyzed as if all of the covariates are time-

constant. If each episode is treated as a left-censored case with a known
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starting time R = rj for episode j, Equation 4.41 can be simplified to

L =

N∗∏
j=1

h(tj |xj)δj exp

(
−
∫ tj

rj

h(u|xj)du

)
.

Maximizing this likelihood function is equivalent to the conditional maxi-
mization method for left-censored observations which was presented in sec-
tion 4.5.

Log-rate model Like Equation 4.41, the likelihood for the piecewise ex-
ponential survival or log-rate model can be adjusted to allow for time-
varying covariates (Trussell and Hammerslough, 1983). Suppose there is a
model with two covariates A and B which may now be time-varying. This
leads to

L =

N∏
i=1

Ki∏
k=1

Z∏
z=1

h(z|xki)δkiz exp (−h(z|xki)ekiz)

=
∏
abz

hnabz

abz exp (−habzEabz) ,

in which ekiz denotes the total time that person i in episode k belongs to
the risk set in time interval z. Although the likelihood in terms of the
cross-tabulated number of events, nabz, and the cross-tabulated exposure
times, Eabz, seems to be equivalent to the situation in which there are no
time-varying covariates (see Equation 4.21), it should be noted that in this
case nabz and Eabz are obtained in a different fashion:

nabz =

N∑
i=1

Ki∑
k=1

δkizγkiab

Eabz =

N∑
i=1

Ki∑
k=1

ekizγkiab .

Here, γkiab is an indicator variable taking the value 1 if person i has A = a
and B = b in the kth episode and otherwise it takes the value 0.

Computer programs The estimation of the parameters of continuous-
time hazard models with time-dependent covariates can easily performed
by means of programs which permit the use of episode records as input.
The TDA program which was developed by Rohwer (1993) can be used for
that purpose.
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The `EM program (Vermunt, 1993) can be used to estimate log-rate
models with time-varying covariates. It allows the user to enter episode
records as input. However, changing values of time-varying covariates can
also be specified by defining the different covariate values as different states
and utilizing the possibility of defining several transitions within one record.
In that case, it is not necessary to perform episode splitting. This makes
it relatively easy to analyze the covariate process simultaneously with the
dependent process. The multivariate hazard models which can be used for
this purpose are discussed more extensively in section 4.8.

Of course, the log-rate model with time-varying covariates can also be
estimated by means of standard programs for log-linear analysis. In that
case, the occurrence and the exposure matrix must be given as input.

æ

4.7 Different types of events

Thus far, only hazard rate models for situations in which there is only one
destination state were considered. In many applications it may, however,
prove necessary to distinguish between different types of events or risks. In
the analysis of the first-union formation, for instance, it may be relevant
to make a distinction between marriage and cohabitation. In the analysis
of death rates, one may want to distinguish different causes of death. And
in the analysis of the length of employment spells, it may be of interest to
make a distinction between the events voluntary job change, involuntary
job change, redundancy, and leaving the labor force.

Before arguing the need for special models for analyzing event history
data with more than one possible type event, a classification of multiple-
risk situations is presented below. Then, the statistical concepts and the
special types of models used in multiple-risk cases are presented. And
finally, attention is given to the assumption of conditional independence of
the survival times for the different types of events which can occur.

4.7.1 Classification of multiple-risk situations

In the sociological literature on competing risks, it is quite common to
distinguish two ideal situations in which competing events can be analyzed
with little methodological difficulty (Allison, 1984:42-44; Hachen, 1988; and
Yamaguchi, 1991:169-171). Following Allison and Yamaguchi, they will be
labeled as Type I and Type II situations. It is attractive to assume one of
the two situations to be valid because in that case the same types of methods
can be applied as are applied in the single-destination case. However, as
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will be argued below, it is almost always advisable to use a competing-risk
model because none of the two situations is valid.

While the distinction between the above Type I and Type II situation is
an important issue in the sociological literature on competing risks, in other
fields, such as biometrics and demography, another problem associated with
the analysis of different types of events is given a great deal of attention:
the problem of dependence among competing risks (Tiatsis, 1975; Pren-
tice and Kalbfleisch, 1979; Vaupel and Yashin, 1985; Yashin, Manton, and
Stallard, 1986; Heckman and Honore, 1989). As is demonstrated below,
the dependence or independence of competing risks strongly influences the
range of interpretation of the results.

Type I and Type II situation In the Type I situation, the occurrence
of one of the possible events is dominated by two separate independent
steps. According to Allison (1984:42), such a situation occurs whenever
the occurrence or nonoccurrence of an event, irrespective of its type, is
determined by one causal process and, given that an event occurs, a second
causal process determines which type of event occurs. The two steps are
independent and governed by their own set of parameters.

The assumption of a Type I process can be valid, for instance, in con-
sumer behavior research. One causal process determines whether an indi-
vidual buys a particular product in T = t and a second process determines
the brand of the product. The aim of commercials may be either to in-
fluence the second step or to distort this two-step pattern. Likewise, the
process leading to the first-union formation can be interpreted as being the
outcome of such a two-step process. This is correct whenever one causal
process determines the timing of the first-union formation and another de-
termines the decision to marry or to cohabit, given that the first union will
be formed.

If this Type I situation is valid, the two steps can be analyzed separately.
The causal structure determining the occurrence or nonoccurrence of an
event can be analyzed by means of a hazard model for one destination
state. The second step can be analyzed using a discrete choice model,
such as a logit or probit model, in which the kind of event is explained.
If there are more than two risks, it is even possible to use a model for
ordinal categorical data, such as a cumulative or sequential logit model
(Tutz, 1995). The separate models for the hazard rate and the choice
probabilities may contain common covariates.

A second ideal situation, which is called Type II by Allison (1984:43-44)
and Yamaguchi (1991:171), occurs whenever the occurrence of each event
type has a different causal structure. In that sense, it is the opposite of the
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Type I situation, in which it is assumed that the occurrence of an event, ir-
respective of its type, can be explained by a single causal process. Although
the same covariates may be relevant, each event has an independent set of
parameters, that is, the parameters for the different events are assumed to
be distinct. Type II multiple-risk situations are often called competing risks
(Kalbfleisch and Prentice, 1980: Chapter 7; Cox and Oakes, 1984: Chapter
9), since the occurrence of one type of event removes an individual not only
from the risk set for the event concerned, but also from the risk set for
the other events. This perception of situations in which there are different
types of events is especially popular in biostatistics and demography.

The classical competing-risk example is death from competing causes.
For instance, it is plausible to assume that different causal processes lead to
death from heart disease and to death from cancer. In that case, a person
dying of heart disease can be treated as being free of risk for dying of cancer.
The same arguments could be applied in the analysis of employment spells
if a distinction is made between voluntary and involuntary job changes.
Different causal processes could be assumed to determine voluntary and
involuntary job changes since different actors are involved in these two
modes of leaving employment.

The process leading to a first-union formation could likewise be viewed
as a competing-risk situation rather than a Type I situation. In the Type
II situation, it would be assumed that there were no factors which influ-
enced a first-union formation by marriage and a first-union formation by
cohabitation in the same fashion. In other words, the two processes would
be assumed to have no parameters in common.

If the process being studied takes place within a Type II situation, the
different types of events can be analyzed separately, and the occurrence of
one of the other possible events can be treated as a censored observation.
There is, however, one exception: if a discrete-time logit model is used, the
competing events must always be analyzed simultaneously (Allison, 1982).
The reason for this is demonstrated below.

It appears attractive to assume one of the two ideal situations discussed
above to be valid. In that case, it is not necessary to apply special instru-
ments to the analysis of data on different types of events. The analysis can
be performed in the same fashion as was discussed in the preceding sections
of this chapter: in the Type I situation no distinction is made between the
events and in the Type II situation the different kinds of events are analyzed
separately. In social science research, however, neither of these two ideal
situation is normally plausible. Most often, the occurrence of the events be-
ing studied is partially influenced in the same fashion by the same factors,
and is partially influenced by unique factors or in a different fashion by the
same factors. In other words, the process determining the occurrence of
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the events of interest is a mixture of Type I and Type II situations.
In the first-union example, it seems reasonable to assume that specific

factors influence the timing of the first-union formation, regardless of the
type of union, while other factors influence the risk of marriage and co-
habitation is a different manner. Suppose that education is a factor of
the former type and religion a factor of the latter type. This would imply
that education determines the age at which a first union is formed and
perhaps also influences the decision to marry or to cohabit, regardless of
the age at which the union is formed. Thus, there is an effect of education
on the overall hazard rate and possibly age-education and risk-education
interaction effects as well. On the other hand, religion is assumed to have
a different effect on the age-specific hazard rates of marriage and unmar-
ried cohabitation. This implies that the model contains an age-risk-religion
interaction.

A mixture of the two types is often the result of a Type I or Type II
process being valid for different subpopulations. For instance, some indi-
viduals embark upon one type of union without the other type being a
salient alternative, while others choose between marriage and cohabitation
after deciding to form a first union.

Clearly, it is dangerous to choose the method of analyzing the data
on the basis of a priori assumptions with regard to the mechanism which
determines the occurrence of the events being studied. Therefore, it is rec-
ommended that a simultaneous analysis of the different events be performed
using hazard models which are suited to that purpose. These techniques
not only make it possible to specify models without the necessity of making
assumptions on the type of multiple-risk situation, they can also be used
to test these assumptions. Thus, even if it seems plausible to assume ei-
ther Type I or Type II to be valid, it is not sensible to choose a particular
way of analyzing the data without checking the validity of the assumption
concerned.

When a simultaneous analysis is performed, the occurrence of a Type
I or Type II situation can be detected on the basis of interaction effects
which are included in the hazard model. If no interaction effect involving
both duration and risk is significant, there is a Type I situation. If the
interaction between duration and risk is significant and all covariate-risk
interactions are significant as well, there is a Type II situation. In all other
cases, there is a mixture of the two ideal situations.

Conditionally (in)dependent risks While the distinction between the
Type I and Type II multiple-risk situations is especially relevant to the
choice of the method for analyzing multiple-risk data, another distinction
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can be made on the basis of the range of interpretation of the results ob-
tained from an analysis, namely, the distinction between independent and
dependent competing risks.

In discussing the censoring problem in section 4.5, it was claimed that
the estimation and interpretation of the parameters of hazard models was
straightforward only if the censoring rate and the hazard rate could be
assumed to be conditionally independent, given the covariates included in
the model, of the event under study. This condition is fulfilled when there
are no unobserved factors which influence both the hazard rate and the
censoring rate. The independence of censoring and the occurrence of an
event is so important because otherwise estimates of the hazard parameters
would depend on which observations were censored.

The same argumentation can be applied to multiple-risk situations, par-
ticularly as it should be realized that censoring can be seen as a competing
risk. When competing events are not independent, the size of the estimated
hazard parameters for one type of event will be influenced by which cases
experience which of the competing events, or in other words, the results
will only be valid under current study conditions (Prentice and Kalbfleisch,
1979). However, it is often useful to be able to interpret the hazard rate of
a particular event without having to take the sizes of the other risks into
account. This makes it possible to predict the number of occurrences of
each of the possible events under different assumptions about the values of
the other hazard rates. For instance, it is possible to predict the substitu-
tion effect of the interest event when it becomes impossible for one of the
other events to occur. A classic application of conditionally independent
risks in the study of mortality is cause removal, or the estimation of over-
all mortality rates assuming that one cause of death could be eliminated
(Manton and Stallard, 1987). But this is only allowable if the survival times
are independent given the covariates included in the model, that is, when
we have an independent competing-risk situation. Yashin, Manton, and
Stallard (1986), for example, demonstrated that the effect of eliminating
cancer and heart disease on survival is overestimated if the hazard model
does not take dependencies between causes of death into account.

Hill, Axinn, and Thornton (1993) applied the principle of ‘cause re-
moval’ to estimate the number of cohabiting couples if the probability of
marriage would decrease as a result of changes in the law. Suppose that
marriage rates and cohabitation rates are positively correlated, and that
this correlation is completely captured by the covariates included in the
model. This would imply that if marriage became less attractive, for ex-
ample, because of changed legislation, cohabitation rates would rise since
it could be expected that a segment of the individuals who would have
married would now choose to cohabit. What happens is that marriage is
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partially substituted by cohabitation. On the other hand, if the dependence
between the two events is not captured by the covariates included in the
model, it is not possible to estimate this substitution effect correctly.

One major problem, however, is that although the conditional indepen-
dence assumption is very attractive from a substantive point of view, it is
difficult to test because only one of the possible durations, i.e., the shortest
one, can be observed (Tiatsis, 1975; Heckman and Honore, 1989). Below,
the (in)dependence among different types of events is discussed in more
detail.

4.7.2 Statistical concepts in multiple-risk situations

As in the single destination situation, assume that for each individual there
is a random survival time T . Suppose that, in addition, there is a random
variable D indicating which of the possible events occurred. Of course,
censored observations are also allowed. For the moment, covariate depen-
dencies will not be taken into account. The multiple-risk equivalent of the
hazard rate is given by

hd(t) = lim
∆t→0

P (t ≤ T < t+ ∆t,D = d|T ≥ t)
∆t

.

It denotes the instantaneous risks of experiencing an event of type d in
the time interval [t ≤ T < t + ∆t], given that no event occurs before
T = t. Econometricians generally use the term transition intensity or
transition rate for hd(t) (Lancaster, 1990:99-108), while biometricians use
the terms crude hazard rate or cause-specific hazard rate (Cox and Oakes,
1984:143-145). The overall hazard rate can be obtained by summing the
event-specific hazard rates, that is,

h(t) =
∑
d

hd(t) .

The usual relationships between h(t), f(t), and S(t) described in section
4.2) also apply in the multiple-risk situation.

The joint density of T and D, or the instantaneous probability that an
event of type d will occur at T = t, is given by

f(T = t,D = d) = hd(t)S(t) = hd(t) exp

(
−
∫ t

0

h(u)d(u)

)
.

The marginal probability that the event is of type d is given by

P (D = d) =

∫ ∞
0

hd(t) exp

(
−
∫ t

0

h(u)d(u)

)
d(t) .
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Moreover, given that an event occurs at time t, the conditional probability
that the event is of type d is

P (D = d|T = t) = f(D = d, T = t)/f(T = t) = hd(t)/h(t) .

An important special case occurs if

P (D = d|T = t) = P (D = d) ,

that is, if the type of event is independent of the time that an event occurs.
In that case, the transition intensities for all d and t can be written as

hd(t) = h(t)P (D = d) .

In fact, this is the formal definition of the Type I situation presented above:
there is no interaction between T and D, and T and D are independent of
each other. Note that it is also a variant of the assumption of proportional
hazard rates because the hazard rates of the various risks are in the same
ratio for all t (Cox and Oakes, 1984:143). It is for this reason that Lancaster
(1990:103-104) termed models of this type proportional intensity models.

Competing risks A slightly different treatment of situations includ-
ing different types of events is what Cox and Oakes (1984:144) call the
competing-risk approach. This approach assumes the existence of D∗ ran-
dom variables T (1), . . . , T (D∗) denoting an individual’s latent survival times,
that is, one survival time for each of the D∗ possible destination states as-
suming that the other types of events cannot occur. These survival times
are called latent because the shortest one is the only one which is observed
while the other ones remain unobserved. The relationship between the
observable random variables T and D and the latent survival times is

T = min(T (1), . . . , T (D∗)) ,

D = arg min(T (1), . . . , T (D∗)) .

Thus, T is the minimum risk-specific survival time and D is the argument
of the shortest T (d). In the competing-risk approach, the observable or
crude hazard function is defined as

hd(t) = lim
∆t→0

P
(
t ≤ T (d) < t+ ∆t|T (w) ≥ t, w = 1, . . . , D∗

)
∆t

,

that is, as the instantaneous probability of occurrence of event d in the
interval [t ≤ T < t+∆t], given that all the latent survival times are greater
than or equal to t.
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Another important concept is the hazard function of the latent survival
time T (d),

h(d)(t) = lim
∆t→0

P
(
t ≤ T (d) < t+ ∆t|T (d) ≥ t

)
∆t

This hazard rate is sometimes also called the net hazard function (Moon,
1991). Note that the net hazard rate is defined in exactly the same fashion
as the hazard rate for a single destination state. According to Cox and
Oakes (1984:145),

hd(t) = h(d)(t) ,

if the latent survival times T (1), . . . , T (D∗) are mutually independent. This
is, in fact, the formal definition of the independent competing-risk situation
presented above. Thus, if the survival times for the various destination
states are independent, the crude hazard rate hd(t) can be interpreted as a
net hazard rate h(d)(t), that is, in the same fashion as a hazard rate for a
single event. This means that removal from the risk set that is not caused
by the event under study may be treated in the same fashion as independent
censoring.

Note that both the Type I situation and the independent competing-
risk situation, as defined here, are more restrictive than presented earlier.
The reason for this is that the basic concepts are defined without using
covariates. When covariates are introduced, the Type I situation occurs if

P (D = d|T = t,x) = P (D = d|x) ,

and

hd(t|x) = h(t|x)P (D = d|x) .

Furthermore, competing risks are conditionally independent if

hd(t|x) = h(d)(t|x) ,

that is, if crude and net hazard rates are equal, given covariate values.

4.7.3 Multiple-risk models and their estimation

Continuous-time models Continuous-time hazard rate models for dif-
ferent types of events have the same form as hazard rate models for a single
type of event. Actually, a multiple-risk model consists of a hazard model
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for each destination state. For instance, a proportional log-linear hazard
model for an event of type d is given by

hd(t|x) = hd(t) exp

∑
j

βdjxdij

 .

Nonproportional models can be obtained by allowing hd(t) to depend on
particular covariates.

Maximum likelihood estimates for the parameters of a continuous-time
hazard model for multiple destination states can be obtained by maximizing

L =

N∏
i=1

(
D∗∏
d=1

hd(ti|xi)δdi
)

exp

(
−
∫ ti

0

D∗∑
d=1

hd(u|xi)du

)

=

N∏
i=1

D∗∏
d=1

hd(ti|xi)δdi exp

(
−
∫ ti

0

hd(u|xi)du
)
,

in which δdi is an indicator variable taking the value 1 if the event for person
i is of type d, and otherwise taking the value 0. It can now easily be seen
why the parameters of the risk-specific hazard models can be estimated
separately in the Type II situation. Since hd(t) and βdj are unequal for all
d’s in the Type II situation, the likelihood function can be factored into
separate components for the different d’s. Thus, if the parameters for the
different types of event are distinct, each

Ld =

N∏
i=1

hd(ti|xi)δdi exp

(
−
∫ ti

0

hd(u|xi)du
)
,

can be maximized separately. Various standard computer programs exist
which can be used to estimate parametric multiple-risk models with restric-
tions between the parameters across destination states. An example is the
very flexible TDA program (Rohwer, 1993).

Discrete-time logit models Discrete-time models can also be adapted
for analyzing data on different types of events (Allison, 1982). The proba-
bility that event d occurs in time interval tl, given that no event occurred
before tl, can be related to a set of covariates by means of a multinomial
logit model. A proportional hazard model would take the form

λd(tl|x) =
exp

(
αdl +

∑
j βdjxdij

)
1 +

∑
g exp

(
αgl +

∑
j βgjxgij

) .
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The likelihood function which is to be maximized equals

L =

N∏
i=1

[{
D∗∏
d=1

(
λd(tli |xi)

1− λ(tli |xi)

)δdi} li∏
k=1

(1− λ(tk|xi))

]
,

in which the overall conditional probability of experiencing an event at tk,
λ(tk|xi), is defined as

λ(tk|xi) =

D∗∑
d=1

λd(tk|xi) .

Contrary to the continuous-time likelihood function, this likelihood cannot
be factored into separate components for each of the D∗ events (Allison,
1982). This is the result of the difference in definition of the survival prob-
ability,

S(tl) =

li∏
k=1

(1− λ(tk|xi)) =

li∏
k=1

(
1−

D∗∑
d=1

λd(tk|xi)

)
.

The summation over d makes factorization impossible. Just as the single
type of event model can be estimated by means of standard binomial logit
programs, the multiple-risk model can be estimated by means of multino-
mial logit programs, which include programs for the log-linear analysis of
frequency tables.

Log-rate models The log-rate model can also be adapted for analyz-
ing data on different types of events (Larson, 1984). The extension to the
multiple-risk case consists of including the type of event as an additional
dimension to the tables with observed and expected number of events. As-
suming that there is a model with two covariates denoted by A and B, and
that Z and D denote the time variable and the type of event, respectively,
the log-rate model for competing risks can be written as

logmabzd = logEabz +
∑
j

βdjxabdj .

As in the single-event case, the data consists of a frequency table containing
the number of events per level of A, B, Z and D, nabzd, and a table with
total exposure times, Eabz. It should be noted that, in most situations, the
exposure matrix does not need to have an index for D, since the number
of persons at risks is equal for each d: an individual who is at risk for one
event will generally also be at risk for the other possible events.
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As already mentioned above, a model is of the Type I form if it does
not contain interaction terms involving both Z and D, that is, if the type
of event that occurs does not depend on the time that an event occurs. An
example of such a model is

logmabzd = logEabz + u+ uAa + uBb + uZz + uDd + uBZbz + uADad . (4.42)

Here, A, B, and Z influence the overall hazard rate, in which the effect of
B is nonproportional. Moreover, A also influences the ‘choice’ between the
different types of events. The log-rate model described in Equation 4.42
can also be written as

mabzd

Eabz
= exp(u+ uAa + uBb + uZz + uBZbz ) exp(uDd + uADad ) . (4.43)

The first part, at the right-hand side of Equation 4.43, defines the rate of
occurrence of an event, irrespective of its type, at Z = z, given A = a and
B = b. The second part defines the probability of experiencing an event of
type d. It can be seen that this probability is independent of the value of
Z, which is simply the definition of the Type I situation.

A log-rate model is of the Type II form if it at least contains all of the
two-variable interaction terms involving D. The reason for this is that the
risk-specific models have no parameters in common and can, in principle,
be estimated separately. An example of a model of the Type II form is

logmabzd = logEabz + u+ uAa + uBb + uZz + uDd + uADad + uBDbd + uZDzd .

Clearly, the flexibility of the log-rate model with respect to the inclusion of
interaction terms can be used to test whether the process under study is in
agreement with one of the above-mentioned special types, or whether it is
a mixture of the two types. This means that it is not necessary to make a
priori assumptions about the nature of the process in order to simplify the
analysis.

The log-rate model for multiple risks presented here can be estimated
using standard programs for log-linear analysis. The `EM program (Ver-
munt, 1993) is, however, relatively easy to use because it does not require
the occurrence and exposure matrices as input. These matrices are made by
the program itself on the basis of information on covariate values, survival
time, and type of event.

4.7.4 Conditionally (in)dependent risks

In presenting the different types of multiple-risk situations, some attention
was given to the distinction between dependent and independent compet-
ing risks. Below, following the work of Vaupel and Yashin (1985), the
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implication of dependencies between risk-specific latent survival times, or
equivalently, between risk-specific hazard rates is demonstrated.

Suppose that one of two types of events D can occur and that the latent
survival times denoted by T (1) and T (2) have a common correlate X which
has two categories. Let h1(t|1) and h2(t|1) denote the risk-specific hazard
rates for X = 1, and h1(t|2) and h2(t|2) the risk-specific hazard rates for
X = 2. Suppose, furthermore, that

0 > h1(t|1) > h1(t|2) for all t ,

and

0 > h2(t|1) > h2(t|2) for all t .

Since the first group has higher hazard rates for both event 1 and event
2, the latent survival times T (1) and T (2), that is, the survival times that
would be observed if the other event could not occur, will be positively
correlated: individuals with X = 1 have shorter survival times for both
events than individuals with X = 2.

The mean risk-specific hazard rates at T = t are equal to

h1(t) = π(t)h1(t|1) + [1− π(t)]h1(t|2) ,

and

h2(t) = π(t)h2(t|1) + [1− π(t)]h2(t|2) ,

in which π(t) denotes the proportion of the population at risk at T = t
with X = 1.

Furthermore, suppose that the hazard rate of the second event becomes
very small (or perhaps even 0) and equal for both groups. This can be the
result of, for example, a changed law in the analysis of union formation,
a changed economic conjuncture in the analysis of employment, or the
invention of a new medicine in the analysis of death. Not surprisingly,
this will lead to a decrease in the mean hazard rate of the second event.
However, it will also lead to an increase of the mean hazard of the first
event. Since the decrease of h2(t|1) is greater than the decrease of h2(t|2),
relatively more persons belonging to the first group will survive, in other
words, π(t) will increase. But, if π(t) increases, h1(t) will also increase since
h1(t|1) > h1(t|2) (Vaupel and Yashin, 1985).

This is a general phenomenon. If the latent survival times of competing
risks are correlated as a result of common risks factors, a change in one
risk-specific hazard rate will influence the other risk-specific hazard rates
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as well (Hill, Axinn, and Thornton, 1993). If, as in the example, two risk-
specific hazard rates are positively correlated, a decrease in one hazard rate
will lead to an increase in the other hazard rate. On the other hand, if two
events are not correlated, that is, if they do not have common risk factors,
a change in the hazard rate of one event will not influence the mean hazard
rate of the other event.

The implications of this phenomenon for the interpretation range of the
results obtained from a particular analysis are considerable. If it is not
possible to observe one or more of the common factors causing the corre-
lation between the risk-specific hazard rates, the results obtained for one
type of event will be only valid given the observed occurrence of the other
events, or, as Prentice and Kalbfleisch (1979) state it, the risk-specific re-
gression coefficients describe covariate effects on the risk-specific hazard
rates under current study conditions (see also Hachen, 1988). Often, how-
ever, researchers want to answer questions about the implication of changes
in the occurrence of one type of event for the occurrence of another type
of event. For instance, to what extent would other causes of death increase
if one cause could be eliminated? Will the rate of voluntary job changes
increase if the rate of involuntary job changes decreases? To what extent
will unmarried cohabitation substitute an expected decrease in the hazard
rate of married cohabitation? Of course, if the dependencies between the
hazard rates are captured by including the right covariates in the model,
if the hazard rates are conditionally independent, these kinds of questions
can be answered quite adequately (see, for example, Manton, Woodbury,
and Stallard, 1988).

The above-mentioned example also illustrates the importance of the in-
dependent censoring assumption. Censoring can be considered one of the
possible events. If the censoring mechanism is not conditionally indepen-
dent of the causal process underlying the event(s) under study, the results
from a particular study are only valid given the observed censoring rates.
In other words, different results will be obtained with other observed cen-
soring rates. This would, of course, enormously devaluate the results of an
analysis.

Common unobserved risk factors In section 4.6, the implication of
unobserved heterogeneity for the parameter estimates of hazard rate models
was discussed for one kind of event. But, as demonstrated above, the
implications of unobserved heterogeneity may be even larger in models for
competing risks since there may be unobserved factors which are shared by
the different risks.

Two strategies have been proposed to identify possible common unob-
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served risk factors: the inclusion of one or more unobserved variables which
influence the risk-specific hazard rates (Vaupel and Yashin, 1985; Heckman
and Honore, 1989) in the hazard model and the use of nested logit models
(Hill, Axinn, and Thornton, 1993). The former strategy can be used with
both continuous-time and discrete-time data, the latter only with discrete-
time data.

Actually, including unobserved covariates, or random terms, in a multiple-
risk hazard model is the same type of solution for unobserved heterogeneity
as the one presented in section 4.6 for the situation in which there is only
one type of event. A difference is, however, that now it is necessary to
specify a model for the joint distribution of the risk-specific unobserved
latent variables since these variables may be correlated. The simplest spec-
ification is to assume the same unobserved factor to be relevant for all
events, in other words, to assume that the risks-specific unobserved factors
are perfectly correlated. Vaupel and Yashin (1985) proposed using a gen-
eral unobserved factor together with risk-specific unobserved factors. They
assumed these latent variables to be gamma-distributed and mutually inde-
pendent. Moon (1991) showed how to include non-parametric unobserved
heterogeneity in a competing-risk model, including a mover-stayer specifica-
tion. However, he did not consider dependencies among the latent variables.
Butler, Anderson and Burkhauser (1988) presented a competing-risk model
with semi-parametric unobserved heterogeneity: A discrete bivariate distri-
bution was used as a numerical approximation of an underlying continuous
joint distribution of two unobserved factors. The general non-parametric la-
tent variables approach presented in Chapter 5 makes it possible to specify
the relationships between the latent variables influencing the risk-specific
hazard rates in many different ways, including the specifications proposed
by Vaupel and Yashin (1985) and by Butler, Anderson, and Burkhauser
(1988).

The second method for handling shared unobserved risk factors among
competing risks has recently been proposed by Hill, Axinn and Thornton
(1993). Their solution consists of a modification of the discrete-time logit
model which is based on using a nested logit model developed in the field of
discrete choice modeling (McFadden, 1981) rather than an ordinary (multi-
nomial) logit model. In nested logit models, it is assumed that the choice
alternatives can be grouped into stochastically independent sets, the in-
dividual members of which may be correlated with each other. In other
words, nested logit models allow relaxation of the IIA (Independence of Ir-
relevant Alternatives) assumption which underlies ordinary (multinomial)
logit models. The difference with the ordinary discrete-time logit model
is the inclusion of an additional parameter called the index of dissimilar-
ity for each subset of alternatives. This parameter, which is denoted by ρ
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and which takes values between 0 and 1, captures the unmeasured depen-
dence among the different kinds of events. More precisely, the unmeasured
correlation among alternatives within the subset concerned equals (1−ρ2).

Suppose there is a nested discrete-time logit model in which the depen-
dent competing risks belong to the same subset. In that case, the regression
model for the overall conditional probability of experiencing an event at tl
is specified as

λ(tl|x) =

[∑
d exp

(∑
j βdj/ρ xdij

)]ρ
1 +

[∑
d exp

(∑
j βdj/ρ xdij

)]ρ ,
in which, for simplicity of notation, the time parameters are incorporated
in the β’s. The probability that the event that occurred at tl is of type d
equals

P (D = d|T = t,x) =
exp

(∑
j βdj/ρ xdij

)
∑
g exp

(∑
j βgj/ρ xgij

) .
The conditional probability of experiencing an event of type d at tl can be
simply obtained by combining the two above equations, i.e.,

λd(tl|x) = λ(tl|x) P (D = d|T = t,x) .

In an application on union formation, with marriage and unmarried co-
habitation as competing events, Hill, Axinn, and Thornton (1993) found a
value of 0.44 for ρ. They demonstrated that when the event marriage is
less likely to occur, a model including the dependence parameter leads to
considerably more substitution of marriage by cohabitation than a model
that does not take the dependence between the alternatives into account.

æ

4.8 Multivariate hazard models

Up to now, it was assumed that each individual experiences no more than
one event. The information that was used to estimate a hazard model
consisted, besides the covariate information, of one survival time and an
indicator variable indicating whether censoring or an event occurred. In
the case of multiple risks, information on the type of event that occurred
was also needed. This section presents models for simultaneously analyzing
several events per unit of analysis, that is, for analyzing event histories.
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First, the different kinds of multivariate event history data are pre-
sented. Then an explanation is given on how to analyze repeatable events
of one type. After that, the multiple-state model is presented, including
the Markov and the semi-Markov chain model which are special cases of it.
It is shown that the multiple-state generalization of the discrete-time logit
model (Allison, 1982) leads to a model that is equivalent to the discrete-
time Markov model introduced in section 2.9. Subsequently, hazard models
for some other kinds of multivariate survival data are presented. And fi-
nally, attention is given to methods that can be used to take dependencies
among survival times into account.

4.8.1 Multivariate event history data

Most events studied in social sciences are repeatable, and most event history
data contains information on repeated events for each individual. This is
in contrast to biomedical research, where the event of greatest interest is
death. Examples of repeatable events are job changes, having children,
arrests, accidents, promotions, and residential moves. It is not surprising
that most of the work on methods for simultaneous analysis of repeatable
events is done by sociologists, economists, and demographers (Tuma and
Hannan, 1984; Hamerle, 1989; Lancaster, 1990; Heckmann and Singer,
1982, 1985; Hoem and Jensen, 1982).

Often events are not only repeatable but also of different types, that
is, we have a multiple-state situation. When people can move through a
sequence of states, events cannot only be characterized by their destination
state, as in competing risks models, but they may also differ with respect
to their origin state. An example is an individual’s employment history:
an individual can move through the states of employment, unemployment,
and out of the labor force. In that case, six different kinds of transitions
can be distinguished which differ with regard to their origin and destination
states. Of course, all types of transitions can occur more than once. Other
examples are people’s union histories with the states living with parents,
living alone, unmarried cohabitation, and married cohabitation (Manting,
1994), or people’s residential histories with different regions as states (Mul-
der, 1993). Special multiple-state models are the well-known Markov and
semi-Markov chain models (Coleman, 1981; Tuma and Hannan, 1984:91-
115, Hoem and Jensen, 1982).

Hazard models for analyzing data on repeatable events and multiple-
state data are special cases of the general family of multivariate hazard rate
models. Another application of these multivariate hazard models is the si-
multaneous analysis of different life-course events, or as Willekens (1989)
calls it, parallel careers. For instance, it can be of interest to investigate
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the relationships between women’s reproductive, relational, and employ-
ment careers, not only by means of the inclusion of time-varying covariates
in the hazard model, but also by explicitly modeling their mutual interde-
pendence. Manton, Woodbury, and Stallard (1988) stressed the importance
of simultaneously modeling the process of interest and the evolution of risk
factors to be able to predict the effect of intervention in risk factors on sur-
vival. Multivariate hazard models which make it possible to simultaneously
model changes in the value of the dependent variable and changes in the
values of the time-varying covariates can also be used to detect spurious
effects of time-varying covariates and particular forms of reverse causation.

Another application of multivariate hazard models is the analysis of
dependent or clustered observations. Observations are clustered, or depen-
dent, when there are observations from individuals belonging to the same
group or when there are several similar observations per individual. Exam-
ples are the occupational careers of spouses, educational careers of brothers
(Mare, 1994), child mortality of children in the same family (Guo and Ro-
driguez, 1991), or in medical experiments, measures of the sense of sight of
both eyes or measures of the presence of cancer cells in different parts of
the body. In fact, data on repeatable events can also be classified under
this type of multivariate event history data, since in that case there is more
than one observation of the same type for each observational unit as well.

The different types of multivariate event history data have in common
that there are dependencies among the observed survival times. These de-
pendencies may take several forms. The occurrence of one event may influ-
ence the occurrence of another event. Events may be dependent as a result
of common antecedents. And, survival times may be correlated because
they are the result of the same causal process, with the same antecedents
and the same parameters determining the occurrence or nonoccurrence of
an event.

Multivariate event history data can also be viewed as a form of multi-
level data (Goldstein, 1987; Bryk and Raudenbuch, 1992; Yang and Gold-
stein, 1996). It is always possible to distinguish at least two levels. This can
either be an individual and the different observations on an individual, or
a group and the different observations on individuals belonging to a group.

4.8.2 Analyzing repeated events

There are three approaches for analyzing data on repeated events, multi-
ple spells, or multiple cycles as Lancaster (1990:108) called it, namely: 1]
performing separate analyses of subsequent events, 2] performing a pooled
analysis in which every spell is treated as a separate observation, and 3] an-
alyzing the events simultaneously taking dependencies among the separate
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events into account.
The first strategy, analyzing each subsequent event separately, is a rather

simple one. For employment spells, it would imply that a separate analysis
is performed for the first employment spell, for the second employment
spell, and so on. Such an approach requires no special assumptions, and is
especially useful when the events are actually of a different type, in other
words, when each spell-specific hazard model has its own set of parameters.
However, when the causal process is essentially the same across subsequent
spells, doing a separate analysis is both tedious and statistically inefficient
(Allison, 1984:51). In the analysis of employment spells, this procedure
will generally not be followed. But when analyzing the timing of births, it
is quite common to perform separate analyses for different parities. The
main disadvantage of this procedure is that no restrictions can be imposed
on the parameters across the parity-specific hazard rate models. Moreover,
it makes it impossible to identify unobserved risk factors which are the
same for all spells.

The second strategy, performing a pooled analysis in which each event
is treated as a separate case, is also very simple. From a substantive point
of view, this approach is just the opposite of the first strategy in that
the factors determining the occurrence or nonoccurrence of an event are
assumed to be equal for each of the subsequent events. In other words, all
parameters are restricted to be equal across spells (Hamerle, 1989). For
employment spells this may be a realistic assumption, but in many other
cases the causal process may depend at least partially on the ranking of the
event.

When performing a pooled analysis, the different events for one indi-
vidual are treated as statistically independent observations. In most cases,
there is good reason to think that the independence assumption is false,
at least to some degree (Allison, 1984:54). In general, it can be expected
that people having short employment spells, will continue to have short
employment spells because for some reason they have high probabilities of
becoming unemployed. This does, however, not violate the (conditional)
independence assumption as long as the dependence is captured by the ex-
planatory variables included in the model. But, in most situations it is
unrealistic to assume that all heterogeneity is taken into account by the
observed covariates. If the assumption of statistical independence is not
fulfilled, parameter estimates are biased and their standard errors are un-
derestimated.

Another problem associated with the pooled analysis approach is that
the only time dimension that can be used is the time since the last event
or since the entry into the risk set for the event concerned (Hamerle, 1989).
When discussing the different kinds of time variables, this time dimension
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was called duration. But, sometimes it is necessary to use other kinds of
time variables, such as age or calendar time. And if duration is used as
the principal time dimension, for the first event this will generally not be
possible, and even if it is possible, the duration dependence of the first event
will probably be different from the duration dependence of the subsequent
events. For example, the time dimension for a second or subsequent birth
can be duration since the previous birth, but for the first birth it is more
logical to use age or duration since marriage or unmarried cohabitation as
the time dimension. It will be clear that pooled analysis seriously limits
the treatment of the time dependence of the process.

Another disadvantage of the approach concerned is that it does not use
information on the correlations among the durations of subsequent spells.
These correlations are not only statistically problematic, they also make it
possible to identify sources of unobserved heterogeneity. By treating spells
as separate observations this valuable information in the data is neglected.

The third approach for analyzing repeatable events is to perform a si-
multaneous analysis of the several events recorded per individual taking
similarities, differences and dependencies among events into account. This
makes it possible to restrict particular parameters to be equal across subse-
quent events, to use different kinds of time dimensions, to use information
about the previous history as independent variables, and to identify unob-
served heterogeneity by means of the local independence assumption.

As mentioned above, the choice of the appropriate time dimension is
always problematic when analyzing repeated events. Often, it is advisable
to use several time dimensions at the same time. In section 4.6, which
introduced the different types of time variables, it was demonstrated that
for repeatable events, additional time dimensions can be defined contain-
ing information on the previous history, such as the mean duration of the
previous spells, total time spent in the risk set for the event concerned (ex-
perience), age at occurrence of the previous event (age-cohort), calendar
time at occurrence of the previous event (cohort), and time since the pre-
vious event (duration). Of course, linear dependencies among the potential
time dimensions restrict the number of time dimensions that can actually
be used at the same time.

Since hazard models for a single type of repeated event are special cases
of the multiple-state models to be discussed in the next subsection, they
are not discussed separately.

4.8.3 Multiple-state models

The advantages of the simultaneous analysis of data on repeated events was
demonstrated above. Of course, the same arguments apply to situations in
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which there is not only information on the occurrence of more than one
event per observational unit, but in which different types of events can
occur. Below models for analyzing such multiple-state data are presented.
These multiple-state models are very similar to the multiple-risk models
discussed in section 4.7. There are, however, three important differences,
namely: 1] there may be more than one origin state, 2] there may be more
than one spell per person, and 3] not only time or duration and covariate
values may influence the transition rates, but also the previous history.

Statistical concepts The notation must be extended to make the above-
mentioned three extensions possible. Let M be an indicator variable de-
noting the episode or spell number and M∗i the total number of observed
episodes for person i. Let Om be an indicator variable denoting the origin
state in the mth spell, O∗ the number of origin states, and om a value of
Om, with 1 ≤ om ≤ O∗. For the destination states the same notation is
used as in the previous chapter. The only difference is that analogous to Om

and om, D and d are replaced by a spell-specific destination state indicator
Dm and a spell-specific destination state value dm. Note that generally
Om = Dm−1. Moreover, the number of origin states will generally be equal
to the number of destination states, that is, O∗ = D∗. Let Tm be the
time that the mth event occurred or the censoring time if m = M∗i . If an
individual is in episode m, his previous history of the process is collected in
ωm−1, i.e., ωm−1 = {t0, o1, t1, d1, . . . , tm−1, dm−1}. It contains information
on the previous states and the time points that transitions occurred. It is
often referred to as a sample path (Tuma and Hannan, 1984:48).

The hazard rate or transition intensity for a change from Om = om to
Dm = dm, given previous history, can be defined as

hmod(t|ωm−1) =

lim
∆t→0

P
(
t ≤ Tm < t+ ∆t,Dm = dm|Tm ≥ t, Om = om, ωm−1

)
∆t

.

This quantity can be interpreted as an origin and destination-specific hazard
rate. Note that here, the transition intensity is postulated as dependent
on Tm, a time dimension that is not reset to zero after each particular
transition.

Let Um be a random variable denoting the duration or the waiting time
at which the mth event occurred, i.e., Um = Tm − Tm−1. Equivalently,
the transition intensities can be specified as dependent on the waiting time
Um rather than Tm, i.e.,

hmod(u|ωm−1) =
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lim
∆u→0

P
(
u ≤ Um < u+ ∆u,Dm = dm|Um ≥ u,Om = om, ωm−1

)
∆t

.

