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K-Means May Perform as Well as Mixture Model Clustering but May Also
Be Much Worse: Comment on Steinley and Brusco (2011)

Jeroen K. Vermunt
Tilburg University

Steinley and Brusco (2011) presented the results of a huge simulation study aimed at evaluating cluster
recovery of mixture model clustering (MMC) both for the situation where the number of clusters is
known and is unknown. They derived rather strong conclusions on the basis of this study, especially with
regard to the good performance of K-means (KM) compared with MMC. I agree with the authors’
conclusion that the performance of KM may be equal to MMC in certain situations, which are primarily
the situations investigated by Steinley and Brusco. However, a weakness of the paper is the failure to
investigate many important real-world situations where theory suggests that MMC should outperform
KM. This article elaborates on the KM–MMC comparison in terms of cluster recovery and provides some
additional simulation results that show that KM may be much worse than MMC. Moreover, I show that
KM is equivalent to a restricted mixture model estimated by maximizing the classification likelihood and
comment on Steinley and Brusco’s recommendation regarding the use of mixture models for clustering.
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Steinley and Brusco (2011) performed an extended simulation
study aimed at evaluating the performance of mixture models with
multivariate normal components as clustering tools under a variety
of conditions. As far as I know, this was the first large-scale
simulation study on mixture model clustering (MMC) that focused
on cluster recovery—that is, on whether subjects are assigned to
the correct cluster. As a measure for agreement between true and
assigned cluster membership, Steinley and Brusco used the ad-
justed Rand index (ARI), which is a general measure for compar-
ing cluster solutions that takes on values between 0 (agreement is
no larger than expected by chance) and 1 (agreement is perfect).
Steinley and Brusco investigated situations where the number of
clusters is known (Simulations I and II) and unknown (Simulation
III). They not only compared nine possible specifications of the
MMC with one another but also compared MMC with K-means
(KM) clustering. In fact, most of their conclusions concern the
latter comparison.

Steinley and Brusco (2011) performed a huge simulation study
and derived rather strong conclusions on the basis of this study.
Simulation Study I suggested that K-means performs as well as
MMC with data generated from local independence populations;
Study II suggested that it performs slightly better with data gen-
erated from local dependence populations; and Study III suggested
that it performs better when the number of clusters is unknown,
with data generated from local independence populations. I agree

with the authors’ conclusion that the performance of KM may be
equal to MMC in certain situations, which are primarily the situ-
ations they investigated. However, a weakness of the paper is the
failure to investigate many important real-world situations where
theory suggests that MMC should outperform KM.

In any large simulation study, it is always a challenge to select
the most relevant conditions to investigate, because the number of
such conditions is potentially unbounded. However, because KM
itself can be shown to be a restricted form of mixture modeling,
theory can be used to help structure the design of the KM–MMC
comparison by including conditions where the more flexible, more
realistic forms of mixture modeling would be expected to yield
improved performance with real data. Unfortunately, these condi-
tions were largely not considered by Steinley and Brusco (2011).
Before elaborating on the KM–MMC comparison in terms of
cluster recovery and providing some additional simulation results,
I show that KM is equivalent to a restricted mixture model esti-
mated by maximizing the classification likelihood and comment
further on Steinley and Brusco’s recommendations on how to use
mixture models for clustering.

Equivalence Between KM and MMC:
The Classification Expectation-Maximization

(EM) Approach

Steinley and Brusco (2011) state that KM is strongly related to
a mixture model with a covariance structure they call S1. In the S1
specification, the residual variances are assumed to be equal across
variables and clusters; moreover, the variables are assumed to be
independent within clusters, meaning that covariances are fixed to
0. The S1 mixture model can be formulated as follows:
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where the product over the J variables follows from the local
independence assumption and where the free parameters are the
cluster proportions (�k), the cluster-specific means for all variables
(�jk), and the single residual variance (�2). In the MMC context,
these parameters are typically estimated by maximizing the mar-
ginal log-likelihood function �i�1

N log f�xi�, say by means of the EM
algorithm.

