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Multilevel Growth Mixture Models

for Classifying Groups

Gregory J. Palardy

University of California

Jeroen K. Vermunt

Tilburg University

This article introduces a multilevel growth mixture model (MGMM) for

classifying both the individuals and the groups they are nested in. Nine

variations of the general model are described that differ in terms of

categorical and continuous latent variable specification within and between

groups. An application in the context of school effectiveness research is

presented. Schools are classified into three Type B effectiveness categories

based on their mean student mathematics achievement growth trajectories,

controlling for differences in students’ backgrounds across schools. The

classification outcome is regressed on a set of school practice variables to

investigate the association between practices and cognitive development.

Various issues related to model specification are discussed, including the use

of covariates to identify substantively meaningful classes.

Keywords: multilevel growth mixture model; latent class model; school effectiveness

This article was motivated by a research problem involving the classification

of groups (e.g., schools, neighborhoods, families, clinics, and firms) from mean

individual growth trajectories in a multilevel and longitudinal design. The multi-

level growth model with within-group mixtures (MGMM-W; Muthen, 2004)

provides a strategy for classifying individuals who are nested in groups based

on the properties of their growth trajectories, but does not classify groups. This

article introduces an MGMM modeling framework that can be used to classify

individuals based on their growth trajectories and to classify the groups they are

nested in based on mean within-group trajectories. Our primary focus is on spec-

ifications of this model for classifying groups, which we refer to as the MGMM

with between-group mixtures (MGMM-B).

The MGMM-B is applicable in the behavioral sciences, particularly educa-

tion, where longitudinal and multilevel designs are increasingly common and

group effects (e.g., school effects) on individual growth is the central interest
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in the study. Some recent examples in the literature include school effects on

student learning, family effects on child development, and neighborhood effects

on change in individual psychological and behavioral outcomes. In each case,

extending the multilevel growth model to include a model-based clustering of

groups adds a new dimension to the research problem. Namely, it adds the capa-

bility of examining whether population heterogeneity in the between-group

growth trajectories is due in part to the presence of unobserved subpopulations

at the group level and, if so, what factors differentiate them.

We begin by reviewing the modeling developments that led to the MGMM-B,

starting with a brief introduction to the literature on latent class and mixture mod-

els, growth mixture models, and the MGMM-W.1 We then present an MGMM

with classes at both the within-group and the between-group levels, which we

conceptualize as an extension of the MGMM-W, but it can also be thought of

as an extension of the multilevel latent class model (Vermunt, 2003). Next, we

present the MGMM-B and illustrate it with an application in which schools are

classified into Type B effectiveness categories (Raudenbush & Willms, 1995)

and in which a school’s class membership is predicted using measures of school

practices. The complexity of this model necessitates several decisions during

model specification, which we provide guidance on.

Background on Latent Class and Mixture Models

Although the terms ‘‘mixture model’’ and ‘‘latent class model’’ are sometimes

used synonymously, they have distinct early literatures with latent class models

focusing on categorical outcomes (Goodman, 1974; Lazarsfeld, 1950; Lazarsfeld

& Henry, 1968) and finite mixture models focusing on continuous outcomes (Day,

1969; Wolfe, 1970). More recently, Aitkin (1999) and others proposed using mix-

ture and latent class models for investigating whether the assumption of normally

distributed random effects holds in random effects regression models. In the con-

text of growth modeling, which is a specific type of random effects regression

model, the recent literature has typically distinguished growth mixture models

from latent class growth models, with the former carrying the assumption of nor-

mally distributed random effects within classes and the latter carrying the assump-

tion that there is no random variation within classes (Bauer & Curran, 2004;

Muthen, 2004). In that regard, the latent class growth model can be considered a

special case of the growth mixture model where the random effects are set to zero

within classes. It should, however, be noted that this distinction between mixture

and latent class models is not used outside of the growth modeling context.

The distribution of random effects may depart from normal arbitrarily or

because of the presence of subpopulations of individuals. Hence, latent class and

mixture models may be used for two purposes. The first purpose is to test the nor-

mality assumption on certain random effects and provide a semiparametric or a

nonparametric summary of the data when it is not met (Ferguson, 1983).
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The second purpose is the substantive pursuit of ‘‘un-mixing’’ subpopulations of

observations that differ in terms of the distributional properties of their random

effects, such as mean or variance. That is, to classify observations into theoreti-

cally meaningful groups. It is the second purpose that applied researchers will

likely find most attractive and is what motivates the application presented below.

Unfortunately, it is difficult to verify whether non-normality is caused by mixtures

of subpopulations outside of the artificial context of a simulation study (Bauer &

Curran, 2003). Hence, when using these models with real data, the practitioner will

generally be unable to ascertain whether the latent classes are detecting real sub-

populations or non-normality that is an artifact of another origin.2

The growth mixture model and latent class growth model are recent extensions

of the latent class and finite mixture model (Muthen, 2001; Muthen & Shedden,

1999; Nagin, 1999; Nagin & Tremblay, 2001; Verbeke & Lesaffre, 1996; Vermunt

& Van Dijk, 2001). They represent a merger of the finite mixture model and the

growth model and offer the advantages of each. These models overcome the

assumption that random intercepts and slopes of individual growth trajectories

be normally distributed and allow for the investigation of theoretically meaningful

classes of individuals that differ in terms of their intercepts and slopes.

A Framework for MGMMs

A natural extension of the growth mixture model is the addition of a between-

group level of analysis, which is useful for studying the association between group

characteristics and the growth process when observations are nested in groups

(e.g., schools or neighborhoods). The MGMM-W (Muthen, 2004) classifies indi-

viduals based on their growth trajectories and consequently may be considered an

MGMM for within-group classification. The within-group latent class variable can

be partitioned into within- and between-group components using a multilevel mul-

tinomial logistic regression model. The between-group component allows for the

modeling of group factors on the probability of class membership for individuals.

This model is useful for studying the associations between the within-group latent

classes and group characteristics. However, another extension, the capability of

basing latent classes on group intercept and slope estimates, is necessary for this

modeling framework to realize its full potential for multilevel applications. This

article introduces that extension as part of a multilevel latent variable modeling

framework that can classify either within- or between-group observations, or both.3

Table 1 displays a matrix of nine potential models for describing growth trajec-

tory heterogeneity. These models differ in terms of specification of continuous and

discrete latent variables (i.e., latent classes) at both the individual and the group lev-

els. The choice of specification can be important because the discrete and contin-

uous latent variables compete for observed variation in the individual growth

trajectories. In models that include latent classes, the decision of whether to retain

the random effects can influence the number and composition of the classes that are
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identified (Bauer & Curran, 2004; Lubke & Neale, 2006). There are three possible

configurations at both the individual and the group levels including continuous

latent variables only, discrete latent variables only, and both continuous and dis-

crete latent variables. Because the nomenclatures can be a little convoluted, we con-

nect all model names to letter–number identifiers to minimize confusion. Letters

refer to the individual level and numbers refer to the group level. ‘‘A’’ and ‘‘1’’

annotate to models where all trajectory heterogeneity is captured by continuous

random variables, namely, the random effects for the intercepts and slopes. ‘‘B’’

and ‘‘2’’ refer to models that capture heterogeneity using a set of discrete latent vari-

ables or latent classes. This specification implicitly assumes that the trajectories do

not vary within class and hence there are no random effects for the slopes and inter-

cepts. Note that model B2 is the multilevel extension of the latent class growth

model (Nagin, 1999) and may be referred to as the multilevel latent class growth

model (MLCGM). ‘‘C’’ and ‘‘3’’ are hybrids of the conventional growth model and

latent class growth model (LCGM) that includes both latent classes and random

effects for the intercepts and slopes. We refer to this model as the MGMM. At each

level, the random effects may be specified within each latent class or only in the

classes that have significant variation in the individual growth trajectories.