It should be noted that the definition of the hazard rate is very similar to
the definition that was used for multiple risks (see section 4.7). The only
difference is the appearance of Om = om and ωm−1 as additional conditions
in the definition of the hazard rate. The overall hazard rate of leaving origin
state om in the mth spell is

hmo (t|ωm−1) =

D∗∑
d=1

hmod(t|ωm−1) ,

hmo (u|ωm−1) =

D∗∑
d=1

hmod(u|ωm−1) ,

and the spell and origin-specific survival probability is

Smo (t|ωm−1) = exp

(
−
∫ t

tm−1

D∗∑
d=1

hmod(v|ωm−1)d(v)

)
,

Smo (u|ωm−1) = exp

(
−
∫ u

0

D∗∑
d=1

hmod(v|ωm−1)d(v)

)
.

The other relevant functions, such as the joint probability of either Tm

or Um and Dm, the marginal probability that Dm = dm, the conditional
probability that Dm = dm, given tm or um, and the net hazard rate, are
defined analogous to the case of multiple risks as well. The only modifica-
tion of the definition as presented in section 4.7 is the conditioning on om

and ωm−1.

Markov and semi-Markov chain models As mentioned above, tran-
sition rates may depend either on time or on duration since the previous
event, on the spell number, and on information of the previous history. For
the moment, we will not consider the influence of covariates on the spell,
origin, and destination-specific hazard rates.

Markov chain models are special cases of the multiple-state models. The
key assumption of the Markov chain model is that the transition intensities
do not depend on either the previous history or the spell number (Tuma
and Hannan, 1984:92-94). The hazard rates or transition intensities are
only allowed to depend on the origin state, the destination state, and Tm:

hmod(t|ωm−1) = hod(t) .
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Note that in Markov models, by definition, the use of waiting times (Um)
instead of process times (Tm) is not allowed. Markov models also forbid
self-transitions, in other words, hoo(t) = 0. The Markov model given above
is a non-stationary or time-inhomogeneous Markov model since the rates
depend on Tm. However, often an additional assumption is made, namely,
that the transition intensities do not vary with time:

hod(t) = hod .

This gives a stationary or time-homogeneous Markov chain model.
Semi-Markov models or Markov renewal models are similar to Markov

models. In the semi-Markov model, the transition intensities are restricted
either as

hmod(t|ωm−1) = hod(t|tm−1) ,

or as

hmod(u|ωm−1) = hod(u|tm−1) .

This implies that, unlike the Markov model, the transition intensities may
also depend on waiting time, and, moreover, on the calendar time at which
the previous event occurred. Another difference with the Markov model is
that self-transitions are allowed. This makes the model suited for analyzing
repeatable events of the same type as discussed above. In that case, the
model is also called a renewal model (Lancaster, 1990:88-97). A special case
of the renewal process occurs when the hazard rate is time-homogeneous.
In that case, a Poisson model is obtained (Lancaster, 1990:85-88). Another
special case of the semi-Markov occurs when there are two different states
and self transitions are not permitted. This gives an alternating renewal
model (Lancaster, 1990:97-98; Tuma and Hannan, 1984:106).

When the transition rates are allowed to depend on covariates, the same
definitions apply. However, in that case, Markov and semi-Markov models
are generally called modulated or heterogeneous Markov and semi-Markov
models.

Continuous-time models Event history models for multiple-state situ-
ations are very similar to the multiple-risk models discussed in section 4.7.
In principle, a separate model is specified for each combination of o, d, and
m. A proportional log-linear hazard model for a transition from o to d in
the mth spell is given by

hmod(t|xm) = hmod(t) exp

∑
j

βmodjx
m
odij

 ,
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hmod(u|xm) = hmod(u) exp

∑
j

βmodjx
m
odij

 ,

where xm is the spell-specific covariate vector which may also contain infor-
mation on the previous history. Nonproportional models can be obtained by
allowing hmod(t) or hmod(u) to depend on xm. Maximum likelihood estimates
of the βmodj parameters can be obtained by maximizing

L =

N∏
i=1

M∗i∏
m=1

O∗∏
o=1

[{
D∗∏
d=1

hmod(t
m
i |xmi )δ

m
di

}
exp

(
−
∫ tmi

tm−1
i

hmo (v|xmi )dv

)]εmoi
,

L =

N∏
i=1

M∗i∏
m=1

O∗∏
o=1

[{
D∗∏
d=1

hmod(u
m
i |xmi )δ

m
di

}
exp

(
−
∫ um

i

0

hmo (v|xmi )dv

)]εmoi
,

where δmdi is an indicator variable taking the value 1 if a transition to d
occurred for person i in the mth spell, and εmoi is an indicator variable
taking the value 1 if the origin state is o for person i in the mth spell.
Otherwise, δmdi and εmoi are equal to zero.

Since the likelihood function can be factored into separate components
for each combination of o, d, and m, the spell and type of transition-specific
models can be estimated separately if the parameters are postulated to be
distinct, that is, if no restrictions are imposed across spells. However,
generally it is of interest to impose restrictions across spells and across
different types of events, which implies that the above likelihood function
has be to maximized without factorizing it.

There are various standard computer programs which can be used to
estimate parametric multiple-state models with restrictions on the parame-
ters across origin and destination states and across spells. The best known
is the RATE program (Tuma, 1979). Another example is the very flexible
TDA program (Rohwer, 1993).

Log-rate models Log-rate models can also be used to specify multiple-
state models. The only difference with the log-rate models for a single
nonrepeatable event is that the table to be analyzed contains three addi-
tional dimensions. Let O denote the origin state, D the destination state,
M the spell number, Z the time dimension which can be either process or
waiting time, and A and B two categorical covariates. In its most general
form, the multiple-state variant of the log-rate model can be written as

logmabzodm = logEabzom +
∑
j

βodmjxabodmj .
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The data which is needed to estimate this model consists of a frequency
table containing the number of events per value of A, B, Z, O, D, and M ,
nabzodm, and a table with total exposure times, Eabzom. Note that, as in
the case of competing risks, the exposure matrix has no index d, since in
most situations the number of persons at risk is equal for each d. If this is
not true, the index d has to be added to the table with exposure times.

It will be clear that the log-rate model is very flexible for analyzing
multiple-state data. Equality restrictions can easily be imposed on the
time and covariate effects across types of transitions and spells. This can
simply be accomplished by leaving out particular interaction terms of the
model.

The multiple-state log-rate model can be estimated relatively easily by
means of the `EM program (Vermunt, 1993). The program allows specifi-
cation of different origin and destination states, and, moreover, more than
one spell per record. Of course, it is also possible to use a standard program
for log-linear analysis.

4.8.4 Discrete-time Markov chain models

The discrete-time logit model can also be adapted for analyzing multiple-
state data (Allison, 1982). It can be shown that if the transition rates are
in agreement with a Markov chain model, the discrete-time logit model
is equivalent to the discrete-time Markov model which was presented in
section 2.9. In order to distinguish between these two models, the latter
will be called the classical Markov model. This subsection discusses the
differences and similarities between these two models.

According to the definition of a Markov chain model presented above,
a discrete-time logit model which fulfills the Markov assumption can be
defined as

λod(tl|x) =
exp

(
αodl +

∑
j βodjxodij

)
1 +

∑
g exp

(
αogl +

∑
j βogjxogij

) . (4.44)

Note that the time dimension is process time (T ) and not waiting time
(U). Since the transition probabilities are not allowed to depend on the
spell number, λod(tl|x) does not contain the superscript m. For the sake of
simplicity, the model for λod(tl|x) does not contain time-covariate interac-
tions and time-varying covariates.

Let δmd and εmo be spell-specific indicator variables taking value 1 if a
transition to destination state d occurs and if the origin state equals o,
respectively, and otherwise taking value 0. Using these indicator variables,
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the probability density function of the discrete-time survival data is given
by

f(t1, d1, . . . , tM , dM |o1,x) =

M∗∏
m=1

O∗∏
o=1

[{
D∗∏
d=1

(
λod(tm|x)

1− λo(tm|x)

)δmd }
tm∏

tk=tm−1

(1− λo(tk|x))

ε
m
o

, (4.45)

where λo(tk|x) is the probability of leaving state O, irrespective of the
destination state.

Using the same notation as in section 2.9, for the classical Markov model,
the joint probability of the observed covariate values and the states a person
occupies at the different points in time is given by

πxs0s1...sL∗ = πxπs0|x

L∗∏
l=1

πsl|xsl−1
. (4.46)

Here, sl denotes a value of Sl, the state occupied at the lth point in time,
S0 is the starting position or the initial states, and L∗ is the total number
of time points. The total number of states is denoted by S∗.

As a result of a different type of notation, the density functions described
in Equations 4.45 and 4.46 seem to be quiet different. However, if the
length of the observation period is the same for all persons, the density
function for discrete-time survival data (Equation 4.45) can also be written
as a product of time-point-specific transition probabilities rather than spell-
specific densities. As above, let L∗ be the length of the observation period,
and Sl be the state occupied at tl. In that case, the density function of the
discrete-time survival data given in Equation 4.45 can also be written as
follows:

f(s1, . . . , sL∗ |s0,x) =

L∗∏
l=1

λsl−1sl(tl|x)
δl
{

1− λsl−1
(tl|x)

}(1−δl) , (4.47)

in which δl is an indicator variable indicating whether a transition occurred
in tl or not, and in which

λsl−1
(tl|x) =

S∗∑
g=1

λsl−1g(tl|x) if sl = sl−1 ,

λsl−1sl(tl|x) = 0 if sl = sl−1 .
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Now it can be seen that the density function given in Equation 4.47 is
equivalent to the last part of Equation 4.46, since

πsl|xsl−1
= λsl−1sl(tl|x) if sl <> sl−1 ,

πsl|xsl−1
= 1− λsl−1

(tl|x) if sl = sl−1 .

This reflects that, if the length of the observation period is the same for all
individuals, the models are very similar.

The parameters of the classical discrete-time Markov model are the
conditional probabilities which appear in Equation 4.46. More restricted
models are specified by means of equality and fixed-value restrictions on
these probabilities (Van de Pol and Langeheine, 1990). The different pa-
rameterizations make the classical Markov model and the discrete-time logit
model look rather different. However, by using the logit parameterization
of (conditional) probabilities discussed in section 2.9, in other words, by
treating the classical Markov model as a modified path model (Goodman,
1973; Hagenaars, 1990), a version is obtained that is equivalent to the
discrete-time logit model. Yamaguchi (1990) already recognized the simi-
larity between Goodman’s causal log-linear model for categorical variables
and the discrete-time logit method. The logit parameterization of the tran-
sition probabilities appearing in Equation 4.46 can, as in Equation 4.44, be
parameterized as

πsl|sl−1,x =
exp

(
αsl−1sl +

∑
j βsl−1sljxsl−1slij

)
∑
g exp

(
αsl−1g +

∑
j βsl−1gjxsl−1gij

) . (4.48)

As always, identifying restrictions have to be imposed on the log-linear
parameters. In discrete-time logit models, these restrictions have very spe-
cific form. As can be seen from the logit model described in Equation 4.44,
within every level of O, the category no event is the reference category.
This is the reason that the denominator contains the term 1 for the ref-
erence category and that the summation is over all possible events, given
the value of O. As a result, the α and β parameters in the discrete-time
logit model represented in Equation 4.44 can be interpreted as effects on
transition probabilities. To obtain the same parameterization when using
a modified path model with steps of the form given in Equation 4.48, the
one-variable parameters of Sl have to be left out of the model and the α’s
and β’s in which Sl = Sl−1 have to be fixed to zero. The result is that, as
in Equation 4.44, the stayers are treated as the reference category within
each origin state sl−1. These identifying restrictions guarantee that the
modified path model gives parameters identical to the discrete-time logit
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model, namely, time and covariate effects on the transition probabilities
rather than on the probability that Sl = sl. In other words, the model
consists of transition-specific main and covariate effects for each point in
time.

A difference between the discrete-time logit model and the classical
discrete-time Markov model is that in the latter the observation period is
assumed to be the same for all persons. Generally, there are no facilities
to handle observations which are censored during the observation period.
However, by using the missing data methods discussed in Chapter 3, cen-
soring, partial nonresponse, and panel attrition can be handled without any
problem. Chapter 5 will demonstrate how to deal with different kinds of
partially observed event history information when using the modified path
analysis approach for analyzing discrete-time event history data.

Another difference between the two methods is that in the classical
model described in Equation 4.46, the marginal distribution of the covari-
ates, πx, and the marginal distribution of the initial state, πs0|x, appear
in the model. This means that restrictions can be imposed on them as
well. As will be demonstrated in the next chapter, the ability to specify a
model for the covariates and the initial state can be an important feature.
For instance, in the hazard modeling tradition, unobserved heterogeneity is
generally assumed to be independent of the covariate values and of the ini-
tial position. However, when it is possible to model the covariate structure
and the initial position, it is no longer necessary to make such assumptions.
Then, it is just one of the possible model specifications.

Although both models are based on the Markov assumption, in the haz-
ard modeling tradition the Markov assumption is never explicitly tested.
When using the classical Markov model, the Markov assumption can be
explicitly tested by means of, for instance, the likelihood-ratio chi-squared
statistic. This is the result of the fact that when all covariates are categor-
ical, the data can be represented in a frequency table.

The last difference to be mentioned between the two models is that
in the classical discrete-time Markov model the basic time dimension is
always process time. As demonstrated earlier, in hazard models the time
dimension can also be duration or waiting time, although in that case it
is no longer a Markov model, but a semi-Markov model. It is possible to
accommodate the classical model to allow the transition rates to depend
on waiting time as well.

To summarize, a strong point of the discrete-time hazard model is the
logit parameterization of the transition probabilities which makes it possible
to specify parsimonious models for covariate dependence of the process to
be studied. Another strong point, of course, is the way it handles censored
observations. Some weak points are, however, that the covariate values
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and the initial position are always treated as fixed quantities and that the
Markov assumption is never tested explicitly.

It can be concluded that the classical discrete-time Markov model is,
in fact, an event history model as well. It is identical to the discrete-time
logit model when it is parameterized as a modified path model and when
partially observed data can be included in the analysis. This implies, for
instance, that the latent variables techniques presented in Chapter 3 can
easily be transferred to discrete-time logit models. This is an interesting
feature which will be used in Chapter 5.

The logit parameterization of the transition probabilities of classical
discrete-time Markov model, including the potential for using partially ob-
served data and the latent variable techniques mentioned above, is imple-
mented in the `EM program (Vermunt, 1993).

4.8.5 Other kinds of multivariate hazard models

In section 4.6, some problems associated with the use of time-varying co-
variates in hazard models were discussed. More precisely, it was shown
that the effect of a time-dependent covariate may be (partially) spurious
as a result of unobserved factors influencing both the covariate process and
the dependent process. Another problem associated with the use of time-
varying covariates is reverse causation.

Multivariate hazard models make it possible to detect dependencies
among different life-cycle transitions which are caused by common an-
tecedents. Moreover, they make it possible to analyze the simultaneous
relationships among two or more processes. This implies that multivariate
hazard models can help to tackle some of the problems associated with
the use of time-varying covariates. An example of an application of such a
multivariate hazard model is Yamaguchi’s analysis of the interdependence
between marijuana use and marriage (Yamaguchi, 1990).

The use of multivariate event history techniques for studying the re-
lationships among different life-cycle transitions rather than investigating
their relationships by means of the use of time-varying covariates is also
richer from a substantive point of view. Willekens (1989) promoted these
kinds of models for the analysis of interdependencies among parallel ca-
reers, where the term parallel careers refers to different aspects of life, such
as place of residence, union type, birth of children, education and occupa-
tion. Manton, Woodbury, and Stallard (1988) stressed the importance of
simultaneously modeling the process of interest – in their case death from
different causes – and the evolution of risk factors to be able to predict the
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effect of intervention in risk factors on survival.11

There is, however, also a statistical reason to model several life-cycle
transitions simultaneously. According to Lancaster (1990:30), using infor-
mation on the covariate process of endogenous covariates, improves the
efficiency of the parameter estimates.

The analysis of dependent or clustered observations is another field of
application of multivariate hazard models. Examples of dependent obser-
vations are employment histories of husbands and wives, infant mortality
of children from the same family (Guo and Rodriguez, 1991), and school
transitions of brothers (Mare, 1994). For clustered or dependent observa-
tions, the same arguments in favor of simultaneous analysis apply as the
ones that were mentioned when discussing the analysis of repeatable events.
Actually, data on repeatable events is a particular type of clustered data.

Models Let us use the term cluster in the most general sense. More pre-
cisely, a cluster can consist of: 1] a number of observations of the same
type on different individuals belonging to the same group, 2] a number of
observations of the same type on one individual, or 3] a number of obser-
vations of different types on one individual. Examples of these three types
of clustered observations are data on school transitions of brothers, mea-
surements of different parts of the body in a clinical trial, and data on a
woman’s occupational, reproductive and relational career, respectively.

Let M indicate a particular observation within a cluster. Assume, for
simplicity of exposition, that there is data on one single kind of event for
each within-cluster observation. This assumption can easily be relaxed by
defining a multiple-state model for within-cluster observations. In principle,
a separate hazard model can be specified for each within-cluster observa-
tion, i.e.,

hm(t|xm) = hm(t) exp

∑
j

βmj x
m
ij

 .

For clustered observations of the types 1 and 2, restrictions are generally
imposed on the parameters across m’s. The hazard model could, for in-
stance, be of the form

hm(t|xm) = h(t) exp

∑
j

βjxij +
∑
k

βmk x
m
ik

 .

11They proposed modeling changes in discrete and continuous variables by means of a
continuous-time multivariate Gaussian stochastic model (see also Manton and Woodbury,
1985). The main difference between their approach and the approach presented in this
subsection is that the latter assumes that all the variables are discrete.
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Here, both the time dependence and the effects of the covariates which
have the same value for all observations belonging to the same cluster are
assumed to be equal.

Models for clustered observations of the third type will generally include
information on one type of observation as a time-varying covariate in the
hazard model for another type of observation. Suppose we perform a si-
multaneous analysis of women’s reproductional, occupational and relational
histories. In that case, a woman’s employment and relational status can be
used as time-varying covariates in the hazard rate model for the first birth,
probably with some time-lag to prevent the effects which are found being
the result of reversed causation (see section 4.6). In addition, the number
of children and marital status can be used as time-varying covariates in the
hazard rate model for employment transitions.

The estimation of the model parameters is performed in the same way as
in the case of repeatable events, which as already mentioned, are clustered
observations as well.12

A strong point of the simultaneous analysis of clustered observations
in the way proposed here, is that dependencies among observations which
are not described by the observed covariates included in the model can be
captured by means of the latent variables techniques to be discussed in the
next chapter. Below the problem of conditionally dependent observations
is introduced.

4.8.6 Conditional dependence among observations

The maximum likelihood methods for estimating multivariate event history
models discussed so far are based on the assumption of conditional indepen-
dence. More precisely, the observations within every unit of observation are
assumed to be independent given the covariate information which is used in
the multivariate hazard model. However, in most situations, this assump-
tion is not very realistic. As a result of common unobserved risk factors,
the spells, the different kinds of transitions for a particular person, or the
observations within a particular cluster may remain correlated, even after
controlling for observed risk factors.

12Recently, Petersen (1995) compared three alternative approaches for dealing with
interdependent event history data of the third type, data on different types of life-cycle
transitions. He demonstrated that as long as events cannot occur at the same point in
time, the three approaches are equivalent to one another and to using one type of history
as a time-varying covariate in the hazard model for another type of history. On the other
hand, if it is possible to experience more than one type of transition at the same time,
the three approaches yield different results due to the fact that each of them specifies
the risk of the simultaneous occurrence of events is a slightly different way.
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Since dependencies among observations lead to biased parameter esti-
mates and underestimated standard deviations (Allison, 1984:54), detect-
ing dependencies among observations belonging to the same cluster is im-
portant from a statistical point of view. However, detecting common un-
observed risk factors is also important from a substantive point of view
(Mare, 1994). It helps us to answer the following kinds of questions: Are
there common unobserved variables influencing different types of life-cycle
transitions? How are survival times of the different observations within one
unit related?

There are three types of methods which can be used to detect and to
control for dependencies among observations belonging to the same clus-
ter: random-effects methods, fixed-effects methods, and methods which are
based on using association parameters.

Random-effects approach The random-effects approach is based on
the introduction of a latent variable having the same value for all obser-
vations belonging to the same cluster (Heckman and Singer, 1982; Guo
and Rodriguez, 1992; Clayton and Cuzick, 1985).13 This latent variable,
whose distribution may have either a parametric or non-parametric func-
tional form, is included in the hazard model as one of the covariates. The
random-effects approach (Yamaguchi, 1986) is, in fact, very similar to the
way unobserved heterogeneity is handled in univariate hazard models (see
section 4.6). An important difference is, however, that the local indepen-
dence assumption, that is, the assumption that the observations belonging
to one cluster are independent given the latent variable included in the
model, makes it easier to identify the model. Note that the local indepen-
dence assumption is identical to the basic assumption of latent structure
models (see section 3.1).

Chamberlain (1985) and Yamaguchi (1986) stated that random-effects
methods have two important disadvantages. First, the functional form of
the distribution of the unobserved variable may strongly influence the re-
sults. Therefore, Heckman and Singer (1982, 1984, 1985) recommended
using a non-parametric approach which is similar to a latent class model.
A second problem is that the latent variable is generally assumed to be
independent of the observed covariates and of the initial position. But,
in most cases it is unrealistic to assume that the unobserved factors in-
fluencing the hazard rate are not correlated with the observed factors and
with the state occupied at T = 0. In the next chapter, a random-effects

13Recently, Petersen, Andersen, and Gill (1996) proposed decomposing the random-
effect into two independent components: a common factor within a cluster and a unique
factor of the observations within a cluster.
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approach is presented which overcomes the two weak points mentioned by
Chamberlain and Yamaguchi: it is non-parametric and makes it possible
to relate the latent variable capturing the unobserved heterogeneity to the
observed covariates and to the state occupied at T = 0.

Fixed-effects approach A second method for dealing with dependencies
among observations consists of including cluster-specific effects, or inciden-
tal parameters, in the model (Chamberlain, 1985; Yamaguchi, 1986)). In
fact, a categorical variable is included in the hazard model which indicates
to which cluster a particular observation belongs. Thus, observations be-
longing to the same cluster have the same value for this variable while
observations belonging to different clusters have different values. This ap-
proach, which is called the fixed-effects method for treating unobserved
heterogeneity, can only be applied with multivariate survival data, that is,
when there is more than one observation for the largest part of the obser-
vational units.

The advantage of using fixed-effects methods to correct for unobserved
heterogeneity is that they circumvent the two objections against random-
effects methods which were presented above: No functional form needs to be
specified for the unobserved heterogeneity and the unobserved heterogene-
ity is automatically related to both the initial state and the time-constant
covariates.

The major limitation of the fixed-effects approach is that since each
cluster has its own incidental parameter, no parameter estimates can be
obtained for the effects of covariates which have the same value for the
different observations belonging to the same cluster. Only the effect of
observation-specific, or in the case of repeatable events, of time-varying co-
variates can be estimated. Another problem is that the incidental parame-
ters cannot be estimated consistently, since by definition they are based on
a limited number of observations regardless of the sample size. This incon-
sistency may be carried over to the other parameters if the parameters are
estimated by means of maximum likelihood methods (Yamaguchi, 1986).

The maximum likelihood estimation of the fixed-effects model can be
performed by means of standard programs for event history analysis. The
only thing that has to be done is to include in the hazard model a cate-
gorical covariate having a different value for each cluster or observational
unit. Because the number of incidental parameters is generally very large,
it may be difficult to estimate the model parameters by means of Newton-
Raphson-like methods. Yamaguchi (1986) proposed estimating the fixed-
effects model by means of the Newton-Raphson algorithm after removing
the incidental parameters from the likelihood function. This is possible
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only if the time-varying covariates, including the time variable itself, are
step functions of T or U . Another option is to use the iterative proportional
fitting algorithm or the uni-dimensional Newton algorithm which were pre-
sented in Chapter 2 and which are implemented in, for instance, the `EM
program (Vermunt, 1993).

Alternative procedures for estimating the parameters of hazard models
with these kinds of incidental parameters are marginal likelihood (Cham-
berlain, 1985), conditional likelihood (Cox and Lewis, 1966) and partial
likelihood (Chamberlain, 1985) methods. These approaches allow us to ob-
tain a likelihood function which is independent of the incidental parameters
by imposing additional restrictions on the duration dependence of the pro-
cess and the types of covariates which may be used in the regression model
(Yamaguchi, 1986). Although these alternative procedures do not have the
inconsistency problem of the maximum likelihood method, the additional
restrictions strongly limit their applicability.

When there are two completed survival times for each unit of observa-
tion, the partial likelihood approach for estimating fixed-effects models can
simply be implemented using a logistic regression model (Kalbfleisch and
Prentice, 1980:190-192). A variable has to be defined which takes the value
1 for the shorter of the two spells and the value 0 for the longer of the two
spells. Applying a fixed-effect approach involves using this variable as the
dependent variable in a logistic regression model in which the time-varying
covariates are used as regressors.

Using association parameters A third approach for modeling depen-
dencies among survival times consists of including additional parameters in
the hazard model describing the associations among the observed survival
times. Clayton and Cuzick (1985) proposed that the association between
two survival times be described by means of one parameter denoted by θ.
This parameter has a direct interpretation in terms of hazard rates, i.e.,

h(t1|T2 = t2) = θ h(t1|T2 > t2) ,

h(t2|T1 = t1) = θ h(t2|T1 > t1) .

Here, T1 and T2 denote the first and second survival time, respectively. It
can be seen that the hazard rate for observation 1 at a particular point in
time is θ times higher if T2 equals t2 than if T2 is greater than t2. In fact,
θ is a continuous generalization of the well-known continuation ratio in the
contingency table literature (Clayton and Cuzick, 1985).

Winship (1986) and Mare (1994) modelled the association between dis-
crete survival times by means of a (conditional) quasi-symmetry model.
This model is well known in the contingency table literature as well. But it
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is also possible to use other kinds of models for investigating the associations
among discrete survival times, such as, for instance, the log-multiplicative
association models discussed in section 2.7.

The main limitation of modeling the conditional dependence among sur-
vival times by means of association parameters is that no causal interpreta-
tion can be given to the parameters (Whitehead, 1985). This is in contrast
to the random-effects approach, in which the additional parameters can be
interpreted as the effects of unobserved common risk factors.

æ



Chapter 5

Event history analysis
with latent variables and
missing data

The previous chapter introduced models for the analysis of event history
data and discussed various problems associated with the analysis of event
history data, most of which are caused by missing information. In section
4.6, it was demonstrated that unobserved heterogeneity hampers the in-
terpretation of the effects of time-varying covariates, time variables, and
time-covariate interactions. More precisely, unobserved heterogeneity bi-
ases the duration dependence downward, even if it is not correlated with
the observed covariates. If the unobserved risk factors are correlated with
the time-constant covariates included in the model, in other words, if there
is selection bias, not only are the model parameters biased, but there will
also be spurious time-covariate interactions. If there are unobserved risk
factors which also have an effect on changes in the values of particular en-
dogenous time-dependent covariates, the effects of these covariates will be
at least partially spurious. In section 4.7, it was demonstrated that unob-
served common risk factors may lead to dependent competing risks. And
finally, as discussed in 4.8, unobserved heterogeneity may invalidate the
assumption of conditional independence in models for repeatable events or
other types of clustered observations, and may lead to spurious effects of
time-varying covariates.

In the field of event history analysis, techniques have been developed
to tackle some of these problems. In particular, the problem of spurious
time dependence has received a lot of attention (Heckman and Singer, 1982,



176CHAPTER 5. EVENT HISTORYANALYSISWITH LATENT VARIABLES ANDMISSING DATA

1984; Flinn and Heckman, 1982; Vaupel, Manton and Stallard, 1979; Man-
ton, Vaupel and Stallard, 1986; Trussell and Richards, 1985). Also, some
work has been done on the problem of dependent observations (Mare, 1994;
Guo and Rodriguez, 1994; Yamaguchi, 1986; Clayton and Cuzick, 1985) and
on the problem of dependent competing risks (Vaupel and Yashin, 1985;
Heckman and Honore, 1989). However, some other problems, such as the
selection bias problem, remain unresolved since the latent covariates intro-
duced in the hazard models are always assumed to be independent of the
observed covariates and of an individual’s initial state (Yamaguchi, 1986,
1991:132). The general latent variable approach that is presented in this
chapter does not have this limitation. Therefore, it can also help to resolve
some of the remaining problems, especially the problems of selection bias
and of spuriousness of effects of time-varying covariates.

In Chapter 3, two other kinds of missing data problems were discussed:
measurement error, and partially missing data. It was shown that the
problem of measurement error in categorical covariates can be handled by
means of latent class models (Goodman, 1974; Haberman, 1979: Chapter
10). Measurement error is a problem which may also occur when collecting
event history data. The covariates may be measured with error, which, as is
known for ordinary regression models, leads to biased covariate effects. But
duration, or more generally, the states that individuals occupy at different
points in time, may be measured with error as well.

Lancaster (1990:59-61) showed that in particular situations measure-
ment error in recorded regressors and durations can, in addition to the
above-mentioned omitted variables problems, be an argument to use a mix-
ture model. If the hazard is of a Weibull or exponential form and the ran-
dom measurement error in the recorded duration is multiplicative, the error
generates a mixture model. If the hazard is proportional and log-linear and
the error in the covariates is additive, a mixture model is also obtained.
In the latter case, the mixture distribution depends on the value of the
covariate concerned.

Here, another more general approach to measurement error in recorded
states and in recorded durations is used which is based on the latent class
techniques discussed in section 3.1. A latent class model can be used to
relate the latent or true score to one or more observed variables by a set of
conditional response probabilities, which may be restricted by means of a
logit model. When covariates are measured with error, or when covariates
can only be measured indirectly, one or more categorical latent variables
can be used as covariates in the event history model instead of the un-
reliable observed covariates concerned. A related approach was proposed
by Gong, Whittemore, and Grosser (1990) who presented a method for
handling misclassification in covariates with a restricted latent class model.
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Their approach is actually a special case of the approach that is presented
here, that is, a situation in which the mechanism leading to measurement
error is known.

In the field of event history analysis, correcting for measurement error
in recorded states is very rare. However, as already mentioned in section
3.1, in the field of discrete-time Markov modeling, the idea of correcting
measurement error in the observed states is very old (Wiggins 1955, 1973;
Lazarsfeld and Henry, 1968), and has been worked out more recently by
Poulsen (1982) (see also Van de Pol and De Leeuw, 1989; Van de Pol and
Langeheine, 1990; and Vermunt, Langeheine, and Böckenholt, 1995). In
latent Markov models, the latent unobserved states at the different points
in time are related to the observed states using a latent class model with
as many latent variables as observed ones. A Markov model is specified for
the relationships among these latent variables. This way, it is possible to
distinguish true changes from changes which are caused by measurement
error in the recorded states. As demonstrated in section 4.8, discrete-time
Markov models are equivalent to discrete-time logit models, especially if a
logit parameterization of the transition probabilities is used. As a result,
discrete-time event history models with error in recorded states can be
formulated by means of the latent class methods discussed in Chapter 3.
The same methods can be used to correct for measurement error in time-
varying covariates.

Another type of missing data problem is partially missing information.
Of course, researchers may be confronted with this problem in event history
analysis as well. Both covariate values and information on the dependent
process may be missing for some individuals. Schluchter and Jackson (1989)
proposed using the information of subjects with partially missing time-
constant covariates in a hazard analysis using a method which is similar
to the one proposed by Fuchs (1982) for log-linear models. Their approach
can easily be extended when using the models for nonresponse proposed by
Fay (1986, 1989) which were introduced in section 3.2. This makes it pos-
sible to specify nonignorable response models for the partial nonresponse
on particular covariates. Recently, Baker (1994) applied these models for
nonresponse in a discrete-time logit model with a partially missing covari-
ate.

Besides time-constant covariates, information on the dependent process
can be partially missing as well. Censoring is, of course, the best known
form of missing information on the process to be studied. As demonstrated
in section 4.5, censoring can easily be dealt with as long as the censoring
mechanism is independent of the process to be studied, in other words, as
long as the response mechanism is ignorable. However, when the censoring
mechanism is nonignorable, other methods for handling censored observa-
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tion must be used. For that purpose, it is possible to use Fay’s causal
models for nonresponse (Fay, 1986, 1989). The models for nonresponse can
be used not only to deal with censoring, but also to deal with event history
data with nonnested missing data patterns. The same methods can be used
to handle partially missing information on time-dependent covariates.

This chapter presents a unifying framework for dealing with unobserved
heterogeneity, measurement error, and partially missing data in the context
of event history analysis. The general model that is used for this purpose
consists of two parts, a log-linear model in which the relationships among
the observed, partially missing, and unobserved covariates are specified,
and a event history model for those events whose occurrence has to be
explained. The event history model can be either a piecewise exponential
survival model, which is also known as log-rate model, or a discrete-time
logit model. This means that only models which can be handled within the
framework of log-linear analysis are used in this chapter. The advantage
of this restriction is that the models are mathematically simple and that
it is not necessary to assume parametric functional forms for the covariate
and survival distributions. When necessary, parametric models can be ap-
proximated by imposing restrictions on the log-linear parameters. In spite
of the restriction to models which can be handled within the framework
of log-linear modeling, the main principles of the general approach can be
transferred to parametric models for the covariates and the duration pro-
cess.

Although above the general approach to be discussed in this chapter was
presented as a tool for handling different kinds of missing data problems in
event history analysis, it can also be seen as an extension of the log-linear
path model. By combining the log-linear path models presented in Chapters
2 and 3 with event history models, it becomes possible to use information
on the timing of events in a modified path model. One possible application
concerns the construction of typologies by means of latent class models
which contain information on the timing of events as indicators.

After the general model is presented in section 5.1, attention is given to
the three above-mentioned types of missing data problems: unobserved het-
erogeneity, measurement error, and partially missing data. Table 5.1 gives
an overview of the special cases of the general model that are presented in
this chapter. As can be seen, the three main types of missing data prob-
lems, unobserved heterogeneity, measurement error, and partially missing
data, are dealt with in sections 5.2, 5.3, and 5.4, respectively. Within these
missing data categories, different special cases are distinguished which are
discussed in separate subsections. As already mentioned, unobserved het-
erogeneity may introduce spurious time dependence when analyzing a single
nonrepeatable event, (5.2.4), may lead to dependence among competing
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Table 5.1: Special cases of the general missing data approach presented in
this chapter

1. Unobserved heterogeneity 5.2
- a. a single nonrepeatable event 5.2.4
- b. dependent competing risks 5.2.5
- c. repeatable events and multiple-state processes 5.2.6
- d. clustered or dependent observations 5.2.7
- e. spurious effects of time-varying covariates 5.2.8

2. Measurement error 5.3
- a. in covariates 5.3.1
- b. in recorded states 5.3.2

3. Partially missing data 5.4
- a. information on covariates 5.4.1
- b. event history data 5.4.2

risks (5.2.5), may complicate the analysis of repeatable events, multiple-
state processes (5.2.6), and other types of dependent observations (5.2.7),
and may lead to spurious effects of time-varying covariates (5.2.8). Mea-
surement error may occur in the covariates which are used in the hazard
model (5.3.1) and in the states occupied at the different points in time
(5.3.2). The same applies to partially missing data (5.4.1 and 5.4.2).

Unlike the previous chapters, which described the techniques on which
the general missing data approach is based, in this chapter many appli-
cations are presented using real-world data sets from different substantive
fields to illustrate the potentials of the general missing data approach.

5.1 General model

The general model which is used for dealing with missing data in event
history analysis consists of two parts. The first part is a model for the
time-constant covariates used in the event history model. These covariates
may be observed, unobserved, or partially unobserved. A variable indicat-
ing the initial state may also be included in this part of the model. For
the covariates, we will use a causal log-linear model of the type discussed
in Chapters 2 and 3. This implies that, as in modified path models, all
endogenous variables have to be categorical. The second part of the gen-
eral model is a multiple-state event history model, which can be used not
only to model the dependent process to be studied, but also the transitions
occurring in the time-varying covariates. Here, we will use either a log-rate
model or a discrete-time logit model in the second part of the model.
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If only information on time-constant covariates is missing, the model
can be written in its most compact form as∑

xmis

P (x, t, δ) =
∑
xmis

P (x)P (t, δ|x) . (5.1)

The joint probability function of the time-constant covariates (x) and the
times that transitions occur (t, δ) is decomposed into a part containing the
covariate information and a part containing the event history information,
given the covariate values. Of course, to obtain the density for the incom-
pletely observed data, one has to sum over the missing data, denoted by
xmis.

As in other types of regression models, the relationships between the
covariates are normally not investigated in event history analysis. This
means that only the second part at the right-hand side of Equation 5.1,
P (t, δ|x), is considered. However, by specifying a log-linear path model for
the covariates, it not only becomes possible to investigate the relationships
among the covariates, but also to handle all kinds of missing data problems
concerning the covariates using the techniques discussed in Chapter 3.

If, apart from ignorable censoring, no missing information appears in
the second part of the model, it is possible to use any of the event history
models discussed in the previous chapter. However, if there is measurement
error in the recorded states or if there is a more general form of partially
missing information on the dependent process, it is most tractable to use a
discrete-time model. The same applies if some information on time-varying
covariates is missing. The reason for this is that for continuous-time models,
such as the log-rate model, measurement error in the recorded states and
general forms of partially missing information on the dependent process
cannot easily be dealt with yet. Here, we will only use discrete-time logit
models in such situations. Because the discrete-time logit model is also a
modified path model (see subsection 4.8.4), it is possible to use the missing
data techniques developed in the field of log-linear analysis for dealing with
missing information on the dependent process.

Thus, the models that are used in this chapter may consist of three
different types of models for the event history part. If only information
on some time-constant covariates is missing, the event history model may
be either a log-rate model or a discrete-time logit model. If event history
information is missing, the event history model is a discrete-time logit model
which is extended with the missing data methods developed for the modified
path model discussed in Chapter 3, that is, in which the states at the
different points in time may be latent or partially observed. In the latter
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case, the general model can be written as∑
xmis,smis

P (x, s) =
∑

xmis,smis

P (x)P (s|x) . (5.2)

Here, s denotes the observed and unobserved states of an individual at the
different points in time, and smis the missing information in these states.
As demonstrated in section 4.8, the density function of discrete-time event
history model can also be written in terms of states occupied at different
point in time, instead of survival times and censoring indicators.

Estimation Maximum likelihood estimation of event history models with
missing data can be performed by various means, including the EM algo-
rithm which was introduced in Chapter 3 in the context of log-linear mod-
eling with missing data (Dempster, Laird and Rubin, 1979). The E step
of the algorithm involves completing the data on the basis of the observed
data and the parameter values from the previous iteration.1 In the M step,
the same estimation methods can be used to compute improved estimates
of the model parameters as when there is no missing data. The event his-
tory model and the model for the covariates can be estimated separately by
means of the algorithms discussed in Chapter 2, i.e., iterative proportional
fitting, Newton-Raphson, and uni-dimensional Newton.

To complete the data in the E step, the probability of the missing data
given the observed data and the parameters estimates from the last iteration
has to be computed. These conditional probabilities, which are sometimes
also called posterior probabilities, are obtained by

P (xmis|xobs, t, δ) =
P (x, t, δ)∑

xmis
P (x, t, δ)

, (5.3)

P (xmis, smis|xobs, sobs) =
P (x, s)∑

xmis,smis
P (x, s)

. (5.4)

Equation 5.3 refers to situations in which only data on time-constant co-
variates is missing; Equation 5.4 refers to situations in which also event
history information is missing.

This EM algorithm has been implemented in the computer program
`EM (Vermunt, 1993). The program allows the user to specify a log-linear

1It should be noted that the general definition of the E step is the computation of
the expectation of the complete data likelihood. However, if the density function of the
complete data belongs to the exponential family, the E step simplifies to the estimation
of the complete-data sufficient statistics (see, for instance, Tanner, 1993: Chapter 4).
Since all the models which are discussed in this chapter belong to the exponential family,
we can use this simpler definition of the E step.
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path model for the covariates and a hazard model for the dynamic process
under study. In the M step of the EM algorithm, both the iterative pro-
portional fitting and the one-dimensional Newton algorithm can be used.
In this way, not only hierarchical log-linear models can be specified, but
also models with all kinds of restrictions on the parameters as discussed
in Chapter 2. Contrary to Newton-Raphson and Fisher’s scoring, the EM
algorithm does not automatically supply standard errors for the parame-
ter estimates. The `EM program computes standard errors via numerical
approximation of the observed information matrix (see Appendix G).

An advantage of the EM algorithm is that it is very stable: Under
quite weak conditions it converges to at least a local maximum of the log-
likelihood function. A disadvantage is, however, that it may converge slowly
in the neighborhood of the maximum. It is well known that Newton-type
methods perform very well near to the maximum. Therefore, in models
with not too many parameters, it may be more efficient to switch to a
Newton-type algorithm after some EM iterations. When using `EM , it
is possible to switch to the Newton-Raphson, Broyden-Fletcher-Goldfarb-
Shanno (BFGS), or Levenberg-Maquardt method (Press et. all).