However, within the mixture modeling literature, alternative
estimation methods have been proposed, one of which involves
maximizing the classification log-likelihood using an algorithm
referred to as classification EM (CEM; Celeux & Govaert, 1992).
CEM yields a hard partitioning of the sample under study, similar
to KM. It can be shown that KM is exactly equivalent to CEM with
a S1 covariance structure and two additional constraints. More
specifically, the CEM procedure maximizes the following func-
tion:
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where i � Ck means that the summation concerned is over the
subjects belonging to the kth cluster. Recall that KM minimizes the
residual sum of squares (RSS):
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It can now be easily seen that if �k and �2 are fixed, say �k � 1/K,
and �2 � 1, maximizing log Lc is equivalent to minimizing RSS.
In other words, KM is not only related to MMC, it is a mixture
model in which only the cluster-specific means are free parameters
that are estimated by maximizing the classification log-likelihood
rather than the marginal log-likelihood function.

Not only the CEM procedure but also the standard maximum
likelihood approach can be equated to KM. This is achieved by
setting �k � 1/K and by fixing �2 to a small value. The latter
rescales the posterior membership probabilities in such a way that
the largest one becomes 1 and the others become 0, yielding again
the CEM-type hard partitioning.

Recommendations on the Use of Mixture Models
for Clustering

I agree with most of Steinley and Brusco’s (2011) recommen-
dations on how to apply MMC in practice. Their simulation study

showed that using too complex a covariance structure—the most
complex one is S9, which has a free covariance matrix for each
cluster—may cause substantial deterioration in the performance of
MMC. This is especially true when the number of variables is
large, the number of clusters is large, and the total sample size or
the sample size in some of the clusters is small; that is, when the
number of parameters and number of cases available to estimate
the parameters are far out of balance. Steinley and Brusco recom-
mended starting a MMC procedure with a parsimonious covari-
ance structure; that is, with a structure S5 corresponding to the
classical latent profile model, which assumes local independence
but imposes no further restrictions on the variances across classes
or variables. S5 is indeed a good choice, because it is very
important to account for unequal variances across classes and
variables (see also below)—one reason why the more restricted
covariance structures (S1–S4) are usually less suitable as starting
points for MMC.

When using model type S5, violations of the local independence
assumption can easily be diagnosed by inspecting bivariate resid-
uals, which are provided by, for example, the Latent GOLD
(Vermunt & Magidson, 2005) and Mplus (Muthén & Muthén,
2006) mixture modeling software packages. If one or more bivari-
ate residuals are large, one may decide either to increase the
number of clusters or to allow for within-cluster correlations. It
should be noted that the latter does not necessarily imply that the
fully unrestricted model S9 should be used. Instead, one may use,
for example, a model with some free covariances or with a factor
analytic structure for the covariances. Steinley and Brusco (2011)
did not investigate such models. Instead, they focused on the nine
models that can be derived from the parameterization proposed by
Banfield and Raftery (1993). However, I have never seen applica-
tions of this parameterization in psychological research. From
these nine models, S3, S5, S6 and S9 are the only ones used,
although they are not parameterized in the complex manner shown
by Steinley and Brusco. In addition, as indicated above, restricted
variants between S3 and S6 and between S5 and S9 may be
formulated by allowing some but not all covariance to be free or by
using a specific covariance structure model.

As a final remark on the use of mixture models for clustering, I
would like to stress that one should also be critical with regard to
the within-cluster normal distribution assumption. This is espe-
cially relevant with discrete data—for example, when the cluster-
ing is based on a set of 5- or 7-point Likert items. My advice would
be not to use a mixture model for continuous responses but instead
a mixture model for discrete responses assuming multinomial
instead of a normal within-cluster distributions. For ordinal vari-
ables, it is possible to restrict the multinomial response probabil-
ities by relating the cluster membership to the response using an
ordinal regression model.

When Do Differences Between MMC and KM Matter?

My main point of criticism of the Steinley and Brusco (2011)
article is the lack of explanation for why KM’s performance is
equal to MMC’s under the studied conditions. Without the use of
a relevant theory to structure the KM–MMC comparisons, there
can be no specification of situations in which MMC might be
expected to perform better than KM. The authors failed to formu-
late clear hypotheses about key factors that might be expected to
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affect the differential performance of KM and MMC. Some of the
main features that differentiate MMC from the more restrictive
KM are that MMC (a) allows residual variances to differ across
variables and/or across clusters; (b) allows residuals to be corre-
lated, possibly in a different way across clusters; and (c) yields a
soft instead of hard partitioning, which is a way to account for the
fact that we are usually not fully certain about a subject’s cluster
membership. I speculate below on the possible effects of these
differences both for cluster recovery when the number of clusters
is known (the topic of Simulations I and II) and for decisions about
the number of clusters (the topic of Simulation III).