Model A1 is the conventional multilevel growth model, while models B1 and

C1 are MLCGM-W and MGMM-W. The other six models, each of which iden-

tifies classes at the group level, are new.4 B2, B3, C2, and C3 draw latent classes

from both levels. For these models, the group-level classes can originate from

group intercepts and slopes and/or from the random effect associated with the

individual-level latent class variable. The latter specification assumes that

individual-level latent classes depend on the group-level classes and therefore

may be considered a type of cross-level interaction effect, whereas the likelihood

of being a member of a particular individual-level class depends partially on the

between-group class the individual is a member of. The application presented in

this article focuses on Models A2 and A3, which we refer to as the MLCGM-B

and the MGMM-B, respectively. However, because C3 is the most complex

TABLE 1

Matrix of Nine Potential Multilevel Models for Describing Growth Trajectory

Heterogeneity

Within-Group LVs

Between-Group LVs

Continuous Discrete Both

Continuous A1 A2 A3

Discrete B1 B2 B3

Both C1 C2 C3

Note: LV ¼ latent variables.
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model in Table 1, we present its path diagram and formulations. The other eight

models can be considered special cases of C3.

Path Diagram

As a conceptual introduction to this modeling framework, we represent model

C3 as a path diagram in Figure 1, which was inspired by the diagrams of

Rabe-Hesketh, Skrondal, and Pickles (2004). Per structural equation modeling

convention, rectangles represent observed variables and ovals or circles represent

latent variables. Figure 1 shows the three-level nested structure of the data, with

the repeated measurements (indexed t) nested within individual (indexed i), who

are nested within groups (indexed j). Note that there are two kinds of latent vari-

ables represented: categorical, which are represented by circles, and continuous,

which are represented by ovals. The categorical latent variables are the latent

classes and are symbolized by cij at the individual level and by dj at the group

level, which are vectors of class indicators, where 1 � i � nj and 1 � j � N . The

continuous latent variables are the random intercepts and slopes at the individual

and group levels. At Level 1, we see the repeated measurements (Ytij) are

regressed on a measure of time (a1tij) and there is a residual term associated with

the repeated measurement outcome (etij), where 1 � t � Tij. The repeated mea-

surements model generates growth trajectories for each individual, which are

Y
tij

π
0ij

X
ij
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0ij

r
1ij
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10j

u
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j
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FIGURE 1. Path diagram of the multilevel growth mixture model.
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summarized by the random intercept and slope coefficients (�0ij and �1ij,

respectively). The individual-level intercepts and slopes may be regressed on a

set of covariates (Xij) and have residuals associated with them (r0ij and r1ij).

Moreover, latent classes (cij) may be based on the individual trajectories. The

mean individual intercepts and slopes for each group (b00j and b10j) are the

outcomes of the group-level models. Classes (dj) can also be based on group

trajectories, which may also be regressed on a set of group-level covariates (Wj). The

group-level models have residual terms associated with them (u0j and u1j).

Formulations

We now present model C3 in a series of five equations (1–3b). As with the path

diagram, the formulations can be expressed in three parts including the repeated

measurements model, the within-group model, and the between-group model.

These equations extend the conventional three-level growth model equations

(Raudenbush & Bryk, 2002) to include categorical latent variables that represent

unobserved trajectory classes at the individual and group levels. We begin with

Equation 1, which we refer to as the repeated measurements model. For simplicity,

we present a linear trajectory form, but other functional forms can easily be used.

Repeated measurements model (Level 1):

Ytij ¼ �0ij þ �1ija1tij þ etij: etij � Nð0;s2Þ: ð1Þ

The notation in these equations uses subscripts to account for the multilevel data

structure. Ytij indicates the observed value of the outcome variable at time t for

individual i nested in unit j (e.g., school), �0ij is the expected value of Y for this

individual when time equals zero, �1ij is the expected change on the outcome per

unit change in time for this individual, a1tij is a variable measuring the passage of

time within this individual, and etij denotes the residual or random error associated

with this relationship. Whereas the presented linear growth model contains only

one time variable, polynomial and piecewise linear growth models will contain

multiple time variables. Hence, we use the subscript 1 to indicate this is the first

of potentially multiple measures of time. The repeated measurements model gen-

erates intercepts (�0ij) and slopes (�1ij) for each individual, which are the outcomes

for the within-group model, which we now turn our attention to. The within-group

or individual model can be expressed in two parts including the model for the inter-

cepts and slopes (2a) and the model for the classes (2b).

Within-group model for the intercepts and slopes (Level 2):

�0ij ¼ b00j þ
XK

k¼2

b�
00k

ckij þ
XQ

q¼1

b0qj Xqij þ r0ij

�1ij ¼ b10j þ
XK

k¼2

b�
10k

ckij þ
XQ

q¼1

b1qj Xqij þ r1ij; rij � Nð0;TrÞ
ð2aÞ
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Within-group model for the classes:

logit P ckij ¼ 1
� �� �

¼ �0k þ
XQ

q¼1

�qkXqij: ð2bÞ

The model for the intercepts and slopes (Equation 2a) shows that variation in

the individual growth trajectories is accounted for by three factors including

covariates, latent classes, and random effects. Let Xqij be one of a set of Q

covariates on which the intercepts and slopes are regressed to explain variation

across individuals. The association between those covariates and the intercepts

and slopes are represented by a set of Q coefficients, b01j to b0qj for the inter-

cepts and b11j to b1qj for the slopes. To account for the addition of K latent

classes, which are indexed by k with 1 � k � K, let ckij be one of K indicator

variables taking on the value 1 if subject i is a member of latent class k and 0

otherwise. Note that only K � 1 of the K class indicators appears in Equation

2a because the class indicators are dummy coded with Class 1 being the ref-

erence category. Consequently, b00j and b10j represent the mean intercept and

slope for Class 1, while b*00k and b*10k represent the difference between the

mean intercept and slope for class k compared to Class 1. An alternative

parameterization can be used that estimates the intercept and slope for each

latent class, rather than the differences from the reference class. The equation

for that parameterization will omit b00j and b10j from Equation 2a, which fixes

them to zero, and index k to begin with Class 1 instead of 2.

Besides classifying individuals, the within-group model can be used to study

the association between predictors and the likelihood of class membership. This

part of the model, which is equivalent to a multinomial logistic regression model,

is described in Equation 2b. Note that when k ¼ 1 is the reference category, the

left-hand side of the equation becomes log
Pðcijk¼1Þ
Pðcij1¼1Þ : Note that other types of logits

could be used, for example, with a different reference category or with the

geometric mean of the K categories in the denominator (effects coding).

Moreover, this equation can be extended to a multilevel multinomial logistic

regression model where the probability of class membership varies across

between-group units.

The between-group model equations are highly similar to the within-group

equations, as we show below in Equations 3a and 3b.

Between-group model for the intercepts and slopes (Level 3):

b0ij ¼ g000 þ
XL

l¼2

g�
000l

dlj þ
XP

p¼1

g00pWpj þ u0j

b10j ¼ g100 þ
XL

l¼2

g�
100l

dlj þ
XP

p¼1

g10pWpj þ u1j; uj � Nð0;TuÞ
ð3bÞ

Between-group model for the classes:
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logit P dlj ¼ 1
� �� �

¼ d0l þ
XP

p¼1

dplWpj: ð3bÞ

As we saw with the within-group equations, heterogeneity in the trajectories is

accounted for by three factors, which are now between-group covariates (Wpj),

latent classes (dlj), and random effects (u0j and u1j). The number of between-

group latent classes is denoted by L and a particular between-group class by 1,

where 1 � l � L. The indicator variable dlj takes on the value 1 if between-

group observation j belongs to between-group latent Class 1 and is 0 otherwise.