æ

5.2 Unobserved heterogeneity

The implications of unobserved heterogeneity or omitted variables in the
context of event history analysis was discussed in sections 4.6, 4.7, and 4.8 of
the previous chapter. To summarize, it was demonstrated that unobserved
heterogeneity biases the duration dependence downward, even if it is not
correlated with the observed covariates. If the unobserved risk factors are
correlated with the time-constant covariates included in the model, in other
words, if there is selection bias, not only are the model parameters biased,
but there will also be spurious time-covariate interactions. If there are un-
observed risk factors which also have an effect on changes in the values of
particular endogenous time-dependent covariates, the effects of these covari-
ates will be, at least partially, spurious. In addition, unobserved common
risk factors may lead to dependent competing risks. And finally, unobserved
heterogeneity may invalidate the assumption of conditional independence
in models for repeatable events or other types of clustered observations and
may lead to spurious effects of time-varying covariates.

Because of the serious implications of unobserved heterogeneity in haz-
ard models, it is not surprising that in the last two decades a great deal
of work has been done on this subject (Vaupel, Manton, and Stallard,
1979; Manton, Vaupel and Stallard, 1981, 1986; Vaupel and Yashin, 1985;
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Heckman and Singer, 1982, 1984; Flinn and Heckman, 1982; Trussell and
Richards, 1985; Mare, 1994; Guo and Rodriguez, 1994; Yamaguchi, 1986;
Clayton and Cuzick, 1985; Heckman and Honore, 1989). In the above-
mentioned sections of Chapter 4, the most important methods for dealing
with unobserved heterogeneity were mentioned. One approach, also known
as the random effects methods, involves the introduction of one or more
latent covariates in the event history model. In this section, these random
effects methods are discussed in more detail. First, the parametric and non-
parametric latent variable approaches which have become standard tools
for dealing with unobserved heterogeneity in event history analysis are dis-
cussed. Then, a more general non-parametric latent variable approach is
presented, which is a special case of the general model presented in section
5.1. Subsection 5.2.3 discusses the identifiability of the parameters in haz-
ard models with latent covariates. And finally, in subsections 5.2.4-5.2.8,
it is shown how to use the general latent variable approach to detect spu-
rious time dependence when analyzing a single nonrepeatable event, how
to identify dependencies among competing risks, how to analyze repeatable
events and other types of dependent observations, and how to detect spu-
rious effects of time-varying covariates. These last five subsections contain
several examples in which real-world data sets from different substantive
fields are used.

5.2.1 Latent variable approaches to unobserved het-
erogeneity

Parametric mixture distributions Vaupel, Manton, and Stallard (1979)
proposed correcting for unobserved heterogeneity, or as they called it ‘frailty’,
in the life-table analysis of mortality rates (see also Manton, Vaupel and
Stallard, 1981). They were especially concerned about the effect of unob-
served heterogeneity on the size of the observed mortality rates at higher
ages. Individuals who are alive at a specific age form a selective group of
the birth cohorts to which they belong, namely, the individuals who are
less frail. As a result, observed age-specific mortality rates, which equal
the mean of the mortality rates of the persons who are still alive, will be
lower than the age-specific mortality rates for someone with average frailty.
Vaupel and Yashin (1985) described this phenomenon nicely as: ”Individu-
als age faster than heterogeneous cohorts”. In section 4.6, this phenomenon
was described as the downwards bias of the duration dependence resulting
from unobserved heterogeneity.

To be able to estimate the age-specific mortality rates of someone with
average frailty, Vaupel, Manton and Stallard (1979) proposed including a
continuous latent variable in a hazard model. The value of this latent vari-
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able was assumed to be constant during an individual’s life, and, moreover,
the latent variable was assumed to have a multiplicative and proportional
effect on the hazard rate, i.e.,

h(t|θ) = h(t)θ . (5.5)

Here, θ denotes a value of the latent variable, which is assumed to have
a particular distributional form. Since the hazard rate is not allowed to
take negative values, θ must be greater than or equal to zero. This must
be taken into account when choosing a particular distributional form for θ.
The amount of unobserved heterogeneity is determined by the size of the
standard deviation of the distribution of the latent variable: The larger the
standard deviation of θ, the more unobserved heterogeneity there is.

The model represented in Equation 5.5 is, in fact, a mixture model
as discussed in the context of latent class analysis (see section 3.1). The
only difference is that the mixture variable is assumed to have a particular
continuous distribution function, while in latent class analysis, there is a
discrete mixture variable with an unspecified distributional form. Below, a
non-parametric approach to unobserved heterogeneity is presented which,
like latent class analysis, is based on the use of a finite mixture model.

Since θ cannot be observed, the hazard rate h(t) which appears in Equa-
tion 5.5 is also unobservable. The observable hazard rate is the marginal
hazard rate at T = t, i.e.,

h̄(t) =

∫ ∞
0

h(t)ft(θ)dθ = h(t)θ̄(t) . (5.6)

Here, ft(θ) denotes the density function of θ at T = t and θ̄(t) the mean
value of the latent variable at T = t. The mean value of θ at T = 0, θ̄(0),
can be arbitrarily set to 1. Note that h̄(t) is the hazard rate that is modeled
when the unobserved heterogeneity is not taken into account. It can easily
be seen from Equation 5.6, that, except at T = 0, the individual hazard
rates h(t) are higher than the marginal hazard rates. The reason is that
the mean value of θ declines with time since the individuals with a higher
θ have higher hazard rates at all t.

Vaupel, Manton, and Stallard (1979) proposed using a gamma distribu-
tion for θ, with a mean of 1 and a variance of 1/γ, where γ is the unknown
parameter to be estimated. Several other authors have proposed incorpo-
rating a gamma distributed multiplicative random term in event history
models (Tuma, and Hannan, 1984:177-179; Tuma, 1985; Lancaster, 1979,
1990:65-70). According to Vaupel, Manton and Stallard (1979), the gamma
distribution was chosen because it is analytically tractable and readily com-
putational. Moreover, it is a flexible distribution that takes on a variety
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of shapes as the dispersion parameter γ varies: When γ = 1, it is identi-
cal to the well-known exponential distribution; when γ is large, it assumes
a bell-shaped form reminiscent of a normal distribution. Multiplicative
frailty cannot be negative, and the gamma distribution is, along with the
log-normal and Weibull distribution, one of the most commonly used dis-
tributions to model variables that are necessarily positive.

The estimation of the parameters of hazard models with a gamma dis-
turbance term is relatively easy for particular conditional survival distribu-
tions such as the exponential model, the Weibull model and the Gompertz
model. This results from the fact that after integrating out the mixture
distribution, simple expressions remain for the hazard and survival func-
tions appearing in the likelihood function to be maximized. For instance,
when an exponential survival model is postulated, the marginal hazard and
survival functions for person i with covariate values xi are

h̄(t|xi) =
exp(

∑
j βjxij)γ

exp(
∑
j βjxij)t+ γ

,

S̄(t|xi) =

(
γ

exp(
∑
j βjxij)t+ γ

)γ
.

Note that the hazard rate depends on the time variable T even though in the
exponential model the individual hazard rates are time independent (Tuma
and Hannan, 1984:177-179). Several computer programs contain an option
to specify parametric hazard models with gamma distributed unobserved
heterogeneity, two of which are Tuma’s RATE program (Tuma, 1979) and
Rohwer’s TDA program (Rohwer, 1993).

Although the assumption of a gamma distribution has been dominant,
other distributions have also been advocated. Heckman and Singer (1982)
used both a log-normal and a normal mixture distribution. Hougard (1984,
1986a, 1986b) proposed the inverse Gaussian distribution and other kinds of
positive stable distributions. Wrigley (1990) proposed a beta or multivariate-
beta (Dirichlet) form for the mixing distribution in combination with a
discrete-time logit model. The beta-logistic model is a heterogeneity model
which is often used in the context of discrete choice modeling (Heckman
and Willis, 1977).

Non-parametric mixture distributions Heckman and Singer (1982,
1984) demonstrated by an analysis of one particular data set that the re-
sults obtained from continuous-time hazard models can be very sensitive
to the choice of the functional form of the mixture distribution. Therefore,
they proposed using a non-parametric characterization of the mixing distri-
bution by means of a finite set of so-called mass points, or points of support,
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whose number, locations, and weights are empirically determined. In this
approach, the continuous mixing distribution of the parametric approach
is replaced by a discrete density function defined by a set of empirically
identifiable mass points which are considered adequate to characterize fully
the form of the heterogeneity. Laird’s work provides the theoretical un-
derpinnings of this non-parametric mass points method (Laird, 1978). In
fitting models of this type, one typically starts with two points of support
and proceeds to add more as long as the estimated relative risks are distinct
and the weights are positive (Laird, 1978). Often, two or three points of
support suffice (Guo and Rodriguez, 1992).

It should be noted that the arguments of Heckman and Singer (1982)
against the use of parametric mixing distributions have been criticized by
other authors who claimed that the sensitivity of the results to the choice of
the mixture distribution was caused by the fact that Heckman and Singer
misspecified the duration dependence in the hazard model they formulated
for the data set they used to demonstrate the potentials of their non-
parametric approach. (Blossfeld, Hamerle, and Mayer, 1989:97). Trussell
and Richards (1985) demonstrated that the results obtained with Heckman
and Singer’s non-parametric mixing distribution can severely be affected by
a misspecification of the functional form of the distribution of T . Newman
and McCulloch (1984) found no strong influence of the choice of the mixing
distribution on the results in an analysis of the timing of births. Ridder and
Verbakel (1983) showed, by means of a simulation study, that the results
are much more sensitive to the choice of the conditional survival distribu-
tion than to the choice of mixture distribution. These results indicate that
the specification problem is not solved simply by using a non-parametric
rather than a parametric mixture distribution. Irrespective of the type of
mixture distribution, a lot of attention has to be given to the specification
of the duration dependence of the process under study.

Actually, the non-parametric unobserved heterogeneity model proposed
by Heckman and Singer (1982, 1984) is, in fact, strongly related to latent
class analysis (Goodman, 1974a, 1974b). As in latent class analysis, the
population is assumed to be composed of a finite number of exhaustive
and mutually exclusive groups formed by the categories of a latent vari-
able. Suppose Z is a categorical latent variable with Z∗ categories, and
z is a particular value of Z. If there are no observed covariates, the non-
parametric hazard model with unobserved heterogeneity can be formulated
as follows:

h(t|θz) = h(t)θz .

Here, θz denotes the (multiplicative) effect on the hazard rate for latent



5.2. UNOBSERVED HETEROGENEITY 187

class z. The marginal hazard rate at T = t is now defined as

h̄(t) =

Z∗∑
z=1

h(t)πz(t)θz = h(t)θ̄z(t) ,

where πz(t) is the proportion of the population belonging to latent class
z at T = t and θ̄z(t) the mean value of θz at T = t. In the terminology
used by Heckman and Singer (1982), the number of latent classes (Z∗), the
latent proportions (πz(t)), and the effects of Z (θz) are called the number
of mass points, the weights, and the mass points locations, respectively.

Recently, Lindsay, Clogg, and Grego (1991) demonstrated the equiva-
lence between restricted latent class models and non-parametric mixture
models in the context of the Rasch model. The latent class model and the
non-parametric heterogeneity model are both applications of finite mixture
distributions (Everitt and Hand, 1981; Titterington, Smith, and Makov,
1985; Wedel and DeSarbo, 1994, 1995). The only difference between them
is, in fact, the purpose for which they were developed: Models with non-
parametric unobserved heterogeneity were developed to approximate a con-
tinuous mixing distribution with an unknown form, while latent class mod-
els were originally developed to construct measurement models with discrete
latent variables.2

Davies (1987) and Wrigley (1990) showed that it is also possible to in-
corporate non-parametric unobserved heterogeneity in discrete-time logit
models. Wrigley proposed the standard incorporation of a θz of zero for
each origin state. Such a specification leads to a mover-stayer structure
with one class of stayers for each origin state (Goodman, 1961). Although
Heckman and Singer (1982) also mentioned the possibility of specifying
mover-stayer models, they never gave examples of this interesting special
case of their non-parametric approach. Farewell (1982) proposed using the
mover-stayer model in combination with either a discrete-time logit model
or a Weibull model for separating the probability of the occurrence on the
event of interest from its timing among the persons who experience the
event.3 For the discrete-time Markov model, the use of a finite mixture dis-
tribution, including the mover-stayer model, has been advocated by Poulsen
(1982) and Van de Pol and Langeheine (1990).

A strongly related application of the latent class model was proposed
by Wedel et al. (1993) and Böckenholt (1993). They apply the latent class

2Recently, Heinen (1993, 1996) demonstrated that linearly restricted latent class mod-
els can be used to estimate latent trait models by approximating the assumed continuous
distribution of the latent trait variable with a discrete distribution.

3Kuk and Chen (1992) used the same type of mover-stayer specification in combi-
nation with a Cox proportional hazard model, while Yamaguchi (1992) and Yamaguchi
and Ferguson (1995) combined it with an accelerated failure-time model.
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model in a Poisson regression model. As demonstrated in section 4.8, the
Poisson model is equivalent to a continuous-time event history model for
repeatable events assuming a constant hazard rate, that is, assuming expo-
nential survival. Wedel et al. (1995) included non-parametric unobserved
heterogeneity in a piecewise exponential survival model or log-rate of the
form presented in section 4.4. Recently, Böckenholt and Langeheine (1996)
proposed including a categorical time-varying latent variable to correct for
unobserved heterogeneity in a Poisson regression model in which the Pois-
son rate was assumed to be constant within periods of time.

The estimation of non-parametric heterogeneity models is a bit more
complicated than, for instance, the gamma model because it is not possible
to obtain simple expressions for the hazard and survival functions by in-
tegrating out the mixture distribution. Heckman and Singer (1982, 1984)
proposed estimating non-parametric models by means of the EM algorithm
(Dempster, Laird and Rubin, 1977). Poulsen (1982) and Langeheine and
Van de Pol (1990, 1994) also used the EM algorithm to estimate their mixed
Markov models.

Limitations The use of parametric mixture distributions is relatively
simple in models for a single nonrepeatable event. However, when there
is more than one (latent) survival time per observational unit, that is,
when there is a model for competing risks, a model for repeatable events,
or another type of multivariate hazard model, this is generally not true
anymore. It is not so easy to include several possibly correlated parametric
latent variables in a hazard model because that makes it necessary to spec-
ify the functional form of the multivariate mixture distribution. Therefore,
in such cases, most applications use either several mutually independent
cause, spell, or transition-specific latent variables, or one latent variable
that may have a different effect on the several cause, spell or transition-
specific hazard rates. The former approach was adopted, for instance, by
Tuma and Hannan (1984:177-183), and the latter, for instance, by Flinn
and Heckmann (1982) in a study in which they used a normal mixture
distribution.

The two above-mentioned specifications of the unobserved factors have
also been used in models with non-parametric unobserved heterogeneity
(Heckman and Singer, 1985; Moon, 1991). However, the latent class ap-
proach which is presented in the next subsection is much more general. It
can also be used to specify models with several latent variables which are
mutually related without the necessity of specifying the distributional form
of their joint distribution since the joint distribution of the latent variables is
non-parametric as well. If necessary, the joint distribution can be restricted
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by means of a log-linear parameterization of the latent proportions.
Another important drawback of the usual way of modeling unobserved

heterogeneity is caused by the fact that the mixture distribution is assumed
to be independent of the observed covariates.4 This is, in fact, in contra-
diction to the omitted variables argument which is often used to motivate
the use of mixture models. If one assumes that particular important vari-
ables are not included in the model, it is usually implausible to assume that
they are completely unrelated to the observed factors. In other words, by
assuming independence among unobserved and observed factors, the omit-
ted variable bias, or selection bias, will generally remain (Chamberlain,
1985; Yamaguchi, 1986, 1991:132). This is, in fact, Chamberlain’s main
argument for using fixed effects methods to correct for unobserved hetero-
geneity. However, as was shown in section 4.8, fixed effects methods have
serious limitations as well. They can only be used when there is more than
one observed survival time for the largest part of the sample, and they do
not allow for getting estimates for the effects of time-constant covariates.

To solve the selection bias problem, Blossfeld, Hamerle, and Mayer
(1989:98) proposed regressing an individual’s score on the latent variable
θ on the covariates included in the model. In his TDA program, Rohwer
(1993) implemented an option to regress the coefficient of variation of the
gamma distribution on covariate values, which is a first attempt to relate
a parametric mixture distribution to observed covariates. However, by re-
gressing the coefficient of variation on covariates, the mean value of θ is still
equal for all individuals, irrespective of their covariate values. Therefore,
Rohwer’s approach does not solve the above-mentioned problem.

5.2.2 A more general non-parametric latent variable
approach to unobserved heterogeneity

To overcome the limitations of the latent variable approaches which were
discussed above, a more general non-parametric latent variable approach to
unobserved heterogeneity was developed which is based on the general haz-
ard model with missing data presented in section 5.1. The main difference
between this latent variable approach and Heckman and Singer’s model is
that different types of specifications can be used for the joint distribution
of the observed covariates, the unobserved covariates, and the initial state.
This means that it becomes possible to specify hazard models in which the

4An exception is the mover-stayer model proposed by Farewell (1982), in which the
probability of belonging to the class of stayers is regressed on a set of covariates by means
of a logit model (see also Yamaguchi, 1992). Recently, Brüderl and Diekman (1995) and
Land, McCall, and Nagin (1996) developed log-logistic and Poisson models, respectively,
which contain a probit model for the probability of being a mover.
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unobserved factors are related to the observed covariates and to the initial
state. A special case is, for instance, the mover-stayer model proposed by
Farewell (1982), in which the probability of belonging to the class of stay-
ers is regressed on a set of covariates by means of a logit model. Moreover,
when hazard models are specified with several latent covariates, different
types of specifications can be used for the relationships among the latent
variables, one of which leads to a time-varying latent variable as proposed
by Böckenholt and Langeheine (1996). By means of a multivariate hazard
model, the latent covariates can also be related to observed time-varying
covariates.

Like the general model presented in section 5.1, the model that is used
for dealing with unobserved heterogeneity consists of two parts: a log-linear
path model in which the relationships among the time-constant observed
covariates, the initial state, and unobserved covariates are specified, and
an event history model in which the determinants of the dynamic process
under study are specified.

Suppose there is a model with three time-constant observed covariates
denoted by A, B, and C, and two unobserved covariates denoted by W
and Y . In the first part of the model, the relationships between these five
variables are specified by means of a log-linear path model as presented in
sections 2.9 and 3.1. Let πabcwy denote the probability that an individual
belongs to cell (a, b, c, w, y) of the contingency table formed by the variables
A, B, C, W , and Y . As was demonstrated in section 2.9, specifying a modi-
fied path model for πabcwy involves two things, namely, decomposing πabcwy
into a set of conditional probabilities on the basis of the assumed causal
order among A, B, C, W , and Y , and specifying log-linear or logit models
for these conditional probabilities. At least three meaningful specifications
for the causal order among A, B, C, W , and Y are possible, namely, all
the variables are of the same order, the latent variables are posterior to the
observed variables, and the observed variables are posterior to the latent
variables. In the first specification, πabcwy is not decomposed in terms of
conditional probabilities. The second specification is obtained by

πabcwy = πabc πwy|abc ,

and the third one by

πabcwy = πwy πabc|wy .

Suppose that the second specification is chosen. In that case, πabc and
πwy|abc can be restricted by means of a non-saturated (multinomial) logit
model. A possible specification of the dependence of the unobserved co-
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variates on the observed covariates is, for instance,

πwy|abc =
exp

(
uWw + uYy + uAWaw + uBWbw + uCWcw

)∑
wy exp

(
uWw + uYy + uAWaw + uBWbw + uCWcw

) .
Here, W depends on A, B, and C, while Y is assumed to be independent
of W and the observed covariates. Other specifications are, for instance,

πwy|abc =
exp

(
uWw + uYy + uWY

wy

)∑
wy exp

(
uWw + uYy + uWY

wy

) = πwy ,

where the joint latent variable is assumed to be independent of the observed
variables, and

πwy|abc =
exp

(
uWw + uYy

)∑
wy exp

(
uWw + uYy

) = πwπy ,

in which the two latent variables are mutually independent and independent
of the observed variables. It should noted that for these latter specifications
it does not matter which assumption is made about causal order between
A, B, C, W , and Y since the same models can be obtained by imposing
restrictions on πabcwy or πabc|wy rather than πwy|abc.

The second part of the model with non-parametric unobserved heterogeneity
consists of an event history model for the dependent process to be studied.
The event history models which are used here are log-rate models (section
4.4) and discrete-time logit models (section 4.3).

As demonstrated in section 4.8, in its most general form, the hazard rate
for the log-rate model in which the variables A, B, C, W , and Y are used as
regressors is denoted by hmod(z|a, b, c, w, y), where o denotes the origin state,
d the destination state, and m the spell or episode number. In discrete-
time models, the transition probability from O = o to D = d is denoted by
λmod(tl|a, b, c, w, y). When the discrete-time logit model is a Markov model,
the transition probability may also be denoted by πsl|abcwysl−1

, where sl is
the state that an individual occupies at the lth point in time.

Estimation To obtain maximum likelihood estimates of the parameters
of a hazard model with the observed covariates A, B, and C and latent
covariates W and Y , the following likelihood function has to be maximized:

L =

N∏
i

∑
wy

πabcwyL∗i (h) , (5.7)
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in which L∗i (h) denotes the contribution of person i to the complete data
likelihood function for the hazard model, and a, b, c are the observed values
of A, B, and C for person i. More information about the exact form of
L∗i (h) can be found in section 4.8. Since the likelihood function described
in Equation 5.7 is based on the general density function represented in
Equation 5.1, as already mentioned in section 5.1, the parameters can be
estimated with the EM algorithm.

The posterior probabilities which are needed in the E step to compute
the complete-data sufficient statistics can be obtained by means of Equation
5.3. Here, we need the probability that person i belongs to latent class (w, y)
is

P (w, y|i) =
πabcwyL∗i (h)∑
wy πabcwyL∗i (h)

.

When using a log-rate model, these posterior probabilities are used to ob-
tain estimates of the number of events and the total exposure times, i.e.,

n̂abcwyzodm =

N∑
i=1

δmizodP (w, y|i) γiabc ,

Êabcwyzom =

N∑
i=1

emizoP (w, y|i) γiabc .

Here, γiabc and δmizod, are indicator variables taking the value one if a par-
ticular condition is fulfilled, and which are otherwise equal to zero. More
precisely, γiabc indicates whether person i has covariate values (a, b, c), and
δmiodz whether person i experienced a transition from O = o to D = d in
time interval z in the mth spell. And finally, emizo is the total time that
person i spent in the origin state o in time interval z in the mth spell.

In the M step of the EM algorithm, the completed tables n̂abcwyzodm and

Êabcwyzom are used to obtain improved estimates for the hazard parameters
as if it were completely observed data. The completed data which is needed
to update the estimates for the parameters of the log-linear part of the
model is obtained in the E step by

n̂abcwy =

N∑
i=1

P (w, y|i) γiabc .

As demonstrated in section 4.8, the discrete-time logit model is equivalent
to a modified path model. This means the estimation of discrete-time logit
models with latent covariates can be performed with the same version of
the EM algorithm presented in section 3.1.
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5.2.3 Identifiability

Elbers and Ridder (1982) proved that the parameters of hazard models
with unobserved heterogeneity for a single nonrepeatable event are identi-
fiable if three conditions are fulfilled, namely, if the model is a proportional
hazard model with at least one regressor, if the mixture distribution has
a finite mean, and if the duration dependence is parameterized. Heckman
and Singer (1984) showed, however, that regressors are not necessary for
identification provided that the hazard function is assumed to be a member
of particular parametric families. They proved identifiability for a class of
Box-Cox hazard rate models from which the Weibull, the Gompertz, and
the exponential models are special cases, and for the log-logistic model.
Heckman and Singer also showed that non-parametric mixture models are
identifiable if the time dependence is parameterized.

If the time-dependence is not parameterized, that is, if the hazard model
is a semi-parametric model, it is possible to identify the mixture distribution
in models for repeatable events, clustered observations, or other kinds of
multivariate survival times which can be assumed to have equal random
terms (Clayton and Cuzick, 1985; Klein, 1992; Nielsen et al., 1992; Petersen,
Andersen, and Gill, 1996). Van de Pol and Langeheine (1990) showed
that the parameters of discrete-time mixed Markov models, which are also
models for repeatable events, can be identified without imposing restrictions
on the time dependence or on the mixture distribution. Recently, Kortram
et al. (1995) demonstrated that for identification it suffices that the model
is a proportional hazard model. This means that in proportional hazard
models, it is not necessary to parameterize the time dependence or the
mixing distribution, or to have multivariate survival times.

In summary, the parameters of event history models with unobserved
heterogeneity can be identified by ensuring that at least one of the following
conditions is fulfilled: 1] the model is a proportional hazard model; 2]
the duration dependence is parameterized; 3] the mixing distribution is
parameterized; or 4] the model is a multivariate hazard model.

One factor determining identifiability has not yet been mentioned. Con-
trary to the usual practice, in the approach that is used here, it is not
necessary to assume the latent variable capturing the unobserved hetero-
geneity to be independent of the observed covariates. Limited experience
with this approach has shown that the inclusion of additional parameters in
the model describing the relationships between latent and observed covari-
ates does not lead to identification problems as long as one of the above-
mentioned sufficient conditions is fulfilled.

When using non-parametric unobserved heterogeneity, it is not known
beforehand how many latent classes can be identified on the basis of the
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data. Laird (1978) proposed starting with two latent classes and adding
more classes as long as the estimated relative risks are distinct and the
weights are greater than zero. Often, two or three latent classes suffice
(Guo and Rodriguez, 1992). In some situations, it is even impossible to
identify two latent classes. This occurs, for instance, if exponential survival
is assumed in a model for a single nonrepeatable event, while the data shows
a positive time dependence. The reason for this is that if survival is expo-
nential, unobserved heterogeneity must lead to spurious negative duration
dependence. Thus, in fact, the observed positive duration dependence is in
contradiction with the postulated model. The same occurs when there is a
positive duration dependence within time intervals in a piecewise constant
hazard model.

A well-known method to ensure local identifiability in latent class mod-
els is to run the same model using different sets starting values (Goodman,
1974b; Hagenaars, 1990:111-112; Formann, 1992). This is the simplest way
to check identifiability when using the EM algorithm to estimate the pa-
rameters. If two different sets of starting values yield different parameter
estimates but the same values for the log-likelihood function, the model
parameters which are different are not identifiable. Note that when both
parameter estimates and likelihood values are different, the solution with
the lower likelihood value is either a local maximum or a boundary solution.
Another more formal method for checking identifiability is by means of the
information matrix. Local identifiability is ensured if this matrix is positive
definite (see Appendix G).

æ

5.2.4 A single nonrepeatable event

Above, a general approach to the unobserved heterogeneity problem in the
analysis of event history data was introduced. In this subsection, two appli-
cations are presented to demonstrate how to deal with unobserved hetero-
geneity when analyzing a single nonrepeatable event. The first application
uses a log-rate model for the analysis of first-birth rates. The second appli-
cation uses a discrete-time logit model for the analysis of school transition.

Example 1: Timing of the first birth

The use of hazard models for the analysis of demographic transitions is
increasingly becoming standard practice. However, as was demonstrated
above, the results can be influenced by the presence of unobserved risk
factors. An example is presented in which a latent covariate is included in
a log-rate model for the timing of the first birth. It should be mentioned
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that the example serves mainly as an illustration of the use of the latent
variable methods introduced above. The intention is not to present an
accurately real-world model for the timing of first births.

Data The data for the example was obtained from a Dutch family and
fertility survey called ORIN5 (NIDI, 1989) which was conducted in 1983.
The data set contains information on the fertility histories of 846 18-54
year-old women. The time variable which was used is age measured in
years. The time axis was divided into 23 intervals indicating all different
ages between 18 and 40 years. Because two age groups are empty, there are
21 different ages at which the event under study occurred. A very small
number of women in the sample already had a first child at age 18.

Two observed covariates were used in the log-rate model. The first
is a woman’s educational level, with 4 categories: 1] primary school, 2]
secondary school, 3] vocational education and 4] university or polytechnic.
In demographic research, educational level is often used as an indicator of
either the occupational aspirations of a woman (Vossen, 1989; Willekens,
1991; Vermunt, 1991a) or the opportunity costs of children (Becker, 1981).
Women with a higher educational level can be expected to have a lower
probability of having a first child because they have work aspirations which
conflict with having children and because their relative costs of having
children are higher, assuming that they have to stop working after the
birth of their first child. The second covariate is an attitude item on the
importance of family and children in one’s life. This indicator was used to
operationalize the concept of familism which is thought to influence fertility
behavior (Lesthaege and Meekers, 1986; Vermunt, 1991b). The familism
item is classified into three categories: 1] familistic 2] neither familistic nor
non-familistic, and 3] non-familistic.

Model As explained when presenting the hazard model with unobserved
heterogeneity, the models to be specified consist of two parts: a log-linear
path model for the covariates and a hazard model for the dependent process
to be studied. Let A denote a woman’s educational level, B familism, and
W a latent variable which is assumed to capture the unobserved hetero-
geneity. The general form of the model which is used in this example to
describe the relationships between the covariates is

πabw = πab πw|ab .

5The name ORIN stands for Onderzoek Relatievorming in Nederland (Survey on
Union Formation in the Netherlands). This study was conducted by the NIDI institute
in The Hague.
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This means that the latent variable W is seen as an intervening variable
between the observed covariates and the hazard rate of having a first child.
So, W stands for intervening variables influencing the rate of first birth
which are not included in the model, such as having a partner, wanting to
have children, and being employed.

Although it is possible, the joint distribution of the observed covariates
A and B, πab, is not restricted in this example. Note that here we just
want to show which types of specifications can be used for the unobserved
heterogeneity rather than how to model the relationships between observed
covariates. Measurement models in which the joint distribution of the ob-
served covariates is restricted as well will be discussed in section 5.3. To
be able to specify more restricted models for πw|ab, it is parameterized by
means of a logit model,

πw|ab =
exp

(
uWw + uAWaw + uBWbw

)∑
w exp

(
uWw + uAWaw + uBWbw

) . (5.8)

This is the least restrictive model that will be used for πw|ab. Note that
it is not a saturated model because it does not contain the three-variable
interaction term uABWabw .

On the basis of the model described in Equation 5.8, it is possible to
specify more restrictive models with regard to the effects of A and B on W
by imposing particular restrictions on the uAWaw and uBWbw parameters. One
constraint that is used below is to fix both uAWaw and uBWbw to zero, which
yields a model in which the unobserved heterogeneity is independent of the
observed heterogeneity, that is, πw|ab = πw. This specification, which is
how unobserved heterogeneity is usually modeled in event history analysis,
will be denoted as an ‘independent’ unobserved heterogeneity model.

Another set of restrictions which may be used to reduce the number of
parameters of the model for the covariates is

uAWaw = (a− ā)(w − w̄)βAW ,

uBWbw = (b− b̄)(w − w̄)βBW .

These restrictions lead to a linear-by-linear association between A and W
and B and W (see section 2.5). Below, the reason for using such a specifi-
cation is explained in more detail.

Several different types of specifications may be used for the event history
part of the model. In its most general form, the log-rate model that will be
used is

h(z|a, b, w) =
mabwz

Eabwz
= exp

(
v + vAa + vBb + vWw + vZz + vWZ

wz

)
, (5.9)
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where the variable Z with index z denotes the time intervals. It should be
noted that here, unlike in the presentation of the log-rate model in section
4.4, the hazard parameters are denoted by v instead of u to distinguish
them from the parameters of the covariate part model. As can be seen,
the hazard model described in Equation 5.9 does not contain higher-order
interaction terms involving A or B; only the simplest specification for the
dependence of the first-birth rate on A and B is used. As discussed in the
previous section, the assumption that the covariate effects are proportional
is sufficient for identifying a model, irrespective of the choice of specification
for the unobserved heterogeneity.

Different types of hazard models are specified by restricting vZz and
vWZ
wz . An exponential model is obtained by fixing both vZz and vWZ

wz to
zero. Fixing only vWZ

wz to zero yields a proportional hazard model, in which
different kinds of specifications for vZz can be used. When no further restric-
tions are imposed on vZz , a model is obtained which is equivalent to Cox’s
proportional hazard model (see section 4.4). Another specification which is
used for vZz is quadratic time dependence, which is a rather common way
to describe the age pattern in the timing of the first birth, i.e.,

vZz = z βZ1 + z2 βZ2 ,

where βZ1 is the linear effect of Z and βZ2 quadratic effect of Z on the
hazard rate. And finally, in some models both vZz and vWZ

wz are restricted
to a quadratic functional form. This results in a nonproportional model
with different quadratic time dependencies for the different values of W .

Testing The test results for the estimated models are presented in Table
5.2. In the first set of models (Models 1a to 3b), the latent variable W is
assumed to be independent of the observed covariates; in other words, uAWaw
and uBWbw are fixed to zero. Moreover, the effect of the latent variable on the
hazard rate is assumed to be proportional, which means that vWZ

wz is fixed
to zero. This is the standard way of correcting for unobserved heterogeneity
in hazard models.

A comparison of the log-likelihood values of the models with one latent
class, that is, the models without heterogeneity, shows that there is duration
dependence. The conditional likelihood test between Model 1a and Models
1b and 1c show that the exponential model, which assumes no duration
dependence, fits a lot worse than the Cox and quadratic models (L2

1a|1b =

56.37, df = 20, p = .000 and L2
1a|1c = 42.41, df = 2, p = .000).6 The

quadratic model captures the time dependence rather well using only two

6The likelihood-ratio chi-square statistic L2
r|u to compare nested models can be com-

puted by taking 2 times the difference between the log-likelihood value of the unrestricted
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Table 5.2: Test results for the estimated models for the timing of the first
birth

Model log-likelihood # parameters

Independent/proportional
1a. 1 class exponential -3497.95 18
1b. 1 class Cox -3441.58 38
1c. 1 class quadratic -3455.54 20
2a. 2 class exponential -3497.95 20
2b. 2 class Cox -3437.95 40
2c. 2 class quadratic -3453.12 22
3a. 3 class Cox -3437.48 42
3b. 3 clas quadratic -3452.83 24
Independent/nonproportional
4a. 2 class Cox -3429.14 60
4b. 2 class quadratic -3449.08 24
5a. 3 class Cox -3426.84 82
5b. 3 class quadratic -3445.55 28
Dependent (AW,BW )/proportional
6a. 2 class Cox -3430.39 45
6b. 2 class quadratic -3444.87 27
7a. 3 class Cox -3422.25 52
7b. 3 class quadratic -3438.15 34
Dependent (AW,BW linear)/proportional
8a. 2 class Cox -3435.32 42
8b. 3 class Cox -3432.53 44
8c. mover-stayer Cox -3437.13 41
8d. 2 movers Cox -3433.47 43
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time parameters since it does not fit significantly worse than the Cox model
(L2

1c|1b = 28.08, df = 18, p > .06).
Including a second latent class does not improve the log-likelihood value

of the exponential model (Model 2a) as there is a positive duration depen-
dence, while, as already mentioned in subsection 5.2.3, the exponential
model can only capture unobserved heterogeneity if there is a (spurious)
negative duration dependence. As can be seen from the comparison of the
two-class Cox model (Model 2b) and the two-class quadratic model (Model
2c) with their no-unobserved heterogeneity variants, the log-likelihood de-
creases a bit more for the Cox model. Including a third class does not have
much influence on either the Cox model (Model 3a) or the quadratic model
(Model 3b).

The first extension of the usual way of modeling unobserved heterogene-
ity is the specification of models in which the latent variable W is allowed
to have a nonproportional effect on the hazard rate, in other words, the
interaction term vWZ

wz is included in the model (Models 4a-5b). Including
the interaction effects between duration and the unobserved covariate in
the Cox model leads to so many extra parameters that the improvement of
the fit is no longer significant. This applies to both the two- and three-class
models (Models 4a and 5a): L2

2b|4a = 17.62, df = 20, p > .99 and L2
3a|5a =

21.28, df = 40, p > .61. But, the quadratic two- and three-class models
both improve significantly by assuming nonproportionality (Models 4b and
5b): L2

2c|4b = 8.08, df = 2, p < .02 and L2
3b|5b = 14.56, df = 4, p < .01.

In Models 6a-7b, the assumption that the unobserved factor W is in-
dependent of the observed covariates is relaxed. This is another impor-
tant extension of the usual way of modeling unobserved heterogeneity.
For simplicity of exposition, the effect of W on the hazard rate is again
assumed to be proportional (vWZ

wz = 0). Table 5.2 shows that the in-
clusion of the uAWaw and uBWbw interaction terms in the covariate model
leads to a significant increase in log-likelihood value for Models 6a, 6b,
7a and 7b compared to their ‘independent’ unobserved heterogeneity vari-
ants: L2

2b|6a = 15.12, df = 5, p < .01, L2
2c|6b = 16.50, df = 5, p < .005,

L2
3a|7a = 30.46, df = 10, p < .001, and L2

3b|7b = 29.36, df = 10, p < .002. It
must be stated that although the models fit very well, many local maxima
were encountered when fitting these models. This indicates that one has to
be cautious with these kinds of models. One cannot even be sure that the
final solutions presented in the table are the global maximum likelihood

model and of the restricted model (section 2.4). The number of degrees of freedom can be
obtained by taking the difference in the number of parameters of the models concerned.
However, as already mentioned in section 3.1, models with different numbers of latent
class cannot be compared this way because of difficulties associated with parameter space
boundaries (Titterington, Smith and Makov, 1985).
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solutions. Nevertheless, the fact that several sets of starting values lead
to the same log-likelihood value and the same parameter estimates demon-
strates that the models are identified. This is confirmed by the fact that
the information matrix is positive definite for Models 6a-7b.

Models 6a-7b are not only problematic because of the occurrence of lo-
cal maxima, but, as will be demonstrated below, the parameter estimates
of these of models are also rather strange. It seems that to get more sta-
ble results, a more restricted specification for the relationships between the
observed covariates and the latent variable has to be used. To be able to
specify more restrictive models, substantive hypotheses are needed about
the nature of the unobserved heterogeneity. One option is to assume that
particular covariates influence the unobserved covariate but not the hazard
rate (Heckman, 1979). Such a solution is, in fact, very similar to using the
observed covariates as indicators for the latent variables, as in the mea-
surement models that will be discussed in section 5.3. Another option is to
restrict the relationship between the covariates and the latent variables to
have a more systematic pattern. To demonstrate this option, the relation-
ships between A and W and between B and W are restricted to linear-by-
linear (see Equation 5.8). The main reason for choosing this specification
here is that the parameter estimates of the nonrestricted covariate parts of
Models 6a-7b are very difficult to interpret. It is not possible to detect any
systematic pattern in the uAWaw and uBWbw parameters, which is strange if one
realizes that both A and B are ordinal variables. By the rather restrictive
linear-by-linear specification it was hoped to get more interpretable results.
Other less restrictive specifications that could be used are, for instance, row
or column association models or log-multiplicative association models (see
sections 2.5 and 2.7).

For simplicity of exposition, the linear-by-linear βAW and βBW terms
(see Equation 5.9) are only included in the Cox proportional models with
two and three latent classes (Models 8a and 8b). Now, only the three-class
model fits significantly better than the ‘independent’ unobserved hetero-
geneity model concerned (Models 2b and 3a): L2

2b|8a = 5.26, df = 2, p > .07

and L2
3a|8b = 9.90, df = 2, p < .008. Furthermore, both Models 8a and

8b are restricted by fixing the log-linear hazard parameter for one class to
be equal to −∞.7 In other words, the models become mover-stayer models
with one class (Model 8c) or two classes (Model 8d) of movers, respectively.
This mover-stayer structure is interesting from a substantive point of view,

7Fixing a log-linear parameter to −∞ is the same as fixing the multiplicative param-
eter concerned to zero. When using the IPF or the uni-dimensional Newton algorithm
discussed in Chapter 2, a multiplicative parameter can simply be fixed to zero by using
zero as starting value for the parameter concerned. This will lead to structural zero cells
in the table concerned.
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because the proportion of stayers can be interpreted as the proportion of
women that remain childless. Note that testing the mover-stayer restriction
using the likelihood-ratio statistic is not allowed since the vWw parameter
concerned is fixed on a boundary value. Nevertheless, the small decrease in
the likelihood of Models 8c and 8d compared to Models 8a and 8b indicates
that the mover-stayer structure performs quite well.

Parameters Table 5.3 presents the estimates for the covariate effects on
the hazard rate and for the parameters describing the relationships among
the covariates for some of the model in Table 5.3. When there is no unob-
served heterogeneity, the effects of A and B on the hazard rate are very sim-
ilar for the different specifications of the duration dependence (Models 1a,
1b, and 1c). Inclusion of a two-class independent unobserved heterogeneity
component in the model, leads to stronger effects of A and B (Models 2b
and 2c). In other words, ‘independent’ heterogeneity attenuates the haz-
ard parameters. Again, the hazard parameters for the Cox model (Model
2b) and the quadratic model (Model 2c) are very similar. Also, the class
proportions and the effects of the latent variable are almost the same for
the two models. Both models identified two latent groups, one with a low
hazard rate and one with a much higher hazard. In Models 2b and 2c, the
ratio of the hazard rates of the two groups is .12 (= exp(−1.059 − 1.059))
and .17 (= exp(−.892− .892)), respectively.