Cluster Recovery

My hypothesis is that the key difference between KM and MMC
for cluster recovery with known K occurs under Option (a)—the
option of allowing residual variances to differ across variables and
across clusters—only under the condition that clusters are jointly
overlapping or near one another. I focus on differences in variances
across clusters, because differences in variances across variables may
at least partially be repaired by transforming them prior to the actual
cluster analysis. Magidson and Vermunt (2002b) provided a KM–
MMC comparison showing that cluster recovery deteriorates by
wrongly assuming equality of variances across variables.

What is the role of the error variances in MMC? In fact, the
contribution of variable j in the computation of the distance of subject
i to the center of cluster k is scaled by the inverse of the error variance
concerned. To give an example, suppose subject i’s squared distance
for variable j is 2 for Cluster 1 and 4 for Cluster 2, and the cluster-
specific residual variances are 2 and 8, respectively. This implies that
as far as variable j is concerned, subject i is closer to Cluster 2 than
Cluster 1 (4/8 � 2/2). Such a rescaling that takes into account cluster
heterogeneity does not occur in KM clustering.

It should be noted that the assumption that variances are equal
across clusters is not very likely to hold in practice. In other words,
the S5 model usually fits real data much better than the KM-like S1
model. Despite the fact that it may not fit and may not apply the
appropriate scaling of distances, the S1 model (and thus also KM)
may perform very well in terms of cluster recovery for a fixed K.
This is the case when clusters do not overlap and are, moreover, far
enough from one another so that an incorrect scaling of the
distances does not change their order.

Ignoring the within-cluster correlations can be expected to have
little impact on the cluster recovery for a fixed K, which is more
strongly affected by the correct estimation of the cluster centers
and variances. This means that using S5 for cluster recovery may
be acceptable even if the correct model is S9, and the same applies
to using S3 instead of S6 (when the covariance matrix is equal
across clusters).

My hypothesis on deteriorated cluster recovery when ignoring
the fact that error variances are unequal was only partially inves-
tigated by Steinley and Brusco (2011). One of the distributions
used in Simulation I assumed unequal variances, although the text
is somewhat unclear about this. The authors stated that not only the
normal distributions with unequal variances but also the uniform
and triangular distributions were of the S5 type (thus with unequal
variances across clusters), but it is unclear how this was achieved.
Moreover, about the normal with unequal variances they stated, “The
fourth condition relaxes the equality of variances constraint in the

previous condition, allowing variables to assume different variances
(however, they were still equal across clusters, resulting in hyper-
ellipsoids in multidimensional space)” (Steinley & Brusco, 2011, p.
67). From the remark in parentheses, I conclude that this yields a
model of the S3 type. Nevertheless, the results in their Table 1
show that under the “fourth condition,” the S5 model performs
better than S1 and KM. In my opinion, this effect is deflated
because it is an average over the other conditions and thus also
over all nonoverlap conditions, whereas my hypothesis stated that
the effect of ignoring unequal variances occurs only when there is
overlap (or clusters are very near). It is also unclear how unequal
the variances were across clusters, which one needs to know to
interpret the results properly.

The settings in Simulation II clearly were not suited to detect
differences between KM and MMC. They confirmed my second
hypothesis that ignoring the covariances does not deteriorate clus-
ter recovery. But to show differences between KM and MMC, one
should also look at the situation in which variances and covari-
ances are cluster specific—a condition that is not included in
Simulation II.

In the context of this commentary, it is not possible to set up a
large simulation study. Instead, I generated two data sets to illus-
trate my hypotheses about the effect of unequal variances and the
absence of an effect of within-cluster covariances on cluster re-
covery for known K. These two generated data sets are not just toy
examples but are constructed to be similar to an existing data set,
namely the diabetes data set used by several authors to illustrate
MMC. I took the estimates from the final model for this data set
reported by Vermunt and Magidson (2002), rounded these esti-
mates (always in such a way that clusters became slightly more
overlapping), and rescaled the three observed variables by dividing
them by 20, 10, and 50, respectively, to make their scales more
similar to each other. Table 1 presents the population values for the
assumed three-cluster model. Means, variances, and covariances
vary across clusters. I generated two data sets with 250 subjects
belonging to Cluster 1, 500 to Cluster 2, and 250 to Cluster 3. The
first data set is generated from an S5 population model (covari-
ances are fixed to 0) and the second from a restricted S9 model. In
the latter, labeled S9(x1–x2), the covariance between x1 and x2 is
free and set to values corresponding to correlations of 0.5, 0.0, and
0.9 for Clusters 1, 2, and 3, respectively. Figures 1 and 2 depict the
two generated data sets. They show that there is quite some joint
overlap between the clusters. Moreover, the impact of unequal
variances across clusters and within-cluster correlations on the
clusters’ shapes can be clearly observed.