The terms g000 and g100 appearing in Equation 3a are the mean intercept and

slope trajectory for between-group Class 1, while g*000 and g*100l indicate the

differences in the mean intercepts and slopes for between-group Class ‘ com-

pared to between-group Class 1. Equation 3b describes the part of the model that

predicts between-group class membership using covariates measuring group

characteristics. Assuming ‘ ¼ 1 is the reference category, the left-hand side

becomes log
Pðdjl¼1Þ
Pðdi1¼1Þ :

The residuals in the measurement, within-group, and between-group models are

assumed to be (a) normally distributed, (b) independent across hierarchical levels,

and (c) uncorrelated with the predictors included in the model. In standard regression

analysis, the latter assumption is sometimes referred to as exogeneity of covariates.

However, it should be noted that these three assumptions may be weaker in this mul-

tilevel mixture model compared with the standard multilevel model because they

may be conditional on the class memberships (see extension 2 below).

Extensions

The model described in Equations 1–3b can be extended in various ways.

Each of these extensions makes it possible to relax and test certain assumptions

of the MGMM described above. The following are four potentially useful

extensions:

1. Equation 1 assumes that the residuals in the repeated measurements model are

uncorrelated and homoskedastic across time points, which may be untenable

(Hedeker & Gibbons, 2006). To address this issue, a more flexible measurement

error structure may be used. For example, the variance in the residuals in Equation

1 can be assumed to differ across time points (i.e., etij � Nð0;s2
t Þ) or to have a full

covariance structure (i.e., eij � Nð0;�Þ).
2. In the above equations, it is assumed that residual variances do not differ across the

classes. This restriction can be relaxed as it commonly is in applications of mixture

models for continuous response variables (see McLachlan & Peel, 2000, pp.

81–83). In this multilevel model that would mean residual variances can be freely

estimated across within-group classes, between-group classes, or both. That is,

etij � Nð0;s2
kÞ, etij � Nð0;s2

l Þ, or etij � Nð0;s2
klÞ for the residuals in the repeated
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measurements model; rij � Nð0;TrkÞ; rij � Nð0;TrlÞ; or rij � Nð0;TrklÞ for the

residuals in the within-group model; and uj � Nð0;TulÞ for the residuals in the

between-group level model.

3. Whereas in Equations 2a and 3a, only the mean intercepts and mean slopes are

specified to differ across within- and between-group latent classes, the covariate

effects in these equations can also be specified to differ across classes. In other

words, the covariate effects can be specified to interact with the latent classes at

either level by adding relevant product terms in these equations. That is, for

within-group covariates by the within group classes,
PK
k¼2

b�0qkXqijckij for any

q ¼ 1, . . . , Q, where b�0qk is the coefficient on the interaction term; for the

within-group covariates by the between-group classes,
PL
l¼2

b��0qlXqijdlj for any q ¼

1, . . . , Q, where b��0qk is the coefficient on the interaction term; and for the

between-group covariates by the between-group classes,
PL
l¼2

g�0plWpjdlj for any

p ¼ 1, . . . , P, where g�0pl is the coefficient on the interaction term. Note that sim-

ilar terms but with an index of 1 instead of 0 will appear in the slope equations.

4. The logit parameters in the model for the within-group classes can be allowed to

vary across groups by assuming that these are random effects (i.e., with a logit

equation of the form logit½Pðckij ¼ 1Þ� ¼ �0kj þ
PQ
q¼1

�qkjXqij where �qkj ¼ jqkþ

vqkj and vj ~Nð0;TvlÞ). This multilevel extension was shown previously by Muthen

(2004) for growth mixture models and by Vermunt (2003) for a general class of

latent class and mixture models. An alternative strategy for specifying the

within-class membership probabilities as group-specific is to include the

between-group class indicators djl as predictors in the model for the within-

group classes (see Vermunt, 2003). This implies including the term
PL
l¼2

��0kldlj into

Equation 2b and also possible interactions with the within-group predictors (i.e.,RL
l¼2

��qklXqijdlj for any q ¼ 1, . . . , Q).

Estimation and Software

Several options are available for the estimation of the unknown parameters of

the MGMM described in Equations 1–3b. One option is to use Bayesian posterior

estimation with either a Markov chain Monte Carlo (MCMC) algorithm imple-

mented in a general purpose package like Winbugs (Spiegelhalter, Thomas, Best,

& Lunn, 2003) or a tailor-made Gibbs sampler as, for example, Fox and Glas

(2001) proposed for multilevel Item Response Theory (IRT) analysis. Another

natural and feasible option is maximum likelihood estimation, which is the method

we used in the application described below. More specifically, we used the max-

imum likelihood estimation procedure implemented in the Latent GOLD software
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package by Vermunt and Magidson (2005, 2008). Appendix B provides more

details on maximum likelihood estimation used by Latent GOLD, such as the form

of the probability density function used to construct the log likelihood function.

Other software options for MGMM include latent variable modeling packages

such as Mplus (Muthen & Muthen, 1998–2007) and GLLAMM (Rabe-Hesketh &

Skrondal, 2008), which also use maximum likelihood estimation. One limitation

of Mplus for MGMM is it uses a traditional latent growth curve approach with

intercept and slope factors estimated using fixed factor loadings, which is suitable

for repeated measurements that are balanced on time. As a result, Mplus currently

cannot estimate the models shown in this article, which use a random time variable

to estimate the intercept and slope factors and unbalanced repeated measurements.

To be clear, the approach used in this article is suitable for either balanced or unba-

lanced repeated measurements. GLLAMM can estimate a subclass of the models

introduced in this article; that is, the models with either only continuous random

effects or only latent classes (our A1 and B2 model). Finally, rather than using a

latent variable modeling package, some general statistical software packages such

as R have specialized algorithms (e.g., nlm and optim) that may be used to opti-

mize the log likelihood function to estimate the MGMM parameters.

Application: Classifying Schools Based on Student Cognitive Growth

We now turn our attention to an application of the MGMM for classifying

schools into homogeneous groups based on the properties of their mean student

math achievement growth trajectories. Although the MGMM framework intro-

duced above includes nine models distinct in terms of specification of continuous

and categorical latent variables, the context of the research problem of this appli-

cation leads us to focuses primarily on two of those that include a latent class

variable only at the group level (i.e., Models A2 and A3 in Table 1). However,

during the course of our analysis, we also estimate and discuss the multilevel

growth model (A1) and an MGMM with latent class variables at both levels

(B2). Similar to other complex models, specification decisions must be made that

may influence the results, making the model specification strategy critical. Opti-

mally, model building is not a purely statistical endeavor but rather is informed

by the substantive literature and theory on the research problem (Nagin, 2005).

For this reason, we begin by introducing a theoretical framework for estimating

school effects, which guides the example. We then describe several model spe-

cification considerations that can be important for ensuring sensible results. But

first we describe our data.

Data

This application uses a sample of 3,401 children nested in 254 schools from

the Early Childhood Longitudinal Study of the Kindergarten Class of 1998–

1999 (ECLS-K; National Center for Education Statistics [NCES], 2002).5 The
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outcome is four repeated measurements of mathematics achievement scores

collected near the beginning and end of kindergarten and first grade, which are

used to estimate mathematics achievement growth during kindergarten and first

grade. The test consists of a pool of items developed by National Center for Edu-

cation Statistics (NCES) and set to a common scale using IRT. Test versions of

varying difficulty were constructed and vertically equated. Each student at each

data collection point was administered a test of appropriate difficulty for their level

of cognitive development in mathematics. This longitudinal test development pro-

tocol was for the purpose of producing achievement data suitable for growth mod-

eling. Besides repeated measurements of mathematics achievement, we also use

student background variables measuring ethnicity and socioeconomic status

(SES) as well as mean student SES at the school level. These variables are concep-

tualized as Type B control variables, for the purpose of which we describe below.