In the three-class ‘dependent’ unobserved heterogeneity models (Models
7a and 8d), the parameter estimates are very different from Models 2b and
2c and also from one another. In the three-class model with unrestricted
interaction terms uAWaw and uBWbw (Model 7a), the hazard parameters for
the covariates become very extreme. For instance, someone with A = 2
has a 100 (=exp(1.653 − −2.951)) times higher hazard rate than someone
with A = 4. Similar extreme effects are found for covariate B. However,
at the same time, the parameters describing the effects of A and B on W
indicate that the extremely low-risk groups, A = 4 and B = 3, have a very
high probability of belonging to latent class number three, the class with
an extremely high risk of a first birth. The opposite is true for A = 2 and
B = 1, the groups with the highest risks.8 They have a very low probability
of belonging to the high-risk class. Thus, what actually happens is that class
membership and covariate effects compensate one another, which makes the
results obtained from Model 7a very difficult to interpret.

8It should be noted that - as indicated by the extremely high negative value of the
uAW
42 parameter - the probability of being in latent class two given that one has educa-

tional level four is near to zero. When a parameter estimate is so near to the boundary
of the parameter space, it is not possible to compute one of the standard errors of the set
of parameters concerned. That is the reason that no standard errors is given for uAW

32 .
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Table 5.3: Some parameter estimates for models for the timing of the first
birth

Model 1a Model 1b Model 1c Model 2b Model 2c Model 7a Model 8d
log-rate parameters
v -2.777 (0.057) -2.981 (0.114) -3.879 (0.157) -2.519 (0.199) -4.295 (0.318) -2.551 (0.163) -2.669 (0.270)

vA1 0.536 (0.102) 0.555 (0.102) 0.554 (0.102) 0.860 (0.166) 0.798 (0.165) 1.275 (0.205) 0.731 (0.146)

vA2 0.286 (0.084) 0.302 (0.084) 0.302 (0.084) 0.450 (0.129) 0.397 (0.122) 1.653 (0.216) 0.446 (0.125)

vA3 -0.022 (0.077) -0.025 (0.077) -0.025 (0.077) -0.042 (0.107) -0.060 (0.100) 0.023 (0.209) -0.089 (0.098)

vA4 -0.801 -0.833 -0.831 -1.268 -1.135 -2.951 -1.087

vB1 0.291 (0.078) 0.305 (0.079) 0.303 (0.079) 0.402 (0.114) 0.379 (0.115) 1.430 (0.219) 1.108 (0.707)

vB2 -0.084 (0.064) -0.083 (0.065) -0.082 (0.065) -0.142 (0.092) -0.127 (0.089) -0.222 (0.183) -0.590 (0.477)

vB3 -0.208 -0.222 -0.221 -0.260 -0.252 -1.208 -0.519

vW1 -1.059 (0.187) -0.892 (0.193) -2.394 (0.285) −∞
vW2 1.059 0.892 -0.053 (0.123) 1.000 (0.362)

vW3 2.447 -1.000
latent proportions

πW
1 0.597 0.587 0.311 0.115

πW
2 0.403 0.413 0.392 0.558

πW
3 0.296 0.327

effects of A and B on W

uAW
11 -1.067 (0.552)

uAW
12 2.366 (0.301)

uAW
13 -1.299

uAW
21 0.106 (0.612)

uAW
22 2.126 (0.374)

uAW
23 -2.233

uAW
31 -1.363 (0.478)

uAW
32 2.811 (——-)

uAW
33 -1.449

uAW
41 -2.324

uAW
42 -7.304

uAW
43 4.900

uBW
11 1.721 (0.723)

uBW
12 0.203 (0.686)

uBW
13 -1.924

uBW
21 -0.255 (0.477)

uBW
22 -0.113 (0.361)

uBW
23 0.368

uBW
31 -1.466

uBW
32 -0.091

uBW
33 1.557

βXA -0.362 (0.195)

βXB -3.567 (3.633)
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In the restricted ‘dependent’ model (Model 8d), the hazard parameters
for A are very similar to the ‘independent’ models (Models 2b and 2c). The
effect of B, however, becomes much larger: Familistic women have a much
higher risk of a first birth than the other two groups, which are now quite
close to one another. The linear effects of A and B on W indicate that both
educational level and familism are negatively related to the latent variable.
Women with a low educational level and with a familistic attitude have a
much lower probability of belonging to class one, the group that remains
childless, than highly educated non-familistic women. This is consistent
with what one expects to find. Actually, the only result in Model 8d that
is difficult to interpret is the fact that the hazard parameters for levels two
and three of W are not in the ‘correct’ order. Thus, although we specified
linear-by-linear effects of the observed covariates on W , W is not an or-
dered variable. The more extreme effect of B on the rate of first birth can
be explained by the fact that persons with B = 1 are too often classified
in the low-risk class W = 3. The large standard errors of the parameter
estimates concerning B indicate that there is a strong dependence between
them.

To summarize, this example showed how to deal with unobserved hetero-
geneity using the general approach presented in subsection 5.2.2. Two
extensions of the usual way of modeling unobserved heterogeneity, which
can be routinely handled within the general hazard model, were applied,
namely, the effect of the unobserved variable was allowed to be nonpropor-
tional and the unobserved heterogeneity was allowed to be related to the
observed covariates. The latter extension seems to be problematic in that
the results are sensitive to the specification that is used for the relationships
among A, B, and W . This means that it is necessary to have some a priori
information to be able to decide which of the specifications is the correct
one. This cannot simply be decided on the basis of the model fit. The
specification problem also shows that the independent unobserved hetero-
geneity model which is just one of the possible models may be misspecified
as well.

Example 2: School transitions

Data and model The application of the latent variable approach when
time is a discrete variable is illustrated using data published in a recent
paper by Mare (1994). The data is a cross-tabulation of the educational
attainments of 18,563 men, their fathers, and their oldest brothers obtained
from the 1973 Occupational Changes in a Generation II Survey (Feather-
man and Hauser, 1975). Further on, in subsection 5.2.7 on models for
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dependent or clustered observations, both the respondents’ and the oldest
brothers’ information on school transitions will be used. Here, only the
respondents’ information is used.

Mare (1994) proposed analyzing data on school transitions by means of
discrete-time hazard models. As in the analyses of Mare, the time axis is
not formed by time or age, but by the qualitative stages of the schooling
process. The actual amount of calendar time that it takes an individual
to get through a particular school level is assumed to be irrelevant. The
time axis or the respondent’s schooling is classified into three levels: did not
finish high school, finished high school, and completed some post-secondary
schooling. The event whose occurrence is explained is dropping out of
school, that is, not finishing the next school level, given that one has finished
the previous level. Dropping out may either occur after finishing primary
school or after finishing high school. Mare used one observed covariate,
the educational level of the father of the respondent which is measured
in five categories (0-8, 0-11,12,13-15 and ≥ 16 years). In the application
presented by Mare, a latent covariate was used in a simultaneous analysis
of respondents’ and brothers’ school transitions. Here, we demonstrate how
to incorporate a latent covariate into a discrete-time logit model for a single
event.

Let A denote the observed covariate father’s schooling and W the unob-
served covariate. As in Example 1, two types of specifications are used for
the relationship between the observed and unobserved covariate. The unob-
served covariate, denoted by W , may be either independent of or dependent
on A. If it is dependent, the relationship is restricted to linear-by-linear
because otherwise the model is not identifiable.

In its most general form, the discrete-time logit model which is used
equals

λ(tl|a,w) =
exp

(
v + vAa + vWw + vLl + vALal + vWL

wl

)
1 + exp

(
v + vAa + vWw + vLl + vALal + vWL

wl

) .
Here, λ(tl|a,w) denotes the probability of dropping out of school at the lth
school level, given an individual’s scores on A and W .

Because of identification problems it is not always possible to include
all the hazard parameters (v’s) in the model at once. To identify the model
parameters when W is included in the model, both vALal and vWL

wl must
be assumed to be equal to zero for all a, w, and l. In other words, the
covariate effects on the probability of dropping out must be assumed to
be proportional. As will be demonstrated later on, these restrictions are
not necessary when the respondent’s and brother’s schooling histories are
analyzed simultaneously.
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Table 5.4: Test results for the estimated models for respondents dropping
out of school

Model L2 df p

1. no covariates 4195.36 8 .0000
2. A proportional 175.42 4 .0000
3. A nonproportional 0.00 0 -
4. Model 2 + 2 class 16.59 2 .0002
5. Model 2 + mover-stayer 17.30 3 .0006
6. Model 5 + linear AW 15.65 2 .0004

The discrete-time event history data for this example can be organized
into a contingency table format because the length of the observation pe-
riod is the same for all individuals and because all covariates are categorical.
This makes it possible to test the fit of the models by means of the Pear-
son’s and the likelihood-ratio chi-square statistics. Therefore, L2 values
and number of degrees of freedom are presented instead of log-likelihood
values and number of parameters.

Results Table 5.4 presents the test results for the models which are es-
timated with the respondents’ schooling data. Models 1, 2, and 3 do not
include unobserved heterogeneity. In Model 1, it is assumed that A has no
effect on the probability of dropping out, in other words, it contains only the
main effect v. This model fits very badly (L2 = 4195.36, df = 8, p = .000).
In Model 2, the effect of fathers’ education (A) on the rate of dropping out
of school (vAa ) is included and in Model 3, this effect is allowed to be nonpro-
portional, which involves including vALal . The conditional L2 tests between
the three models without unobserved heterogeneity show that both the
main effect of fathers’ educational level on the probability of dropping out
(L2

1|2 = 4019.94, df = 4, p = .000) and the interaction of fathers’ education

with duration (L2
2|3 = 175.42, df = 4, p = .000) are highly significant. Thus,

only the saturated model fits the data well. However, as demonstrated in
section 4.6, this nonproportionality can also be caused by unobserved het-
erogeneity.

Model 4 is a proportional hazard model with a two-class latent covariate
which is independent of A. Although its absolute fit is not perfect (L2 =
16.59, df = 2, p < .0003), it fits much better than Model 2, using only two
additional parameters. Model 4 can be simplified by imposing a mover-
stayer structure on the effect of the latent variable, that is, by restricting
the hazard parameter for one class to be equal to −∞. The fit of the mover-
stayer model (Model 5) is not worse than the unrestricted two-class model



206CHAPTER 5. EVENT HISTORYANALYSISWITH LATENT VARIABLES ANDMISSING DATA

Table 5.5: Parameter estimates for some models for respondents dropping
out of school

Model 2 Model 4 Model 5

discrete-time logit parameters
v -0.826 (0.022) -2.269 (0.592) -0.521 (0.030)
vA1 1.168 (0.026) 1.606 (0.062) 1.570 (0.042)
vA2 0.826 (0.032) 1.109 (0.059) 1.082 (0.049)
vA3 -0.030 (0.033) -0.154 (0.041) -0.150 (0.039)
vA4 -0.664 (0.056) -0.921 (0.072) -0.898 (0.065)
vA5 -1.300 -1.641 -1.604
vL1 -0.506 (0.013) -0.897 (0.048) -0.869 (0.033)
vL2 0.506 0.897 0.869
vW1 1.825 (0.496) 0.000
vW2 -1.825 −∞
latent proportions
πW
1 0.833 0.875
πW
2 0.167 0.125

(L2 = 17.30, df = 3, p < .0006). It should be noted that although Model
5 does not describe the data perfectly, it performs quite well if the huge
sample size (18563 cases) is taken into account. Finally, a linear-by-linear
effect of A on W was included in the mover-stayer model (Model 6). The
conditional test between Models 5 and 6 shows that this effect of A on W
is not significant (L2

5|6 = 1.65, df = 1, p > .19).
Table 5.5 reports the parameter estimates for three different propor-

tional hazard models. As in Example 1, the effect of the observed co-
variate becomes somewhat stronger after correcting for unobserved het-
erogeneity. Not surprisingly, correcting for unobserved heterogeneity also
increases the positive duration dependence. The hazard parameters of
the mover-stayer model (Model 5) and the unrestricted two-class model
(Model 4) are very similar. In the mover-stayer model, one group contain-
ing 12.5 percent of the respondents is identified having a dropout proba-
bility of zero. The other 87.5 percent have a ‘mean’ probability of drop-
ping out of .20 (= exp(−.521 − .869)/(1 + exp(−.521 − .869))) and .59
(= exp(−.521+ .869)/(1+exp(−.521+ .869))) at the first and second school
level, respectively.

The example on school transitions demonstrated that a more parsi-
monious description of the data can be obtained when correcting for un-
observed heterogeneity. Instead of assuming a nonproportional effect of
father’s education on the probability of dropping out at a particular school
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level, the data could be described almost as well by means of a mover-stayer
model which contained only one parameter more than a proportional model
without heterogeneity.

5.2.5 Dependent competing risks

As mentioned in section 4.7, the latent variable techniques can also be
used to model conditional dependence among different types of events. De-
pendence among competing risks can be modelled either by allowing the
different types of events to depend on the same unobserved factor or by
specifying event- or risk-specific unobserved factors which are allowed to be
related to one another. Below an example is presented in which the events
becoming employed and leaving the labor force are treated as competing
risks for individuals who are unemployed (Example 3). A discrete-time logit
model with a latent covariate is used to capture the dependence between
these two transitions. In a second example (Example 4), the first birth
example discussed in subsection 5.2.4 is extended by treating censoring as
a dependent competing risk, in other words, by relaxing the independent
censoring assumption.

Example 3: Transition from unemployed to employed or out of
the labor force

Data and models This example investigates the determinants of the
process of leaving the state of ‘unemployed’, with destination states ‘em-
ployed’ and ‘out of the labor force’ being treated as competing risks. It
seems unrealistic to assume that, even given covariate values, becoming
employed and leaving the labor market are independent events. Certainly,
there will be unobserved individual factors influencing both the probabil-
ity of finding employment and of leaving the labor force. This example
is used to show how to take possible dependencies among competing risks
into account by means of the general latent variable approach introduced
in subsection 5.2.2.

The data are taken from the well-known ‘Survey of Income and Program
Participation’ (SIPP). This survey is a panel study in which every three
months information is gathered on the respondents’ employment histories
during the preceding three months. The information which is used for this
example is obtained from a group of individuals who were followed during
the years 1986 and 1987. Not all available employment information is used,
only a person’s employment status in the middle of the month before the
interview. For the group of individuals concerned, complete information
is available for 6 points in time for 4,597 people. Section 5.4 shows how
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the partially observed employment histories can also be used for parameter
estimation.

To analyze the transition from unemployed to either employed or out of
the labor force, the first unemployment spell is selected for each person in
the sample. Of course, it would also be possible to use all unemployment
spells. In that case, the dependencies among the spells have to be taken
into account, which is the subject of the next subsection. For this example,
in which the problem of dependencies among competing risks is the cen-
tral issue, it is sufficient to use only the first unemployment spell for each
individual. In total, 535 persons were either unemployed at the beginning
of the observation period or became unemployed during the observation
period. These 535 persons form the risk set for the competing events of
interest.

The discrete-time logit model which is used contains three observed co-
variates: sex (male, female), ethnic group (non-black, black), and age at the
beginning of the observation period or cohort (47-66, 27-46, < 27). The age
group above 66 years is not used in the analysis, because only very few of
them belonged to the risk set of unemployed persons. The observed covari-
ates are denoted by A, B and C, respectively. Also an unobserved covariate
is included in the model to take unobserved risk factors into account. As
in the examples presented above, this latent covariate, denoted by W , can
be either independent of or dependent on the observed covariates.

For simplicity of exposition, the event- or risk-specific transition proba-
bilities are assumed to be constant over time. Note that if these probabil-
ities depend on some time dimension which is unknown as a result of left
censoring, such as the length of the current unemployment spell, it is only
possible to perform the analysis correctly if there is some external informa-
tion on the distribution of the time of entry into the risk set (see section
4.5). Of course, it would have been possible to postulate the risk-specific
transition probabilities as dependent on some known time dimension, such
as age or calendar time.

The most general model which is used for destination state d is given
by

λd(tl|a, b, c, w) =
exp

(
vDd + vADad + vBDbd + vCDcd + vWD

wd

)
1 +

∑
d exp

(
vDd + vADad + vBDbd + vCDcd + vWD

wd

) . (5.10)

If D = 1, the event is finding a job, and if D = 2, the event is leaving the
labor force. The fact that this model does contain the one-variable effects
for A, B, C, and W does not mean that it is a non-hierarchical model.
As explained in section 4.8, the two-variable effects vADad , vBDbd , vCDcd , and
vWD
wd are parameterized in such a way that they can be directly interpreted
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Table 5.6: Test results for the estimated competing risks models for leaving
the state of unemployment

Model log-likelihood # parameters

1. no covariates -1930.59 14
2a. 1 class -1903.19 22
2b. 2 class -1891.94 25
2c. 3 class -1891.29 28
3a. 1 stayer + 1 mover -1899.77 23
3b. 1 stayer + 2 movers -1891.99 26
4a. 2 class + AW,BW,CW -1882.91 29
4b. 2 class + linear AW,BW,CW -1884.89 28
4c. 3 class + AW,BW,CW -1879.29 36
4d. 3 class + linear AW,BW,CW -1882.71 31

as the risk-specific covariate effects.9 Note that the model represented in
Equation 5.10 is already a restricted model since many interactions are
excluded from it. Of course, it is possible to specify models which contain,
for instance, three-variable interaction terms, such as vACDacd .

Results The test result for the estimated models are given in Table 5.6.
Model 1 contains only the main effect vDd , and Model 2a also contains the
two-variable interactions vADad , vBDbd , and vCDcd . By comparing these two
models without unobserved heterogeneity, it can be seen that the observed
covariates have a significant effect on the probability of leaving unemploy-
ment (L2

1|2a = 54.8, df = 8, p < .0001). Although not demonstrated here,
separate tests for sex, ethnic group, and age show that all three variables
have a significant effect on both transition probabilities.

Models 2b-3b contain a latent variable which is postulated to be inde-
pendent of the observed covariates. By comparing the log-likelihood val-
ues of Models 2a, 2b, and 2c, it can be seen that the two-class solution
(Model 2b) captures almost all unobserved heterogeneity. The decrease of
the log-likelihood by including a third latent class (Model 2c) is negligible.
The likelihood values of the mover-stayer models10 indicate that both the
model with one class of movers (Model 3a) and the model with two classes

9The parameters vAD
ad , for instance, can be interpreted as the effect of A on the

probability of the occurrence of event d at tl if
∑

a
vAD
ad = 0. In other words, the

identifying restriction which is used is that the two-variable terms sum to zero within
each level of D.

10The mover-stayer models (Models 3a and 3b) are obtained by fixing one vWD
wd pa-

rameter to −∞ within each level of D.
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of movers (Model 3b) detect unobserved heterogeneity. However, the fit of
Model 3b is almost identical to the fit of Model 2b. This is caused by the
fact that in Model 3b, the estimated probability of belonging to the class
of stayers is almost zero, which makes it almost identical to the two-class
model.

In Models 4a-4d, the assumption that the unobserved heterogeneity
models is independent of the observed covariates is relaxed by including
direct effects of A, B, and C on W in the model. As in Example 1, several
local maxima were encountered for these ‘dependent’ heterogeneity models.
Conditional tests show that both the two-class model (Model 4a) and the
three-class model (Model 4c) improve significantly by including these ad-
ditional effects: L2

2b|4a = 18.06, df = 4, p < 0.002 and L2
2c|4c = 24.00, df =

8, p < 0.003. The same applies to the models with linear-by-linear effects
on W rather than unrestricted two-variable effects (Models 4b and 4d):
L2

2b|4b = 14.10, df = 3, p < 0.003 and L2
2c|4d = 17.16, df = 3, p < 0.001.

Table 5.7 reports the parameter estimates for Models 2a, 2b, and 4a.
The comparison between the no unobserved heterogeneity model (Model 2a)
and the two-class ‘independent’ unobserved heterogeneity model (Model 2b)
with respect to the effects of the observed covariates on the event-specific
transition probabilities shows that, as in the previous examples, most effects
become slightly stronger by correcting for the unmeasured risk factor. The
only exception is the effect of C on the probability of leaving the labor force
at tl. Furthermore, the parameters of Model 2b show that the unobserved
risk factors for the two kinds of events are strongly positively related. Both
the risk of becoming employed and the risks of leaving the labor force is
much higher for the second class than for the first class.

The parameter estimates of the competing-risk model differ a great deal
between the ‘dependent’ two-class model (Model 4a) and Model 2b. The
covariate effects on W indicate that persons with A = 1 (men) and C = 3
(< 27) more often belong to the high-risk class W = 2 while persons with
C = 2 (27-46) more often belong to the low-risk class W = 1. As can
be expected, this reduces (makes more negative) the effects of A = 1 and
C = 3 on the transition probabilities and increases (makes more positive)
the effect of C = 2.

As in Example 1, this shows that the results are strongly influenced by
the specification that is used for the nature of the unobserved heterogeneity.
It should be noted that besides assuming the unobserved heterogeneity to
be independent of all the observed covariates or to be dependent on all
the observed covariates, there are many other possible specifications. For
instance, W could be assumed to depend on age (C) but not on sex (A)
and ethnic group (B). Theoretical considerations must determine which of
the possible specifications should be preferred.
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Table 5.7: Parameter estimates for some competing risks models for leaving
the state of unemployment

Model 2a Model 2b Model 4a

transition to employed (D = 1)
v -0.107 (0.135) -0.138 (0.640) -0.866 (0.266)
vA1 ,−vA2 -0.247 (0.091) -0.275 (0.128) -1.522 (0.538)
vB1 ,−vB2 0.445 (0.128) 0.594 (0.190) 0.769 (0.188)
vC1 -0.473 (0.157) -0.594 (0.221) -0.529 (0.288)
vC2 0.158 (0.127) 0.209 (0.176) 0.666 (0.245)
vC3 0.315 0.385 -0.137
vW1 ,−vW2 -1.275 (0.207) -2.162 (0.447)
transition out of the labor force (D = 2)
v -0.158 (0.125) 0.013 (0.323) -0.214 (0.154)
vA1 ,−vA2 -0.450 (0.102) -0.465 (0.109) -1.081 (0.424)
vB1 ,−vB2 -0.117 (0.120) -0.060 (0.136) -0.012 (0.136)
vC1 -0.072 (0.163) -0.115 (0.178) -0.071 (0.183)
vC2 -0.136 (0.144) -0.131 (0.154) 0.004 (0.173)
vC3 0.208 0.246 0.067
vW1 ,−vW2 -0.525 (0.294) -0.850 (0.453)
latent proportions
πW
1 0.410 0.268
πW
2 0.590 0.732

effects of A, B and C on W
uAW
11 ,−uAW

21 ,−uAW
12 , uAW

22 -0.819 (0.209)
uBW
11 ,−uBW

21 ,−uBW
12 , uBW

22 0.159 (0.165)
uCW
11 ,−uCW

12 0.122 (0.224)
uCW
21 ,−uCW

22 0.368 (0.206)
uCW
31 ,−uCW

32 -0.490
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Table 5.8: Test results for the estimated models for the timing of the first
birth in which censoring is treated as a competing risk

Model log-likelihood # parameters

1. 1 class -4753.33 65
2. 2 class -4749.50 68
3. 3 class -4748.99 71
4. 4 class -4748.99 74

Example 4: Timing of the first birth with dependent censoring

When discussing the example on first births (Example 1), the censoring
mechanism was assumed to be conditionally independent of the process
under study. In other words, it was assumed that there are no unobserved
risk factors influencing both censoring and the occurrence of an event. Of
course, assuming independent censoring is the usual way of performing
such an analysis. However, by treating censoring as a competing risk, it
is possible to test the independent censoring assumption. That is, we can
investigate whether there are common unobserved risk factors for censoring
and the occurrence of a first birth.

For this example, the same ORIN data as in the example on first births
discussed above is used. For simplicity of exposition, the latent variable is
assumed to be independent of the observed covariates. In Example 1, the
possibility of relaxing this assumption was discussed. The hazard model
is similar to Cox’s proportional hazard model in that the covariate effects
are assumed to be proportional and the time dependencies of the processes
concerned is not restricted. This gives the following log-rate model:

hd(z|a, b, w) =
mabwzd

Eabwz
= exp

(
vDd + vADad + vBDbd + vWD

wd + vZDzd
)
.

The event is a first birth if D = 1 and censoring if D = 2. The same
identifying restrictions are imposed on the two-variable parameters as in
the preceding example.

The test result given in Table 5.8 show that a two-class solution (Model
2) suffices in describing the unobserved heterogeneity in the competing
risks, first birth and censoring. Table 5.9 presents the parameter estimates
for the model without an unobserved heterogeneity component (Model 1)
and the two-class model (Model 2). The opposite sign of the hazard pa-
rameters of the latent variable W for first birth and for censoring indicates
that there is a (weak) negative dependence between the competing risks,
first birth and censoring. Women belonging to the class with a lower risk
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Table 5.9: Parameter estimates for two models for the timing of the first
birth in which censoring is treated as a competing risk

Model 1 Model 2
first birth censoring first birth censoring
(D = 1) (D = 2) (D = 1) (D = 2)

log-rate parameters
v -2.981 (0.114) -2.891 (0.581) -2.492 (0.199) -3.016 (0.627)
vA1 0.555 (0.102) -0.702 (0.199) 0.872 (0.167) -0.725 (0.202)
vA2 0.302 (0.084) 0.047 (0.114) 0.467 (0.133) 0.031 (0.117)
vA3 -0.025 (0.077) 0.288 (0.093) -0.042 (0.109) 0.285 (0.093)
vA4 -0.833 0.368 -1.297 0.410
vB1 0.305 (0.079) -0.083 (0.109) 0.408 (0.114) -0.095 (0.111)
vB2 -0.083 (0.065) -0.014 (0.074) -0.147 (0.093) -0.005 (0.076)
vB3 -0.222 0.097 -0.261 0.010
vW1 -1.065 (0.181) 0.157 (0.251)
vW2 1.065 -0.157
latent proportions
πW
1 0.6301
πW
2 0.3699

of having a first child run a bit higher risk of being censored. The pa-
rameter estimates for the two-class model are very similar to the ones for
Model 2b in Example 1 (see Table 5.3), where there was no correction for
dependencies between censoring and first birth. Apparently, the weak neg-
ative dependence between the occurrence of an event and censoring does
not influence the parameter estimates very much. The only difference of
some importance is the small increase from 59.7 to 63.0 percent of the size
of the class with a lower risk of experiencing a first birth. If the ‘event’
censoring could be removed, that is, if there were no censored observations,
the hazard rate of having a first child would be slightly lower than the one
that is currently observed.

æ

5.2.6 Repeatable events and multiple-state processes

The two preceding subsections illustrated the use of the latent variable
approach to unobserved heterogeneity in situations in which each individ-
ual can experience only one event. However, when events are repeatable,
the problem of unobserved heterogeneity is even more serious. As demon-
strated in section 4.8, in such a case unobserved heterogeneity may not only



214CHAPTER 5. EVENT HISTORYANALYSISWITH LATENT VARIABLES ANDMISSING DATA

introduce spurious time dependence and selection bias, but may also lead
to a violation of one of the principal assumptions on which the maximum
likelihood estimation of the model parameters is based, that is, the assump-
tion that the different events for one individual are independent given the
covariates which are included in the hazard model.

Fortunately, it is relatively easy to detect dependencies among different
spells for the same observational unit. When events are not repeatable,
the detection of omitted variables can be rather sensitive to model assump-
tions, such as proportionality of covariate effects, parameterization of the
time dependence, and specification of the relationships between observed
and unobserved covariates. Since in repeatable events situations it is gener-
ally plausible to assume that the unobserved risk factors are the same for all
events, there is much more information to identify unobserved heterogene-
ity. More precisely, dependencies among observed survival times can be
used to detect common unobserved risk factors. Actually, this is the same
principle used in standard latent class models in which the relationships
between the indicators are used to identify the latent variables. As with
latent class models where the indicators are assumed to be independent of
one another given the latent variable(s), here the spell-specific duration dis-
tributions are assumed to be independent of one another after controlling
for their common unobserved risk factor(s).

Below, the modeling of dependencies among events is illustrated by
means of an application to the timing of the first, second, and third birth,
and by means of an application to labor market transitions. The former
application uses a log-rate model, the latter one a discrete-time logit model.

Example 5: Timing of the first, second, and third birth

Data and model This example extends Example 1 on the timing of the
first birth by simultaneously analyzing the occurrence or nonoccurrence of
the first, second, and third birth. For this purpose the same ORIN data is
used. Although the parity-specific births can be seen as repeatable events, it
is implausible to assume that the parameters determining the three different
processes are the same. This means that the hazard parameters will almost
certainly depend on the number of previous events, which is sometimes
also called occurrence dependence (Heckman and Singer, 1985). Rather
than seeing birth as a repeatable event, it can be seen as a multiple-state
process in which only particular transitions are possible. More precisely,
the only transitions which are possible are forward transitions in which
no parities are skipped. Such a process in which individuals pass through
different stages is sometimes referred to as a staging process (Chiang, 1984:
Chapter 12; Willekens, 1990).
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A special problem in analyzing repeatable events is the choice of the
time axis. In this example, the number of years after turning 18 is used as
the time variable for the first birth, while the duration since the previous
birth is used as the time variable for the second and third births. Using
such different types of time variables is not problematic as long as one does
not want to make the time dependency equal across spells. Instead of, or in
addition to duration, it would also have been possible to use, for instance,
age and calendar time as additional time variables in the transition-specific
hazard models. Of course, in a more extended application it would be
preferable to perform the analysis using different kinds of time variables.
For this illustrative example, however, it is sufficient to include one single
type of time variable in the hazard model.

The specification that is used for the covariate part of the model is the
same as in Example 1 (see Equation 5.8). Apart from the latent variable
W , the models contain two observed covariates: educational level (A) and
familism (B). As in Example 1, three different specifications are used for
the covariate part of the model, namely: models with an ‘independent’
latent variable, models in which W depends on A and B, and models in
which W is linearly related to A and B.

For the hazard model only the simplest specification is used, that is,
a proportional hazard model in which there is a separate duration param-
eter for each duration category. The log-rate model for the application
concerned is given by

hm(z|a, b, w) = exp
(
vMm + vAMam + vBMbm + vWM

wm + vZMzm
)
.

As in section 4.8, superscript m of hm(z|a, b, w) is used to denote a partic-
ular spell. The variable indicating the spell number is denoted by M . In
this case, 1 ≤ m ≤ 3, that is, the first, the second, or the third birth. As
can be seen from the specification of the log-linear parameters included in
the hazard model, the effects of A (education), B (familism), and W on
the hazard rates are assumed to be unequal for the different events.

Results Table 5.10 presents the test results for the models that are es-
timated. When the latent variable is assumed to be independent of the
observed covariates, each additional latent class leads to an increase in
the likelihood function (Models 1a-1d). It can be seen that the increase be-
comes smaller for each next latent class. Again, the fit of the models can be
greatly improved by including the unrestricted direct effects of the observed
covariates on the latent variable W (Models 2a-2c). But, as in Example
1, these models are very unstable. Many different sets of starting values
were needed to obtain the solutions presented here, and many local maxima
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Table 5.10: Test results for the estimated models for the timing of the first,
second, and third births

Model log-likelihood # parameters

independent W
1a. 1 class -4734.89 73
1b. 2 class -4726.61 77
1c. 3 class -4723.75 81
1d. 4 class -4721.14 85
W related to A and B
2a. 2 class -4719.57 82
2b. 3 class -4704.88 91
2c. 4 class -4697.82 100
W linearly related to A and B
3a. 2 class -4723.62 79
3b. 3 class -4717.11 83
3c. 4 class -4713.15 87

were encountered. Also in the linearly restricted ‘dependent’ models, we
found several local solutions, but less than in the unrestricted models. In
the two-class model (Model 3a), the linear effects of A and B on W are,
however, not significant (L2

1b|3a = 5.92, df = 2, p > .05). On the other hand,

the fit of the three- and four-class models (Models 3b and 3c) improves by
including the linear effects of the observed covariates on the latent variable:
L2

1c|3b = 13.28, df = 2, p < .002; and L2
1d|3c = 15.98, df = 2, p < .001.

The parameter estimates for Models 1a, 1b, and 3b are reported in Ta-
ble 5.11. The parameter estimates for the model without an unobserved
heterogeneity component (Model 1a) indicate that the effect of educational
level is strongest for the first birth and weakest for the second birth. The
effect of the familism indicator is strongest for the third birth and weakest
for the second birth. Including a two-class ‘independent’ unobserved het-
erogeneity component in the model (Model 1b) slightly increases the hazard
parameters of the observed covariates for the second and third births. The
hazard parameters of the latent variable W indicate that the two-class la-
tent variable captures the positive dependence between the second and the
third event: Class one has both a lower risk of a second birth and a lower
risk of a third birth than class two. The two latent classes do not differ
with respect to the hazard rate for the first birth. Seemingly, Model 2b
does not capture the unobserved heterogeneity that was encountered in the
example on the occurrence or nonoccurrence of the first birth. In Example
1, two latent classes were identified which differed strongly with respect to
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Table 5.11: Parameter estimates for some models for the timing of the first,
second, and third births

Model 1a Model 1b Model 3b
first birth (M = 1)
v -2.981 (0.114) -2.983 (0.115) -2.205 (0.181)

vA1 0.555 (0.102) 0.553 (0.103) 0.111 (0.229)

vA2 0.302 (0.084) 0.303 (0.084) 0.179 (0.124)

vA3 -0.025 (0.077) -0.024 (0.077) 0.127 (0.107)

vA4 -0.832 -0.832 -0.417

vB1 0.305 (0.079) 0.306 (0.079) 0.511 (0.122)

vB2 -0.083 (0.065) -0.084 (0.065) -0.087 (0.074)

vB3 -0.222 -0.222 -0.425

vW1 0.030 (0.220) -1.454 (0.381)

vW2 -0.030 -0.632 (0.206)

vW3 2.086
second birth (M = 2)
v -2.075 (0.154) -1.660 (0.256) -1.642 (0.199)

vA1 -0.091 (0.114) -0.123 (0.139) 0.112 (0.149)

vA2 0.113 (0.092) 0.085 (0.112) 0.275 (0.120)

vA3 -0.161 (0.089) -0.175 (0.107) -0.195 (0.109)

vA4 0.139 0.214 -0.193

vB1 0.166 (0.088) 0.181 (0.115) 0.097 (0.106)

vB2 -0.123 (0.073) -0.115 (0.091) -0.144 (0.080)

vB3 -0.043 -0.066 0.047

vW1 -0.642 (0.165) 0.917 (0.211)

vW2 0.642 -0.558 (0.142)

vW3 -0.359
third birth (M = 3)
v -2.852 (0.174) -2.905 (0.441) -2.479 (0.245)

vA1 0.173 (0.149) 0.233 (0.213) 0.605 (0.278)

vA2 -0.200 (0.135) -0.216 (0.177) 0.209 (0.259)

vA3 -0.287 (0.134) -0.434 (0.179) -0.453 (0.207)

vA4 0.314 0.417 -0.361

vB1 0.342 (0.124) 0.439 (0.166) 0.244 (0.176)

vB2 -0.011 (0.111) -0.005 (0.142) -0.026 (0.131)

vB3 -0.332 -0.434 -0.218

vW1 -1.001 (0.341) 1.028 (0.394)

vW2 1.001 -0.953 (0.252)

vW3 -0.075
latent proportions

πW
1 0.547 0.292

πW
2 0.453 0.657

πW
3 0.051

linear effects of A and B on W

βAW -1.478 (0.441)

βBW 0.733 (0.343)
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the risk of the first birth. Although not demonstrated here, the ‘indepen-
dent’ three-class solution (Model 2c) detects the unobserved heterogeneity
in the first birth. In addition, the hazard parameters for the first birth are
similar to the ones of the ‘independent’ two-class model in Example 1.

The parameter estimates for the ‘linearly dependent’ three-class model
(Model 3b) are rather different from the other two models. The first class
consists of women with the lowest risk of a first birth and the highest risk
of a second and third birth. Class two has an intermediate risk of a first
birth and the lowest risk of a second and third birth. Class three has the
highest risk of a first child and an intermediate risk of a second and third
child. Thus, women belonging to class one either remain childless or have
a large family, women belonging to class two have the highest probability
of having only one child, while almost all women belonging to class three
have at least one child. The direct effects of A and B on W indicate
that there is a strong negative relationship between educational level and
W and a strong positive relationship between familism and W , where one
has to be aware of the fact that familism is coded from familistic to non-
familistic. Familistic highly educated women have the highest probability
of belonging to class one, while non-familistic women with a low education
have the highest probability of belonging to class three. Comparison of
the hazard parameters of Model 3b with the ones of Model 1b shows that
the effect of A on rate of first birth becomes weaker, while its effect on
the second and third birth becomes both stronger and more consistent in
the sense that the educational levels are almost in the ‘correct’ order. The
effect of B on the rate of first birth increases and its effects on the rate
of third birth decreases. With respect to the covariate effects on the rate
of first birth, it should be noted that the increase of the direct effect of A
and the decrease of the direct effect of B partially compensate the strong
indirect effects via W .

The example on the timing of the first, second, and third birth showed
that a substantial amount of unobserved heterogeneity may be detected
using the dependencies among spells. Although the models in which the
latent variable was assumed to be related to the observed covariates fitted
significantly better than the model with an ‘independent’ latent variable,
there are several problems associated with the former type of model. If the
relationships between the observed covariates and the latent variable are
not restricted, the models may become unstable. Another problem is that
indirect effects of the observed covariates via the latent variable and direct
effects of the observed covariates on the hazard rates may compensate one
another.
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Example 6: Labor market transitions

This example demonstrates how unobserved heterogeneity can be dealt with
when analyzing multiple-state data as in the case of labor market transi-
tions. In a particular period of time, individuals may move several times
through the states of employed, unemployed, and out of the labor force.
As in the preceding examples, the goal is not to build a model that ex-
plains as well as possible the processes that are going on in reality, but to
demonstrate the flexibility of the latent variable approach to unobserved
heterogeneity which was introduced in subsection 5.2.2.

Data and model Example 6 uses the SIPP data which were introduced
in Example 3. As in that example, information on a respondent’s employ-
ment status at six points in time with a mutual distance of three months is
selected from the available 1986-1987 SIPP data. For the sake of simplicity,
only two different states are distinguished: employed and not employed,
where not employed can be either unemployed or out of the labor force.
The analysis presented below concerns the transitions between these two
states. The observed covariates race, sex, and age that are used in the
model for the transition probabilities are the same as in Example 3. The
only difference is that now the information on the oldest age group is also
used. As a result, there are four age/cohort categories instead of three
(> 66, 47− 66, 27− 46, < 27).

The time dimension that is used in the discrete-time logit model is
calendar time. This means that the transition probabilities are assumed
not to depend on the duration in a particular state. So, in fact, a discrete-
time Markov model is used. When working with this kind of panel data, it
is very difficult to allow the transition probabilities to depend on duration.
The reason for this is that the observations are left-censored, which means
that no information is available on the time of entry into the state occupied
at the time of the first interview (see section 4.5). Although the Markov
assumption also implies that the transition probabilities depend only on
the origin state at the time point concerned, this assumption can easily be
relaxed.

Actually, the combined covariate model and discrete-time Markov model
used to analyze the SIPP data is a modified path model with a latent
mixture variable, sometimes also referred to as a mixed Markov model
(Poulsen, 1982; Van de Pol and Langeheine, 1990). The joint distribution
of the observed covariates (A, B, and C), the unobserved covariate (W ),
the initial state (S0), and the states occupied from T = 1 up to T = 5
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(S1, S2, S3, S4, and S5) can be written as

πabcws0s1s2s3s4s5 = πabcπw|abcπs0|abcw

5∏
l=1

πsl|abcwsl−1
, (5.11)

If Sl = 1, an individual is employed at T = tl, and if Sl = 2, an individual
is not employed at T = tl. Thus, if Sl−1 6= Sl, πsl|abcwsl−1

is the probability
of experiencing one of the possible transitions at the lth point in time.

It can be seen that in the model represented in Equation 5.11, the latent
variable W capturing the unobserved heterogeneity is assumed to intervene
between the observed covariates A, B, and C, and the dependent process
of interest. In this particular situation, such a specification seems to be the
most logical one since it is more plausible that an individual’s sex, race, and
age influence unobserved factors which are relevant for employment transi-
tions than the other way around. Possible intervening variables which are
not included in the model and which, as a result, may introduce unobserved
heterogeneity are educational level, human capital, work-related attitudes,
and position in the household in which one lives. The most general model
that is used for πw|abc is

πw|abc =
exp

(
uWw + uAWaw + uBWbw + uCWcw

)∑
w exp

(
uWw + uAWaw + uBWbw + uCWcw

) . (5.12)

This means that in the ‘dependent’ unobserved heterogeneity models, only
the two-variable interaction terms between W and the observed covariates
are included. An ‘independent’ unobserved heterogeneity model is obtained
by fixing the two-variable interactions uAWaw , uBWbw , and uCWcw to zero.

From Equation 5.11, it can be seen that the state that an individual
occupies at T = 0 is included as one of the variables in the model. This
makes it possible to specify a model for the relationship between the un-
observed covariate and the initial state. Two specifications are used for
the relationship between S0 and W : models containing the two-variable
interaction term uWS0

ws0 and models in which uWS0
ws0 is fixed to zero. The

relationships between A, B, C, and S0 are not restricted.
The model that is used for the transition probabilities is

πsl|abcwsl−1
= (5.13)

exp
(
v
SlSl−1
slsl−1 + v

ASlSl−1
aslsl−1 + v

BSlSl−1

bslsl−1
+ v

CSlSl−1
cslsl−1 + v

WSlSl−1
wslsl−1

)
∑
sl

exp
(
v
SlSl−1
slsl−1 + v

ASlSl−1
aslsl−1 + v

BSlSl−1

bslsl−1
+ v

CSlSl−1
cslsl−1 + v

WSlSl−1
wslsl−1

) ,
where

vSlSl−1
slsl−1

= vASlSl−1
aslsl−1

= v
BSlSl−1

bslsl−1
= vCSlSl−1

cslsl−1
= vWSlSl−1

wslsl−1
= 0 if Sl = Sl−1.