Table 1
Definition of the S5 and S9(x1–x2) Populations

Parameter

Cluster

1 2 3

Mean x1 10.00 10.00 20.00
Mean x2 10.00 8.00 20.00
Mean x3 15.00 7.50 5.00
Variance x1 3.00 1.00 50.00
Variance x2 6.40 1.20 32.00
Variance x3 62.50 6.25 6.25
Covariance x1–x2 in S9(x1–x2) population 2.20 0.00 36.00
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I estimated eight three-class mixture models with these two data
sets, where the main distinction is between models with equal
(co)variances across clusters—S1, S4, S6(x1–x2), and S6—and
variants of these models with unequal (co)variances across
Clusters—S2, S5, S9(x1–x2), S9—and also performed a KM anal-
ysis. Tables 2 and 3 report the ARI values for the estimated
models. The largest values are .83 and .79, respectively, which are
obtained when exactly the right model is specified. It can also
be seen that the other models with cluster-specific (co)variances
perform well too. This means that ignoring the (very large)
correlation has little impact on the ARI (Model S5 in Table 3).
We also see that using a model that is too complex may cause
the performance to deteriorate slightly (Model S9 in Table 2),
an effect that Steinley and Brusco (2011) showed to be larger
with a larger number of variables and clusters and smaller
sample sizes. What can also be observed is that Model S2
performs worse that the other three models with unequal (co-
)variances, which is the result of the incorrect equal variance
assumption across variables.

All four mixture models with equal (co)variances perform very
poorly, which illustrates the importance of taking into account that
variances differ across clusters. The fact that KM has larger ARI
values than these mixtures models suggests that it may be more
robust for violations of the equal (co)variance assumption. Overall
these results confirm the hypothesis formulated above: Whereas
KM and mixture models with equal variances may perform very
well in certain situations (such as in those investigated by Steinley
and Brusco, 2011), they will perform much worse than correctly
specified mixture models when clusters have different variances
and are overlapping.

Tables 2 and 3 also report the typical indices that are used for
model selection in MMC. It is very reassuring to see that irrespec-
tive of the index one uses, the models with unequal (co)variances
are always preferred over their equal (co)variance variants. More-
over, the model used to generate the data is identified as the best
one, which shows that the risk of overfitting is not as large as
Steinley and Brusco (2011) suggest.

Determining the Number of Clusters

Simulation III is aimed at comparing the performance of KM
and MMC when the number of clusters is unknown. For this study,
Steinley and Brusco (2011) also neglected to formulate hypotheses
regarding the possible impact of specific differences between these
methods on their ability to determine the correct number of clus-
ters.

In general, it can be expected that misspecification of the within-
cluster covariance structure will result in an overestimation of the
number of clusters. One type of misspecification that may have a
large impact is wrongly assuming that variances are equal across
clusters, when in fact they are unequal. The reason for this is that
a model with equal variances can only capture the larger volume of
a cluster with a larger variance by splitting it up into several
clusters with the smaller equal variance. Ignoring the presence of
within-cluster correlations may also have a strong impact on the
estimated number of clusters. The shape of a cluster with a
moderate to high correlation between two variables is very differ-
ent from the shape of a local independence cluster (compare, for
example, the shape of Cluster 3 in the x1–x2 scatter plots of Figures
1 and 2). As a result, several local independence clusters may be
needed to capture one local dependence cluster. Most probably, the
effects of ignoring between-cluster difference in variances and
ignoring covariances are stronger when clusters are overlapping.