Finally, we also use two variables measuring school practices: a dummy coded

variable indicating whether school-based management (SBM) was being used and

a factor score measuring a construct we refer to as Teacher Professionalism.

We elaborate on these two measures of school practices below. In Appendix A,

Table A1 shows the descriptive statistics for the variables used in this analysis and

Table A2 shows the details on the Teacher Professionalism factor score.

Model Building

In this section, we introduce and provide guidance on several issues related to

model building, including the theoretical framework informing model specifica-

tion, the form of the growth curve, determining the number of classes, and poten-

tial misspecifications of the model used to classify the schools, which we refer to

as the classification model. These issues are important because model specifica-

tion decisions affect the number and composition of the classes that are

identified.

Theoretical Framework Informing Model Specification: Type B School Effects6

This study seeks to classify schools into what we call Type B effectiveness

categories based on mean student learning trajectories. Raudenbush and Willms

(1995) proposed a conceptual framework for school effects that makes the dis-

tinction between Type A effects, the total impact that schools have on a student

outcome such as learning, and Type B effects, the impact that school practices

have on the student outcomes. Public school personnel typically have little con-

trol over the background composition of the students who enroll in their schools

or certain other school features such as the level of resources that are available

(e.g., per pupil expenditures) or the structural features of the school (e.g., enroll-

ment or sector), all of which have been found to affect student learning. How-

ever, teachers have a fair amount of control over instructional practices and

administrators have control over management practices, which also affect
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student learning. Type A effects include both factors within and outside the

control of school personnel and is typically what parents are most interested in

when judging the effectiveness of schools. Type B effects describe the effective-

ness of the school controlling for factors beyond the influence of school person-

nel and is what school evaluators are typically most interested in when judging

the effectiveness of the school. For a learning outcome, the Type B effect for

each school is the degree to which the school’s mean achievement growth trajec-

tory deviates from what is expected, controlling for student background and

school factors that are beyond the influence of school personnel.

This paradigm of school effects is useful for informing model specification

in an effort to produce more substantively meaningful results. When statistical

adjustments are made for the effects of other factors, the Type B effects model

provides a more appropriate foundation for comparing the effectiveness of

schools based on the performance of school site personnel. In this application,

we use a Type B school effects model to estimate the optimal number of

between-group trajectory classes. The model controls for aspects of students’

background that affect learning as well as nonpractice school factors. In the

within-school model, we control for the student SES as well as ethnicity, two

demographic variables that have shown robust associations with learning in

early elementary school. In the between-group model, we control the social

composition of the student body, which is measured by the mean SES of the

school.7

The estimate of Type B school effects by Raudenbush and Willms is based on

between-group slope random effects or residuals. The current study uses the

MGMM to classify schools into Type B effectiveness groups based on mean stu-

dent achievement growth trajectories. There are a few noteworthy differences in

these two approaches for estimating Type B school effects. First, the Raudenbush

and Willms approach does not use the school intercepts (initial mean student

achievement) directly when assessing effectiveness, which can be a confounding

factor in the Type B effectiveness paradigm because the achievement level of

entering students is beyond the control of school site personnel and it may be cor-

related with subsequent growth in achievement. In contrast, the classification of

schools into homogeneous groups by the MGMM is based on both the school

intercept and the slope, which addresses this concern. Moreover, the mean inter-

cept and slope covariances may differ across school classes. The MGMM

approach also addresses the important practical issue associated with the contin-

uous approach of determining which schools are performing well and which are

not. That determination requires designating cut-points in the distribution of

school slope residuals that discriminate effective and ineffective schools. Such

cut-points are typically set based on an arbitrary criterion. For example, schools

with slope residuals one standard deviation above average may be deemed effec-

tive. The use of such an arbitrary criterion is unnecessary with the MGMM

approach.
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Form of the Growth Curve: Piecewise Linear Growth Model

One of the strength of growth modeling is that with the appropriate data

collection design, the time variables can be coded to provide more sensitive

estimates of the treatment effect of interests. In the current example where

the growth trajectories include multiple school years and achievement data were

collected at the beginning and end of each school year, a piecewise linear growth

model can be used, which partitions the summer period away from the school

year when the schooling ‘‘treatment’’ is being administered. This specification

of the time covariates provides a more sensitive estimate of the schooling treat-

ment effect because the learning that takes place over the summer period when

school is not in session generally cannot be attributed to school effects and also

because learning rates for socially disadvantaged children (i.e., children from low

SES families) tend to be lower during summer compared with their more affluent

counterparts, although similar during the school year (Alexander & Entwisle,

1996; Cooper, Nye, Charlton, Lindsay, & Greathouse, 1996). Hence, failing to

separate the summer period from when school is in session may introduce a sub-

stantial source of measurement error to school year achievement growth esti-

mates, which will tend to result in the underestimation of the effectiveness of

schools serving disproportionately high percentages of disadvantaged children

and overestimation of the effectiveness of schools serving affluent families.

The piecewise linear trajectories can take on various configurations. For

example, the trajectories may be partitioned into three pieces including kinder-

garten, summer, and first grade, which produce separate estimates of the learn-

ing rates during each period. Figure 2 shows the mean student math

achievement growth trajectories for each period for our sample of the ECLS

data, controlling for student SES, ethnicity, and mean SES. The graph illus-

trates that the mean math learning rate during the kindergarten and first grade

periods are similar, while the rate for the summer piece is substantially lower.

Based on this observation, a piecewise linear growth model was used, which

estimates the rate of achievement growth for the school year and summer

separately.

Also in an effort to minimize measurement error, the model was specified to

take into account two aspects of the ECLS data set testing protocol. The fall and

spring achievement test scores were not collected at the very beginning and end

of each school year. Moreover, the time between collections varied considerably

across students (i.e., the data were not balanced on time).8 Two continuous

‘‘time’’ variables, one for the school year and one for the summer, were con-

structed to account for these design issues. The time variable for school year

learning measures the passage of time in months since the start of kindergarten.

The time variable for summer is coded zero from the start of kindergarten

through the start of summer and in months during summer and is held constant

from the end of summer until the end of first grade. Table 2 provides data for the
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school year and summer time variables, a1ti and a2ti, for two students in our

sample. Note that both time variables are unbalanced, making these data unsui-

table for the traditional latent growth curve (LGC) approach because LGCs use

intercept and slope factors with fixed loadings, which require that the repeated
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FIGURE 2. Mean piecewise linear growth trajectory for math achievement for Early

Childhood Longitudinal Study (ECLS) sample. Note: Estimated values are based on con-

ditional piecewise growth model, controlling for student background and social

composition.

TABLE 2

Time Variable Coding Example: Data for Two Students on the School Year and Summer

Time Variables

Student #

Repeated

Measurement

a1tij

(School Year)

a2tij

(Summer)

1 1 1.45 0.00

1 2 8.55 0.00

1 3 12.85 2.55

1 4 19.03 2.55

2 1 2.01 0.00

2 2 9.07 0.00

2 3 14.04 3.02

2 4 20.48 3.02
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measurements be balanced on time (Bollen & Curran, 2006). This coding scheme

results in a school year slope that can be interpreted as the expected monthly rate

of math achievement growth while school is in session (adjusted for the summer

period) and the summer slope that is the expected difference in the summer

development rate compared with the school year rate. The beauty of this repeated

measurements model is that it separates school year learning on which schools

will be classified into effectiveness categories, from summer learning, which will

not be used in the classification model. Whether estimating Type A or Type B

school effect, this is an important specification issue.