5.2. UNOBSERVED HETEROGENEITY 221

So, actually, the discrete-time logit model which is used to model the tran-
sitions from state Sl−1 to state Sl is a modified path model with modified
path steps of the form given in Equation 5.14. However, as demonstrated
in subsection 4.8.4, to obtain the same parameter estimates as in the stan-
dard discrete-time logit model, the v parameters cannot be identified by the
usual ANOVA-like restrictions, but the v parameters in which Sl = Sl−1

must be fixed to zero. Within each level of Sl−1 the stayers are treated
as reference category. These identifying restrictions give parameters that
can be interpreted as covariate effects on the transition probabilities rather
than covariate effects on the probability that Sl = sl. In other words, the
model consists of transition-specific main effects and covariate effects for
each l.

The discrete-time logit model represented in Equation 5.14 is already
a restricted model since it does not contain higher-order interaction terms
involving more than one covariate. This does not mean, however, that it is
not possible to include these higher-order interaction terms in the model.
In addition, more restricted models can be specified on the basis of this one.
For instance, a stationary Markov model is obtained by assuming both the
main effects and the covariate effects to be equal across time points. More-
over, a proportional model is obtained by assuming the covariate effects to
be equal across time points.11

Because in the SIPP panel the observation period is the same for all
persons, and all the covariates included in the model are categorical, the
data can be organized into a contingency table. This makes it possible
to test the fit of the estimated models by means of the likelihood-ratio
chi-square statistic L2.

Testing Table 5.12 presents the test results for the models that are es-
timated using the SIPP data. Models 1a and 1b are without covariate
effects. Models 2a-2e contain the effects of the observed covariates and of
the unobserved covariate, which is assumed to be independent of both the
initial position and the observed covariates. In Models 3a-3g, the unob-
served heterogeneity is assumed to be related to the initial position, and in
Models 4a-4d, it is assumed to be related to both the initial position and
the observed covariates.

The stationarity assumption can be tested by comparing the station-
ary and nonstationary models without covariates (Models 1a and 1b). The
conditional test of Model 1a against Model 1b indicates that, although

11Assuming parameters to be equal across time points involves restricting parameters
to be equal across modified path steps. Appendix E.3 explains how to estimate models
with such restrictions.
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Table 5.12: Test results for the estimated models for the transitions between
employed and not employed

Model L2 df p

no covariates
1a. stationary 3390.59 990 0.000
1b. nonstationary 3349.01 982 0.000
independent W
2a. 1 class 1919.82 980 0.000
2b. 2 class 1198.27 977 0.000
2c. 3 class 1116.78 974 0.001
2d. 4 class 1101.91 971 0.002
2e. 5 class 1077.53 968 0.008
W related to S0

3a. 2 stayer + 1 mover 1573.99 978 0.000
3b. 2 stayer + 2 mover 1098.98 974 0.003
3c. 2 stayer + 3 mover 963.86 970 0.550
3d. 2 stayer + 4 mover 945.33 966 0.677
3e. 2 class 1183.44 976 0.000
3f. 3 class 964.59 972 0.561
3g. 4 class 945.54 968 0.691
W related to S0, A, B and C
4a. 2 class 1064.04 971 0.019
4b. 3 class 851.85 962 0.996
4c. 4 class 795.82 953 1.000
4d. 2*2 class 876.56 963 0.978
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the nonstationary model fits significantly better than the stationary model
(L2

1a|1b = 41.58, df = 8, p < .001), the fit does not improve very much by as-
suming nonstationarity, especially if one compares it with the improvement
of the fit that occurs by including the effects of the observed covariates on
the two transition probabilities in the stationary model (Model 2a). The
conditional test between Models 1a and 2a shows that the L2 value falls
from 3390.58 to 1919.82 using only 10 degrees of freedom. Therefore, for
the sake of simplicity, in all the other models the Markov process is assumed
to be stationary.

The test results for the ‘independent’ unobserved heterogeneity models
(Models 2b-2e) show that there is a large improvement of L2 when a latent
covariate is included. Compared to 2a, the two-class model has an L2 value
more than 700 points lower using only three additional parameters. Also,
the third class captures a substantial amount of unobserved heterogeneity.
Even after including a fifth class (Model 2e) the L2 value goes down. Ap-
parently, there is a substantial amount of unobserved heterogeneity in the
data.

It seems implausible to assume that the unobserved risk factors influence
the transition probabilities, or equivalently, the states occupied from T = t1
to T = t5, but not the state occupied at T = t0. Therefore, a direct effect
of W on S0 is included in the model (Models 3a-3g). Including such an
effect makes it possible to specify a mover-stayer structure as proposed by
Wrigley (1990), that is, a model with one class of stayers for every origin
state. Models 3a-3d are models with two classes of stayers, one for the
state employed and one for the state not employed, while Models 3e-3g
are unrestricted. As in the example on the transition out of the state of
unemployment (Example 3), the mover-stayer models become almost equal
to the non-restricted models if the number of classes increases. This is
caused by the fact that the latent proportions in the classes of stayers
become rather small very quickly. In this example, the unrestricted three-
class model (Model 3e) fits as well as the model with two classes of stayers
and three classes of movers (Model 3c), and the four-class model (Model
3f) fits as well as the model with two classes of stayers and four classes of
movers (Model 3d). It has to be concluded that in this particular situation
the mover-stayer structure does not function very well.

Comparison of Model 3e with Model 2b shows that the fit of the two-
class model does not improve as much as one would expect by including a
direct effect of W on S0 (L2

2b|3e = 14.83, df = 1, p < .001). On the other
hand, the three- and four-class models improve a great deal. This can be
seen by comparing Model 3f with Model 2c (L2

2c|3f = 152.19, df = 2, p =

.000) and Model 3g with Model 2d (L2
2d|3g = 156.38, df = 3, p = .000).
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As in the previous examples, it is possible to relax the assumption that
the unobserved heterogeneity is independent of the observed heterogene-
ity. This can be accomplished by including direct effects of the observed
covariates on the latent variable in models as described in Equation 5.12.12

The test results of Models 4a-4c compared with those of Models 3e-3g
indicate that inclusion of the two-variable interactions uAWaw , uBWbw , and
uCWcw greatly improves the fit, irrespective of the number of latent classes:
L2

3e|4a = 119.40, df = 5, p = .000; L2
3f |4b = 112.74, df = 10, p = .000; and

L2
3g|4c = 149.72, df = 15, p = .000. Here, the linear-by-linear model is not

used because two covariates are dichotomous and the third covariate, age,
cannot be expected to have a linear effect on W .

The models presented so far contained one latent variable influencing
both the transition from employed to not employed and the transition from
not employed to employed. So, in fact, it was assumed that the unobserved
risk factors are the same for both transitions. Whether the unobserved
factors which influence the two transition probabilities are the same or
not can be tested by using a specification with two latent variables, each of
which is assumed to influence one of the two transitions. Model 4d contains
two related dichotomous latent variables, one influencing the transition
from employed to not employed and one influencing the transition from
not employed to employed. Although the fit of Model 4d is better than
the two-class model with only one latent variable (Model 4a), it is worse
than that of Model 4b, which has almost the same number of parameters
as Model 4d. So, assuming origin state-specific latent variables does not
lead to a simpler and better fitting model.

Parameters Table 5.13 reports the parameter estimates for Model 2a
and for three variants of the well-performing three-class model (Models 2c,
3f, and 4b). In the model without unobserved heterogeneity (Model 2a),
females, blacks, and persons belonging to the oldest and the youngest age
groups have the highest risk of experiencing a transition from employed to
not employed. On the other hand, males, non-blacks, and persons belonging
to the two youngest age groups have the highest risk of moving from not
employed to employed.

In Model 2c, most parameter estimates are somewhat more extreme
than those in Model 2a. This is the same result as in the other examples
with an ‘independent’ latent variable. The effects of the latent variable

12It should note that, like in the previous examples of ‘dependent’ unobserved hetero-
geneity models, several local solutions were found when estimating Models 4a-4d. This
means that when using these types of models one must try out several sets of random
starting values.
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Table 5.13: Parameter estimates for some models for the transitions be-
tween employed and not employed

Model 2a Model 2c Model 3f Model 4b
employed to not employed (Sl−1 = 1 and Sl = 2)
v -2.232 (0.064) -3.458 (0.166) -1.830 (0.132) -1.335 (0.201)

vA1 ,−v
A
2 -0.139 (0.033) -0.185 (0.047) -0.243 (0.051) -0.104 (0.096)

vB1 ,−v
B
2 -0.202 (0.054) -0.198 (0.079) -0.298 (0.082) -0.365 (0.148)

vC1 0.435 (0.131) 0.221 (0.171) 0.663 (0.171) 0.687 (0.332)

vC2 -0.330 (0.071) -0.281 (0.097) -0.144 (0.102) -0.644 (0.221)

vC3 -0.653 (0.064) -0.656 (0.087) -0.943 (0.096) -0.588 (0.173)

vC4 0.548 0.716 0.424 0.545

vW1 2.520 (0.227) 2.027 (0.102) 1.157 (0.139)

vW2 1.885 (——) -0.052 (0.134) 0.819 (0.220)

vW3 -4.405 -1.975 -1.976
not employed to employed (Sl−1 = 2 and Sl = 1)
v -2.546 (0.073) -2.076 (0.158) -2.394 (0.135) -1.728 (0.209)

vA1 ,−v
A
2 0.266 (0.036) 0.219 (0.054) 0.304 (0.057) -0.037 (0.083)

vB1 ,−v
B
2 0.274 (0.056) 0.324 (0.083) 0.333 (0.091) 0.616 (0.111)

vC1 -2.339 (0.151) -3.394 (0.282) -3.645 (0.250) -1.510 (0.432)

vC2 -0.217 (0.082) -0.190 (0.150) -0.365 (0.141) 0.111 (0.243)

vC3 1.120 (0.072) 1.626 (0.132) 1.798 (0.139) 1.625 (0.201)

vC4 1.436 1.958 2.212 -0.226

vW1 -0.500 (0.134) -0.479 (0.121) 0.680 (0.155)

vW2 3.043 (0.274) 2.798 (0.216) -2.989 (0.158)

vW3 -2.543 -2.319 2.309
latent proportions

πW
1 0.292 0.188 0.140

πW
2 0.100 0.217 0.334

πW
3 0.608 0.596 0.525

effects of observed covariates on W

uAW
11 ,−uAW

21 0.243 (0.059)

uAW
12 ,−uAW

22 -0.463 (0.048)

uAW
13 ,−uAW

23 0.220

uBW
11 ,−uBW

21 -0.198 (0.095)

uBW
12 ,−uBW

22 0.126 (0.075)

uBW
13 ,−uBW

23 0.073

uCW
11 −∞ (0.479)

uCW
12 1.298 (0.242)

uCW
13 -1.298

uCW
21 -0.477 (0.241)

uCW
22 0.305 (0.130)

uCW
23 0.172

uCW
31 -0.503 (0.115)

uCW
32 -0.253 (——)

uCW
33 0.756

uCW
41 0.879

uCW
42 -1.300

uCW
43 0.420

effect of W on initial position (S0)

u
WS0
11 ,−uWS0

12 -0.737 (0.063) -0.308 (0.074)

u
WS0
21 ,−uWS0

22 0.607 (0.069) -1.027 (0.093)

u
WS0
31 ,−uWS0

32 0.130 1.334
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on the transition probabilities indicate that the largest class, containing 61
percent of the population, consists of persons with a low risk of becoming
not employed and a low risk of finding a job after becoming not employed.
Actually, it is a class of stayers in either the position employed or the posi-
tion not employed. The first class, with a latent proportion of 29 percent,
consists of persons with a high risk of becoming not employed and a mod-
erate risk of becoming employed. And finally, the smallest class is a class
of frequent movers, that is, persons that have both a high risk of becoming
not employed and a high risk of finding a job.

In Model 3f, the latent variable was allowed not only to influence the
transition probabilities but also the initial position; in other words, W was
allowed to have an indirect effect on the states occupied after T = t0 via the
value of S0. As can be seen, this slightly increases the effects of the observed
covariates on the transition probabilities. The effect of W on the initial po-
sition indicates that persons belonging to the first class have a relatively
high probability of starting in the position not employed, while persons be-
longing to the second class have a relatively high probability of starting in
the position employed. Apparently, these unequal initial positions of per-
sons belonging to the different latent classes have two consequences. First,
the latent distribution changes considerably, and second, the effect of the
latent variable becomes less strong. The first class now has a much higher
risk of becoming not employed than the other two groups, and although the
risk of becoming not employed for the third class is not so low any more as
in Model 2a, it is still much lower than for the other two classes. The effect
of W on the transition from employed to not employed does not change
very much.

The parameter estimates for Model 4b indicate that including direct
effects of the observed covariates on the latent variable W has the strongest
impact on the covariate effects on the transition from not employed to
employed. If we look at the log-linear parameters indicating the covariate
effects on W , we can see that women (A = 2) belong more often to class
two than men (A = 1). This class has a low probability of finding a job
and a high probability of becoming not employed. The inclusion of this
indirect effect of sex on the transition probabilities leads to a decrease of the
negative effect of sex on the transition from employed to not employed and a
disappearance of the positive effect of sex on the transition from employed
to not employed. The effect of B on W indicates that blacks (B = 2)
belong more often to class one that non-blacks (B = 1). This class has the
highest risk of becoming not employed and an intermediate risk of becoming
employed. The increased positive effect of B on the probability of becoming
employed indicates that the indirect effect of B via W overestimates the
probability of finding a job for blacks. The effect of age (C) on W shows
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that the oldest age group (C = 1) never belongs to class one. Most of them
belong to W = 2. Also the largest proportion of individuals in the second
age group belong to class two. The third age group is overrepresented in
class three, while most people of the youngest age belong to either class
one or three. If we look at the effect of C on the probability of getting
employed, we can see that especially the parameter estimate for C = 4
changes dramatically. The fact that the strong positive effect of C = 4
disappears is caused by the fact that the youngest age group belongs to
either classes one or three, which have the highest probability of getting
employed. Moreover, the negative effect for C = 1 decreases because the
oldest age group has the highest probability of belonging to the low-risk
class two. With respect to the effect of C on the probability of becoming
not employed, it can be seen that the parameter estimates for the low-risk
groups C = 2 and C = 3 become almost equal to one another.

This example demonstrates the importance of correcting for unobserved
heterogeneity when analyzing multiple-state data. The ‘independent’ un-
observed heterogeneity models detected a substantial amount of interde-
pendence between the different spells of one individual. In addition, it was
shown that the latent variable approach which is proposed here is very
flexible: Several specifications can be used for the latent variable capturing
unobserved heterogeneity. Besides the standard ‘independent’ unobserved
heterogeneity specification, the latent variable capturing the unobserved
heterogeneity may be related to both the observed covariates and the initial
position. Moreover, models with several mutually related latent variables
can be specified. It was also shown that the results may be strongly influ-
enced by the specification which is chosen. This illustrates that substantive
arguments must guide the choice of model specification.

5.2.7 Dependent or clustered observations

As demonstrated in section 4.8, not only models for repeatable events and
multiple-state processes, but also models for dependent or clustered ob-
servations belong to the family of multivariate hazard models. Clustered
survival data occurs in many situations. Instances of clustered data are
observations of members of the same household, observations of spouses
or brothers, observations of different parts of the body of one individual
or animal in medical trials, observations of different parts of a machine,
etc. Repeatable events can also be seen as a specific form of clustered ob-
servations since, in that case, there are several observations of the same
individual too. Like repeatable events, clustered survival times can gen-
erally not be treated as independent observations, even after controlling
for the observed covariates which are included in the hazard model. The
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reason for this is that there will be unobserved heterogeneity which the
observations belonging to the same cluster have in common.

This subsection demonstrates how to use the general latent variables
approach to unobserved heterogeneity when analyzing bivariate survival
data. For this purpose, Example 2 (on dropping out of school) is extended:
the respondents’ school careers as well as the school careers of their brothers
are analyzed. Although the example concerns a situation in which each
cluster consists of exactly two observations, the approach used here can
also be applied when clusters contain more than two observations, possibly
with clusters of unequal sizes.

Example 7: School transitions of brothers

Data and model The example of respondents’ school careers (Example
2) is extended by analyzing simultaneously the school histories of respon-
dents and their brothers. As mentioned above, Mare (1994) used the data
on the schooling of brothers to demonstrate how to use a latent class ap-
proach to detect dependencies between survival times when observations
are dependent or clustered. The model proposed by Mare is a special case
of the hazard model with unobserved heterogeneity which was presented in
subsection 5.2.2. Mare specified a bivariate discrete-time logit model with
a dichotomous ‘independent’ latent variable which was assumed to have
a proportional and equal effect on respondents’ and their oldest brothers’
probabilities of dropping out of school.13

Here, part of Mare’s analysis is repeated, but also several types of ex-
tensions are presented which lead to models fitting much better than the
latent class models presented by Mare. In addition, it is demonstrated that
the discrete-time event history model proposed by Mare can be specified in
a much easier and efficient way when it is treated as a modified path model
with latent variables.

Apart from the observed covariate father’s education denoted by A, the
bivariate discrete-time logit model contains two latent variables W and Y
denoting the unobserved respondent’s (W ) and brother’s (Y ) factors influ-
encing the risk of dropping out of school, where W and Y are assumed to
be associated with each other. As in the previous examples, the unobserved
variables are assumed to be intervening variables. This implies that, in the
covariate part of the model, a model has to be specified for πwy|a. The

13Information is available on the school careers of respondents and their oldest broth-
ers. It should be noted that a respondent’s oldest brother is not necessarily older than
the respondent.
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most general model that is used for πwy|a is

πwy|a =
exp

(
uWw + uYy + uAWaw + uAYay + uWY

wy

)∑
wy exp

(
uWw + uYy + uAWaw + uAYay + uWY

wy

) . (5.14)

It can be seen that the three-variable interaction term uAWY
awy is assumed to

be zero.
Several kinds of specifications can be obtained by restricting the two-

variable interactions appearing in the model described in Equation 5.14.
The latent variables can either be assumed to be independent of or depen-
dent on A. When they are independent of A, all uAWaw and uAYay parameters
must be fixed to zero. Dependence of W and Y on A is modeled by means
of linear-by-linear interaction terms. This specification is used because it
forces the effects of the ordinal variable father’s education on the interven-
ing unobserved factors to have systematic patterns.

In the discussion below, the relationship between W and Y is modeled
in several ways. The simplest one is to assume all nondiagonal elements of
the conditional distribution of WY given A to be empty,

πwy|a = 0 if w 6= y , (5.15)

that is, to assume all uWY
wy terms in which w 6= y to be equal to −∞. This

boils down to assuming that the unobserved factors influencing the risk of
dropping out of school are the same for respondents and brothers. In other
words, W and Y are actually identical, and it is more efficient then to use
only one latent variable instead of two.

Other possible specifications of the conditional distribution of W and Y
given A are symmetry and quasi-symmetry. A symmetry model is obtained
by restricting

uWY
wy = uWY

yw and uWw = uYy , (5.16)

and quasi-symmetry by

uWY
wy = uWY

yw . (5.17)

The likelihood-ratio test of the symmetry model against the quasi-symme-
try model can be used to test the assumption of marginal homogeneity of W
and Y (Bishop, Fienberg and Holland, 1975: Chapter 8; Hagenaars, 1986,
1990:156-162). Thus, it is not only possible to test the strong assumption
that W and Y are identical, it is also possible to test the weaker assumption
that W and Y have the same marginal distribution.
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The event history part of the model consists of separate discrete-time
logit models for oldest brothers and respondents,

λ1(tl|a,w) =
exp

(
vM1 + vLMl1 + vAMa1 + vYMy1 + vALMal1 + vY LMyl1

)
1 + exp

(
vM1 + vLMl1 + vAMa1 + vYMy1 + vALMal1 + vY LMyl1

) ,
(5.18)

λ2(tl|a, y) =
exp

(
vM2 + vLMl2 + vAMa2 + vWM

w2 + vALMal2 + vWLM
wl2

)
1 + exp

(
vM2 + vLMl2 + vAMa2 + vWM

w2 + vALMal2 + vWLM
wl2

) .
(5.19)

Here, λ1(tl|a,w) is the brother’s probability of dropping out of school at the
lth point in time, while λ2(tl|a,w) is the same probability for the respon-
dent. To distinguish the parameters of the two discrete-time logit models
a variable M is introduced, taking value 1 for the oldest brother and value
2 for the respondent. Variable A denotes the father’s education, W and Y
are the latent covariates, and L is the discrete time interval.

Equality restrictions can be imposed on the parameters across the two
models represented in Equations 5.18 and 5.19. For simplicity of exposition,
the models that are presented here differ only from each other with respect
to the specification of the effects of W and Y . The specification of the
duration effects and the effects of father’s schooling is based on Mare’s best
fitting model. This means that the duration effects are not restricted and
that the effects of father’s schooling are assumed to be nonproportional,
but equal for respondents and brothers. In other words, the restrictions
that

vAMa1 = vAMa2 and vALMal1 = vALMal2 (5.20)

are imposed.
Mare (1994) estimated the bivariate discrete-time logit model with Haber-

man’s NEWTON program (Haberman, 1988), which is a program for esti-
mating latent class models and other kinds of log-linear models with latent
variables. It can be demonstrated that the model formulated in Equations
5.14, 5.18, and 5.19 is similar to a latent class model or, more precisely, to
a latent class model with direct effects between indicators. When a speci-
fication is used in which W is identical to Y (see Equation 5.15), using the
modified path notation introduced in sections 2.9 and 3.1, the probability
density function of the above bivariate survival model can also be written
as

πaws11s12s21s22 = πaπw|aπs11|awπs12|aws11πs21|awπs22|aws21 . (5.21)
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Here, S11, S12, S21, and S22 denote the states occupied by the brother (S11,
S12) and the respondent (S21, S22) at the two points in time. It will be
clear that the model represented in Equation 5.21 is a modified path model
with a latent variable. As a result, it must be estimated in the same way
as the modified path models described in section 3.1.

It can be seen that, in fact, the variables S11, S12, S21, and S22 serve
as indicators for the latent variable W . The model differs from an ordinary
latent class model in that the states occupied at the second point in time
depend on the states occupied at the first point in time. In this sense the
model is similar to a latent class model with direct effects between indicators
as proposed by Hagenaars (1988). Here, these direct effects are, however,
fixed a priori by means of structural zero probabilities, or equivalently, by
log-linear parameters fixed to be equal to −∞, because the state dropped
out is an absorbing state: If someone drops out at the first point in time, the
probability of being a dropout at the second point in time is one. Another
difference between the model described in Equation 5.21 and a standard
latent class model is the presence of an external variable (A) that is assumed
to be related to the indicators.

Because Mare (1994) used the NEWTON program to estimate the bi-
variate logit model, he specified it in a different way. Although Winship
and Mare (1989) showed that it is possible to specify modified path models
by means of NEWTON, normally the model parameters are estimated in
the complete table, that is, in the table containing all variables. For a stan-
dard latent class model, this is not a problem. Because of the assumed local
independence among indicators, it does not matter whether the parameters
are estimated in the separate marginal tables containing an indicator and
the corresponding latent variable or in the complete table. This results
from the collapsibility theorem (Bishop, Fienberg, and Holland, 1975:47-
48). However, in this example it does matter whether W is specified to
be independent of A in the marginal table AW or in the complete table.
This results from the fact that both A and W are supposed to have a di-
rect effect on S11, S12, S21, and S22. By specifying W to be independent
of A in the table including S11, S12, S21, and S22, Mare (1994) made the
latent covariate conditionally independent of A, that is, given the values of
S11, S12, S21, and S22. Such a specification is not in agreement with the
usual way of specifying unobserved heterogeneity and, moreover, it is a bit
strange since normally it makes no sense to set conditions on something
that is posterior. As will be demonstrated below, Mare’s specification may
yield estimates which differ a great deal from the ones obtained with the
specification described in Equation 5.21.
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Table 5.14: Test results for the estimated models for respondents’ and oldest
brothers’ dropping out of school

Model L2 df p
1. 1 class 4381.64 28 0.000
2. 2 class 689.26 26 0.000
3a. 3 class 256.07 24 0.000
3b. 3 class with linear effect of W 257.61 25 0.000
4a. 4 class 186.76 22 0.000
4b. 4 class with linear effect of W 199.22 23 0.000
5a. Model 3b + linear AW 132.20 24 0.000
5b. Model 3b + unequal effects of W 214.47 24 0.000
5c. Model 3b + nonproportional effects of W 244.13 24 0.000
6a. 2*3 class unrestricted WY 163.45 19 0.000
6b. 2*3 class symmetric WY 234.55 22 0.000
6c. 2*3 class quasi-symmetric WY 164.94 20 0.000
7a. Model 6c + linear AW and AY 26.73 18 0.083
7b. Model 6c + linear AW = AY 28.84 19 0.069
7c. Model 6c + unequal effects of W and Y 155.18 19 0.000
7d. Model 6c + nonproportional effects of W and Y 159.75 19 0.000
8. Model 7d - effect of A + unrestricted AW = AY 50.26 19 0.000

Testing Table 5.14 gives the test results for the models that are estimated
with the brothers’ schooling data. Model 1, which is used as a reference
model, does not contain unobserved heterogeneity. The model for the risk
of dropping out is of the form given in Equations 5.18 and 5.19, with the
restriction described in Equation 5.20. In other words, the effect of fathers’
schooling on the dropout probability for respondents and their oldest broth-
ers is assumed to be nonproportional and equal for respondents and their
brothers. Model 1 fits very badly (L2 = 4381.64, df = 28, p = .000). Appar-
ently, the assumption of conditional independence between brothers’ and
respondents’ schooling must be rejected. Note that here it is possible to
test explicitly the conditional independence assumption by means of the
likelihood-ratio chi-square. However, when using continuous-time models,
such a test does not exist. This is perhaps the reason why most researchers
use event history models without being concerned about possible depen-
dencies among observations.

The next set of models contains one latent variable to be denoted by
W . As mentioned above, this is equivalent to assuming that the association
between W and Y is perfect (see restriction 5.15). For the moment, the
effects of the latent variable in the discrete-time logit model are assumed
to be equal for respondents and brothers and proportional, that is, vWM

w1 =
vWM
w2 and vWLM

wl1 = vWLM
wl2 = 0, and W is assumed to be independent of A.

As can be seen from Table 5.14, including a two-class latent covariate
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in the bivariate logit model (Model 2) improves the fit a great deal com-
pared to Model 1 (L2 = 689.26) with only two additional parameters: a
latent class proportion and the effect of W on the transition probabilities.
A two-class model of this form is the most extended model with unobserved
heterogeneity presented by Mare (1994). But, as mentioned above, an im-
portant difference with the approach presented here is that Mare estimated
the model parameters in the complete table, which gives an L2 value of
877.65 instead of 689.26.

By including a third latent class (Model 3a), the fit improves again
a great deal (L2 = 256.07). Even including a fourth class in the model
(Model 4a) improves the fit considerably (L2 = 186.76), especially if one
realizes that only two additional parameters are used for each additional
latent class. To test whether the latent variable has a linear effect on the
transition probability, in Models 3b and 4b, the effects of W are restricted
to be linear. The fit of the three-class model does not deteriorate by this
additional restriction (L2

3b|3a = 1.52, df = 1, p > .21). Although in the
four-class model the linear restriction leads to a significantly worse model,
the increase in L2 is moderate (L2

4b|4a = 12.54, df = 2, p < .002), especially
if the huge sample size of 18,563 cases is taken into account.

Because the gain of incorporating a fourth class is relatively small com-
pared to the gain of incorporating a second and third class, an effort can
be made to improve the well-performing three-class model (Model 3b) by
relaxing one by one the underlying assumptions of this model with regard
to the nature of the unobserved heterogeneity. These assumptions are: an
equal effect of W on the probability of dropping out for the respondent and
his brother, proportionality of the effect of W , W independent of A, and
identical unobserved risk factors for the respondent and his oldest brother.
The first three assumptions can be relaxed using models with only one
latent variable W (Models 5a-5c). To relax the other assumption, it is
necessary to specify models with two latent variables W and Y (Models
6a-6c).

Inclusion of a linear direct effect of A on W in the model (Model 5a)
greatly improves the fit of the model compared to Model 3b (L2

3b|5a =

125.41, df = 1, p = .000). Also, relaxing only the assumption that the
effect of W is equal for respondents and brothers (Model 5b) leads to a
considerably better fit (L2

3b|5b = 43.14, df = 1, p = .000). Although the
improvement is relatively less important, allowing the effect of W to be
nonproportional (Model 5c) leads to a significantly better fitting model as
well (L2

3b|5c = 13.48, df = 1, p = .000). So, all three assumptions concerned
seem to be violated.

To check whether the unobserved risk factors are the same for respon-
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dents and their brothers, a model is specified with two latent variables
denoted by W and Y (Model 6a). As mentioned above, W is assumed
to capture the respondent’s unobserved factors and Y the brother’s un-
observed factors. Actually, compared to Model 3b, only the restrictions
described in Equation 5.15 are relaxed. Because these restrictions involve
fixing parameters to their boundary values, it is not possible to test Model
3b against Model 6a by means of a likelihood-ratio test. Nevertheless, the
large difference in L2 between Model 6a and Model 3b – 94.14 using six
additional parameters – indicates that the assumption that the unobserved
risk factors for the respondent and the brother are exactly the same, is too
strong.

Besides the unrestricted specification of the relationship between W and
Y which is used in Model 6a, more restricted specifications can be used. In
Model 6b, the relationship between W and Y is assumed to be symmetric,
and in Model 6c, it is specified to be quasi-symmetric. The restrictions
to obtain these two models are described in Equations 5.16 and 5.17, re-
spectively. The conditional test of the quasi-symmetry model (Model 6c)
against Model 6a demonstrates that the relationship between W and Y
can be described very well by a quasi-symmetry model (L2

6c|6a = 1.49, df =

1, p > .22). On the other hand, the symmetry model (Model 6b) performs
very badly compared to Model 6a (L2

6b|6a = 71.10, df = 3, p = .000). The
test of the symmetry model against the quasi-symmetry model provides
us with the well-known conditional test for marginal homogeneity (Bishop,
Fienberg and Holland, 1975: Chapter 8; Hagenaars, 1990:156-162). This
test leads to a significant result as well (L2

6b|6c = 69.61, df = 2, p = .000).
Thus, the conclusion can be that respondents and their oldest brothers do
not have exactly the same unobserved factors and that, moreover, W and
Y have different marginal distributions.

By means of Models 5a-6c it was tested whether the fit of Model 3b
could be improved by relaxing one by one the underlying assumptions of
this model with regard to the nature of the unobserved heterogeneity. The
next set of models (Models 7a-7d) investigate the effect of relaxing these
assumptions simultaneously. The starting-point is Model 6c: the model
with a quasi-symmetric relation between W and Y , with equal, linear, and
proportional effects of W and Y on the transition probabilities, and without
direct effects of A on W and Y .

Including a direct linear effect of A on W and Y (Model 7a), greatly
improves the fit of Model 6c (L2

6c|7a = 138.21, df = 2, p = .000). If the

relationships AW and AY are assumed to be equal (Model 7b), the fit does
not deteriorate at all (L2

7b|7a = 2.11, df = 1, p > .14). Allowing for unequal

effects of W and Y (Model 7c) and nonproportional effects of W and Y
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on the transition probabilities (Model 7d) leads to better fitting models as
well (L2

6c|7c = 9.76, df = 1, p < .002; and L2
6c|7d = 5.19, df = 1, p < .03).

The improvement of the fit is, however, not so spectacular as with Models
7a and 7b.

Thus, as the final model could serve the very well-fitting Model 7b
(L2 = 28.84, df = 19, p > .06). This model contains a quasi-symmetric
relationship between W and Y and equal and linear effects of A on W
and Y . Model 7b is a parsimonious model that can be interpreted easily:
The schooling histories of respondents and their brothers are condition-
ally independent of one another given their fathers’ educational level and
the person-specific unobserved risk factors. These unobserved factors have
equal, linear, and proportional effects on the logit of probability of dropping
out for respondents and their oldest brothers. Moreover, the unobserved
factors W and Y are associated, and are equally and linearly influenced by
the fathers’ schooling.

But, as will be demonstrated below, Model 7b yields are rather strange
effects of fathers’ education on the probability of dropping out. To illus-
trate that the specification of the nature of the unobserved heterogeneity
used in Model 7b is just one of the possible specifications leading to a
well-fitting model, another quite different specification is used in Model 8.
Because the strange parameters obtained from Model 7b are probably the
result of the assumed linearity of the relationship between A and Y , and
between A and W , this assumption is relaxed in Model 8. However, be-
cause of the bad experience with models with both unrestricted indirect
effects and unrestricted direct effects of observed covariates of the transi-
tion probabilities (see Example 1), the direct effect of A on the transition
probabilities is excluded from Model 8. To compensate for the nonpropor-
tionality of the effect of A that was found in the other models, the effects
of Y and W are allowed to be nonproportional. So, Model 8 is a model
without a direct effect of A on the respondent’s and brother’s probability of
dropping out, with unrestricted but equal AW and AY interaction terms,
and with equal and linear but nonproportional effects of W and Y . Al-
though its fit is not as good as for Model 7b, Model 8 performs rather well
(L2 = 50.26, df = 19, p = .000), especially if the huge sample size (18,563)
is taken into account. As will be shown below, the parameter estimates for
Model 8 can be easily interpreted.

Parameters Table 5.15 reports the parameter estimates for Model 1 and
for four different three-class models. It must be noted that, to be able
to compare directly the mean of the logit of the transition probability for
brothers and respondents at the two points in time, the main effect vMm is
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Table 5.15: Parameter estimates for some models for respondents’ and
oldest brothers’ dropping out of school

Model 1 Model 3b Model 6c Model 7b Model 8
discrete-time logit parameters

vLM
11 -1.338 (0.030) -2.841 (0.054) -2.906 (0.076) -9.291 (2.895) -8.977 (0.248))

vLM
21 -0.142 (0.025) -0.596 (0.054) -0.086 (0.132) 11.814 (0.263) 1.809 (0.270))

vLM
12 -1.543 (0.030) -3.171 (0.057) -3.035 (0.076) -2.284 (0.763) -1.620 (0.228)

vLM
22 -0.256 (0.024) -0.805 (0.053) 0.101 (0.125) 11.600 (0.238) 2.633 (1.196)

vAL
11 1.486 (0.029) 2.224 (0.048) 2.547 (0.076) 1.148 (0.724)

vAL
21 0.942 (0.035) 1.359 (0.059) 1.395 (0.093) 1.555 (0.709)

vAL
31 -0.424 (0.042) -0.771 (0.057) -0.868 (0.069) -3.611 (2.828)

vAL
41 -0.662 (0.068) -1.021 (0.091) -1.127 (0.097) 0.185 (0.777)

vAL
51 -1.342 -1.791 -1.947 0.723

vAL
12 0.945 (0.025) 1.872 (0.047) 2.706 (0.090) 0.715 (0.071)

vAL
22 0.797 (0.034) 1.523 (0.056) 1.975 (0.111) 1.036 (0.125)

vAL
32 0.215 (0.030) 0.199 (0.055) 0.089 (0.070) 0.153 (0.086)

vAL
42 -0.615 (0.049) -1.148 (0.110) -1.572 (0.149) -0.464 (0.103)

vAL
52 -1.342 -2.446 -3.198 -1.440

βW , βY 3.079 (0.059) 3.253 (0.096) 13.073 (——)

βWL
1 , βY L

1 11.464 (——)

βWL
2 , βY L

2 5.544 (0.832)
latent proportions

πWY
11 0.079 0.178 0.279 0.151

πWY
12 0.053 0.027 0.073

πWY
13 0.041 0.061 0.036

πWY
21 0.000 0.042 0.042

πWY
22 0.555 0.376 0.162 0.245

πWY
23 0.000 0.126 0.149

πWY
31 0.020 0.023 0.004

πWY
32 0.000 0.030 0.030

πWY
33 0.366 0.332 0.251 0.270

effect of A on W and Y

βAW , βAY - 0.285 (0.011)

uAW
11 , uAY

11 -0.700 (0.018)

uAW
21 , uAY

21 -0.526 (0.022)

uAW
31 , uAY

31 0.068 (0.020)

uAW
41 , uAY

41 0.383 (0.028)

uAW
51 , uAY

51 0.773

uAW
12 , uAY

12 -0.014 (0.020)

uAW
22 , uAY

22 0.096 (0.024)

uAW
32 , uAY

32 0.270 (0.024)

uAW
42 , uAY

42 -0.097 (0.037)

uAW
52 , uAY

52 -0.253

uAW
13 , uAY

13 0.714

uAW
23 , uAY

23 0.430

uAW
33 , uAY

33 -0.339

uAW
43 , uAY

43 -0.286

uAW
53 , uAY

53 -0.520
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absorbed in vLMlm . As can be seen from the vLMlm parameters of Model 1, at
both school levels the risk of dropping out is somewhat lower for respondents
(M = 2) than for their oldest brothers (M = 1). Furthermore, as could
be expected, the effect of fathers’ schooling shows a monotonic pattern at
both points in time. The nonproportionality of the effect of A results from
the fact that the differences between the transition probabilities of adjacent
categories of A change strongly between T = t1 and T = t2: The distances
between the first three categories of A are much smaller at the second school
level, while the distance between the third and fourth categories of A are
much larger at the second school level.

From the parameters of Model 3b, it can be seen that including an
‘independent’ three-class latent covariate in the discrete-time logit model
leads to more extreme parameters. The differences between respondents
and brothers, between the two time points, and between the categories of
A are larger than in Model 1. It is important to note that these results are
exactly the opposite of the results obtained by Mare (1994). It was checked
whether the differences are caused by the additional latent class, but this
is not the case. Also in the two-class model (Model 2) the parameters
are more extreme than in Model 1. So, the fact that Mare estimated the
bivariate logit model in the complete table instead of using a modified path
model not only leads to a worse model fit, but also to completely different
substantive results.

The latent proportions and effects of W on the transition probabilities
show that there is a group containing 37 percent of the population with an
extremely high risk of dropping out of school.14 Persons belonging to class
two, the modal class, have a low risk of dropping out of school, and a small
group containing 8 percent of the population has an extremely low risk of
dropping out of school.

In the quasi-symmetry model (Model 6c), the distribution of the un-
observed factors for respondents (W ) and brothers (Y ) was allowed to be
different. This leads to even more extreme differences between the time
categories and among the levels of father’s education. However, the dif-
ferences between the mean of the logit of the transition probabilities for
respondents and their brothers disappear. At the second point in time,
brothers have an even lower risk of dropping out than respondents. This
is not surprising, because brothers, who, as we saw, have a higher risk of
dropping out of school, less often belong to the low-risk class (class one)
than respondents (0.19 versus 0.27). Note that these probabilities can be
calculated from the cell probabilities of the joint latent distribution of W

14Note that the scores that were used for W and Y in the linear effects βW and βY

are -1, 0, and 1. Therefore, the parameters for categories 1, 2, and 3 of W and Y are
3.079, 0.0000, and 3.079, respectively.
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and Y .
As demonstrated above, by allowing W and Y to depend linearly and

equally on A, the fit of the model improved a great deal. But, as can be
seen from Table 5.14, the parameters of the discrete-time logit model for
Model 7b are rather different from the parameters for Models 1, 3b, and
6c. Particularly the effect of fathers’ education is very difficult to interpret
since the monotonic pattern disappeared completely. From the covariate
part of Model 7b, it can be seen that the effect of A on W and Y is rather
strong. For instance, the ratio of the odds of belonging to class one rather
than to class three between persons with less and highly educated fathers is
exp(8 ∗−0.285) = .102.15 In other words, individuals with highly educated
fathers will belong to class one more often, while persons with less educated
fathers will belong to class three in more cases.

The latent probabilities show that now brothers belong more often to
the high-risk class (class three) than respondents (.44 versus .30). On the
basis of the size of the direct effects of W and Y on the transition probabil-
ities (13.073), it can be concluded that persons belonging to class one are
stayers, while persons belonging to class three certainly drop out, where
the probability of dropping out at the first point in time is higher for re-
spondents than for brothers. Note that the linear effect of 13.073 means
that the effects are −1 ∗ 13.073 for class one, 0 ∗ 13.073 for class two, and
1 ∗ 13.073. for class three.16 However, the larger number of brothers in
class three is partially compensated by a lower mean transition probability
at the first point in time.

Most of the effects of fathers’ education on the risk of dropping out
are weaker than in Model 6c. This is to be expected when an observed
covariate is allowed to have an indirect effect on the transition probabilities
via a latent variable. The effects of A are no longer monotonic, however,
with the parameter vAL31 (-3.611) being a real outlier. This problem, which
makes the effect of A difficult to interpret, can be expected to be caused by
the fact that the effect of A on Y and W was restricted to linear-by-linear.
This probably resulted in a too high number of people with A = 3 in the
high-risk classes, which is compensated by an extremely low direct effect
on the transition probability.

The estimated transition probabilities for Model 7b, which are reported
in Table 5.16, demonstrate the implication of the extreme values of the haz-
ard parameters. Although the first class is clearly a low-risk class, contrary

15For the levels of W and Y the scores -1, 0, and 1 were used, and for the levels of A
the scores -2, -1, 0, 1, and 2.