Again, in my opinion, Steinley and Brusco (2011) failed to inves-
tigate several of the most relevant conditions to check these hypoth-
eses. More specifically, they used only one covariance structure,
namely the one with zero covariances and unequal variances across
clusters (though some confusion about this remains, and it is unclear
how different these variance were); moreover, they looked only at the
situation in which there is no joint overlap or, as they state, “each of
the clusters will have some ‘empty space’ between them in the joint
multivariate space” (p. 73).

As indicated earlier, in the context of the current commentary, it
is not possible to perform a complete simulation study on the effect
of unequal variances, within-cluster correlations, and overlap be-

Figure 2. Generated S9(x1–x2) data set.

Figure 1. Generated S5 data set.
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tween clusters on the estimation of the number of clusters. How-
ever, the results obtained with the two simulated data sets reported
in the last two columns of Tables 2 and 3 give an indication of the
possible effects of these factors. When data are generated from a
population that is in agreement with Model S5, then model S5
itself as well as the slightly too complex models S9(x1–x2) and S9
identify the right number of clusters on the basis of the Bayesian
information criterion (BIC). This appears to be in contrast with the
Steinley and Brusco (2011) result: “Although the covariance struc-
ture used to generate the data corresponded to S5, MMC/BIC
correctly chose that structure 0% of the time” (p. 74). All other
(overly restricted) models come up with six or more clusters. Table
3 shows a similar pattern: The correct S9(x1–x2) model and the
more complex S9 model find the right number of clusters, and all
other too restricted models come up with six or more classes.
These results confirm my hypothesis that misspecifying the (co)-
variance structure may result in an overestimation of the number of
clusters. Similar results on the effects of ignoring unequal vari-
ances and within-cluster correlations were reported by Magidson
and Vermunt (2002a).

The results obtained with the information criteria show that
Steinley and Brusco’s (2011) conclusion, “it becomes apparent
that making choices based on different functions of the likelihood

(i.e., BIC, AIC) does not serve as a proxy for cluster recovery” (p.
76), is much too strong. Of course, many factors affect the per-
formance of the various information criteria (such as sample size
and separation levels), but the two examples showed that these
measures may perform very well under rather difficult conditions,
as long as the correct covariance structure is used.

Steinley and Brusco (2011) proposed using the Calinski and
Harabasz (CH; 1974) index as a measure for determining the
correct value of K, not only in KM but also in MMC. It is not fully
clear from their text how they defined the within and between sum
of squares for the CH index in the case of a soft partitioning such
as is obtained in MMC. I obtained these using the posterior cluster
membership probabilities (pik) as weights. That is,

CHMMC	K �

�
k�1
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J
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Tables 2 and 3 (last column) indicate which solution would be
selected on the basis of this index. When KM is used, CH selects

Table 3
BIC, AIC, AIC3, CAIC, and ARI Values Assuming K � 3 and Estimated Values of K by BIC and CH for the Generated S9(x1–x2)
Data Set

Equation Label BIC AIC AIC3 CAIC ARI

Estimated K

By BIC By CH

�kI S2 16,203 16,135 16,149 16,217 0.62 6 or more 3
Dk S5 15,320 15,222 15,242 15,340 0.74 6 or more 2
Dk 
 �12k S9(x1–x2) 14,936 14,823 14,846 14,959 0.76 3 2
�k S9 14,972 14,829 14,858 15,001 0.76 3 3
�I S1 16,674 16,615 16,627 16,686 0.44 6 or more 3
D S3 16,388 16,319 16,333 16,402 0.32 6 or more 3
D 
 �12 S6(x1–x2) 16,154 16,081 16,096 16,169 0.40 6 or more 3
� S6 16,158 16,075 16,092 16,175 0.39 6 or more 3
I KM 0.48 3

Note. BIC � Bayesian information criterion; AIC � Akaike information criterion; AIC3 � Akaike information criterion (with 3 as penalizing factor);
CAIC � consistent Akaike information criterion; ARI � adjusted Rand index; CH � Calinski and Harabasz (1974) index; KM � K-means.

