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Abstract

Binary data latent class models crucially assume local independence, vi-

olations of which can seriously bias the results. We present two tools for

monitoring local dependence in binary data latent class models: the “Ex-

pected Parameter Change” (EPC) and a generalized EPC, estimating the

substantive size and direction of possible local dependencies. The asymptotic

and finite sample behavior of the measures is studied, and two applications to

the U.S. Census estimation of Hispanic ethnicity and medical experts’ ratings

of x-rays demonstrate its value in arriving at a model that balances realism

and parsimony.

R code implementing our proposal and including both example datasets

is available online as supplementary material.
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1. INTRODUCTION

The latent class model for binary data is a discrete finite mixture of binomials

(Agresti, 2002), and has a wide range of applications in a diverse number of fields.

In the social sciences, Hill and Kriesi (2001) classified patterns of longitudinal change

in Swiss voters’ support for car pollution abatement policies, while Johnson (1990)

evaluated the measurement properties of alternative questions to measure ethnicity

in the U.S. Census; in machine learning, the model has been used for classifying

documents based on word events under the pseudonym “probabilistic latent semantic

analysis” (Hofmann, 2001); and in education, Dayton and Macready (1988) analyzed

how elementary school children’s ability to correctly answer questions on addition,

subtraction, multiplication, and division might indicate mastery of the subject.

In the (bio)medical sciences, the latent class model for binary data has proved key

to describing prevalence and symptomatology of diseases and assessing the accuracy

of diagnoses (Faraone and Tsuang, 1994), and to evaluating the sensitivity, speci-

ficity, and predictive validity of diagnostic tests in the absence of a gold standard

(Walter and Irwig, 1988; Hui and Zhou, 1998; Garrett et al., 2002). For instance,

Bartolucci and Forcina (2006) discussed an application to capture-recapture data

for estimating the prevalence of HIV; Fergusson et al. (1994) studied the comor-

bidity of five problem behaviors in Christchurch adolescents; Bandeen-Roche et al.

(1997) modeled severe disability as measured by five task disability outcomes and

linked these to risk factors in a latent variable regression extension of the latent

class model; Uebersax (1993) applied the latent class model to expert ratings of

appropriateness of the medical procedure carotid endarterectomy to reduce the risk
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of strokes, and Uebersax and Grove (1993) to the measurement of liver metastasis

in patients using three different medical imaging techniques.

Latent class models crucially assume “local independence”: conditional on the

latent class (finite mixture component), the responses should be independent. In

practice this assumption may be violated. Local dependencies may arise when there

are additional scientifically interesting dimensions, but also when there is a “nui-

sance” dependency. For instance, the “topic” of a document may not suffice to

explain the number of times pairs of words occur together in it; responses on ad-

dition and subtraction test items may be more strongly associated to one another

than to multiplication and division items; and a pair of radiologists might rate x-rays

similarly if they trained in the same hospital.

Violations of the local independence assumption in latent class models gener-

ally lead to bias in the outcomes of interest (Vacek, 1985; Torrance-Rynard and

Walter, 1998; Albert and Dodd, 2004; Hadgu et al., 2005). Pepe and Janes (2007)

therefore suggested that “careful justification of assumptions about the dependence

between tests in diseased and nondiseased subjects is necessary”, while Albert and

Dodd (2008) suggested collecting additional gold standard information on a subset

of subjects. These excellent suggestions may not always be practicable, however. A

standard solution is then to increase the number of classes, so that the additional

classes can represent (absorb) the dependencies. However, this solution is unde-

sirable when the dependence is really a nuisance that is not of scientific interest:

substantively uninterpretable latent classes may result. Interpretation in diagnostic

testing, for instance, is much simpler if a two-class “diseased”/“nondiseased” model

can be found. As an alternative to increasing the number of latent classes, Harper

(1972); Hagenaars (1988); Espeland and Handelman (1989); Formann (1992); Qu

et al. (1996); Bartolucci and Forcina (2006) and Reboussin et al. (2008) propose
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using a direct modeling approach, which involves including local dependence pa-

rameters into the latent class model. A practical problem, however, when using

these local dependence latent class models is that one has to determine which local

dependencies should included in the model.

This article introduces a procedure for detecting local dependencies among pairs

of observed variables after fitting a (partial) local independence model. We propose

to use “expected parameter change” (EPC) measures, which estimate the value that

a restricted local dependence parameter would take on if it were freed in the model.