16No standard error is reported for this effect because, as will be explained below, we
have a boundary solution in which several probabilities become (almost) equal to one or
zero.
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Table 5.16: Estimated probabilities of dropping out of school for respon-
dents’ and oldest brothers’ according to Models 7b and 8

W/Y A λ1(t1|a, y) λ1(t2|a, y) λ2(t1|a,w) λ2(t2|a,w)

Model 7b
1 1 0.000 0.367 0.000 0.319
1 2 0.000 0.444 0.000 0.393
1 3 0.000 0.249 0.000 0.211
1 4 0.000 0.152 0.000 0.126
1 5 0.000 0.063 0.000 0.052
2 1 0.000 1.000 0.243 1.000
2 2 0.000 1.000 0.325 1.000
2 3 0.000 1.000 0.003 1.000
2 4 0.000 1.000 0.109 1.000
2 5 0.000 1.000 0.174 1.000
3 1 0.993 1.000 1.000 1.000
3 2 0.995 1.000 1.000 1.000
3 3 0.543 1.000 0.999 1.000
3 4 0.981 1.000 1.000 1.000
3 5 0.989 1.000 1.000 1.000

Model 8
1 0.000 0.023 0.000 0.052
2 0.000 0.860 0.165 0.933
3 0.923 1.000 1.000 1.000
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to what would be expected on the basis of the effects of W and Y on the
transition probabilities, it is not a class of stayers. In the second time in-
terval, both brothers and respondents have a considerable risk of dropping
out, where the size of the transition probabilities also depends on the value
of A. The second class surely drops out at T = t2. However, the risk of
dropping out at T = t1 differs for brothers and respondents. Respondents
belonging to class two have a much higher probability of dropping out in the
first time interval than their oldest brothers. The probability of dropping
out also depends on A, where persons with A = 3 clearly have the lowest
risks. Finally, class three has a very high risk of dropping out at the first
time interval. There is, however, one exception: For brothers with a father
belonging to the middle educational category, the probability of dropping
out is much lower. The persons of class three that do not drop out at the
first point in time surely drop out at the second point in time. Thus, it can
be concluded that the much lower mean transition probability at T = t1 for
brothers leads to significantly lower transition probabilities only for broth-
ers belonging to class two. Moreover, the extremely low value of vAL31 leads
to much lower transition probabilities for brothers belonging to class three
and respondents belonging to class two. In fact, the linear-by-linear effects
AY and AW result in too many brothers with A = 3 in class three instead
of class two and too many respondents with A = 3 in class two instead of
class one.

From the reported transition probabilities for Model 7b, it can also be
seen that we have a boundary solution for the effect of the latent variables
on the transition probabilities. In each column of Table 5.16, there is only
one set of probabilities that is not equal to one or zero. Thus, we could
specify the same model with a priori ones and zeros rather than with a
direct effect of W and Z on the transition probabilities. This is reason that
no standard errors can be calculated for βW (and βY ).

Because of the problems associated with Model 7b, a specification in
which the relationships between A and the unobserved risk factors are not
linearly restricted was tested. In Model 8, the association between W and
Y is similar to that in Model 7b, although fewer persons belong to class
one, and more to class two. The direct effects of A on W and Y show a
quite regular pattern. Persons with less educated fathers more often belong
to class one and persons with highly educated fathers are more often found
in class three. The middle category of A has the highest probability of
belonging to class two. From the hazard parameters, it can be seen that,
as in Model 7b, the larger number of brothers in the high-risk class is
partially compensated by a much lower mean of the logit of the transition
probabilities at T = t1. The effect of the latent variables W and Y on the
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risk of dropping out is again very strong.17 Therefore, class three could
be labeled as certain movers and class one as stayers. From the estimated
probabilities in Table 5.16 it can be seen that class one is indeed almost a
class of stayers. Only at the second point in time, do persons belonging to
class one have a small risk of dropping out. Class two has a much higher
dropout probability, where the risk is higher for respondents than for their
brothers. And finally, all members of class three drop out, where brothers
have a somewhat higher probability of dropping out at T = t2 instead of
T = t1.

It will be clear that, although Model 7b fits better, Model 8 is much
easier to interpret. Moreover, the assumption that a background variable
such as fathers’ education has only an indirect effect on the school behavior
of sons can be very well defended. It should, however, be noted that Model
8 differs substantially from the usual way of correcting for unobserved het-
erogeneity. But, to correct for selection bias, strong a priori assumptions
about the selection mechanism are needed. As already mentioned, such an
assumption could be that a particular covariate influences the unobserved
factor but has no direct effect on the risk of dropping out.

This example demonstrated the potentials of the general latent variable
approach to correct for unobserved heterogeneity when analyzing survival
data from dependent observations. The inclusion of a latent covariate in the
model for dropping out of school showed that there is a strong dependence
between the dropout risks of respondents and their oldest brothers. In ad-
dition, it was demonstrated how to relax some of the assumptions which
are generally made when correcting for unobserved heterogeneity: The un-
observed heterogeneity was allowed to depend on the observed covariate, to
be partially different for respondents and brothers, and to have nonpropor-
tional effects on the risk of dropping out of school. It will also be clear from
the example that it is not a problem to obtain a model that describes the
data well. However, only on the basis of substantive arguments can it be
decided whether a particular specification for the unobserved heterogeneity
makes sense.

5.2.8 Simultaneous modeling of the dependent process
and the covariate process

As explained in 4.6 in the discussion of the problems associated with the
use of time-varying covariates, the effect of a time-varying covariate on the

17For βWL
1 (and βY L

1 ), we again have a solution which is too near to the boundary of
the parameter space to be able to obtain its standard error.
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hazard rate of the event of interest may be partially spurious. If there are
unobserved factors that influence both the covariate process and the de-
pendent process,18 systematic selection into categories of the time-varying
covariate concerned will occur, and, as a result, the effect of the covariate
concerned will be (partially) spurious.

Here, we will demonstrate how to disentangle true and spurious effects
of time-varying covariates by simultaneously modeling the covariate pro-
cess and the dependent process. Using a multivariate hazard model, the
existence of a latent variable can be postulated which influences both the
transition rates of a time-dependent covariate and the transition rates of
the event(s) under study. Furthermore, by including a direct effect of the
time-varying covariate on the hazard rate, it is possible to check whether
a significant direct effect remains after controlling for the common unob-
served risk factor(s). Note that such a latent variable approach not only
allows us to disentangle true and spurious effects of time-varying covari-
ates, it also makes it possible to detect unobserved factors influencing the
occurrence of the event to be studied.

Example 8: School transitions of brothers with direct effects be-
tween processes

Data and model To demonstrate how to perform a simultaneous anal-
ysis of the covariate and dependent processes, the previous example (Ex-
ample 7) is modified. In this example, the respondent’s schooling is not
only explained by his father’s schooling, but also by his oldest brother’s
schooling. Actually, the schooling of the oldest brother is included in the
model for the respondent as a time-varying covariate having two possible
values: dropped out or not at the school level concerned. It is expected
that if the older brother dropped out at or before a particular school level,
the respondent will have a higher risk of dropping out at that school level.

The time-varying covariate indicating whether a respondent’s oldest
brother dropped out of school is not an exogenous covariate (see section
4.6). As a result of the existence of common unobserved family factors
influencing both school careers, a respondent’s survival in tl will help to
predict the covariate value in tl+1. Therefore, the relationship between
brothers’ and respondents’ schooling will at least partially be spurious. As
in the previous example, the latent class approach is used to control for
common unobserved risk factors. In fact, the only difference with the anal-
yses presented in the previous subsection is that the schooling of the oldest

18The terms dependent process and covariate process are used to denote changes that
occur in the value of the dependent variable of interest and changes that occur in the
values of the time-varying covariates, respectively.
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brother is allowed to have a direct effect on the respondent’s dropout rate.
It must be noted that, although in the data set that is used most oldest

brothers are older than the respondents, in some cases the oldest brother
is younger that the respondent (Mare, 1994). To perform the analysis cor-
rectly, in such cases one should reverse the status of oldest brother and
respondent because, logically, only the schooling of the older one can in-
fluence the schooling of the younger one and not the other way around.
But, there is no information available to determine whether the brother
or the respondent is older. So, in principle, the correctness of the causal
inference is not only threatened by unobserved risk factors but also by this
partial reverse causation. However, for simplicity of exposition, the analysis
is performed as if the oldest brother is always older than the respondent.
Although this may somewhat distort the substantive conclusions, it does
not influence the illustrative relevance of this example.

Because the main purpose of this example is to show how to disentangle
the true and the spurious effects of a time-varying covariate, only the sim-
plest specification for the nature of the unobserved risk factors is used. The
unobserved risk factors are assumed to be the same for the respondents and
their brothers, which, as was demonstrated in Example 7, is equivalent to
using one single latent variable. Moreover, the latent variable is assumed
to be independent of the father’s education.

The discrete-time logit model for the brother’s dropping out is the same
as the one which is used in Example 7. The model for the respondent’s
dropping out differs in that a time-varying covariate is included in the
model, i.e., his brother’s dropout status at the time point or school level
concerned. The discrete-time logit models are given by

λ1(tl|a,w) =
exp

(
vM1 + vLMl1 + vAMa1 + vWM

w1

)
1 + exp

(
vM1 + vLMl1 + vAMa1 + vWM

w1

) , (5.22)

λ2(tl|a,w, s1l) =
exp

(
vM2 + vLMl2 + vAMa2 + vWM

w2 + vS1l
s1l

)
1 + exp

(
vM2 + vLMl2 + vAMa2 + vWM

w2 + vS1l
s1l

) , (5.23)

in which vS1l
s1l

denotes the effect of the dropout status of the oldest brother
at time point tl on the respondent’s probability of dropping out at time
point tl. In other words, the effect vS11

s11 describes whether the oldest
brother’s dropping out before finishing secondary school influences the re-
spondent’s dropout probability at this school level, and the effect vS12

s12 de-
scribes whether the oldest brother’s dropping out before completing some
post-secondary education influences the probability that respondents drop
out at this level. Particularly interesting is whether the direct effect of the
time-varying covariate brother’s dropout status on the respondent’s risk of
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Table 5.17: Test results and parameter estimates for the estimated models
for respondent’s schooling in which oldest brother’s schooling is used as a
time-varying covariate

Model L2 df vS11
s11 vS12

s12

1a. 1 class no v
S1l
s1l 4381.64 28 0.000 0.000

1b. 1 class proportional 647.33 27 0.816 (0.014) 0.816 (0.014)
1c. 1 class nonproportional 596.90 26 0.894 (0.018) 0.692 (0.022)

2a. 2 class no v
S1l
s1l 689.26 26 0.000 0.000

2b. 2 class proportional 219.56 25 0.493 (0.023) 0.493 (0.023)
2c. 2 class nonproportional 218.01 24 0.525 (0.034) 0.472 (0.028)

3a. 3 class no v
S1l
s1l 256.07 24 0.000 0.000

3b. 3 class proportional 174.86 23 0.344 (0.039) 0.344 (0.039)
3c. 3 class nonproportional 154.45 22 0.410 (0.038) 0.201 (0.048)

4a. 4 class no v
S1l
s1l 186.76 22 0.000 0.000

4b. 4 class proportional 156.44 21 0.257 (0.044) 0.257 (0.044)
4c. 4 class nonproportional 144.99 20 0.344 (0.048) 0.175 (0.049)

dropping out declines when one controls for unobserved risk factors influ-
encing both the covariate process and the dependent process.

From the model represented in Equations 5.22 and 5.23, it can be seen
that the effect of the latent variable W and of the father’s education (A) is
assumed to be proportional. An additional restriction that is imposed on
the parameters is that the effects of W and A are equal for brothers and
respondents, i.e., vAMa1 = vAMa2 and vWM

w1 = vWM
w2 .

Note that, as in the previous example, the combined covariate and haz-
ard model can be written as a modified path model, that is,

πaws11s12s21s22 = πaπw|aπs11|awπs12|aws11πs21|aws11πs22|aws21s12 .

The only difference with the modified path model described in Equation
5.21 is that here it is assumed that there are also direct effects of S11 on
S21 and of S12 on S22.

Results The models for which the test results are presented in Table 5.17
differ with respect to the number of latent classes and the specification of
vS1l
s1l

. Models 1a, 2a, 3a, and 4a have one, two, three, and four latent
classes, but without a direct effect of the brother’s dropout status on the
respondent’s risk of dropping out. In Models 1b, 2b, 3b, and 4b, a direct
effect of the brother’s dropout status on the respondent’s probability of
dropping out is included, but this effect is assumed to be equal at both
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school levels, i.e., vS11
s11 = vS12

s12 . And finally, in Models 1c, 2c, 3c, and 4c,
this effect is allowed to be nonproportional.

The test results show that the model fit can be greatly improved by
including a direct effect of brother’s schooling on respondent’s schooling in
the model. The proportional effect of brother’s schooling remains signifi-
cant after controlling for common unobserved risk factors, irrespective of
the number of latent classes. Moreover, the effect seems to be nonpropor-
tional. Including a nonproportional direct effect of brother’s schooling on
respondent’s schooling in the model without unobserved heterogeneity de-
creases the L2 value dramatically from 4381.6 (Model 1a) to 596.9 (Model
1c). Although not so extreme, the decrease in the L2 value is significant in
the two-, three-, and four-class models as well. Note that only in the two-
class model does the proportionality assumption not need to be rejected
(L2

2b|2c = 1.55, df = 1, p > .21).19

Table 5.17 also provides the estimates for the direct effects of the brother’s
dropout status on the respondent’s risk of dropping out. When one con-
trols for common unobserved heterogeneity, the size of the effect decreases
considerably. In Model 1c, the time-specific effects are .89 and .69, which
implies that the odds of dropping out rather than not dropping out are
5.93 (= exp[2 ∗ .89]) and 3.97 (= exp[2 ∗ .69]) times higher if a respon-
dent’s brother dropped out at or before the school type or the time point
concerned than if the brother did not drop out. In Model 4c, these effects
decline to .34 and .18, or in terms of the odds ratios, to 1.97 (= exp[2∗ .34])
and 1.43 (=exp[2 ∗ .18]). Thus, although an important direct effect of the
oldest brother’s schooling on the respondent’s schooling remains, the effect
is much weaker than if no correction for common unobserved risk factors
is carried out. In other words, the effect found in Model 1c seems to be
partially spurious.

Usually, event histories on different types of life-cycle transitions are rou-
tinely related to each other by using one type of history as a time-varying
covariate in a hazard model in which transitions in another type of history
are explained. For example, a woman’s employment and relational histo-
ries are used to explain the timing of the birth of her first child (Vermunt,
1991a). Like in the brothers’ schooling example, such a practice may lead
to parameter estimates which are at least partially spurious. This example
demonstrated that by modeling simultaneously the dependent process and
the covariate process, it is possible to identify and to control for common
unobserved risk factors influencing both the covariate process and the de-
pendent process. This makes it possible to distinguish the true and the

19Because this could be the result of a local maximum, Model 2c was estimated using
different sets of starting values. However, all sets of starting values gave the L2 reported
in the table, which indicates that it is not a local solution.
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spurious effects of a time-varying covariate.
æ

5.3 Measurement error

The previous section demonstrated how to use the event history model with
missing data introduced in section 5.1 to correct for unobserved hetero-
geneity. On the one hand, standard approaches, such as the ‘independent’
unobserved heterogeneity models proposed by Heckman and Singer (1982,
1984), Wrigley (1990), and Mare (1994), were presented as special cases
of the combined log-linear and hazard modeling approach. On the other
hand, it was shown how to extend these ‘independent’ unobserved hetero-
geneity models, for instance, by allowing the unobserved factor(s) to be
related to observed covariates and to the initial position. Other extensions
of the usual way of treating unobserved heterogeneity that were discussed
are models with several possibly related latent covariates and models for the
simultaneous analysis of the covariate process and the dependent process.
All these models have in common that they concentrate on the traditional
use of models with latent variables in the field of event history analysis,
namely, correcting for unobserved heterogeneity.

Another interesting application of models with latent variables, which,
moreover, has more in common with the latent variable models discussed
in Chapter 3, is correcting for measurement error. In Chapter 3, the latent
class model, which was originally proposed by Lazarsfeld (1950a, 1950b),
was presented as a tool for correcting for measurement error in observed
variables. In addition, some extensions of the standard latent class model
were discussed, with the modified path model with latent variables as the
most general ‘latent class model’ (Hagenaars, 1985, 1990:135-142, 1993;
Vermunt, 1994). As was indicated in Figure 5.1, this section explains how to
apply latent class models and modified path models with latent variables to
correct for measurement error in the observed categorical covariates which
are used in event history models and in the observed states at the different
points in time in discrete-time event history models.

As in the models discussed in the previous section, correcting for mea-
surement error in the observed covariates involves including one or more
latent variables as covariates in a hazard model. There are, however, two
important differences with the use of latent variables to correct for unob-
served heterogeneity. First, when latent variable models are used to correct
for measurement error in observed covariates, the latent variable must al-
ways be related to one or more observed covariates which, moreover, are
generally assumed to be mutually independent given a particular value of
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the latent variable. Second, the observed variables serving as indirect mea-
sures for the latent covariate will generally not be used as regressors in the
hazard model. In other words, the ‘indicators’ and the survival distribu-
tion(s) are assumed to be conditionally independent, that is, independent
given the latent variable(s) concerned. Thus, a latent class model is spec-
ified in which a number of unreliable measures are used to identify one or
more latent covariates, which are used as regressors in a hazard model.

Gong, Whittemore, and Grosser (1990) proposed specifying a latent
class-like model for the covariates in a log-rate model to deal with the
problem of misclassification in covariates. In a model for survival of breast
cancer, they used the stage of the disease at diagnosis as a covariate, but
it was known that for a part of the sample the stage of the disease was
underestimated by one level. Although Gong, Whittemore, and Grosser did
not call it by that name, they proposed to correct for the misclassification
in the covariate by means of a restricted latent class model in which only
the conditional response probabilities in which the observed stage equals
the true stage or is one stage lower than the true state were not fixed to
zero. This application of a latent class model in the covariate part of an
event history model is a special case of the more general approach that is
presented below.

Latent class models or, more precisely, modified path models with latent
variables can also be used to correct for measurement error in the observed
states occupied at the different points in time when time is assumed to be a
discrete variable. For that purpose, an extension of the discrete-time latent
Markov model proposed by Wiggins (1955, 1973) is used. In section 4.8, it
was shown that the parameterization of the discrete-time Markov model as a
modified path model yields a specification which is equivalent to a discrete-
time logit model. By parameterizing the latent Markov model in a similar
way, that is, as a modified path model with latent variables, a discrete-time
logit model is obtained which can be used to analyze transitions between
latent states. In other words, an event history model is obtained that can be
used to correct for measurement error in the observed states at the different
points in time.

Although the methods for correcting for measurement error in the ob-
served states that are discussed here can only be used if time is a discrete
variable, there are also models which can be used in continuous-time set-
tings. Coleman (1964) showed how to estimate continuous-time Markov
models with panel data subject to measurement error. The unreliable mea-
surements, or uncertain responses, as Coleman called them, were assumed
to be measured at particular time points, while the underlying duration
process was assumed to be continuous. Also Lancaster (1990:59-60) pro-
posed a method to correct for measurement error in observed duration.
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He demonstrated that in specific situations measurement error in recorded
continuous durations can be dealt with using mixture models as discussed
in the previous section.

Below we will demonstrate how to use the modified path model with
latent variables to correct for measurement error in observed categorical
covariates in both discrete-time and continuous-time models, and to cor-
rect for measurement error in observed states in discrete-time event history
models. As in the previous section, a number of applications based on
real-world data sets are used to illustrate these two variants of the general
approach to missing data problems in event history analysis.

5.3.1 Measurement error in covariates

As demonstrated in section 5.1, the general model for dealing with miss-
ing data problems in event history analysis consists of two parts: a part
in which the relationships among the covariates are specified and a part
in which the event history model of interest is specified. Correcting for
measurement error in observed covariates involves specifying a latent class
model in the covariate part of the model, and using the latent indirectly
measured variable as a regressor in the hazard model.

Suppose there is a hazard model with two time-constant covariates de-
noted by A and W , where A is observed and W is latent or measured
indirectly. Four observed variables B, C, D, and E serve as indicators for
the latent variable W . Suppose, furthermore, that the latent covariate (W )
is posterior to observed covariate (A). In this case, the covariate part of the
model, specifying the relationships among A, B, C, D, E, and W , equals20

πabcdew = πa πw|a πbcde|w , (5.24)

where, as a result of the local independence assumption,

πbcde|w = πb|w πc|w πd|w πe|w . (5.25)

As shown in section 3.1, all kinds of restricted latent class models can be
specified by parameterizing the conditional response probabilities appearing
in Equation 5.25 as logit models.

Although here only one observed and one latent covariate is used in
the hazard model, it is not a problem to specify models with several ob-
served and several indirectly measured covariates. The only difference is
that in such a case, the modified path model in which the relationships

20If no a priori assumption is made about the causal ordering between A and W , the
term πa πw|a appearing in Equation 5.24 has to be replaced by πaw, and if W is assumed

to precede A, by πw πa|w.
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between observed covariates, indirectly observed covariates, and indicators
are specified becomes a bit more complicated.

The event history part of the model is exactly the same as in models
with unobserved heterogeneity. Again, the hazard model may be either a
discrete-time logit model or a continuous-time log-rate model of the most
general form, that is, a multiple-state model.

Obtaining maximum likelihood estimates of the parameters of a hazard
model with A and W as covariates, and with B, C, D, and E as indicators
for W involves maximizing the following likelihood function:

L =

N∏
i

∑
w

πabcdewL∗i (h) , (5.26)

in which L∗i (h) denotes the contribution of person i to the complete data
likelihood function for the hazard model, and a, b, c, d, and e are the values
of A, B, C, D and E for person i. More information about the exact form of
L∗i (h) can be found in section 4.8. Since the likelihood function described
in Equation 5.26 is based on the general density function represented in
Equation 5.1, as already mentioned in section 5.1, the parameters can be
estimated with the EM algorithm. In subsection 5.2.2, more details were
given about the E step and the M step when the hazard model is a log-rate
model.

Example 9: An indirectly measured covariate in the analysis of
the timing of the first, second, and third births

Data and model This example illustrates the use of indirectly observed
covariates by means of a hazard model for the timing of the first, the second,
and the third birth. It differs from Example 5 in that, instead of introducing
a latent variable to correct for unobserved heterogeneity, here an indirectly
measured variable is introduced which influences the hazard rate. This
indirectly measured covariate is assumed to measure a woman’s family and
work attitude. It is well known that work-orientedness and familism are
important determinants of fertility behavior (Bernhardt, 1986; Lesthaege
en Meekers, 1986; Vermunt, 1991a, 1991b). In fact, the single familism
item which was used as a covariate in the hazard model is replaced by a
latent variable indicating familism and work-orientedness.21

The observed covariate educational level will again be denoted by A, the
indicators by B, C, D, and E, and the latent covariate by W . The items

21Two labels (work-orientedness and familism) are used for the same latent variable
because originally two types of indicators were used with the intention of identifying two
different dimensions. However, the analysis presented below shows that the indicators
measured the same dimensions.
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Table 5.18: Test results for the estimated models for the timing of the first,
second, and third births with an indirectly measured covariate

Model log-likelihood # parameters BIC AIC

1. 1 class -7241.69 67 14935.0 14617.4
2. 2 class -7003.12 82 14559.0 14170.2
3. 3 class -6943.13 97 14540.1 14080.3
4. 4 class -6911.18 112 14577.3 14046.4
5. 5 class -6898.90 127 14653.8 14051.8

B and C serve as indicators for familism, and the items D and E serve as
indicators for work-orientedness. The wording of the four attitude items is
as follows: B] Marriage is the most unique relationship in a person’s lifetime
(1=fully agree and 3=totally disagree); C] In our modern world the only
place where you can feel completely happy and at ease is at home, with
your own family and children (1=fully agree and 3=totally disagree); D]
How positively or negatively do you feel about financial independence for a
conjugal or intimate two-person relationship? (1=negative and 3=positive);
E] For a married woman with school children working outside the home is ...
(1=objectionable, 2=not objectionable, and 3=recommendable). Item C is
the one that was used as the covariate indicating ‘familism’ in Examples 1,
4, and 5.

The covariate part of the model is exactly the same as in the model
described in Equations 5.24 and 5.25. So, apart from a measurement model
for W , educational level is assumed to influence a woman’s familism and
work-orientedness. The models to be estimated only differ from one another
with respect to the number of latent classes.

For the hazard model, only one specification is used as well, that is, a
proportional hazard model with unrestricted time dependence. The effects
of W , A, and the time variable Z are assumed to be different for the first,
the second, and the third birth. This gives the following rather simple
transition or event-specific log-rate model:

hm(z|a,w) =
(
vMm + vAMam + vWM

wm + vZMzm
)
.

The variable M with index m is used denote the spell number, in this case
the parity of the birth.

Results Table 5.18 shows the test results for the models with one to five
latent classes (Models 1-5). It can be seen that inclusion of each addi-
tional latent class decreases the likelihood function using fifteen additional
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Table 5.19: Parameter estimates for the covariate part of Model 4 for the
timing of the first, second, and third births with an indirectly measured
covariate

πw|a A = 1 A = 2 A = 3 A = 4 total
W = 1 0.541 0.358 0.147 0.070 0.225
W = 2 0.199 0.340 0.241 0.006 0.212
W = 3 0.223 0.233 0.326 0.416 0.311
W = 4 0.037 0.069 0.286 0.508 0.252

πb|w W = 1 W = 2 W = 3 W = 4
B = 1 0.651 0.258 0.104 0.027
B = 2 0.294 0.651 0.858 0.429
B = 3 0.055 0.091 0.038 0.545

πc|w W = 1 W = 2 W = 3 W = 4
C = 1 0.666 0.105 0.028 0.000
C = 2 0.233 0.730 0.760 0.257
C = 3 0.101 0.165 0.212 0.743

πd|w W = 1 W = 2 W = 3 W = 4
D = 1 0.387 0.203 *0.022 *0.048
D = 2 0.255 0.477 0.648 0.194
D = 3 *0.358 *0.320 0.330 0.757

πe|w W = 1 W = 2 W = 3 W = 4
E = 1 0.568 0.511 0.150 0.046
E = 2 0.383 0.487 0.765 0.668
E = 3 *0.049 *0.003 0.084 0.286

parameters. However, the decrease becomes smaller with each next latent
class. Because on the basis of the log-likelihood function it is difficult to
decide which model performs best, Table 5.18 also reports the BIC and AIC
values for the models concerned.22 It can be seen that on the basis of the
BIC criterion Model 3 should be preferred, while on the basis of the AIC
criterion it should be decided that Model 4 performs best.

Table 5.19 reports the parameter estimates for the covariate part of
Model 4. The estimates for the conditional response probabilities πb|w,
πc|w, πd|w and πe|w can be used to label the latent classes with respect to

22The definitions of BIC and AIC which are used here are given in Equations 2.10
and 2.9, respectively. Using these definitions, the smaller the value of BIC and AIC, the
better the model performs.
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Table 5.20: Hazard parameters for the model for the timing of the first,
second, and third births with an indirectly observed covariate (Model 4)

M = 1 M = 2 M = 3

v -3.000 (0.171) -1.792 (0.184) -2.859 (0.209)
vA1 0.589 (0.149) -0.251 (0.136) -0.013 (0.165)
vA2 0.521 (0.152) -0.006 (0.112) -0.354 (0.152)
vA3 -0.001 (0.131) -0.132 (0.112) -0.258 (0.153)
vA4 -1.109 0.389 0.625
vW1 0.622 (0.144) 0.127 (0.141) 0.480 (0.197)
vW2 -1.136 (0.364) 0.940 (0.278) 0.776 (0.355)
vW3 0.692 (0.185) -0.589 (0.148) -0.424 (0.277)
vW4 -0.178 -0.478 -0.832

their familism (items B and C) and work-orientedness (items D and E).
The fact that class one has the highest probability of giving positive answers
to the familism items and negative answers to the work-orientedness items
indicates that this class consists of the most familistic and the least work-
oriented women. Class number four is the least familistic and the most
work-oriented group. The other two classes take an intermediate position,
where class two is more familistic and less work-oriented than class three.

Actually, the classes can be ordered on one single dimension since the
conditional response probabilities are almost consistent with the ordinal la-
tent class model proposed by Croon (1990). In an ordinal latent class model,
the cumulative conditional response probabilities for adjacent classes are
not allowed to cross each other. Only three pairs of response probabilities,
which are marked with *, show small discrepancies from the perfect ordinal
latent class model.

From the estimated conditional probabilities that W = w given that
A = a it can be seen that the latent variable is strongly related to educa-
tional level. Women with a high educational level have the highest prob-
ability of belonging to the non-familistic work-oriented class (class four),
while women with a low educational level have the highest probability of
belonging to the familistic non-work-oriented class (class one).

The estimated hazard parameters for Model 4, which are given in Table
5.20, indicate that the categories of W are not ordered with respect to
the risk of experiencing subsequent births. Classes one and three have the
highest risk of a first birth, while class two has the lowest risk of a first
birth. So, class two contains the highest proportion of women that remain
childless. Given that a first birth occurred, class three has the highest risk
of a second and a third birth. Classes two and four have the lowest risk of
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a second and third birth.
From a substantive point of view, the results of this example are some-

what disappointing. It would have been nice if the latent classes had shown
some regular pattern with respect to the hazard rates of the first, second,
and third births. That this is not so may be due to the fact that the
hazard regression model itself is very simplistic. For instance, important
time dimensions, such as cohort and age at the previous birth, were not
included in the model and, moreover, the covariate effects were not allowed
to be nonproportional. Nevertheless, it will be clear that the latent class
approach exemplified here provides us with a powerful tool for correcting
for measurement error in observed covariate values.

5.3.2 Measurement error in observed states

When the observed states at the different points in time are subject to mea-
surement error, the observed transitions are a mixture of true and spurious
transitions resulting from measurement error. Generally, such unreliable
measurements inflate observed changes (Van de Pol and De Leeuw, 1986).
Thus, if a correction for unreliability in the recorded states takes place,
fewer individuals will be found to experience transitions than if no correc-
tion for this type of error takes place (Coleman, 1964; Hagenaars, 1992). It
should, however, be noted that this rule is only valid if the errors made at
the successive points in time are assumed to be uncorrelated.

Here, a method for correcting for measurement error is presented that is
based on an extension of the discrete-time latent Markov model originally
proposed by Wiggins (1955, 1973). In section 4.8 it was shown that by
parameterizing the manifest discrete-time Markov model as a modified path
model, a model is obtained that is equivalent to a discrete-time logit model.
By parameterizing the latent Markov model in a similar way, that is, as a
modified path model with latent variables, a discrete-time logit model is
obtained which can be used to model transitions between latent states. In
this model, the observed states at the different points in time are related
to the latent states by means of a set of conditional response probabilities
capturing the measurement error in the recorded states.

The discrete-time logit model for latent transitions is similar to the
multiple-group latent Markov model which was proposed by Van de Pol
and Langeheine (1990) to make it possible to take observed heterogeneity
into account. The multiple-group latent Markov model has, however, two
important limitations (Vermunt, Langeheine, and Böckenholt, 1995). First,
since each level of the joint independent variables has its own set of param-
eters, the number of parameters to be estimated may become very large as
the number of explanatory variables increases. A second limitation is that
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it cannot be used with time-varying covariates. The approach to be pre-
sented below overcomes these two limitations by allowing the specification
of a logit regression model with time-constant and time-varying covariates
for the latent transition probabilities.

In the previous discussions on discrete-time models, the state that an in-
dividual occupies at T = tl was denoted by Sl, where l denotes a particular
point in time. This notation should be extended to be able to distinguish
true or latent states from observed or manifest states. The observed states
will be denoted by Sl, with values sl, and the latent states by Φl, with
values φl. Although in this case each latent variable, Φl, has only one in-
dicator, Sl, it is also possible to specify models with several indicators per
occasion (Vermunt and Georg, 1995). Assuming that the model contains
three observed covariates denoted by A, B, and C, the joint distribution
of the observed covariates, the observed states from T = t0 up to T = tL∗

and the true states from T = t0 up to T = tL∗ is given by

πabcs0s1...sL∗φ0φ1...φL∗ = πabcπφ0|abc

L∗∏
l=1

πφl|abcφl−1

L∗∏
l=0

πsl|abcφl
. (5.27)

Here, πabc forms the covariate part of the model. Although, for the sake of
simplicity, all the covariates are assumed to be time constant and observed,
the latent discrete-time model may also contain unobserved, indirectly ob-
served, and time-varying covariates.

The event history part of the model represented in Equation 5.27 con-
tains three types of parameters: πφ0|abc is the conditional probability of a
particular true initial state given the categories of A, B, and C, πφl|abcφl−1

is the conditional probability of being in the true state φ at the lth point
in time given the values of the observed covariates and the true state oc-
cupied at the l − 1th point in time, and πsl|abcφl

is a conditional response
probability describing the amount of measurement error in Φl.

Although generally in latent Markov models πφ0|abc is not restricted,
it is possible to restrict the initial latent distribution given the observed
covariates. For instance, by assuming πφ0|abc to be equal to πφ0

for all a,
b, and c, a model is obtained in which the latent distribution at T = t0 is
assumed to be equal for all the levels of the joint variable ABC.

If Φl 6= Φl−1, πφl|abcφl−1
is a transition probability, though now between

latent states instead of observed states. As in the manifest case, πφl|abcφl−1

can be parameterized by means of a logit model. For example, a possible
logit model for the latent transition probabilities is

πφl|abcwφl−1
= (5.28)
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exp
(
v

ΦlΦl−1

φlφl−1
+ v

AΦlΦl−1

aφlφl−1
+ v

BΦlΦl−1

bφlφl−1
+ v

CΦlΦl−1

cφlφl−1
+ v

WΦlΦl−1

wφlφl−1

)
∑
φl

exp
(
v

ΦlΦl−1

φlφl−1
+ v

AΦlΦl−1

aφlφl−1
+ v

BΦlΦl−1

bφlφl−1
+ v

CΦlΦl−1

cφlφl−1
+ v

WΦlΦl−1

wφlφl−1

) ,
where the following identifying restrictions are imposed on the v parame-
ters:

v
ΦlΦl−1

φlφl−1
= v

AΦlΦl−1

aφlφl−1
= v

BΦlΦl−1

bφlφl−1
= v

CΦlΦl−1

cφlφl−1
= v

WΦlΦl−1

wφlφl−1
= 0 if Φl = Φl−1.

In fact, the logit model that is specified for the latent transitions is of the
same form as the discrete-time logit models that were used for manifest
transitions.23

From the conditional response probabilities, πsl|abcφl
, appearing in Equa-

tion 5.27, it can be seen that the observed states are assumed to be condi-
tionally independent of each other given the joint latent variable Φ0Φ1 . . .ΦL∗ .
So, in fact, the latent Markov model is a latent class model in which the
latent distribution is restricted to have a Markovian change structure (Ha-
genaars, 1992). Another slightly different and perhaps easier way to view
the latent Markov model is as a model with L∗ mutually related latent
variables, each with only one indicator.

As in latent class models, it is possible to relax the local independence
assumption by including direct effects between observed states (Hagenaars,
1988; Bassi et al., 1995). The measurement errors at successive points in
time may, for instance, be assumed to be correlated because people tend
to be consistent with regard to their reported states, irrespective of their
true states. In such a case, the response probabilities πsl|abcφl

appearing in
Equation 5.27 have to be replaced by πsl|abcsl−1φl

for all T ≥ t1.
Also the conditional response probabilities describing the measurement

part of the model can be parameterized by means of a logit model. The
simplest specification for πsl|abcφl

is to assume the measurement error to
be independent of the observed covariates and the point in time, that is,

πsl|abcφl
= πs|φ =

exp
(
qSΦ
sφ

)
∑
s exp

(
qSΦ
sφ

) ,
where q denotes a log-linear parameter of the measurement model.24 This

23It be noted that in many situations particular transitions are impossible to occur. In
the analysis of births, for example, a woman with two children can only experience one
type of event, namely, getting a third child. This yields specifications with structural
zero transitions which are similar to the latent class stage-sequential models proposed
by Collins and Wugalter (1992).

24The log-linear parameters of the measurement part of the discrete-time model are
denoted by q to be able to distinguish them from the u parameters of the covariate part
of the model and the v parameters of the discrete-time logit model.



256CHAPTER 5. EVENT HISTORYANALYSISWITH LATENT VARIABLES ANDMISSING DATA

gives time-homogeneous and equal reliability for all the values of A, B, and
C. Another possible specification is

πsl|abcφl
= πs|abcφ =

exp
(
qSΦ
sφ + qASΦ

asφ + qBSΦ
bsφ + qCSΦ

csφ

)
∑
s exp

(
qSΦ
sφ + qASΦ

asφ + qBSΦ
bsφ + qCSΦ

csφ

) .
Here, the error rates also depend on A, B, and C, but not on higher-order
interactions among the three covariates. For the q parameters, the same
kinds of identifying restrictions are used as for the v parameters, that is,
all the effects in which Φl = Sl are fixed to zero. With such identifying
restrictions, each q parameter indicates the main or covariate effect on the
‘transition’ from a particular true state to another observed state, in other
words, on the size of the measurement error. It will be clear that the
log-linear parameterization of the measurement model for the latent states
is very flexible. When there are several indicators per occasion, the logit
models may, for instance, be used to specify measurement models which
are discrete approximations of latent trait models (Heinen, 1992; Vermunt
and Georg, 1995).

To be able to identify the model parameters of the model represented
in Equation 5.27, it is necessary to impose certain restrictions on either
the latent transition probabilities or the conditional response probabilities.
This is not surprising, especially if one realizes how many latent variables
the model contains. According to Van de Pol and Langeheine (1990), in a
latent Markov model the response probabilities for the first occasion T = t0
and last occasion T = tL∗ are not identified. However, it is sufficient for
identification to assume them to be equal to the response probabilities for
the nearest occasions, i.e., πs0|φ0

= πs1|φ1
and πsL∗ |φL∗ = πsL∗−1|φL∗−1

.
Note that this means that the latent Markov model can only be identi-
fied if there are observations for at least three points in time. Another
procedure to achieve identification, which can be used if there are at least
four occasions, is to impose restrictions on the first and the last set of
transition probabilities, for instance, by assuming time-homogeneity of the
latent Markov chain. But, if one does not want to impose these kinds of
identifying restrictions, the parameters of latent Markov models can only
be identified by using more than one indicator for the time-specific latent
states (Bassi et al., 1995).

Estimation of the latent discrete-time logit model can be performed by
means of the EM algorithm which is implemented in the `EM program
(Vermunt, 1993). The contribution to the likelihood function for an indi-
vidual with covariate values a, b, and c, and observed states s0, s1, . . . sL∗

can be based on the probability density function given in Equation 5.27.
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Since this density function is of the form given in Equation 5.2, the pos-
terior probabilities needed in the E step of the EM algorithm are given in
Equation 5.4. In this particular case, they are obtained by

P (φ0, φ1, . . . , φL∗ |a, b, c, s0, s1, . . . , sL∗) =
πabcs0s1...sL∗φ0φ1...φL∗∑

φ0φ1...φL∗
πabcs0s1...sL∗φ0φ1...φL∗

.

Because the model for latent transitions is a modified path model with
latent variables, the same version of the EM algorithm may be used to
estimate its parameters as was presented in section 3.1.

There is one important limitation with respect to the practical applica-
bility of the discrete-time logit model for latent transitions. In the E step of
the EM algorithm, for each non-zero observed cell entry, the corresponding
cell entries of the table including the joint latent dimension Φ0Φ1 . . .ΦL∗

have to be computed. Since the number of cell entries of the joint latent
dimension increases exponentially with the number of time points, compu-
tational limitations make it impossible to estimate latent Markov models
with a large number of time points.25

Another restrictive feature of the event history model for latent transi-
tions is that it can only be applied if the length of the observation period is
the same for all the individuals involved in the study. This is, in fact, the
same condition as for applying the classical latent Markov model as imple-
mented in, for instance, the PANMARK program (Van de Pol, Langeheine,
and De Jong, 1988). It must, however, be noted that this condition can
easily be relaxed by using the missing data methods to be discussed in the
next section.

Example 10: A model for latent labor market transitions

Data and models To illustrate the use of models for transitions be-
tween latent states, the example on labor market transitions (Example 6)
is extended. As in Example 6, the transitions between the states employed
and not employed are analyzed, but the difference is that now the mea-
surements of the states occupied at the six different points in time are no
longer assumed to be completely reliable. The covariates which are used in
the model are sex (A), ethnic group (B), and cohort/age (C).

Because the stationary Markov model performed rather well in the man-
ifest case, here the transition probabilities are assumed to be time homo-

25If the latent variables are dichotomous, it is possible to deal with eight to ten time
points, but if the latent variables have five categories, three or four is the maximum
number of occasions that can be dealt with (Vermunt, Langeheine, and Böckenholt,
1995).
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Table 5.21: Test results for the estimated models for latent labor market
transitions

Model L2 df p

1. no error 1919.82 980 0.000
2a. saturated heterogeneous 784.68 788 0.527
2b. simple heterogeneous 1393.49 968 0.000
2c. 2th order heterogeneous 1074.40 938 0.001
2d. 3th order heterogeneous 893.53 908 0.628
3a. saturated homogeneous 1021.15 948 0.049
3b. simple homogeneous 1433.30 978 0.000
3c. 2th order homogeneous 1180.13 973 0.000
3d. 3th order homogeneous 1042.76 968 0.047
4a. 2th order homogeneous correlated 1140.80 972 0.000
4b. 3th order homogeneous correlated 981.46 966 0.358

geneous as well. This makes the event history part of the model simple so
that the example can focus on the specification of the measurement model
for the latent states. Another advantage of assuming stationarity of the
transition probabilities is that under this condition identification of all the
parameters is guaranteed, irrespective of the model that is specified for the
conditional response probabilities. The model that is used for the latent
transitions is of the form given in Equation 5.29, with the only difference
that the parameters are assumed not to depend on the point in time. So,
in fact, the model not only assumes the transition probabilities to be time
homogeneous, but that the covariate effects are proportional as well.