Indices for Determining the Number of Classes

Several statistical indices are available for determining the number of classes

in mixture and latent class models and authors have generally advised using more

than one (Bauer & Curran, 2004; McLachlan & Peel, 2000; Nagin, 2005). In this

example, we use four different information criteria including, perhaps, the two

most commonly used, the Bayesian information criterion (BIC; Schwarz,

1978) and the Akaike information criterion (AIC; Akaike, 1973).9 These are

comparative indices that are appropriate for determining which set of models fits

the observed data best. Both indices are based on the model log likelihood and

penalize for increased model complexity. BIC also penalizes for increased sam-

ple size. The formula for BIC is

BIC ¼ �2 log Lþ logðNÞ � Npar; ð6Þ

where log L is the model log likelihood, N is the number of observations, and

Npar is the number of parameters for the fitted model. The formula for AIC is

AIC ¼ �2 log Lþ 2 � Npar: ð7Þ

AIC penalizes for model complexity by adding twice the number of parameters.

Note that the complexity adjustment for BIC becomes progressively larger as

sample size increases and will be larger than the adjustment for AIC for sample

sizes greater than 7. One potential strength of BIC for assessing multilevel mix-

ture models is that the number of observations used in the penalty can be mea-

sured in various ways with perhaps the two most obvious choices being the

number of individuals and the number of groups. This choice can affect the sam-

ple size penalty substantially, which in turn can affect the number of classes iden-

tified. When the model only classifies groups, the parameters differentiating

comparison models may only be estimated from the groups rather than the

within-group units, in which case the number of groups would seem the appro-

priate N for the BIC sample size adjustment. Supporting this rationale, a recent

simulation study found that BIC with N equal to the number of group (which we

refer to as BIC-B as opposed to BIC-W for which N is the number of individual

observations) outperforms other indices for detecting the correct number of

Palardy and Vermunt

546

 at Tilburg University on September 15, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net


between-group classes for a multilevel mixture model (Lukociene & Vermunt,

2010).10 To determine the optimal number of classes in the application below,

we use BIC-W, BIC-B, and AIC, as well as the modified AIC (AIC3; Bozdogan,

1993), which research suggests performs well on a variety of latent class models

(Dias, 2006, 2007). AIC3 differs from AIC only in that the penalty constant is three

times the number of parameters rather than two times.

Potential Misspecifications of the Classification Model

In this section, we examine potential misspecifications of the classification

model, which we define as the model that is used to determine the number of

latent classes. We focus on three aspects of model specification that have poten-

tial for affecting the number and composition of the between-group classes

we seek to identify (a) covariates, (b) between-group random effects, and

(c) within-group latent classes.

The way classes differ from one another may change considerably when co-

variates are entered into the model (Muthen, 2004; Tofighi & Enders, 2007). This

implies that the assignment of schools to classes based on their posterior mem-

bership probabilities may also be altered. Recall that covariates adjust the inter-

cepts and slopes. Recall also that the degree of the adjustment for a particular unit

is a function of the unit’s values on the covariates and the outcome. Hence, the

use of covariates in the classification model alters the distribution of the random

effects and may change the composition and number of classes. For these rea-

sons, it is important to carefully consider the use of covariates in the classifica-

tion model. As suggested above, covariates should be selected based on the

theoretical framework guiding the study. In this application, we include covari-

ates that adjust for student and school characteristics that are arguably beyond the

control of school site personnel because the objective is to classify schools into

Type B effectiveness categories. Had the objective been to classify schools into

Type A effectiveness categories, the choice of covariates in the classification

model would have changed accordingly.

Once the covariates for the classification model have been determined, it must

be decided whether their effects are fixed across classes or interact with the clas-

sification variable. If their effects vary across classes, misspecifying them as

fixed could bias their adjustments and in turn affect the definition of the

between-group classes. Consequently, we recommend testing whether the effects

of covariates in the classification model vary across classes, which we refer to as

a covariate invariance test. In summary, there is no absolute correct specification

of covariates in the classification model. The decisions of whether to use covari-

ates in the classification model, and if so which covariates, is best informed by

the theoretical framework and objectives of a given study.

A second specification issue involves the conditions under which to leave

the intercept and slope random effects unconstrained at the group level. Recent

Multilevel Growth Mixture Model

547

 at Tilburg University on September 15, 2013http://jebs.aera.netDownloaded from 

http://jebs.aera.net


simulation studies have shown that constraining these parameters to zero can

result in overextraction of classes (Bauer & Curran, 2004; Lubke & Neale,

2006). Overextraction can also be caused by non-normality in the intercept and

slope distributions that does not originate from mixtures of subpopulations

(Bauer & Curran, 2004). A simple strategy for protecting against overextrac-

tion is to retain the random effects. However, in the context of the MGMM,

the intercepts and slopes tend to vary far more within groups than between

groups and the variance in the group slopes is usually several times smaller

than the variance in the group intercepts (more than 300 times smaller in the

example below). Hence, the between-group slope variance tends to be very

small, which in our experience often results in a drastic slowing of parameter

estimation and sometimes non-convergence. In such cases, it may be better to

constrain the variance in the group slopes to zero. If this is done, a sensitivity

analysis is recommended to examining whether the constraint impacts the

number and composition of classes identified.

A third specification issue is whether to include a within-group latent class

variable. When the objective is to classify groups and there is no substantive

interest in classifying individuals, omitting the within-group latent class vari-

able is reasonable and will result in a more parsimonious model. Yet, doing

so may violate the assumption that the intercept and slope random effects are

normally distributed and individuals within the groups are from a single pop-

ulation. Unfortunately, little is known about how such violations affect

between-group classes. One thing that is clear, however, is that these models

are very complex and prone to estimation challenges. Although some research-

ers may wish to pursue various extensions to the models, adding complexity

that is not consistent with addressing the research questions is not advisable.

Consequently, we recommend adding within-group latent classes only when

the research problem calls for them.

Results

We present the models in order of progressive complexity. Although our the-

oretical framework calls for using a Type B school effects model to determine the

number of classes, we also present the unconditional classification model results

for comparison (see Table 3). We begin with the multilevel random coefficient

growth model (MRCGM; A1), which is the conventional multilevel growth

model and has only one class. We then estimate MGMM (A2), in which the

between-group random effects are set to zero, starting with a single class and

adding class one at a time until the information criteria indices increase, indicat-

ing a decline in model fit to the data. Next, we examine the MGMM (A3) with the

between-group random effect for the intercept free and constrained to zero for the

slope. We again start with the single-class model and add classes one at a time.
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Determining the Number of Classes

The results in Table 3 show that the optimal number of between-group

classes differed slightly depending on the information criteria, which should

be expected, given the differences in the formulations of the criteria. Among

Unconditional models, the five-class and six-class models with the group inter-

cepts and slopes variances constrained to zero (A2) each fit best for two of the

four indices, while the three-class MGMM with a random intercept (A3) fits

best for three of the four indices.11 This finding corroborates previous research

indicating that omitting random effects can lead to overextraction (Bauer &

Curran, 2004; Lubke & Neale, 2006). However, adding the Type B covariates

seems to alleviate that condition. The Type B classification models fit the data

systematically better than the Unconditional models, with the three-class

model with fixed between-group intercepts and slopes (A2) fitting best overall

based on three of the four indices. This is likely a result of the Type B model

covariates having explained a substantial proportion of the variance in the

intercepts among schools, consequentially the between-group random effect

for the intercept was no longer necessary for preventing overextraction.

Finally, we estimated the Type B model with a random intercept (A3). The

two-class and three-class models each fit best on two of the four indices.