Table 2
BIC, AIC, AIC3, CAIC, and ARI Values Assuming K � 3 and Estimated Values of K by BIC and CH for the Generated S5 Data Set

Equation Label BIC AIC AIC3 CAIC ARI

Estimated K

By BIC By CH

�kI S2 16,268 16,199 16,213 16,282 0.73 6 or more 2
Dk S5 15,315 15,217 15,237 15,335 0.83 3 2
Dk 
 �12k S9(x1–x2) 15,333 15,220 15,243 15,356 0.83 3 2
�k S9 15,371 15,229 15,258 15,400 0.82 3 2
�I S1 17,187 17,129 17,141 17,199 0.54 6 or more 2
D S3 17,081 17,013 17,027 17,095 0.39 6 or more 2
D 
 �12 S6(x1–x2) 17,069 16,995 17,010 17,084 0.39 6 or more 3
� S6 17,075 16,991 17,008 17,092 0.40 6 or more 2
I KM 0.63 3

Note. BIC � Bayesian information criterion; AIC � Akaike information criterion; AIC3 � Akaike information criterion (with 3 as penalizing factor);
CAIC � consistent Akaike information criterion; ARI � adjusted Rand index; CH � Calinski and Harabasz (1974) index; KM � K-means.
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the correct number of clusters in both data sets (though it should be
noted that in the first data set, the CH values for the two- and
three-cluster models were very close to each other). On the basis
of Steinley and Brusco’s (2011) result, I had hoped that CH might
be a good alternative to the information criteria that are typically
used in MMC; that is, a measure that is less dependent on whether
the within-cluster covariance is misspecified. This turned out not to
be the case in the two examples. Depending on the specified
covariance structure, CH selects two or three clusters, but there is
no clear pattern in its preference for two or three. In the data set
generated from the S5 population, we see that only the S2 model
identifies the right number of clusters, whereas in the other data set
almost all models identify the right K but not the model used to
generate the data. Thus, it appears that CH is not a good alternative
to BIC, although it is clear that the latter works properly only if the
correct covariance structure is specified, where slight overfitting is
not a problem.

Steinley and Brusco (2011) also stated, “If retaining the mixture
modeling framework, we recommend using the CH index in con-
junction with the covariance matrix of S5 to estimate the number
of clusters” (p. 76). However, the above results showed that the
CH index may not yield the right number of clusters, even if S5 is
the correct model. Another problem with the Steinley and Brusco
recommendation is that it seems to be based on the assumption that
the right number of clusters can also be found when the covariance
structure S5 is incorrect. Our second example showed that this
assumption is completely invalid. As I indicated earlier, Model S5
is indeed a good starting point, but blindly increasing the number
of clusters so long as BIC improves is not a good strategy. It is
important to inspect residuals to see whether the misfit is caused by
violations of the local independence assumption. If so, one may
consider relaxing this assumption instead of increasing the number
of clusters.

Final Remarks

Steinley and Brusco (2011) compared the differences between KM
and MMC in terms of cluster recovery and ability to detect the correct
number of clusters. In this commentary, I have shown that MMC may
be preferred over KM under several important real-world conditions
that were not investigated by Steinley and Brusco. These are condi-
tions in which the greater flexibility provided by MMC is needed to
obtain the correct results.

Whereas the two simulated data sets supported the initial a priori
predictions concerning key factors affecting cluster recovery and
determining the number of clusters, a more extended simulation
study is needed to be able to generalize these results to different
simulated conditions. Moreover, although in the two simulated
data sets the appropriate within-cluster model was found by all fit
measures, this is not always the case in practice, which implies that
the MMC may be misspecified and therefore perform less well.
KM seems to be more robust for such misspecifications; that is, it
performs better than MMC with a misspecified model.

Besides being a more flexible clustering tool in terms of the
covariance structures it allows, mixture modeling has several other
advantages compared with KM clustering. One of these is that it
can be used with categorical variables as well as with variables of
mixed scale types (Vermunt & Magidson, 2002). Another advan-

tage of using a model-based approach is that it can be tailored to
specific data and application types. For example, mixture growth
models (Muthén, 2004; Nagin, 1999) and latent Markov models
(Collins & Wugalter, 1992; Van de Pol & De Leeuw, 1986;
Vermunt, Tran, & Magidson, 2008) are mixture models for the
analysis of longitudinal data; multilevel mixture models (Vermunt,
2003) can be used for the analysis of data sets with a hierarchical
structure; mixture item response theory and mixture factor models
can be used to separate discrete and continuous heterogeneity (De
Boeck, Wilson, & Acton, 2005; Lubke & Neale, 2006); and
mixture regression models can be used to cluster individuals based
on differences in predictor effects on an outcome variable (Ver-
munt & Van Dijk, 2001; Wedel & DeSarbo, 1994).
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