Testing Table 5.21 reports the test results for four types of models: a
model without measurement error (Model 1), heterogeneous models or mod-
els in which the measurement error differs per occasion (Models 2a-2d),
homogeneous models or models in which the measurement error is assumed
to be equal for the different points in time (Models 3a-3d), and homo-
geneous models with correlated errors or direct effects between observed
states (Models 4a and 4b).

Model 1 and Model 2a give the upper and lower bound L2 values for
the stationary latent Markov model with uncorrelated measurement errors.
Model 1 is the stationary model without measurement error, while Model
2a is the model with completely unrestricted πsl|abcφl

’s. By correcting for
(uncorrelated) measurement errors, at maximum the L2 value can go down
1135.14 points using 192 degrees of freedom. The excellent fit of Model 2a
indicates that if, from a substantive point of view, it is sensible to assume
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that the true states are not measured completely reliable, the lack of fit
of the stationary Markov model can, to a large extent, be attributed to
measurement errors in the recorded states.

In Model 2b, labeled as the simple heterogeneous model, the response
probabilities do not depend on the observed covariates A, B, and C, in other
words, πsl|abcφl

= πsl|φl
. Model 2b captures almost half of the difference in

L2 values between Model 1 and Model 2a using only 12 degrees of freedom
(L2

2b|2a = 526.33). Model 2c contains, besides the direct effect of Φl on Sl,
the two-variable interactions between the covariates and the observed states
Sl, that is, qasl , qbsl , and qcsl . This means that the covariates are allowed
to influence directly the value of the observed states, irrespective of the
true state. These two-variable effects have a very specific meaning in terms
of the state-specific measurement errors. Suppose, for instance, that qasl is
negative. In this case, Φl = 1 will be measured less reliably for A = 1 than
for A = 2, while Φl = 2 will be measured more reliably for A = 1 than for
A = 2. In other words, the covariate concerned is assumed to have exactly
the reverse effect on the measurement error for the states employed and
not employed, which is a rather strong assumption. The fact that Model 2c
fits significantly better than Model 2b (L2

2b|2c = 310.09, df = 30, p = .000)
indicates that the reliability of the measurements depends on the covariate
values. When the three-variable interactions qaslφl

, qbslφl
, and qcslφl

are
included in the measurement model, in other words, when the covariates
are allowed to influence the state-specific reliabilities in a non-reversed way
(Model 2d), the model greatly improves again (L2

2c|2d = 180.87, df = 30, p =

.000). Moreover, since Model 2d does not fit significantly worse than Model
2a (L2

2d|2a = 97.54, df = 120, p < .93), it seems that it is not necessary to
include higher-order interaction terms in the measurement model.

The heterogeneous models presented above have one important disad-
vantage: They use many parameters to describe the unreliability in the
recorded states. However, often it is realistic to assume the measurement
error to be equal across points in time. Models 3a-3d are time-homogeneous
variants of Models 2a-2d. All the conditional L2 tests of the homogeneous
models against the matching heterogeneous models are significant, which
implies that the measurement error is not stable across time points. How-
ever, the much more parsimonious homogeneous models do not perform
that badly if their L2 values are compared with heterogeneous models with
the same number of degrees of freedom. Model 3d, for instance, has the
same df as Model 2b, but a much lower L2 value. Comparison of the L2

values of Models 3c and 3d (L2
3c|3d = 137.87, df = 5, p = .000) indicates

again that the covariate effects on the state-specific measurement errors
are not exactly reversed.
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Because often it is unrealistic to assume that the measurement errors at
the different points in time are uncorrelated, two models are specified with a
direct effect of Sl−1 on Sl. Model 4a is the same as Model 3c, except that it
contains the two-variable interaction terms qslsl−1

. Model 4b is obtained by
including the three-variable interaction terms qslsl−1φl

into Model 3d. Mod-
els 4a and 4b fit significantly better than Models 3c and 3d, respectively:
L2

3c|4a = 39.33, df = 1, p = .000; and L2
3d|4b = 81.30, df = 2, p = .000. This

indicates that, if from a substantive point of view it is sensible to assume
correlated measurement errors between successive occasions, it can be an
important source of lack of fit of the manifest Markov model (Model 1) as
well.

Parameters The parameter estimates reported in Table 5.22 show that
the parameters of the event history model depend rather strongly on the
specification of the error structure for the true states. Consider first the
parameters of the measurement part of Model 3b. The q parameters for
Model 3b indicate that the measurement error is rather small. The mean
error probabilities for the state employed and not employed are .027 (=
exp(−3.571)/[1+exp(−3.571)]) and .013 (= exp(−4.369)/[1+exp(−4.369)]),
respectively. But even with this rather small amount of measurement er-
ror, correcting for measurement error decreases the transition probabilities
considerably. The mean probability of a transition from employed to not
employed declines from .097 in Model 1 to .055 in Model 3b, while the
mean of the other transition probability declines from .073 to .032.26 Fur-
thermore, all the covariate effects on the transition probabilities become
somewhat stronger, except for the effect of sex (A) on the transition from
not employed to employed. This is in agreement with what is found most
often, that is, that measurement error attenuates the strength of the rela-
tionships between variables.

In Model 3d, the covariates were allowed to influence the error rates.
Since the same identifying restrictions are used for the q parameters as for
the parameters of the discrete-time logit model, they indicate the influence
on the ‘transition’ from a true state to another observed state, in other
words, the influence on the sizes of π2|abc1 and π1|abc2, respectively. As
can be seen from the q parameters for Model 3d, males (A = 1), whites
(B = 1), and persons belonging to the middle two age groups (C = 2 and
C = 3) have the lowest error rates for the state employed, while females,
non-whites, and the two oldest age groups have the lowest error rates for
the state not employed. Moreover, the effect of age on both error rates is

26The mean transition probability within the levels of the covariates can be obtained
from the main effect v. For example, .097 = exp(−2.232)/[1 + exp(−2.232)].
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Table 5.22: Parameter estimates for some models for latent labor market
transitions

Model 1 Model 3b Model 3d Model 4b

employed to not employed (Φl−1 = 1 and Φl = 2)
v -2.232 (0.064) -2.845 (0.090) -3.170 (0.111) -5.773 (0.293)
vA1 ,−vA2 -0.139 (0.033) -0.139 (0.051) -0.267 (0.077) -0.312 (0.100)
vB1 ,−vB2 -0.202 (0.054) -0.266 (0.078) -0.249 (0.011) -0.022 (0.169)
vC1 0.435 (0.131) 0.508 (0.175) 0.993 (0.169) 3.468 (0.335)
vC2 -0.330 (0.071) -0.345 (0.104) 0.001 (0.113) 2.224 (0.287)
vC3 -0.653 (0.064) -0.976 (0.104) -0.883 (0.129) 0.987 (——)
vC4 0.548 0.813 -0.111 -6.679
not employed to employed (Φl−1 = 2 and Φl = 1)
v -2.546 (0.073) -3.424 (0.137) -3.700 (0.156) -4.611 (0.579)
vA1 ,−vA2 0.266 (0.036) 0.118 (0.054) 0.025 (0.079) 0.004 (0.168)
vB1 ,−vB2 0.274 (0.056) 0.333 (0.085) 0.319 (0.130) 0.761 (0.572)
vC1 -2.339 (0.151) -2.530 (0.291) -2.130 (0.269) -1.700 (0.299)
vC2 -0.217 (0.082) -0.420 (0.154) -0.090 (0.153) -0.174 (0.247)
vC3 1.120 (0.072) 0.956 (0.131) 0.990 (0.137) 0.921 (0.225)
vC4 1.436 1.994 1.230 0.953
measurement error for employed (Φl = 1 and Sl = 2)
q -3.571 (0.072) -3.338 (0.134) -2.314 (0.151)
qA1 ,−qA2 -0.160 (0.073) -0.194 (0.070)
qB1 ,−qB2 -0.109 (0.124) -0.226 (0.107)
qC1 0.404 (0.224) 0.127 (0.232)
qC2 -0.243 (0.136) -0.115 (0.129)
qC3 -0.442 (0.122) -0.434 (0.121)
qC4 0.281 0.422

q
Sl−1

1 ,−qSl−1

2 -0.888 (0.096)
measurement error for not employed (Φl = 2 and Sl = 1)
q -4.370 (0.171) -4.420 (0.432) -3.808 (0.544)
qA1 ,−qA2 0.358 (0.077) 0.256 (0.072)
qB1 ,−qB2 0.256 (0.107) 0.174 (0.089)
qC1 -3.919 (1.248) -4.082 (1.581)
qC2 -0.485 (0.481) -0.561 (0.585)
qC3 1.828 (0.438) 1.943 (0.543)
qC4 2.576 2.700

q
Sl−1

1 ,−qSl−1

2 0.560 (0.078)
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much stronger than the effects of sex and ethnic group.
The event history parameters for Model 3d indicate that when the struc-

ture of the measurement error is specified more precisely, there is even less
change. In Model 3d, the mean probability of becoming not employed is
.040, and the mean probability of finding a job is .024. Furthermore, be-
cause of the strong effect of age on the error rates, it is not surprising that
the effects of age are affected most by allowing reliability to depend on
the covariate values. The most striking change occurs in the effect for the
youngest age group (C = 4) on the transition from employed to not em-
ployed. While in Models 1 and 3b the youngest age group had the highest
risk of becoming not employed, in Model 3d the probability for this age
group is around the mean level. Other differences between the parameters
for Models 3b and 3d are the weaker effects of A and C on the transi-
tion from not employed to employed, and the stronger effect of A on the
transition from employed to not employed.

In Model 4b, the measurement errors were allowed to be correlated be-
tween successive time points. By including direct effects of the preceding
observed states on the error rates, the covariate effects on the measure-
ment error change most for the true state employed. The error rates for
whites (B = 1) and persons belonging to the oldest age group (C = 1)
become lower, while the error rates for persons belonging to the youngest
age group become higher. Moreover, the effects of sex and ethnic group
on the measurement errors for the state not employed become somewhat
smaller. The signs of the direct effects of the observed state on the pre-
vious occasion on the state-specific reliabilities indicate that persons with
Sl−1 = 1 have a lower error rate for the true state employed and a higher
error rate for the true state not employed, while persons with Sl−1 = 2
have a higher error rate for the state employed and a lower error rate for
the state not employed. So, people tend to be consistent in their reported
employment status, irrespective of their true state. This leads to a more
reliable measurement if the true state corresponds with the observed state,
and a less reliable measurement if the true state does not correspond with
the observed state.

The most important change in the event history parameters compared
with the model with uncorrelated errors (Model 3d) is the change in the
probability of becoming not employed for persons with C = 4. This group
has a probability of nearly zero (exp(−5.773 − 6.679)/[1 + exp(−5.77 −
6.679)]) of becoming not employed, which indicates that the solution is on
or very close to the boundary of the parameter space. From a substantive
point of view, this implies that all the observed transitions from employed
to not employed of persons belonging to the youngest age group can be
attributed to measurement error. Also the effect of ethnic group on the two
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transition probabilities changes quite a lot: The difference between whites
and non-whites in the probability of becoming not employed disappears,
while the difference in the probability of becoming employed increases.

Although on the basis of the model fit it can be concluded that Model
4b performs very well, the extremely low probability of becoming not em-
ployed for the youngest age group indicates that it probably overestimates
the amount of measurement error. It is very implausible that the youngest
age group really has a probability of zero of becoming unemployed or going
out of the labor force. Thus, as always, substantive arguments must deter-
mine the choice from among the many different possible specifications for
the structure of the measurement error. This example demonstrated the
flexibility of approach for dealing with measurement error in the observed
states, which was presented in this section. It can be used to test different
types of assumptions about measurement error, such as whether the mea-
surement error is stable over time, whether the measurement error depends
on an individual’s covariate values, and whether the measurement error is
correlated between successive points in time.

æ

5.4 Partially missing data

The two previous sections presented event history models with latent vari-
ables, in other words, models in which the information on some variables is
completely missing. This section deals with another type of missing data
problem. Event history models are presented which can be used when co-
variate values are partially missing or when event history information is
partially missing. The lack of some information can, for instance, be the
result of nonresponse or panel attrition, but it can also be caused by the
data collection design itself. In clinical trials, sometimes it is very expen-
sive or even impossible to collect additional covariate information for the
individuals who are already involved in the study. Social surveys are also
often subject to partial nonresponse.

The approach for dealing with partially observed data discussed here
is based on the missing data techniques developed in the field of log-linear
modeling. Schluchter and Jackson (1989) applied the approach of Fuchs
(1982) to use cases with partially observed covariate values in a log-rate
model with categorical covariates. However, as demonstrated in section
3.2, Fuchs’s approach has the disadvantage that the nonresponse mecha-
nism must be assumed to be ignorable. Moreover, Schluchter and Jackson
(1989) only specified a saturated model for the covariate part of the model.
Here, Schluchter and Jackson’s method is extended by using Fay’s approach
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to nonresponse (Fay, 1986) instead of Fuchs’s approach. This makes it
possible to relax the assumption that the response mechanism is ignorable.
Recently, Baker (1994) applied models for nonresponse in combination with
a discrete-time logit model. Furthermore, since the covariate part of the
event history model used is a modified path model, different kinds of log-
linear models can be specified for the covariates, such as the models with
latent variables discussed in the previous two sections. It should be noted
that Schluchter and Jackson already mentioned the possibility of extending
their hazard model with partially observed covariates with a more general
model for the covariates and with a model for response mechanism.

Not only the covariate values, but also the event history data may be
partially missing. The best known forms of missing data on the occur-
rence or nonoccurrence of the event(s) under study are, of course, left and
right censoring. As demonstrated in section 4.5, one of the strong points
of hazard rate models is that right-censored observations can be used for
the estimation of the parameters, and that, in specific situations, the same
applies to left-censored observations. However, the standard treatment of
censored observations is only valid if the censoring mechanism is indepen-
dent (Kalbfleisch and Prentice, 1980) or noninformative (Lagakos, 1979),
that is, if the missing data mechanism is ignorable for likelihood-based in-
ference. By means of the above-mentioned methods for handling missing
data, it is possible to relax this assumption for discrete-time event history
models; more precisely, it is possible to specify models in which the de-
pendent process and the censoring process are related to each other. The
approach presented here has two other advantages compared to the stan-
dard way of dealing with missing event history information. First, it can
be used with more general patterns of nonresponse than left censoring and
right censoring: Missing data may occur at every point in time, that is,
not only at the beginning or the end of the observation period. Second,
it can also be used for dealing with missing information on time-varying
covariates.

It should be noted that the models for nonresponse can only be used
for dealing with missing event history information if time is treated as a
discrete variable. The reason for this is that the models for nonresponse
are based on defining an event history model as a modified path model
with missing data, which is only possible for a discrete-time logit model.
If time is continuous, other types of methods have to be used to deal with
nonignorable censoring. One method, which was illustrated in Example 4,
is treating censoring as a dependent competing risk.

One of the strongest points of the approach to be presented here is
that it is embedded in the general missing data framework introduced in
section 5.1. This makes it possible to use the missing data techniques
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to be discussed below in conjunction with unobserved heterogeneity, indi-
rectly observed covariates, and latent transitions. The next two subsections
demonstrate the way in which to use Fay’s causal models for nonresponse to
deal with partially observed covariates and with partially observed discrete-
time event history data.

5.4.1 Partially observed covariates

In section 3.2, the method proposed by Fay (1986) for handling partially
observed data in log-linear models was discussed. Fay’s method can also be
used for dealing with partially observed covariates in event history models
by simultaneously specifying a causal log-linear model with response indi-
cators and a hazard model for the time variable of interest. Thus, a model
consists again of two parts: a part in which the relationships between the
covariates and the response mechanism is specified, and a part in which the
dependent process of interest is specified. In fact, the solution for this type
of missing data problem is very similar to the solution that was applied for
completely unobserved covariates in sections 5.2 and 5.3.

Suppose there is a hazard model for one single type of event with four
observed covariates A, B, C, and D. Furthermore, suppose that the scores
on D are missing for some persons, and that the indicator variable R indi-
cates whether D is observed (R = 1) or not (R = 2). Using the terminology
introduced in section 3.2, there are two subgroups of persons on whom the
same kind of information is available. For subgroup ABCD, all covariates
are observed, while for subgroup ABC, only A, B, and C are observed. In
addition, for all persons there is information on the survival time and on
whether one experienced an event or not.

The covariate part of the model is a causal model for nonresponse as
proposed by Fay (1986), i.e.,

πabcdr = πabcd πr|abcd . (5.29)

Although, for the sake of simplicity, πabcd will not be restricted, it is possible
to postulate a model for the covariates as well.

The mechanism causing the missing data can be specified by means of
a logit model for conditional probability πr|abcd. It should be noted that it
is even necessary to impose some restrictions on πr|abcd because otherwise
the model is not identified. It is not possible to include the effects of all
completely and partially observed covariates, including all their higher-
order interaction terms, in the model for the response mechanism. The
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simplest response model is obtained by the following logit model:

πr|abcd = πr =
exp

(
uRr
)∑

r exp (uRr )
. (5.30)

From the fact that the model for πr|abcd does not contain interaction terms
of R and the covariates, it can be seen that the probability of nonresponse
is assumed to be independent of all the covariates included in the model.
Using the missing data terminology introduced in section 3.2, the missing
data is assumed to be missing completely at random (MCAR). Another
possible specification is

πr|abcd = πr|abc =
exp

(
uRr + uRAra + uRBrb + uRCrc

)∑
r exp

(
uRr + uRAra + uRBrb + uRCrc

) . (5.31)

Here, R is assumed to depend on A, B, and C, but not the higher-order
interactions between these variables. Since R depends only on variables
which are observed for all individuals, the response model represented in
Equation 5.31 assumes the missing data to be missing at random (MAR).
Note that it is a ‘non-saturated’ MAR model because the higher-order in-
teraction terms are not included in the model.

The response models described in Equations 5.30 and 5.31 both assume
the response mechanism to be ignorable because the value of the response
indicator R does not depend on the variable which is missing for some
persons. A simple nonignorable nonresponse model would be

πr|abcd = πr|d =
exp

(
uRr + uRDrd

)∑
r exp

(
uRr + uRDrd

) . (5.32)

This is a nonignorable response model because the probability of nonre-
sponse depends on a variable which is not observed for all individuals.

The second part of the model can be either a log-rate model or a discrete-
time logit model. The log-rate model may be of the form

h(z|a, b, c, d) = exp
(
v + vAa + vBb + vCc + vDd + vZz

)
, (5.33)

which is a proportional hazard model. It should be noted that the response
indicator can be included as a regressor in the hazard model as well. Al-
though in most applications it is not very sensible, in some situations it may
be of interest to test whether the nonresponse is related to the dependent
process.

Estimation of the parameters of the log-linear model for the covariates,
the response model, and the hazard model can again be performed by means
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of the EM algorithm. Since the model described in Equations 5.29 and
5.33 is a special case of the general model defined in Equation 5.1, the
posterior probabilities which are needed in the E step of the EM algorithm
for obtaining the complete data are of the form given in Equation 5.3.
In this particular example, the E step involves computing the probability
that D = d given the observed covariate and survival information and the
current parameter estimates for individuals with a missing value on D. This
posterior probability can be obtained by

P (d|i) =
πabcd2L∗i (h)∑
d πabcd2L∗i (h)

,

where a, b, and c are the observed covariate values of person i, and L∗i (h)
is the contribution of person i to the complete data likelihood function for
the event history part of model.

Example 11: A hazard model for the incidence of high blood
pressure with partially observed covariates

Data and model Schluchter and Jackson (1989) illustrated their ap-
proach to partially observed covariates in log-rate models by means of an
example on the incidence of high blood pressure. Example 11, which is
based on the same data set, demonstrates some of the possible extensions
of their method when using the general missing data approach presented
above. After repeating a part of Schluchter and Jackson’s analysis, we will
show how to specify nonignorable response models and models in which
the relationships between the covariates are restricted by means of a latent
class model.

The data concern 6,942 men who enrolled in the Institute for Aerobic
Fitness in Dallas, Texas, between 1970 and 1982 (Blair et al., 1984). At the
initial visit, the men were examined, and baseline data were collected. In
1982, data was collected on the incidence of high blood pressure during the
period between the initial visit and the moment of the interview. Schluchter
and Jackson defined the time variable for their hazard model as the time
between the year of the initial visit to the center and the year a person
was diagnosed to have high blood pressure. As covariates they used age
(≤ 40, > 40), systolic blood pressure (≤ 120 mm Hg, > 120 mm Hg),
treadmill stress test time (≤ 11 minutes, > 11 minutes), and percentage
body fat as determined by hydrostatic weighing (≤ 16, > 16), which will
here be denoted by A, B, C, and D, respectively. The variable percentage
of body fat (D) was the only variable with partially missing information.
It was not observed in 53 percent of the men enrolled in the study.
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Table 5.23: Test results for the estimated models for the incidence of high
blood pressure with missing data on one of the covariates

Model log-lik. # par.

simple hazard model
1. MCAR {ABCD,R} -16839.38 24
2. saturated MAR {ABCD,ABCR} -16766.16 31
3. second order MAR {ABCD,AR,BR,CR} -16768.58 27
4. nonignorable {ABCD,DR} -16779.57 25
latent class hazard model
5. 2 class nonignorable {AW,BW,CW,DW,RW} -16869.51 16
6. 3 class nonignorable {AW,BW,CW,DW,RW} -16775.94 23

The model for the covariates and the response model are of the form
given in Equation 5.29. For the time of being, a saturated model is assumed
for the relationships between the covariates. To test different assumptions
about the response mechanism different specifications are used for response
probability πr|abcd, such as the ones described in Equations 5.30-5.32.

For the hazard part of the model only one specification is used, that is, a
piecewise constant proportional hazard model with three time intervals: 0-3
years, 4-6 years, and 7-12 years. The log-rate model concerned is equivalent
to the model described in Equation 5.33. From the analyses performed by
Schluchter and Jackson, it is known that this simple model fits very well.
So, the only part that is varied is the model for the response mechanism.

Results Table 5.23 shows the test results for the models that are pre-
sented below. Model 1, which is Schluchter and Jackson’s final model, is
of the form given in Equation 5.30; in other words, it assumes the missing
data to be MCAR. Models 2 and 3 are two other ignorable response mod-
els. Model 2 is the ‘saturated’ MAR model; in other words, the model in
which R depends on all completely observed covariates, including all their
higher-order interaction terms.27 From the conditional likelihood-ratio test
of Model 1 against Model 2, it can be seen that the missing data is clearly
not MCAR: L2

1|2 = 145.44, df = 7, p = .000. Model 3 is the ‘non-saturated’
ignorable response model described in Equation 5.31: It contains only the
two-variable terms of R and A, B, and C, respectively. Since Model 3 does
not fit worse than Model 2 (L2

3|2 = 4.84, df = 4, p > .31), the higher-order
interaction terms are not significant. Although not presented in Table 5.23,

27In this particular case, a log-linear model for nonresponse can be specified which is
equivalent to the ‘saturated’ ignorable response mechanism because of the nested pattern
of nonresponse (see also section 3.2).
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separate tests show that all two-variable effects are significant.
In Model 4, the response mechanism is of the form described in Equation

5.32, which is a nonignorable model since it contains a direct effect of D
on R. As can be seen from the difference in values of the log-likelihood
functions, Model 4 fits much better than Model 1, using only one additional
parameter (L2

1|4 = 119.62, df = 1, p = .000). Moreover, it fits almost as

well as Model 3.28 Of course, substantive arguments have to determine the
choice between an ignorable and a nonignorable response model. It will be
clear, however, that, using Fay’s approach, it is relatively easy to specify
nonignorable models for nonresponse. And, in terms of fit, this model
performs rather well in this example. Often one does not know whether the
missing data mechanism is ignorable or not. In such cases, it is advisable
to investigate whether the structural parameters of interest are sensitive to
the specification which is used for the mechanism causing the missing data.

Table 5.24 reports the parameter estimates for some of the models for
nonresponse. The first column gives the estimates of the hazard parameters
which are obtained when only complete cases are used. The second column
presents the parameter estimates for Model 3, the ‘non-saturated’ MAR
model. But, since any ignorable response model gives the same hazard
parameters, the reported hazard parameters for Model 3 are at the same
time the hazard parameters for Models 1 and 2. It can be seen that the
parameter estimates change when using incomplete data in the analysis.
The effect of age (A) on the risk of high blood pressure becomes weaker,
whereas the effects of systolic blood pressure (B) and treadmill stress test
time (C) become stronger. The effect of percentage of body fat (D), the
variable with missing data, remains almost equal. And finally, the negative
time dependence becomes weaker.

From the parameter estimates for the response model of Model 3, it
can be seen that the high-risk groups (A = 2, B = 2, and C = 1) have
the highest probability of nonresponse. Although the effects are weak,
the nonresponse is clearly selective in the sense that it is related to the
dependent process under study.

The parameters for the response model of Model 4 indicate that there is
a rather strong relationship between D and the probability of observing or
not observing D. Nevertheless, the hazard parameters for this nonignorable
model are very similar to the ones for the ignorable models. Only the effect
of D becomes somewhat weaker when a nonignorable response mechanism
is postulated instead of an ignorable one. Thus, in this particular case, it is
more important to use the partially observed data than to specify correctly

28Models 3 and 4 cannot be tested against each other by means of a likelihood-ratio
test because they are not nested.
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Table 5.24: Parameter estimates for the models for the incidence of high
blood pressure under different assumptions about the response mechanism

Complete data Model 3 Model 4 Model 6

log-rate parameters
v -5.250 (0.150) -5.281 (0.115) -5.229 (0.112) -5.1470 (0.122)
vA1 ,-vA2 -0.204 (0.078) -0.124 (0.058) -0.122 (0.059)
vB2 ,-vB2 -0.768 (0.101) -0.831 (0.081) -0.828 (0.081)
vC3 ,-vC2 0.206 (0.116) 0.295 (0.092) 0.309 (0.092)
vD4 ,-vD2 -0.195 (0.091) -0.196 (0.091) -0.156 (0.082)
vW1 -0.793 (0.232)
vW2 -0.520 (0.192)
vW3 1.313
vZ1 0.187 (0.104) 0.080 (0.075) 0.082 (0.075) 0.077 (0.075)
vZ2 0.168 (0.109) 0.132 (0.081) 0.123 (0.082) 0.120 (0.081)
vZ3 -0.355 -0.212 -0.205 -0.197
response parameters
uR
1 -0.128 (0.015) -0.075 (0.017) -0.070 (0.015)
uRA
11 -0.065 (0.013)
uRB
11 -0.074 (0.012)
uRC
11 0.104 (0.015)
uRD
11 -0.362 (0.041)
uRW
11 -0.246 (0.028)
uRW
12 0.031 (0.024)
uRW
13 0.215
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the mechanism causing the missing data.

To show that the approach for dealing with incompletely observed covari-
ates can easily be applied together with the latent variable models discussed
in the previous two sections, two additional models are formulated which,
from a substantive point of view, seem to be interesting as well. Suppose
that the variables A, B, C, and D are indicators for the latent variable
‘physical condition’, denoted by W . In this case, the model for the joint
distribution of A, B, C, D, W , and R may be:

πabcdwr = πa πw|a πb|w πc|w πd|w πr|w .

This is, in fact, a latent class model in which B, C, and D serve as indicators
for W , and in which A (age) is used as an exogenous variable. Moreover,
W is assumed to determine the probability of observing D. Note that
such a response model gives a nonignorable response mechanism because
the response indicator depends on a variable which is not observed for all
persons. The hazard rate is assumed to depend only on W , where the effect
is assumed to be proportional.

As can be seen from the test results reported in Table 5.23, the model
with a two-class latent variable (Model 5) performs very badly. However,
the three-class model performs very well (Model 6). The value of the log-
likelihood function is very near to the ones for Models 2 and 4. Model 6
has, however, less parameters than these two models and, moreover, the
parameter estimates can be interpreted very easily.

The hazard parameters for Model 4, which are reported in Table 5.24,
show that the latent class model identified three groups with clearly dif-
ferent risks of being diagnosed as having high blood pressure. The hazard
rate for persons belonging to the third class is more than eight times higher
than for the persons belonging to the first class. Moreover, the parameter
estimates for the response model show that the group with the highest haz-
ard rate also has the highest probability of missing data on D. This is, of
course, consistent with the findings from Models 3 and 4.

Table 5.25 gives the parameter estimates for the covariate part of Model
6. The estimated marginal distribution of W shows that almost 40 percent
of the persons belong to the high-risk class. Furthermore, it can be seen that
there is a rather strong relationship between age and W . Almost 50 percent
of the individuals who are older than 40 years of age belong to high-risk
class three, while only 26 percent of the youngest age group belongs to the
high-risk class. The conditional ‘response’ probabilities πb|w, πc|w, and πd|w
show that W is most strongly related to B. Almost all persons belonging
to class three have a high systolic blood pressure (B = 2), which is quite
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Table 5.25: Parameter estimates for the covariate part of the latent class
model for the incidence of high blood pressure with a nonignorable response
mechanism (Model 6)

πw|a A = 1 A = 2 total
W = 1 0.508 0.199 0.328
W = 2 0.231 0.321 0.283
W = 3 0.262 0.480 0.388

πb|w W = 1 W = 2 W = 3
B = 1 0.541 1.000 0.001
B = 2 0.459 0.000 0.999

πc|w W = 1 W = 2 W = 3
C = 1 0.383 0.964 0.933
C = 2 0.617 0.036 0.067

πd|w W = 1 W = 2 W = 3
D = 1 0.808 0.148 0.137
D = 2 0.192 0.852 0.863

different from the two low-risk classes. The relationships between W and
the other two observed variables, C and D, are less clear. Although most
persons belonging to class three have a low treadmill stress time (C = 1),
most persons belonging to class two have a low treadmill stress time as well.
The same applies to the risk factor high percentage of body fat (D = 2).
Actually, high systolic blood pressure, short treadmill stress time, and high
percentage of body fat seem to be risk factors only if, as in class three, they
occur in combination with each other.

5.4.2 Partially observed event history data

The missing data methods developed in the field of log-linear modeling can
be used not only for dealing with partially observed covariates, but also for
dealing with partially missing discrete-time event history data. This is not
surprising, since the discrete-time logit model is, in fact, a modified path
model.

Event history models are very well suited for using one particular type
of missing data in the analysis, i.e., censored observations (see section 4.5).
However, the models with response indicators proposed by Fay (1986) have
a number of advantages over the usual way of dealing with censored obser-
vations. The most important one is that they make it possible to relax the
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assumption that the censoring mechanism is independent of the process un-
der study. Nonignorable missing data mechanisms, or dependent censoring
mechanisms, can be specified by allowing the response indicators to de-
pend on the variables with missing data, that is, on the states occupied at
the different points in time. A second advantage of Fay’s approach is that
partially observed data can be used for parameter estimation, irrespective
of the pattern of the missing data. In other words, non-nested patterns
of missing data can be handled without any problem. A third important
feature is that the procedure can be used not only with missing data on the
dependent process, but also with missing data on time-varying covariates.

Although Fay’s procedure has not yet been applied in order to deal with
partially observed event history data,29 causal models for nonresponse have
been applied many times in the context of longitudinal analysis of categor-
ical data, that is, in combination with modified path models. Hagenaars
(1990:181-200) demonstrated the usefulness of these methods for the anal-
ysis of panel data; Vermunt (1988, 1994, 1996) applied causal models for
nonresponse to a long-term panel study on social mobility, while Conaway
(1992, 1993) used these models for analyzing partially missing longitudinal
labor market data and longitudinal data on victimization.

Suppose there is a discrete-time logit model with three observed covari-
ates A, B, and C. Let, as in the other applications on discrete-time models,
Sl be the state that a person occupies at T = tl, where l indicates a par-
ticular point in time. Furthermore, let Rl be a response indicator denoting
whether Sl is observed (Rl = 1) or missing (Rl = 2). No a priori assump-
tions are made about the pattern of the missing data: For each individual,
any Sl may be either observed or missing. The simultaneous model for the
covariates, the dependent process, and the response mechanism is given by

πabcs0s1,...,sL∗r0r1,...,rL∗ = (5.34)

πabcπs0|abcπr0|abcs0

L∗∏
l=1

(
πsl|abcsl−1

πrl|abcs0,...,slr0,...,rl−1

)
.

For simplicity of exposition, the covariate part of the model, πabc, is not
restricted, and, moreover, it is assumed that all covariates are time constant.
The only difference between Equation 5.35 and a standard discrete-time
logit model is the inclusion of a set of conditional probabilities in which
the response indicators appear as dependent variables: πr0|abc denotes the
conditional probability of observing or not observing the initial state S0,

29Baker, Wax, and Patterson (1993) used a similar procedure for dealing with infor-
mative censoring. The difference is, however, that they used additional information on
censored observations obtained by double sampling.
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while πrl|abcs0,...,slr0,...,rl−1
denotes the conditional probability of observing

or not observing Sl. It can be seen that the value of Rl may depend on the
covariates, the previous states, the current state, and the previous values of
the response indicators. As recommended by Fay (1986), it will be assumed
that the values of response indicators do not influence the values of other
variables included in the model.30 Although, from a substantive point of
view, this seems rather logical, technically it is not a problem to change
the structure of Equation 5.35 in such a way that each response indicator
influences, for instance, the state occupied at the next point in time.

Like the other probabilities appearing in Equation 5.35, the nonresponse
probabilities, πrl|abcs0,...,slr0,...,rl−1

, can be restricted by means of a logit
parameterization. It is even necessary to impose some restrictions on these
probabilities because not all effects can be identified at the same time. More
precisely, if the model includes a direct effect of Sl on Rl, some of the other
effects must be left out of the model.

Because of the non-nested pattern of the missing data, it is not possi-
ble to specify a causal log-linear model for nonresponse which is equivalent
to the ‘saturated’ MAR model. The ‘saturated’ MAR model is the ignor-
able response model which uses all degrees of freedom which are gained by
incorporating the incomplete tables in the analysis. However, as already
demonstrated in section 3.2, the L2 value under a ‘saturated’ MAR model
can be obtained in an indirect way (Fuchs, 1982). By specifying a saturated
log-linear model for the covariates and the states occupied between T = t0
and T = tL∗ in combination with an MCAR response model, the L2 and df
are obtained for the MCAR response model. Note that an MCAR response
model is obtained by restricting the nonresponse probabilities to depend
only on the preceding response indicators. Subtracting the L2 and df of
this MCAR model from the L2 and df that are obtained from an event
history model which is also estimated under the MCAR assumption gives
a conditional test for the estimated model under a ‘saturated’ MAR non-
response model. The parameter estimates for the discrete-time logit model
are the same for any ignorable response mechanism, which is exactly the
definition of ignorability.

When a log-linear model is specified for the response mechanism, it
will very quickly become a nonignorable response model. A nonignorable
response model – in other words, a response model that influences the
estimates of the structural parameters of interest – is obtained by allowing

30According to Fay (1986), a response indicator appearing in a model for nonresponse
may only be used either as a dependent variable or as an independent variable in a logit
model for another response indicator. In other words, response indicators may not be
used as explanatory variables in a logit model for a variable which is not a response
indicator.
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the response indicators to depend on variables which are missing for some
persons. In this case, a nonignorable response model is obtained if the
model contains direct effects of the Sl’s on the Rl’s, for instance, if Sl−1

is assumed to influence Rl. Thus, contrary to what perhaps would be
expected on the basis of the term ‘nonignorable nonresponse’, a log-linear
response model may yield a nonignorable response mechanism even if the
response indicators are not directly influenced by the variables which lack
of information they indicate. An exception to this rule occurs when the
nonresponse has a nested pattern. In that case, the response mechanism
will be ignorable as long as the response model does not contain direct
effects on the response indicators of the variables which lack of information
they indicate (see also section 3.2).

Because the model given in Equation 5.35 is a modified path model,
the same version of the EM algorithm can be used for obtaining maximum
likelihood estimates of its parameters as the version described in the section
3.2. Model testing can be performed by means of the L2 statistic.

Example 12: A discrete-time logit model for partially observed
labor market transitions

Data and models This example illustrates the use of the log-linear mod-
els for nonresponse when data is missing on the states that persons occupy
at the different points in time. For this purpose, the SIPP data on la-
bor market transitions which was introduced in Example 3 is used. Both
complete and incomplete data is used in the analysis, and the mechanism
causing the missing data is investigated.

The SIPP rotation group from which the data was also used in some of
the previous examples consists of 6,754 persons. For 4,597 persons there is
complete information on the states occupied from T = t0 to T = t5. Thus,
by using only complete cases, the available information for 32 percent of
the cases is not used. Since there are observations for six points in time,
theoretically there are 64 (26) distinct patterns of nonresponse. In the data
set, 52 of these 64 pattern occur. This means that there is clearly no nested
pattern in the missing data. From the 2,157 persons with missing data, 964
persons have missing data on all the Sl after the first occurrence of nonre-
sponse. These 964 persons do not include the 17 persons who have missing
data on all Sl. Another group of 582 respondents starts participating in
the study after T = t0, and continues to participate until the end of the
study. The remaining 504 persons have less regular missing data patterns.

The model that is used is of the form given in Equation 5.35. For the
sake of simplicity, only one specification is used for the discrete-time logit
model. As in Example 11, the transition probabilities are assumed to be
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Table 5.26: Test results for the estimated models for labor market transi-
tions with missing data on the dependent process

Model L2 df

saturated model
1. MCAR 2689.02 10577
hazard model with ignorable response mechanisms
2. MCAR or {R0..Rl} 4770.68 11557
3. ’saturated’ MAR 2081.66 980
4. {R0..RlABC} 3690.41 10612
5. {R0..Rl, RlA,RlB,RlC} 4255.29 11527
6. {R0..Rl, RlRl−1A,RlRl−1B,RlRl−1C} 4221.70 11502
7. {R0..Rl, RlABC} 4195.53 11467
8. {R0..Rl, R0C} 4310.07 11554
9. {R0..Rl, RA,RB,RC} 4592.20 11552
hazard model with nonignorable response mechanisms
10. {R0..Rl, RlA,RlB,RlC,RlSl−1} 4250.18 11522
11. {R0..Rl, RlA,RlB,RlC,RlSl} 4237.45 11521
12. {R0..Rl, RlA,RlB,RlC,RlSl−1Sl} 4212.53 11511

constant over time and the effects of the covariates sex (A), race (B), and
age (C) are assumed to be proportional; in other words, the model is a
stationary Markov model. The example focuses on the specification of the
model for nonresponse rather than the event history model itself.

Results Table 5.26 reports the test results for the models that are esti-
mated using the complete and incomplete SIPP data. Models 1 and 2 are
two reference models in which the missing data is assumed to be MCAR.
In Model 1, a saturated model is specified for the event history part of the
model, while Model 2 is the stationary Markov of interest. As mentioned
above, the L2 value for the stationary Markov model assuming ‘saturated’
MAR missing data (Model 3) can be obtained by subtracting the L2 value
of Model 1 from the L2 value of Model 2. Thus, 2081.66 is the lower bound
value for L2 that can be obtained by specifying a model for the response
mechanism, while 4770.68 is the upper bound value, that is, the value for
the most restrictive missing data mechanism, MCAR. The difference be-
tween the two, 2689.02, can be bridged using 10,577 degrees of freedom.

Model 4 is the most extended ignorable model that can be specified
with the log-linear models for nonresponse. The values of the response
indicators Rl are assumed to depend on the values of all previous response
indicators and the values of the three covariates A, B, and C, including
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all their higher-order interaction terms. Model 4 has an L2 value which is
1080.27 lower than for Model 2 using 945 additional parameters (p < .002).
Model 5 includes only the two-variable terms between Rl and A, B, and
C, respectively. Comparison of this rather parsimonious ignorable model
with the ‘saturated’ MAR model (Model 2) shows that Model 5 captures
an important part of the process causing nonresponse: L2

5|2 = 515.39, df =
30, p = .000. In Models 6 and 7, an attempt is made to improve the
fit of Model 5 in two different ways. Model 6 contains the three-variable
interactions among Rl, Rl−1, and the covariates, which means that the
effect of responding or not on the previous occasion is assumed to depend
on covariate values. Model 7 contains all the higher-order interaction terms
among Rl and the covariates. Conditional tests show that neither Model 6
nor Model 7 fits better than Model 5: L2

5|6 = 33.59, df = 25, p > .11; and

L2
5|7 = 59.76, df = 60, p > .48.