TABLE 3

Determining the Optimal Number of Classes for the Unconditional and Type B School

Models

#Classes

Unconditional Type B

BIC-W BIC-B AIC AIC3 BIC-W BIC-B AIC AIC3

Multilevel random coefficient growth model (A1)

1 84,571 84,548 84,516 84,525 84,195 84,128 84,036 84,062

MGMM with between-group fixed slopes and intercepts (A2)

1 85,202 85,184 85,159 85,166 84,309 84,249 84,168 84,191

2 84,749 84,723 84,688 84,698 84,245 84,178 84,086 84,112

3 84,656 84,622 84,576 84,589 84,202 84,126 84,024 84,053

4 84,614 84,573 84,516 84,532 84,225 84,142 84,029 84,061

5 84,605 84,556 84,489 84,508 — — — —

6 84,617 84,560 84,482 84,504 — — — —

MGMM with between-group random intercepts and fixed slopes (A3)

1 84,663 84,642 84,614 84,622 84,258 84,195 84,111 84,135

2 84,583 84,555 84,516 84,527 84,206 84,135 84,040 84,067

3 84,577 84,541 84,491 84,505 84,220 84,142 84,036 84,066

4 84,594 84,550 84,490 84,507 — — — —

Note. Bold numbers indicate best fitting model of a particular type, whereas underlined numbers indicate

best fitting model overall. AIC ¼ Akaike information criterion; AIC3 ¼ modified Akaike information

criterion; BIC ¼ Bayesian information criterion; MGMM¼ multilevel growth mixture model.
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However, adding the intercept random effect to the Type B model resulted in a

systematic increase in the information criteria. Therefore, that specification

was rejected in favor of the more parsimonious model with fixed intercepts

and slopes at the group level.

To illustrate the effects of adding the Type B control covariates to the classi-

fication model, Table 4 presents the variance components for the MRCGM (A1)

for the Unconditional and Type B classification models. We see that the covari-

ates in the Type B model account for more than 77% of the between-group var-

iation in the intercepts. These factors were controlled to account for variance in

the school growth trajectories due to differences in Type B control variables. One

impact this has on the model is that the intercept random effect no longer seems

necessary for preventing overextraction.

Table 5 provides a sense of the performance of the Type B classification

model. Schools were classified into their most likely (modal) class based on

their posterior class membership probabilities for which the frequencies are

shown in the marginal row at the bottom. These membership probabilities are

TABLE 4

Variance Components for Unconditional and Type B Models

Unconditional
Type B

Variance Variance % Variance Explained

Within intercept 37.4509 35.0325 6.46

Within slope 0.0377 0.0373 1.06

Between intercept 14.8439 3.3916 77.15

Between slope 0.0114 0.0093 18.42

ICC intercept 0.1454 0.0883 —

ICC slope 0.2013 0.1996 —

Note: ICC ¼ intraclass correlation coefficient.

TABLE 5

Performance of Type B Classification Model: Cross Tabulation of Modal Class

Assignments and Probabilistic Class Assignments

Probabilistic

Modal

Total1 2 3

1 127.48 7.13 9.71 144.32

2 9.03 39.02 2.34 50.39

3 11.49 2.85 44.95 59.29

Total 148.00 49.00 57.00 254.00
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aggregated for the schools assigned to Classes 1, 2, and 3, respectively, for

which the frequencies are shown in the marginal column on the right. The cell

entries tabulate the frequency of consistency in the two methods of classifica-

tion. If the model performs perfectly based on consistency, the off diagonal fre-

quencies will all be zero and the marginal frequencies for the modal and

probabilistic classifications schemes will be equal. The estimate of the propor-

tion of misclassifications is obtained by dividing the sum of the off-diagonal

elements by the sample size (Goodman, 1974). The estimate for our classifica-

tion model (0.17) suggests that, although imperfect, 83% of the schools in the

sample are correctly classified.

In summary, our analysis of these various classification models provides con-

siderable support for the three-class model. Moreover, once the Type B control

covariates are in the model, the group-level random intercepts are no longer nec-

essary. Therefore, we retain the three-class Type B control model with fixed inter-

cepts and slopes (A2), which we will henceforth refer to as the classification

model.

Examining Potential Sources of Model Misspecification

Before investigating the relationship between class membership and school

practice predictor variables, we examine the sensitivity of the model to three

alternative specifications. The objective is to examine how the model fit, the

number of classes identified, and the composition of the classes may be altered

by these changes in the specification of the classification model. The first alter-

native specification is extension 3 above, which includes interactions between

covariates and the classes. The second includes within-group classes. The third

is the unconditional model, which contains no covariates.

Once the covariates are in the classification model, it is a sound practice to test

whether they interact with the between-group classes. At issue here is the biasing

of the between-group class-specific mean slopes and intercepts as well as the

possible misclassification of groups. To address this, we conduct a test of covari-

ate invariance across the classes. Table 6 compares the intercept and slope esti-

mate for each class and the proportion of schools in each class for the

classification model and the model with covariate–class interactions. Note that

the information criteria for the interaction model were markedly higher (e.g.,

BIC-B ¼ 84,198) compared with the classification model, suggesting an insuffi-

cient improvement in model fit to justify the addition of the interaction effect.12

Moreover, the classes for either model were highly similar in terms of intercepts,

slopes, and percentage of sample in each class. Only a very small percentage of

the schools changed classes when the interaction was added. Given these find-

ings, we retain the more parsimonious Type B effects model over the interaction

model.
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We also examined the impact of adding two within-group latent classes on

the between-group classes. This model fits the data better than the classifica-

tion model (BIC-B ¼ 84,001), indicating non-normality in the within-group

random effects. However, the between-group classes hardly change terms of

their intercepts and slopes nor does the percentage of observations in each

class when the within-group classes are added (see Table 6). Moreover, as

we saw for the interaction model, only a small percentage of the schools

change classes. These findings suggest that in the current application, the

between-group classification model is robust to potential violations of the nor-

mality assumption at the within-group level. Alternative specifications such as

adding interactions between the classes and covariates or adding within-group

classes have little impact on the composition, slopes, and intercepts of the

between-group classes.

The classification model includes Type B control covariates, per the concep-

tual framework. To examine how the covariates effect the composition of

the classes, we estimated an Unconditional model (see Table 6) that differs from

the classification model only in that no covariates are included. The difference in

the classes compared to the previous three models is rather striking. The compo-

sition of the classes is clearly different as the percentage of schools in each class

has changed substantially. Now there is one small class of schools (5.77% of the

sample) in which students enter kindergarten with math achievement levels

roughly four grade levels above average but learn at a far slower rate than aver-

age. The other two classes are split nearly equally in size with one having stu-

dents who enter kindergarten with high-average math achievement and learn

fast and the other having students who enter with very low math achievement and

learn at a moderate rate. Adding the Type B covariates to this model alters the

school trajectories enough so that a fair percentage of the schools change classes.

Indeed, the best Unconditional model has five or six classes, so it is more accu-

rate to say that the school trajectories were redistributed with the addition of co-

variates resulting in fewer classes. The addition of the Type B controls was

TABLE 6

Comparison Class Intercepts, Slopes, and Percentage of Sample for Alternative

Classification Models With the Type B School Effects Model

Class

Type B Effectsa Interaction Within-Group Class Unconditional

I S % I S % I S % I S %

1 16.09 1.57 56.82 15.96 1.57 56.94 16.17 1.57 59.22 19.06 1.49 47.66

2 15.43 1.35 19.84 14.80 1.37 16.81 15.33 1.35 16.91 26.12 1.35 5.77

3 20.03 1.43 23.34 20.09 1.42 26.24 19.90 1.42 23.87 13.13 1.44 46.57

Note. I ¼ intercept; S ¼ slope; % ¼ percentage of sample.
a Used to classify the schools.
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expected to adjust the school trajectories. Indeed, that is precisely why they are

included in the classification model, as outlined in our conceptual framework.