Our proposal extends the direct modeling approach to the problem of local depen-

dence by evaluating the substantive size and direction of possible local dependencies

before introducing dependence parameters. We propose two variations of the ex-

pected parameter change: the EPCL based on the expected information matrix,

which is well known in structural equation modeling (Saris et al., 1987), and a novel

“generalized” EPCGS, based on an information matrix that can be expected to be

more robust to model misspecification. The EPCL is closely related to Rao’s classic

efficient score test (Rao, 1948), while the EPCGS is related to the generalized score

test (White, 1982; Boos, 1992). Instead of a statistical test of the hypothesis of

no local dependence, however, the EPC measures provide approximately consistent

estimates of the substantive size and direction of possible local dependencies. The

method proposed may be seen as an extension of residuals-based measures of local

dependence such as those proposed by Formann and Kohlmann (1996), Qu et al.

(1996), Garrett and Zeger (2004), and Vermunt and Magidson (2005).

The article is organized as follows. Section 2 presents the latent class model

for binary variables with possible local dependencies. The EPCL and EPCGS for

such models are introduced in section 3. The asymptotic and sampling behavior of
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the EPCL and EPCGS under a range of simulation conditions are then evaluated in

section 4. In sections 5 and 6, two real data applications from the literature, one

in the social sciences and the other in diagnostic test assessment, demonstrate how

these measures can aid in the detection of local dependence and yield different and

more easily interpretable results.

2. LATENT CLASS MODEL WITH LOCAL DEPENDENCIES

Suppose an i.i.d. sample of size N is obtained on J observed binary variables,

aggregated by the R response patterns into Y. Let n be the R-vector of observed

response pattern counts. The log-likelihood for the latent class model with T classes

for the unobserved discrete variable ξ can then be formulated (Formann, 1992) as

`(θ) = n′ log Pr(Y) = n′ log

[
T∑
t=1

Pr(ξ = t)

(
exp(ηt)

1′R exp(ηt)

)]
, (1)

where log and exp denote elementwise operations, Pr(ξ = t) = exp(αt)/1
′
T exp(α),

and

ηt = X(Y )τ + X(Y Y )ψ + X(Y ξt)λ, (2)

where X(Y ), X(Y Y ) and X(Y ξt) are design matrices for the observed variables’ main

effects τ , bivariate associations ψ, and associations with the latent class variable λ,

respectively (Evers and Namboodiri, 1979). The vector α contains the logistic main

effect parameters for the latent class proportions. This parameterization of the local

dependence latent class model is similar to that adopted by Hagenaars (1988) and

Formann (1992, section 4.3).

The p-vector of parameters θ can be defined as θ′ := (α′, τ ′,λ′,ψ′). Thus, the

full unconstrained model for binary variables has p = T − 1 + JT +
(
J
2

)
parame-

ters. Typically, however, not all possible parameters are freed. The standard local
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independence latent class model, for example, is obtained by setting ψ = 0. More

generally, it is also possible to specify parameter restrictions of the form a(θ) = 0.

For the purposes of this paper, however, we will assume that the restrictions take

the form of fixing some or all elements of ψ to a value (typically zero).

The parameter vector θ can then be partitioned into two parts: a part fixed to

a value and a part corresponding to the p free parameters of the model. We will

denote the fixed parameter vector by θ1 and the p free parameters by θ2. In the

typical latent class model assuming local independence θ1 = ψ and θ′2 = (α′, τ ′,λ′).

2.1 Estimation and identifiability

The maximum likelihood estimates θ̂2 under the restricted model can be found by

maximizing equation 1 with respect to θ2 while keeping θ1 fixed at θ̂1. In the

local independence model, θ̂1 = ψ̂ = 0. Different methods of maximizing equa-

tion 1 have been suggested in the literature, largely falling into the categories of

expectation-maximization on the one hand (Dempster et al., 1977) and (quasi-)

Newton optimization on the other. Since the optimization method used is incon-

sequential for our following discussion, we will simply assume that the maximum

likelihood estimates θ̂2 can be obtained by one or a combination of these methods.