Since the parameter estimates for Model 5 indicate that, except for
the effect of age (C) on R0, all the covariate effects on the nonresponse
probabilities are very weak, a response model is specified that, apart from
the interactions among the response indicators, only contains a direct effect
of C on R0 (Model 8). The strong decrease in L2 compared to Model 2
(L2

2|8 = 460.61) indicates that indeed uR0C
r0c is the most important covariate

effect in the model for the nonresponse. However, the other effects included
in Model 5 are still significant: L2

8|5 = 54.78, df = 27, p < .002. And lastly,
another ignorable model more parsimonious than Model 5 is tested, namely,
a response model in which the effects of the covariates on the response
indicators are assumed to be equal for all points in time (Model 9). Model
9 fits much worse than Model 5 (L2

9|5 = 363.91, df = 25, p = .000), which
means that the probability of nonresponse is not time-homogeneous.

Taking Model 5 as a starting-point, some nonignorable response models
are tested. Model 10 contains the direct effects of the state occupied at
T = tl−1 on the probability of responding or not at T = tl. The condi-
tional test against Model 5 indicates that these effects are not significant:
L2

5|10 = 5.11, df = 5, p > .40. In Model 11, the response probabilities are al-
lowed to depend on the state occupied at the same moment in time. These
effects are significant: L2

5|11 = 17.84, df = 6, p < .001. And finally, Model 12
contains the three-variable interactions among Rl, Sl, and Sl−1, which im-
plies that the nonresponse probabilities are assumed to depend on whether
a transition took place or not, and also on the type of transition.31 Model

31Since nonignorable response models may not be identified, different sets of starting
values have been used for Models 10-12 to check the identifiability of all their parameters.
All these different sets of starting values gave the same solution, which indicates that
the models are identified.
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Table 5.27: Parameter estimates for the models for labor market transitions
under different assumptions about the nonresponse mechanism

Complete cases Models 2-9 Model 12

employed to not employed (Sl−1 = 1 and Sl = 2)
v -2.232 (0.064) -2.137 (0.057) -2.157 (0.059)
vA1 ,−vA2 -0.139 (0.033) -0.113 (0.029) -0.115 (0.029)
vB1 ,−vB2 -0.202 (0.054) -0.191 (0.047) -0.184 (0.047)
vC1 0.435 (0.131) 0.503 (0.119) 0.511 (0.120)
vC2 -0.330 (0.071) -0.426 (0.066) -0.417 (0.066)
vC3 -0.653 (0.064) -0.652 (0.058) -0.652 (0.058)
vC4 0.548 0.575 0.558
not employed to employed (Sl−1 = 2 and Sl = 1)
v -2.546 (0.073) -2.536 (0.065) -2.512 (0.069)
vA1 ,−vA2 0.266 (0.036) 0.256 (0.032) 0.252 (0.031)
vB1 ,−vB2 0.274 (0.056) 0.247 (0.048) 0.242 (0.047)
vC1 -2.339 (0.151) -2.330 (0.140) -2.332 (0.139)
vC2 -0.217 (0.082) -0.144 (0.076) -0.140 (0.076)
vC3 1.120 (0.072) 1.165 (0.065) 1.170 (0.065)
vC4 1.436 1.309 1.302

12 fits significantly better than Model 11: L2
11|12 = 24.92, df = 10, p < .006.

Because most of the parameters of the log-linear models for nonresponse
are very small, only the parameters of the event history part of the model
are considered. These parameters are obtained using only complete cases,
assuming ignorable nonresponse (Model 2-9), and assuming nonignorable
nonresponse (Model 12) are given in Table 5.27. It can be seen that in
this particular case the parameter estimates are rather invariant under the
different assumptions about the response mechanism. The only parame-
ters that change somewhat by including the partially observed data in the
analysis are the effects of age (C) on both transition probabilities. The
main effect for the transition from employed to not employed also increases
slightly. Apparently, persons with missing data have a higher risk of be-
coming not employed than persons without missing data. As can be ex-
pected, the standard errors of the parameter estimates are smaller when
using all available information. Comparison of the parameters of the ignor-
able models with those of the nonignorable model demonstrates that in this
particular case it does not matter which model is specified for the response
mechanism. This is, of course, important to know.

æ
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5.5 Conclusions

This chapter presented a general approach to missing data problems in
event history analysis which can be used to correct for unobserved hetero-
geneity, to correct for measurement error in observed covariate values and
in the observed states, and to deal with partially missing information on
covariate values and on the states occupied at the different points in time.
This very flexible approach was based on the use of log-linear models or,
more precisely stated, on the simultaneous specification of a modified path
model with latent or partially missing variables for the covariates and an
event history model for the dependent process of interest.

Several existing models, such as Heckman and Singer’s non-parametric
unobserved heterogeneity model and hazard models with partially observed
covariates, are special cases of the general model presented in this chapter.
In addition, the general approach makes it possible to extend particular
existing approaches by relaxing some of their basic assumptions. Some ex-
tensions of the standard methods for dealing with unobserved heterogene-
ity that were proposed are models in which the unobserved heterogeneity
is related to the observed covariates, models with several mutually related
latent covariates, and models in which the latent variable capturing the un-
observed heterogeneity is time varying. With respect to partially missing
covariate values, it was shown that it is possible to relax the assumption
that the data are missing at random; in other words, the response mecha-
nism may also be nonignorable.

New missing data applications that were developed on the basis of the
general model are models with indirectly measured covariates, event history
models which correct for measurement error in the observed states, and
models for dealing with general missing data patterns in the dependent
variable of interest assuming either an ignorable or nonignorable response
mechanism. Event history models with indirectly measured covariates, that
is, with covariates which are subject to measurement error, were formulated
by defining a latent class model for the latent covariates. In addition,
models which correct for measurement error in the states occupied at the
different points in time were obtained by using modified path models with
latent variables as discrete-time event history models. And finally, models
for ignorable and nonignorable ‘nonresponse’ on the dependent variable
were based on the use of a modified path model with partially observed
data as a discrete-time event history model together with a log-linear model
for the response or censoring mechanism.

On the one hand, the generality and flexibility of the approach that was
presented may be problematic since, as was demonstrated by the examples,
the results may be rather sensitive to the specification which is used. When
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correcting for unobserved heterogeneity, the results are strongly influenced
by whether the latent variable is related to the observed variables or not.
In the latent class models which were used to correct for measurement error
in the observed covariates, it was often difficult to decide how many latent
classes were needed to sufficiently describe the data. When using latent
Markov models with one indicator per occasion to correct for measurement
error in the observed states, the results may be influenced by the identifying
restrictions which are used and by whether the measurement errors in the
observed states are assumed to be correlated. In addition, when using par-
tially observed data, it is difficult to decide whether to assume an ignorable
or nonignorable response mechanism, though the examples showed that it
is often more important to use the partially observed data in the analysis
than to correctly specify the response mechanism.

On the other hand, existing approaches, in which assumptions are often
made that are not tested at all, may lead to misspecified models as well. The
great advantage of the approach presented in this chapter is that it makes it
possible to test the underlying assumptions on which standard missing data
approaches are based. It is thus possible to test whether the unobserved
heterogeneity is independent of the observed covariates, whether covariates
and states are measured without error, whether the measurement errors are
uncorrelated between time points, whether covariate values are missing at
random, whether the censoring mechanism is ignorable, etc. Consequently,
it is possible to use that particular specification which seems to be the
most realistic from a substantive point of view, without the necessity of
making too strong a priori assumptions. Moreover, it is possible to inves-
tigate the sensitivity of the results for the specification of the unobserved
heterogeneity, the measurement error, and the response mechanism.

æ



Appendix A

Computation of the
log-linear parameters
when using the IPF
algorithm

A.1 Removing parameters from the estimated
expected frequencies

The IPF algorithm can be used for obtaining maximum likelihood estimates
for the expected cell frequencies according to a particular log-linear model.
Since the IPF algorithm does not provide estimates for the log-linear pa-
rameters, they must be calculated separately. One of the methods that can
be used to obtain the log-linear parameters is calculating a particular set of
parameters and subsequently removing them from the estimated expected
frequencies.

Suppose the log-linear model for which the estimated expected frequen-
cies m̂abc are computed by means of IPF is of the form {AB,BC}. Assume,
moreover, that we want to obtain effect-coded log-linear parameters, that
is, parameters which are identified by ANOVA-like restrictions. To obtain
these parameters, first the overall mean has to be calculated by

û =
∑
abc

log m̂abc

A∗B∗C∗
,
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and removed from m̂abc by

m̂′abc = m̂abc exp (−û) .

Here, A∗, B∗, and C∗ denote the number of categories of the variables A,
B, and C, respectively.

The one-variable effects can be computed by means of m̂′abc as follows:

ûAa =
∑
bc

log m̂′abc
B∗C∗

,

ûBb =
∑
ac

log m̂′abc
A∗C∗

,

ûCc =
∑
ab

log m̂′abc
A∗B∗

.

These effects have to be removed from m̂′abc to obtain m̂′′abc by

m̂′′abc = m̂′abc exp
(
−ûAa − ûBb − ûCc

)
.

And finally, the two-variable effects can be obtained by means of the m̂′′abc
as follows:

ûABab =
∑
c

log m̂′′abc
C∗

,

ûBCbc =
∑
a

log m̂′′abc
A∗

.

As can be seen from the above equations, effect-coded log-linear parameters
can be simply obtained by calculating the mean of the log of the expected
frequencies from which the lower-order effects are removed within the cat-
egories of the variables which are not involved in the effect concerned.

When using dummy coding, a similar procedure can be followed. The
difference is, however, that in dummy coding, the parameters are obtained
in the reference categories of the variables which are not involved in the
effect concerned rather than by calculating the mean within the categories
of these variables.

A.2 Removing parameters from the cumu-
lated multipliers

An alternative procedure for calculating the log-linear parameters in com-
bination with IPF is based on the use of the cumulated multipliers of the
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IPF iterations rather than of the estimated expected frequencies. In the
LOGLIN program (Olivier and Neff, 1976), the parameters are obtained by
using the cumulated multipliers for all cell entries. Removing parameters
from the logs of these multipliers proceeds in the same way as was discussed
in the previous section. A slightly modified version of this procedure has
been implemented in the `EM program (Vermunt, 1993). The parame-
ters are computed by means of the cumulated multipliers for the marginal
cell entries which have to be reproduced according to the postulated log-
linear model. In the case of log-linear model {AB,BC}, these cumulated
multipliers of the IPF cycles, denoted by cmab and cmbc, are obtained by

cmab =
∏
ν

nab+

m̂
(ν−1)
ab+

,

cmbc =
∏
ν

n+bc

m̂
(ν)′

+bc

,

where the product is over all IPF iterations. Moreover, m̂
(ν−1)
ab+ denotes the

estimated expected marginal frequency for A = a and B = b after iteration

ν − 1, and m̂
(ν)′

+bc the estimated expected marginal frequency for B = b and
C = c after adjusting the marginal AB in iteration ν.

When using effect coding, the parameters can be obtained by removing
the mean of the logs of cmab and cmbc. For each log-linear parameter, the
multipliers have to be used which contain the indices of the effect concerned
as a subset. First, the overall mean is computed using cmab and cmbc,

û(1) =
∑
ab

log cmab

A∗B∗
,

û(2) =
∑
bc

log cmbc

B∗C∗
,

û = û(1) + û(2) .

Then, û(1) and û(2) are removed from cmab and cmbc, respectively

cm′ab = cmab exp
(
−û(1)

)
,

cm′bc = cmbc exp
(
−û(2)

)
.

The one-variable effects are obtained by

ûAa =
∑
b

log cm′ab
B∗

,
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û
B(1)
b =

∑
a

log cm′ab
A∗

,

û
B(2)
b =

∑
c

log cm′bc
C∗

,

ûBb = û
B(1)
b + û

B(2)
b ,

ûCc =
∑
ab

log cm′bc
A∗B∗

.

Note that ûBb is based on both multipliers because index b appears in both
cmab and cmbc. After removing the components belonging to the one-
variable effects, the two-variable effects remain, i.e.,

ûABab = log
(
cm′ab exp

(
−ûAa − û

B(1)
b

))
,

ûBCbc = log
(
cm′bc exp

(
−ûB(2)

b − ûCc
))

.

This procedure can easily be modified to obtain parameter estimates under
other kinds of identifying restrictions. In dummy coding, for instance, the
parameters are obtained from the logs of the cumulated multipliers within
the reference categories of the variables not involved in the effect concerned.
Removing the parameters proceeds in the same manner as discussed above.

Two final remarks have to be made. First, when using the above-
mentioned procedure for obtaining the estimates for the log-linear param-
eters, the starting values for the log-linear parameters must not only be
implemented in the estimated expected frequencies, but also in the cumu-
lated multipliers because otherwise the parameters estimates will not be
correct. Second, this procedure can also be applied when a model contains
structural zeros as long as no zeros (sampling or structural) occur in the
minimal sufficient statistics.



Appendix B

The log-linear model as
one of the generalized
linear models

It can be demonstrated that the log-linear model is a member of the family
of generalized linear models (GLMs) (Nelder and Wedderburn, 1972; Mc-
Cullagh and Nelder, 1983, 1989). GLMs are characterized by three compo-
nents: a random component, a systematic component, and a link between
the random component and the systematic component.

Models belong to the family of generalized linear models when the ran-
dom component of each of n independent observations yi, or, in other words,
the probability density function of the data, has a distribution in the ex-
ponential family taking the form

f (yi; θi, φ) = exp {[yiθi − b (θi)] /a (φ) + c (yi, φ)}

for some specific functions a(.), b(.), and c(.). The term θi is called the
natural parameter of the distribution. Assuming a Poisson distribution,
the probability density function for an observed cell count ni is

f (ni;mi) =
exp (−mi)m

ni
i

ni!

= exp [ni log(mi)−mi − log(ni!)] .

This implies that θi = log(mi), b(θi) = exp(θi) = mi, a(φ) = 1, and
c(yi, φ) = − log(ni!).
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The systematic component of a GLM relates the linear predictor ηi to
a set of j explanatory variables xij ,

ηi =
∑
j

βjxij ,

where βj are the model parameters.
The third component is a link between the random component and

the systematic component. The expected values of the observations, µi =
E(yi), are linked to the linear predictor ηi by a function g(µi),

ηi = g (µi) =
∑
j

βjxij .

When the link transforms the expected value of an observation to the nat-
ural parameter θi, it is called a canonical link. Using a canonical link has
the advantage that j sufficient statistics exist which equal∑

i

xijyi .

Since the natural parameter of the Poisson distribution is logmi, the canon-
ical link function is ηi = logmi. So, in its most general form, the log-linear
model can be written as

logmi =
∑
j

βjxij ,

in which βj is a log-linear parameter and xij is an element of the design
matrix. It can be formulated shorter in matrix notation as

log m = Xβ .

Moreover, the sufficient statistics are given by∑
i

xijni .



Appendix C

The Newton-Raphson
algorithm

C.1 Log-linear models

Suppose we want to obtain maximum likelihood estimates for the βj pa-
rameters of log-linear model

logmi =
∑
j

βjxij .

Assuming a Poisson distribution, the kernel of the log-likelihood function
to be maximized to find the ML estimates for the βj parameters of the
above log-linear model is

logL =
∑
i

ni

∑
j

βjxij

−∑
i

exp

∑
j

βjxij

 .

Differentiation with respect to βj yields

qj =
∂ logL
∂βj

=
∑
i

nixij −
∑
i

mixij =
∑
i

(ni −mi)xij .

A particular element of the matrix of second-order partial derivatives used
by the Newton-Raphson algorithm can be obtained by

Hjk =
∂2 logL
∂βjβk

= −
∑
i

mixijxik .
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Let β(ν) denote the vector containing the νth approximation for the pa-
rameter estimates and m(ν) the νth approximation for the estimated ex-

pected frequencies, where m(ν) = exp
(
Xβ(ν)

)
. Iteration ν of the Newton-

Raphson algorithm involves finding improved estimates of the β parameters
as follows

β(ν) = β(ν−1) −
(
H(ν)

)−1

q(ν) .

The vector q(ν) denotes the gradient vector containing the partial deriva-
tives of the log-likelihood function with respect to the parameters to be
estimated. Matrix H(ν) is the matrix of the second partial derivatives, also
called the Hessian matrix. Both are evaluated at the parameter estimates
from the (ν − 1)th iteration,

q
(ν)
j =

∑
i

(
ni −m(ν−1)

i

)
xij ,

H
(ν)
jk = −

∑
i

m
(ν−1)
i xijxik .

The Newton-Raphson algorithm, which starts with an initial guess of the β
parameters, involves calculating the gradient vector and the Hessian matrix
every iteration. In addition, the Hessian matrix has to be inverted every
iteration, which implies that it must be nonsingular; in other words, there
may be no linear dependencies between the parameters. The estimated

large-sample covariance matrix of β̂ is
(
−Ĥ

)−1

.

C.2 Multinomial response models

According to Haberman (1979), in its most general form, the multinomial
response model can be written as

logmik = αk +
∑
j

βjxijk ,

where k is the index for the joint distribution of the independent variables
and i is the index for the (joint) response variable. Haberman (1979) de-
veloped a special variant of the Newton-Raphson algorithm for estimating
the multinomial response model. This is necessary because the number of
αk can become very large. In Haberman’s algorithm, the elements of the
gradient vector and the Hessian matrix are obtained by

q
(ν)
j =

∑
ik

(
nik −m(ν−1)

ik

)
(xijk − θjk) ,
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H
(ν)
jh = −

∑
ik

m
(ν−1)
ik (xijk − θjk) (xihk − θhk) ,

where

θjk =
∑
i

xijkm
(ν−1)
ik /

∑
i

m
(ν−1)
ik .

The updated parameter estimates β
(ν)
j and α

(ν)
k are found by

β(ν) = β(ν−1) −
(
H(ν)

)−1

q(ν) ,

α
(ν)
k = log

 ∑
i nik∑

i exp
(∑

j β
(ν)
j xijk

)
 .

In fact, Haberman’s procedure consists of applying a Newton-Raphson cycle
to update the βj parameters, followed by an IPF-like cycle to update the
αk parameters. Note that the calculation of the αk parameters is such
that

∑
imik =

∑
i nik, in other words, that the marginals belonging to

the joint independent variable are reproduced exactly. The asymptotic

variance-covariance matrix of the β parameters is given by
(
−Ĥ

)−1

.
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Appendix D

The uni-dimensional
Newton algorithm

D.1 Log-linear models

An alternative for the Newton-Raphson algorithm is the uni-dimensional
Newton algorithm. It differs from the multi-dimensional Newton algorithm
discussed in Appendix C in that it adjusts only one parameter at a time
instead of adjusting all parameters simultaneously. In that sense, it resem-
bles IPF. Instead of using the complete Hessian matrix, the uni-dimensional
Newton algorithm only uses the diagonal element belonging to the parame-
ter to be updated (Andersen, 1990; Jensen, Johansen, and Lauritzen, 1991).

Suppose we want to obtain maximum likelihood estimates for the βj
parameters of log-linear model

logmi =
∑
j

βjxij .

Successive approximations of βj involve

β
(ν)
j = β

(ν−1)
j −

q
(ν)
j

H
(ν)
jj

= β
(ν−1)
j −

∑
i

(
ni −m(ν−1)

i

)
xij

−
∑
im

(ν−1)
i xijxij

. (D.1)

Of course, these adjustments can be performed much faster than an iter-
ation with the Newton-Raphson algorithm because it is not necessary to
invert the complete Hessian matrix. This is especially true when a model
contains many parameters.
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Goodman (1979, 1984) presented a slightly different version of the uni-
dimensional Newton algorithm. The main difference with the algorithm
given in Equation D.1 is that his formulas involve the adjustment of the
multiplicative parameters instead of the log-linear parameters, i.e.,

expβ
(ν)
j = expβ

(ν−1)
j

1 +

∑
i

(
ni −m(ν−1)

i

)
xij∑

im
(ν−1)
i xijxij

 , (D.2)

which in terms of the log-linear parameters can also be written as

β
(ν)
j = β

(ν−1)
j + log

1 +

∑
i

(
ni −m(ν−1)

i

)
xij∑

im
(ν−1)
i xijxij

 . (D.3)

It can easily be demonstrated that the two versions of the uni-dimensional
Newton algorithm described in Equations D.1 and D.3 are almost equiva-

lent. Let δ
(ν)
j denote q

(ν)
j /H

(ν)
jj . This term appears at the right-hand side

of both Equation D.1 and Equation D.3. In Equation D.1, δ
(ν)
j is added

to the current trial value of β̂j to obtain a new trial value. On the other

hand, Equation D.3 involves adding log(1 + δ
(ν)
j ) to the old guess to im-

prove the estimated value for βj . Thus, the main differences between the

two versions of the uni-dimensional Newton algorithm occur when δ
(ν)
j is

large. This will generally be the case in the first iterations, especially if the
starting values for the parameters are far from the final solution. In that
case, Goodman’s algorithm will use smaller approximation steps because∣∣∣log(1 + δ

(ν)
j )
∣∣∣ < ∣∣∣δ(ν)

j

∣∣∣. However, if δ
(ν)
j → 0, the difference between the

two algorithms becomes negligible because in that case log(1+δ
(ν)
j )→ δ

(ν)
j .

It can be demonstrated that IPF is a special case of Goodman’s version
of the uni-dimensional Newton algorithm. Suppose the model of interest is
a hierarchical log-linear model of the form {AB,BC}. Fitting this model
by means of IPF is equivalent to using a design matrix which contains one
parameter for each of the marginal cells of the margins AB and BC, without
imposing identifying restrictions on these parameters. More precisely, the
design matrix consists of A∗B∗ +B∗C∗ columns, in which a particular xij
equals 1 if cell i contributes to effect j, in other words, to the minimal
sufficient statistic concerned. Otherwise xij is equal to 0. The adjustment
of the jth log-linear parameter by means of Equation D.2 is equivalent to
the following adjustment of the estimated expected frequencies:

m
(ν)
i = m

(ν−1)
i

1 +

∑
i

(
ni −m(ν−1)

i

)
xij∑

im
(ν−1)
i xijxij

xij

.
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If, as in this case, the xij take only the values 0 or 1, this equation is
simplified to

m
(ν)
i = m

(ν−1)
i

[
1 +

∑
i nixij −

∑
im

(ν−1)
i xij∑

im
(ν−1)
i xij

]xij

= m
(ν−1)
i

[ ∑
i nixij∑

im
(ν−1)
i xij

]xij

.

This is just an IPF adjustment in which the term
∑
i nixij is an observed

marginal cell count, or a minimal sufficient statistic, and
∑
im

(ν−1)
i xij is

the current estimate for the same marginal cell count. The new estimated

expected frequencies m
(ν)
i will satisfy the condition

∑
i nixij =

∑
i m̂

(ν)
i xij .

D.2 Log-multiplicative models

Goodman (1979) proposed estimating the parameters of the log-multipli-
cative RC association models by means of the uni-dimensional Newton al-
gorithm. As mentioned above, this procedure adjusts only one parameter
at a time, treating the other parameters as fixed. Clogg (1982) and Eliason
(1995) used the same algorithm for more extended RC association models.

Suppose there is an RC association model of the form

logmabc = u+ uAa + uBb + uCc + µABa φABµABb + µBCb φBCµBCc .

The estimation of, for instance, the log-multiplicative parameters of the
association between A and B involves solving the following set of likelihood
functions:

∂ logL
∂φAB

=
∑
abc

(nabc −mabc)µ
AB
a µABb = 0 ,

∂ logL
∂µABa

=
∑
bc

(nabc −mabc)φ
ABµABb = 0 ,

∂ logL
∂µABb

=
∑
ac

(nabc −mabc)µ
AB
a φAB = 0 .

The second partial derivatives needed by the uni-dimensional Newton al-
gorithm are

∂ logL
∂φAB∂φAB

= −
∑
abc

mabc

(
µABa µABb

)2
,
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∂ logL
∂µABa ∂µABa

= −
∑
bc

mabc

(
φABµABb

)2
,

∂ logL
∂µABb ∂µABb

= −
∑
ac

mabc

(
µABa φAB

)2
.

Consequently, the (ν)th uni-dimensional Newton iteration equals

φAB(ν) = φAB(ν−1) −

∑
abc

(
nabc −m(ν−1)

abc

)
µ
AB(ν−1)
a µ

AB(ν−1)
b

−
∑
abc m̂abc

(
µ
AB(ν−1)
a µ

AB(ν−1)
b

)2 ,

µAB(ν)
a = µAB(ν−1)

a −

∑
bc

(
nabc −m(ν)′

abc

)
φAB(ν)µ

AB(ν−1)
b

−
∑
bc m̂abc

(
φAB(ν)µ

AB(ν−1)
b

)2 ,

µ
AB(ν)
b = µ

AB(ν−1)
b −

∑
ac

(
nabc −m(ν)′′

abc

)
µ
AB(ν)
a φAB(ν)

−
∑
ac m̂abc

(
µ
AB(ν)
a φAB(ν)

)2 ,

in which m
(ν)′

abc and m
(ν)′′

abc denote the updated estimated expected frequen-
cies after updating φAB and µABa , respectively. The necessary rescaling to
identify the parameters can be performed after every iteration cycle.

As demonstrated by Becker (1990), the same version of the uni-dimen-
sional Newton algorithm can be used for estimating RC(M) models. The
only difference is that in that case the parameters of the different dimensions
have to be orthogonalized after the last iteration by means of a singular-
value decomposition (Goodman, 1991).



Appendix E

Likelihood equations for
modified path models

Below, it is shown that if the parameters of the various modified path steps
are distinct, the parameters of a modified path model can be estimated
using the observed frequencies in the separate subtables. Moreover, it is
demonstrated that the likelihood equation for a parameter that appears in
different modified path steps can be simply obtained by summing the con-
tributions of the modified path steps concerned. Although the derivations
concern the likelihood equations for the case of completely observed data,
the results can, of course, also be used in the M-step of the EM algorithm
if there are missing data. The next three sections derive the likelihood
equations for a parameter of an ordinary multinomial logit model, for a
parameter of a modified path model, and for a parameter which appears in
different steps of a modified path model.

E.1 Multinomial logit model

Consider a multinomial logit model in which C is the dependent variable
and A and B are the independent variables:

πc|ab =
exp

(∑
j xabcjβj

)
∑
c exp

(∑
j xabcjβj

) . (E.1)

Here, βj denotes a log-linear or logit parameter and xabcj is an element of
the design matrix.
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Given the kernel of (product) multinomial likelihood

logL =
∑
abc

nabc log πc|ab ,

the first derivative with respect to βj is

∂ logL
∂βj

=
∑
abc

nabc
πc|ab

∂πc|ab

∂βj
. (E.2)

When using ε as an abbreviation of exp
(∑

j xabcjβj

)
,

∂πc|ab

∂βj
=

1

(
∑
c ε )

2

[{∑
c

ε

}
ε xabcj − ε

{∑
c

ε xabcj

}]

=
ε∑
c ε

[
xabcj −

∑
c ε xabcj∑

c ε

]
= πc|ab

[
xabcj −

∑
c ε xabcj∑

c ε

]
= πc|ab

[
xabcj −

∑
c

xabcjπc|ab

]
.

Substituting into Equation E.2 and setting the result equal to zero yields
the likelihood equation

∑
abc

nabc
πc|ab

πc|ab

[
xabcj −

∑
c

xabcjπc|ab

]
= 0 ,

or simplified

∑
abc

nabc

[
xabcj −

∑
c

xabcjπc|ab

]
= 0 , (E.3)

which is the well-known likelihood equation for a parameter of a multino-
mial logit model. Note that∑

abc

nabc
∑
c

xabcjπc|ab =
∑
ab

nab+
∑
c

xabcjπc|ab

=
∑
abc

xabcjπc|abnab+

=
∑
abc

xabcjmabc ,
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of course, given that ∑
c

nabc =
∑
c

mabc , (E.4)

which is always the case in a logit model because of the normalization
taking place by the denominator of logit model described in Equation E.1.
Substitution into Equation E.3 gives∑

abc

xabcj [nabc −mabc] = 0 . (E.5)

This expression is equivalent to the likelihood equation derived from the
Poisson likelihood function for a parameter of the log-linear model of the
form

mabc = exp

αab +
∑
j

xabcjβj

 , (E.6)

which demonstrates the well-known equivalence of logit models and log-
linear models.

In the `EM program (Vermunt, 1993), the log-linear model described in
Equation E.6 is estimated rather than the logit model described in Equation
E.1. This results from the fact that the likelihood function represented in
Equation E.5 is used instead of Equation E.3, of course, under the condition
given in Equation E.4. This condition is automatically fulfilled by including
the intercept αab in the model.

E.2 Modified path model

Suppose that the logit model for πc|ab is now a step in a modified path
model of the form

πabcd = πabπc|abπd|abc , (E.7)

where the other π’s may be restricted by a logit parameterization as well.
In that case, the kernel of likelihood equation changes into

logL =
∑
abcd

nabcd log πabcd .

The first derivative with respect to βj is now

∂ logL
∂βj

=
∑
abcd

nabcd
πabcd

∂πabcd
∂βj

,
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where

∂πabcd
∂βj

=
∂πabπc|abπd|abc

∂βj
= πabπd|abcd

∂πc|ab

∂βj

= πabπd|abcdπc|ab

[
xabcj −

∑
c

xabcjπc|ab

]

= πabcd

[
xabcj −

∑
c

xabcjπc|ab

]
. (E.8)

This yields the following likelihood equation:∑
abcd

nabcd
πabcd

πabcd

[
xabcj −

∑
c

xabcjπc|ab

]
= 0 ,

or simplified ∑
abc

nabc+

[
xabcj −

∑
c

xabcjπc|ab

]
= 0 ,

which is equivalent to Equation E.3, the likelihood equation for an ordinary
multinomial logit model. This shows that the parameters of each modified
path step may be estimated separately, with the observed cell counts of
the marginal table formed by the dependent and independent variables
appearing in the modified path step concerned serving as data.

E.3 Restricted modified path model

Suppose there is a model of the form given in Equation E.7 in which two
log-linear parameters appearing in two different modified path steps are
postulated to be equal. Suppose that the βj parameter concerned appears
in both πc|ab and πd|abc. In that case,

∂πabcd
∂βj

=
∂πabπc|abπd|abc

∂βj

= πabπd|abc
∂πc|ab

∂βj
+ πabπc|ab

∂πd|abc

∂βj

= πabcd

{[
xabcj −

∑
c

xabcjπc|ab

]

+

[
xabcdj −

∑
d

xabcdjπd|abc

]}
.
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This yields the following likelihood equation for βj :

∑
abcd

nabcd
πabcd

πabcd

{[
xabcj −

∑
c

xabcjπc|ab

]

+

[
xabcdj −

∑
d

xabcdjπd|abc

]}
= 0 ,

or simplified

∑
abc

nabc+

[
xabcj −

∑
c

xabcjπc|ab

]

+
∑
abcd

nabcd

[
xabcdj −

∑
d

xabcdjπd|abc

]
= 0 .

Note that the first part of this equation is identical to the left-hand side of
Equation E.3. Moreover, the second part is the derivative with respect to
βj that would have been obtained if βj would have appeared only in πd|abc.
This implies that the likelihood equation for a parameter that appears
in different modified path steps can easily be obtained by summing the
contributions of the modified path steps in which the parameter concerned
appears.

As mentioned in section E.1, the `EM program (Vermunt, 1993) uses
the log-linear equivalent of the likelihood equations, which in this case is∑

abc

xabcj [nabc+ −mabc] +
∑
abcd

xabcdj [nabcd −mabcd] = 0 ,

with the additional restrictions that∑
c

nabc =
∑
c

mabc ,∑
d

nabcd =
∑
d

mabcd ,

to reproduce the marginal distributions of the independent variables. Here,
mabc and mabcd denote the expected cell frequencies in the marginal tables
ABC and ABCD, respectively.
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Appendix F

The estimation of
conditional probabilities
under restrictions

Suppose there is modified path model of the form

πabcd = πabπc|abπd|abc .

In contrast to the models presented in the previous appendices, the (con-
ditional) probabilities of this model are not restricted by a log-linear pa-
rameterization. Unrestricted estimates for πab, πc|ab, and πd|abc, denoted
by π̂ab π̂c|ab, and π̂d|abc, can be obtained by

π̂ab =
nab++

n++++
,

π̂c|ab =
nabc+
nab++

,

π̂d|abc =
nabcd
nabc+

,

respectively. However, it is sometimes necessary to restrict some (condi-
tional) probabilities to be equal to one another or to be equal to some fixed
value. Suppose we want to restrict three arbitrary conditional probabilities,
π1|22, π2|13, and π3|213, to have the same value. According to Goodman
(1974b), maximum likelihood estimates for these restricted probabilities,
denoted by π̂r1|22, π̂r2|13, and π̂r3|213, can be obtained by

π̂r1|22 = π̂r2|13 = π̂r3|213 =
n22++π̂1|22 + n13++π̂2|13 + n213+π̂3|213

n22++ + n13++ + n213+
,
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in other words, by calculating the weighted average of the unrestricted
probabilities, where the weights are the observed cell counts of the mar-
ginal distributions of the independent variables concerned.

After imposing these equality restrictions, the estimated probabilities
for πc|22, πc|13, and πd|213 will generally no longer sum to 1 within each level
of the joint independent variable. Therefore, the unrestricted probabilities
must be rescaled to again fulfill the requirement that the probabilities sum
to unity. The rescaling of, for instance, the unrestricted probability that
C = c given A = 2 and B = 2, π̂uc|22, is accomplished by

π̂u
′

c|22 = π̂uc|22

1−
∑
c π̂

r
c|22∑

c π̂
u
c|22

,

where π̂u
′

c|ab denotes the value of a particular unrestricted probability after

rescaling it. Note that in this case,
∑
c π̂

r
c|22 = π̂r1|22 because only one prob-

ability was restricted for A = 2 and B = 2. The unrestricted probabilities
π̂uc|13 and π̂ud|213 have to be rescaled in a similar manner.

Any set of conditional probabilities can be restricted in this way, irre-
spective of whether they belong to the same or to different modified path
steps. Moreover, fixed-value restrictions can be imposed by replacing the
unrestricted probabilities concerned by the values to which they have to
be fixed and subsequently rescaling the other probabilities belonging to the
same value of the independent variable (Van de Pol and Langeheine, 1990).
The above algorithm is implemented in several programs for latent class
analysis, such as MLLSA (Clogg, 1977), LCAG (Hagenaars and Luijkx,
1990), PANMARK (Van der Pol, Langeheine, and De Jong, 1989), and

`EM (Vermunt, 1993).

Mooijaart and Van der Heijden (1992) demonstrated, however, that Good-
man’s algorithm does only work properly in specific situations, which fortu-
nately are the most common ones. The algorithm does not yield maximum
likelihood estimates when there is no closed formula for the rescaling of
the probabilities to let them sum to unity.1 They proposed computing ML
estimates of the parameters of restricted latent class models by adding a set
of Lagrange multipliers to the complete data log-likelihood function which
is maximized in the M step of the EM algorithm. They also gave the corre-
sponding likelihood equations for the restricted and unrestricted probabil-
ities and the Lagrange multipliers. Below, their formulation is generalized

1It should be noted that MLLSA and LCAG not only give incorrect estimates in
the situations mentioned by Mooijaart and Van der Heijden (which they refer to as
case 4), but also when equality and fixed-value constraints are combined within a set of
conditional probabilities that must sum to one.
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to any type of modified path model with or without latent variables. In
addition, it is demonstrated how to solve the obtained likelihood equations
by means of uni-dimensional Newton.

Let πFi|k denote a probability which is fixed to be equal to a specific
value cik. Probabilities which belong to the lth equality restriction are
denoted by πEl

i|k and unrestricted probabilities by πUi|k. It should be noted

that k indicates a level of the variable which is obtained by stacking the
independent variables of the various modified path steps. So, πFi|k, πEl

i|k, and

πUi|k may be any of the probabilities in the modified path model concerned.
The likelihood equations for the above probabilities are

πFi|k = cik

πEl

i|k =
nEl

++∑
k dlk αk

(F.1)

πUi|k =
nUik
αk

. (F.2)

Here, nUik is an observed cell entry belonging to an unrestricted probability,

nEl
++ is the sum of the observed cell entries belonging to the lth equality

restriction, αk is the Lagrange multiplier belonging to level k of the in-
dependent variable, and dlk is the number of equality restrictions of type
l in level k of the independent variable. The likelihood equations for the
Lagrange multipliers are of the form

∑
l

dlk n
El
++∑

j dlj αj
+
nU+k
αk

= c+k , (F.3)

where nU+k is the sum of the observed frequencies belonging to the unre-
stricted probabilities and c+k the sum of the probabilities with a fixed value
within level k of the independent variable.

First, we have to solve the likelihood equations for the αk parameters
described in F.3. In the `EM program (Vermunt, 1993), this is accom-
plished by means of the uni-dimensional Newton algorithm. Element k of
the gradient vector and diagonal element kk of the Hessian matrix equal

q
(ν)
k =

∑
l

dlk n
El
++∑

j dlj α
(ν−1)
j

+
nU+k

α
(ν−1
k )

− c+k

H
(ν)
kk =

∑
l

(dlk)2 nEl
++(∑

j dlj α
(ν−1)
j

)2 +
nU+k

(α
(ν−1)
k )2

,
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respectively. This leads to the following adjustment of the Lagrange mul-
tipliers in the νth iteration:

α
(ν)
k = α

(ν−1)
k −

q
(ν)
k

H
(ν)
kk

.

Ones we have estimates for the αk parameters, we can use them to ob-
tain estimates for the restricted and unrestricted probabilities by means
of Equations F.1 and F.2. Of course, if there are missing data, the same
procedure can be used in the M step of the EM algorithm.



Appendix G

The information matrix in
modified path models
with missing data

This appendix shows how to calculate the information matrix in modified
path models with missing data. When using the EM algorithm, this matrix
can be used to compute the standard deviations and check the identifiability
of the parameters. In Fisher’s scoring algorithm, the inverse of expected
information matrix is used to determine the optimal size of the adjustments
of the parameters.

Suppose there is a modified path model consisting of S∗ steps, where
index s denotes a particular step. In its most general form, the logit model
for step s is given by

πis|ks =
exp

(∑
js
βjsxisjsks

)
∑
is

exp
(∑

js
βjsxisjsks

) .
Here, is denotes the value of the joint dependent variable; ks is the value
of the joint independent variable; and js is the jth parameter of modified
path step s.

Let l be the index for the joint distribution of the latent variables and
o the index for the joint distribution of the observed variables. This means
that an observed cell count can be denoted by no, an expected probability
in the incomplete table by πo, and a probability in the complete table by
πlo. In its most general form, a modified path model with latent variables
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can be written as

πlo =
∏
s

πis|ks

Assuming a multinomial sampling scheme, obtaining maximum likelihood
estimates for parameters βjs involves maximizing

logL =
∑
o

no log πo .

The first-order derivative with respect to βjs is

∂ logL
∂βjs

=
∑
o

no
πo

∂πo
∂βjs

,

and the expected value of the second-order derivative with respect to βjs
and βht equals

E

(
∂2 logL
∂βjs∂βht

)
= −N

∑
o

1

πo

∂πo
∂βjs

∂πo
∂βht

.

To solve these derivatives, it is necessary to calculate

∂πo
∂βjs

=
∂
∑
l πlo

∂βjs
=
∑
l

∂πlo
∂βjs

=
∑
l

πlo

[
xisjsks −

∑
is

xisjsksπis|ks

]
.

Except for the summation over the joint latent dimension, this expression
is the same as the expression for modified path models without latent vari-
ables, which is given in Equation E.8.

Iteration ν of Fisher’s scoring algorithm involves finding improved esti-
mates of the β parameters as follows:

β(ν) = β(ν−1) +
(
Inf (ν)

)−1

q(ν) ,

in which

q(ν) =
∂ logL
∂β(ν−1)

,

Inf (ν) = −E
(

∂2 logL
∂β(ν−1)∂β′(ν−1)

)
.

At the last iteration ν∗, the inverse of the expected information matrix,(
Inf (ν∗)

)−1

, contains estimates of the variances and covariances of the
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parameters. Moreover, if matrix Inf (ν∗) is positive definite, all model pa-
rameters can be identified.

There are several alternative methods for obtaining standard errors and
checking identifiability of the parameters when using the EM algorithm.
One method, which was first proposed by Louis (1982), involves computing
the observed information from the complete information and the missing
information (see also Tanner, 1993: Chapter 4). The complete information
is the information obtained from the complete data likelihood, that is, the
likelihood which is maximized in the M step of the EM algorithm. The
missing information is the difference between the observed information and
the complete information. Louis gave formulas for calculating this missing
information.

Another quite simple but computationally intensive approach is the nu-
meric approximation of the observed information matrix. Van de Pol and
De Leeuw (1986) applied this method for obtaining standard errors of the

parameters of latent Markov models. In the most recent version of the `EM
program (Vermunt, 1993), this procedure is implemented to estimate the
standard errors and check the identifiability of the parameters of modified
path models and event history models with missing data. Numerical ap-
proximation of the second-order derivatives of the log-likelihood function
involves

∂2 logL
∂βjs∂βht

=
logL(βjs+ε; βht+ε) − logL(βjs+ε) − logL(βht+ε) + logL

ε2
.

Here, ε denotes a small number that is added to the parameter concerned,
and logL(βjs+ε; βht+ε), logL(βjs+ε), and logL(βht+ε) denote the values of
the log-likelihood function after adding ε to both βjs and βht

, βjs , and βht
,

respectively. The matrix with elements − ∂2 logL
∂βjs∂βht

is the observed informa-

tion matrix. As the expected information matrix, the observed information
matrix will only be positive definite if all parameters are identified. More-
over, its inverse supplies asymptotic variances and covariances of the model
parameters. It should be noted that the numerical second-order deriva-
tives can also be used to switch from EM to Newton-Raphson after some
iterations.

æ
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