Description of the Type B Effectiveness Classes

We have determined that the three-class model fits the data best. Now we turn

our attention to describing those Type B effectiveness classes. The upper panel of

Table 7 shows that the class intercepts range from 15.87 to 20.69, whereas the

slopes range from 1.35 to 1.57. Although the greater range in the intercepts com-

pared with the slopes may seem to imply the intercepts are more influential for

distinguishing the classes, that is not the case. The range for the intercepts is 4.82

points, whereas the range for the slopes is 0.22, which results in a cumulative

slope effect of 4.18 (.22 � 19) over the approximately 19 months duration of the

2 school years being modeled.

The intercept and slope results suggest that Class 1 schools are effective

because students attending those schools tend to enter kindergarten with slightly

below average math achievement (16.53 compared with 17.25 for average) and

learn at a greater rate than the population average (1.57 vs. 1.49). We describe

Class 1 schools as ‘‘Effective/Moderate’’ because they are effective in terms

of mean learning rates and, on average, students enter with moderate achieve-

ments levels. Class 2 and 3 schools are ineffective because students attending

schools in those classes tend to learn at substantially lower rates than average

(1.35 and 1.40, respectively). Those two classes differ primarily in their inter-

cepts. Student attending Class 2 schools tend to enter with below average math

achievement (15.87), while students attending Class 3 schools enter with far

TABLE 7

Results of the Multinomial Model for the Classes

Class Class 1a Class 2 Class 3

Description

Effective/

Moderate

Very Ineffective/

Low

Ineffective/

High

Trajectory properties

Intercept 16.53 15.87 20.69

Slope 1.57 1.35 1.40

Percentage of sample 58.57 21.97 19.46

Predictors of class

membershipb

Constant (intercept) — 0.30** 0.28**

Professionalism — 0.35** 0.51*

School-based management — 0.97 1.67

Note. aReference category; bScaled in odds metric; *Significant at .05; **Significant at .01.
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higher than average math achievement (20.69). We therefore label Classes 2 and

3 as Very Ineffective/Low and Ineffective/High, respectively.

Predicting Class Membership

The classification model categorizes schools based on their mean learning tra-

jectories into three homogeneous classes. Now the objective is to differentiate

these effectiveness classes of schools using practices that school personnel have

control over. In this application, we examine two group-level variables that are

hypothesized to be associated with the odds of class membership. One is a stan-

dardized factor score we call teacher professionalism, which was estimated from

four principal-reported variables. Item descriptions and the properties of this fac-

tor score are provided in Appendix A, Table A2. The second school practice mea-

sure is a dummy-coded variable indicating whether SBM is practiced at the

school. SBM is a school reform that involves decentralizing the decision-

making authority from the district level to the school site, where it may involve

teachers, parents, and other noncertificated school personnel, as well as the prin-

cipal (David, 1989). There has been considerable debate about the impact of

SBM on school effectiveness, particularly regarding whether SBM has a positive

effect on student learning.

The lower panel of Table 7 shows the results of the group-level multinomial

logistic regression part of the model, which uses practice variables to predict

class membership. Class 1 is the reference category and coefficients are in the

odds ratio metric. The intercept describes the odds of being a member of a given

class when the predictors are zero, which corresponds to schools that do not use

SBM and have an average level of Professionalism. The slope coefficients indi-

cate the change in the odds of being in Classes 2 or 3 instead of Class 1 per unit

change on the predictor concerned (slope coefficients less than 1.0 indicates a

decrease in the odds and larger than 1.0 an increase). Professionalism was signif-

icantly associated with class membership. One standard deviation increase in the

Professionalism score increases the odds of being in the very ineffective Class 2

instead of Class 1 (d12 ¼ .35, p < .01) and the odds of being in the ineffective

Class 3 instead of Class 1 by (d13 ¼ .51, p < .05). In other words, the higher the

Professionalism, the more likely that a school belongs to the effective Class 1.

SBM, however, was not associated with class membership. These results are con-

sistent with the literature on how these two measures of school practice are asso-

ciated with school effectiveness.

Discussion

The MGMM is an important new analytic tool that can help researchers pro-

vide new perspectives on both new and old research problems. The usefulness of

this model for addressing substantive research problems hinges upon on the pre-

sumption that the classes represent discrete subpopulations and not just
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incidentally non-normality in the data (Bauer & Curran, 2004). That distinction

can be difficult to verify or test statistically. Hence, for the applied researcher, the

question of whether to pursue the MGMM should be based on whether adding

classes can help advance knowledge and understanding of the given substantive

problem. This is perhaps the essential, yet subjective, test of whether to categor-

ize in any context, whether based on observed or unobserved classes.

Although the application presented in this article focuses on identifying sub-

stantively meaningful group-level classes that are the origin of non-normality in

the random effects, the model is also appropriate for analyzing data with atheore-

tical non-normality (Ferguson, 1983; Vermunt & Van Dijk, 2001). That is, latent

classes can be introduced to address violations in the normality assumption of

unknown origin.

Much of the application we present focuses on model building decisions

because those decisions can affect results. Of particular concern is the use of co-

variates to identify substantively meaningful classes. The addition of covariates

can alter the distribution of the random effects and thus affect the number and

composition of classes that are identified. To identify substantively meaningful

classes, however, appropriate covariates should be determined a priori based

on a conceptual framework informing the study. The arbitrary use of covariates

in the classification model will likely result in arbitrary changes in the distribu-

tions of the random effects and these changes will undermine the identification of

meaningful classes. This highlights the importance of the specification of

covariates in the classification model and raises concerns about their use in an

exploratory manner. In our example, we argued for a Type B school effects clas-

sification model that is conditional on student background and school social com-

position—factors that are known to affect student learning but are largely beyond

the control of school site personnel. We do not include covariate controls in the

classification model that measure school processes and practices because we

wish to have the classes separated on those factors.

Whether to include random effects for the intercepts and slopes is another

important consideration because the latent classes and random effects compete

for the same variability in the trajectories. Recent research has shown that in

some situations omitting the random effects can lead to overextraction (Bauer

& Curran, 2004; Lubke & Neale, 2006). The results of this study seem to verify

those findings. Compared with the unconditional classification model with the

variance in the between-group intercepts and slopes constrained to zero, adding

a random group-level intercept reduced the number of classes identified from

five to three. Although more research is needed to better understand when omit-

ting a random effect will lead to overextraction, the results of this study suggest

that it is linked to whether covariates are included in the classification model. In

our example, we saw that when the Type B control variables were in the classi-

fication model, retaining the random between-group intercept had no impact on

the number and composition of the classes selected.
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The MGMM is a new statistical tool with a wealth of applications in education

and other social sciences, perhaps the most useful being research problems

involving organizational effects where distinct subpopulations are hypothesized.

The newness of this model offers considerable opportunity for addressing new

research problems as well as readdressing old ones, while the complexity of the

model results in additional specification considerations compared with tradi-

tional multilevel growth models.
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Appendix B

Parameter Estimation by Maximum Likelihood

Based on the regression equations, the assumptions about the residuals in the

repeated measurements, within-group, and between-group level submodels, and

the hierarchical structure of the model, the density function for the response vec-

tor of an independent observation (in our case, a group or school) can be derived.

We denote the probability density of the response vector Yj for group j condi-

tional on the time variables, the within-group level covariates, and the

between-group level covariates collected in the vectors aj, Xj, and Wj by

f ðYjjaj;Xj;WjÞ. The parameters of the MGMM can be estimated by means of

maximum likelihood, which involves maximizing the sum of the log of the

group-specific densities; that is, by maximizing:

log L ¼
XN

j¼1

log f ðYjjajXj;WjÞ ðB1Þ

The density corresponding to a particular group can be constructed using the

hierarchical structure of the multilevel mixture growth model. At the lowest

level, we have the density corresponding to the response of subject i belonging

to group j at time point t conditional on the unobserved random effects and the

unobserved class memberships at the within- and between-group level and on the

observed predictors at the various levels; that is, the conditional density

f ðYtijjatij;Xij;Wj; uj; rij;dlj ¼ 1; cijk ¼ 1Þ. This is a normal density with expected

(continued)

TABLE A2

Teacher Professionalism Factor Item Descriptions and Measurement Properties

Items Labels Item Descriptions Item Loadings

Principal responses to, ‘‘How successful were

your teachers at meeting these goals?’’

S2SUCC8 COMMUNICATES WELL WITH PARENTS 0.70

S2SUCC9 WORKING WELL WITH OTHER STAFF 0.76

S2SUCC10 OPEN TO NEW IDEAS/METHODS 0.80

S2SUCC11 PARTICIPATES IN PROFESSIONAL

DEVELOPMENT

0.73

Variance

explained 56.2%

Note: All items are on a 3-point Likert-type scale (1 ¼ not very successful, 3 ¼ very successful).
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Appendix B (continued)

value Eðytijjatij;Xij;Wj; uj; rij;dlj ¼ 1; cijk ¼ 1Þ and variance s2. Note that the

expected value is a function of the unknown regression parameters and is

obtained by substituting Equation 3a into Equation 2a and the resulting equation

into Equation 1; that is, by writing the multilevel model in its mixed model

formulation.

Using the density for the time-specific observations, we can construct the den-

sity at the within-group level conditional on the between-group level random

effects, the class membership of school j, and the predictors in the model, which

is denoted by f ðYijjaij;Xij;Wj; uj; dlj ¼ 1Þ. This is achieved as follows:

f Yijjaij;Xij;Wj;uj; dij ¼ 1
� �
¼
Z
r

XK

k¼1

YTij

t¼1

f Yijjatij;Xij;Wj;uj; rij;dij ¼ 1; cijk ¼ 1
� �" #

P cijk ¼ 1
� � !

f rij

� �
drij

ðB2Þ

As can be seen, the Tij repeated measurements of subject i in group j are assumed

to be independent observations conditionally on observed predictors, the random

effects at the within and between level, and the class membership at both levels.

The density for subject i is a marginal density that is obtained by summing over

the K within-group classes and integrating over the within-group level random

effects.

Finally, the marginal density for group j, f ðYjjaj;Xj;WjÞ, is obtained as

follows:

f ðYjjaj;Xj;WjÞ ¼
Z
u

XL

l¼1

Ynj

i¼1

f ðYijjaij;Xij;Wj; uj; dlj ¼ 1Þ
" #

Pðdlj ¼ 1Þ
 !

f ðujÞduj:

ðB3Þ

Here, the nj observations of group j are assumed to be independent conditionally

on observed predictors and between-group level random effects and class mem-

bership. The marginal density for group j is obtained by summing over the

L between-group level classes and integrating over the between-group level ran-

dom effects.

To summarize, maximum likelihood estimation involves maximizing the log

likelihood function in Equation B1. The term appearing at the right-hand side of

this equation is defined in Equation B3 and the densities appearing at the

right-hand side of Equation B3 are defined in Equation B2.

For maximum likelihood estimation, one needs an algorithm and a method for

solving the integrals appearing in Equations B2 and B3. As in standard multilevel

analysis, the integrals appearing in Equation B2 can be solved analytically; that

(continued)
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Appendix B (continued)

is, for each class separately and the results are summed up. The integrals in Equa-

tion B3 are solved by numerical integrations; that is, by Gauss-Hermite quadra-

ture (Skrondal & Rabe-Hesketh, 2004). Latent GOLD uses a combination of the

EM algorithm (Dempster, Laird, & Rubin, 1977) and Newton-Raphson to find

the maximum of the log likelihood function. It begins with EM iterations and

when close enough of the maximum switches to Newton-Raphson. Because the

log likelihood of mixture models may contain local maxima, multiple random

start values are used.

Model identification can be checked by determining whether the Jacobian matrix—

containing the first-order derivatives of f ðYjjaj;Xj;WjÞ toward all model para-

meters—is full rank. This identification check can be requested in Latent GOLD.

Notes

1. We assume readers are familiar with multilevel growth models. Some

comprehensive references on these subjects include the following texts: Bollen

and Curran (2006); Duncan, Duncan, Strycker, Li, and Alpert (1999); Hedeker

and Gibbons (2006); Raudenbush and Bryk (2002); Singer and Willett (2003);

Skrondal and Rabe-Hesketh (2004).

2. This is not as critical a problem as it may seem. Indeed, the idea that any

statistical model precisely reflects a real-life phenomenon is similarly difficult

to establish. More important is whether the model is accurate enough to further

our understanding of the phenomenon. See Cudeck and Henly (2003) for a

detailed discussion on this issue.

3. Asparouhov and Muthen published two recent book chapters that have

some overlap with the current study. These efforts were developed on parallel

timelines as the current study and did not contribute to our ideas. Asparouhov

and Muthen (2008) present an overview of multilevel mixture models with a

focus on what they refer to as ‘‘within-between’’ models in which between-

group classes are based on within-group classes. Muthen and Asparouhov

(2009) provide a broad overview of growth mixture models and include a brief

discussion of an MGMM with classes at the between-group level.

4. This article was first presented at the American Educational Research

Association conference San Francisco on April 8, 2006, which is believed to

be the first formal presentation of the MGMM.

5. Please see Palardy and Rumberger (2008) for a more detailed description

of the ECLS data.

6. We provide an overview of the Type B school effect paradigm so that the

application of the MGMM is grounded is a well-known example in the litera-

ture. We feel the usefulness of such demonstrations are enhanced when
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grounded this way, particularly for highly complex models that require an array

of specification decisions, because the substantive context of the analysis plays

an important role in some of those decisions. However, we note that this is not a

substantive investigation and we do not address the full complexity of the Type

B effect model, which Raudenbush and Willms describe superbly.

7. Both SES measures are grand mean centered, which has implication on the

interpretation of their effects on math achievement growth. When grand mean

centered rather than group mean centered, individual SES accounts for the varia-

tion in the individual growth trajectory intercepts and slopes. Moreover, because

the mean SES of the schools varies substantial across the sample, the grand mean

centered individual SES variable also accounts for variance in the intercepts and

slopes of the school trajectories. As a result, the coefficient on the mean SES is a

compositional effect. That is, it accounts for variation in mean mathematics

learning rates of the schools above and beyond the individual SES of the children.

8. Ideally, the fall tests would be administered at the very beginning of the

school year and the spring test at the very end to maximize the precision of the

learning estimates. However, the ECLS fall kindergarten tests were adminis-

tered an average of 2.2 months after the start of the school year and ranged from

1.1 to 4.3 months after the start. The time between fall and spring tests also var-

ied widely with a mean of 6.1 months and minimum and maximum values of 3.9

to 8.3 months. The first grade achievement test data collection schedule exhib-

ited similar properties.

9. An alternative approach would be to select a classification model using

likelihood-ratio tests comparing models differing in the numbers of classes with

p values estimated by parametric bootstrap methods (McLachlan & Peel, 2000).

We have, however, not encountered studies assessing the quality of this compu-

tationally intensive method for determining the number of between-group level

classes in multilevel mixture models. This is one of the topics we leave for fur-

ther research.

10. Although we propose using BIC-B in this situation, further research is

needed on appropriate measures of information criterion for multilevel models

in general and particularly multilevel mixture models where the classes are

based on between-group level observations.

11. Note that we also estimated the MGMM with random effects for both the

intercepts and the slopes, which also yielded a three-class model. However, that

specification had higher values on the fit indices than the more parsimonious

model with only random intercepts and therefore was rejected.

12. A likelihood ratio test could also be used to test for covariate invariance

across the classes.
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