Local identifiability is a crucial issue for the interpretation of results and the

validity of asymptotic approximations (Forcina, 2008). The distribution F is said

to be locally identifiable at the parameter θ02 if there exists some neigborhood φ of

θ02 such that

FY(y;θ02) = FY(y;θ2) ∀y ∈ SY ⇔

θ2 = θ02,∀θ2 ∈ φ ⊂ Θ,

(3)

where SY denotes the distributional support of Y, and Θ the set of all possible θ2
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Table 1: Number of identifiable local dependence parameters out of total possible.
Number of observed variables (J)
J = 3 J = 4 J = 5 J = 6

Number of classes (T )
T = 2 0/3 6/6 10/10 15/15
T = 3 - - 10/10 15/15
T = 4 - - 8/10 15/15
T = 5 - - - 15/15
T = 6 - - - 15/15

(Bandeen-Roche et al., 1997, p. 1378; see also Huang and Bandeen-Roche, 2004).

As noted by Goodman (1974) and shown by Catchpole and Morgan (1997, theorem

1), the model described in equation 1 will be identifiable if its Jacobian S of the

expected response patterns with respect to the parameters is of full column rank

(see also McHugh, 1956, theorem 1). The appendix gives the precise form of the

Jacobian for the latent class model with possible local dependencies.

An obvious necessary condition for identifiability is that there are not more

columns in S than independent rows, i.e. the number of parameters should not

exceed the number of unique response patterns, R − 1 ≥ p. However, this is not

a sufficient condition, as evidenced by the unconstrained three-class model for four

binary observed variables, which has one degree of freedom but is not identified.

According to Harper (1972, p. 58), a sufficient condition for identification of the

latent class model containing all pairwise local dependencies is that J ≥ 2T + 2. In

practice fewer than 2T + 2 items may suffice for local identifiability of local depen-

dence parameters. Theorem 1 given in the appendix shows that whenever the local

independence model is locally identifiable, as many local dependence parameters as

exhaust the degrees of freedom are also locally identifiable.

As suggested by Forcina (2008, p. 5266), identifiability can be examined em-

pirically by randomly sampling a large number of parameter sets and examining
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the rank of the expected information matrix for each set. Note that the rank of

the expected information matrix is equal to the rank of the Jacobian (Formann,

1992). If for each of these random points the information matrix is numerically of

full rank, then the model is locally identified with probability close to one. Table 1

shows the results of applying this method to models with an increasing number of

classes and variables. The table reports the number of local dependencies that can

be identified, where a dash indicates that even the local independence model is not

identifiable. These results show Theorem 1 of the appendix in action; for instance,

since the local independence model with four classes and five response variables is

identifiable and has eight degrees of freedom, exactly eight out of the ten pairwise

local dependencies are identifiable.

3. EXPECTED PARAMETER CHANGE (EPC)

Our approach to monitoring possible local dependencies in latent class analysis sets

out from the observation that local dependencies that have not been parameterized

will constitute model misspecifications in the restriction ψ = 0. Assuming the local

dependencies would be identifiable from the data if parameterized, the expected

parameter change (EPC) is an approximately consistent estimate of local depen-

dence misspecifications that can be obtained after fitting the restricted model. In

this section we derive the EPC and the closely related score test for detecting local

dependencies, following the literature on the EPC for structural equation models

(Saris et al., 1987; Sörbom, 1989), and on generalized score tests (Boos, 1992). The

appendix provides the first and second derivative matrices used in this section.

Under the correctly specified model, let θ∗ be the value to which θ̂ converges in

probability as the sample size increases. Additionally, let the score s(θ∗) := ∂`/∂θ

evaluated at θ∗. Then the loglikelihood ` shown in equation 1 can be approximated
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by a Taylor expansion as

` ≈ ˆ̀+

 θ∗1 − θ̂1
θ∗2 − θ̂2


′  s1(θ

∗)

s2(θ
∗)

+
1

2

 θ∗1 − θ̂1
θ∗2 − θ̂2


′  I∗Y 11 I∗Y 21

I∗Y 12 I∗Y 22


 θ∗1 − θ̂1
θ∗2 − θ̂2

 , (4)

where I∗Y is the observed information matrix at θ∗. As demonstrated in this equation,

the information matrix is partitioned following the partition θ′ = (θ′1,θ
′
2).

To study what would happen if the restricted parameter vector θ1 were freed,

we find new estimates by maximizing ` (equation 1), this time with respect to both

θ1 and θ2 (Sörbom, 1989, p. 373). This leads to the equality

 s1(θ
∗)

0

+

 I∗Y 11 I∗Y 21

I∗Y 12 I∗Y 22


 θ∗1 − θ̂1
θ∗2 − θ̂2

 =

 0

0

 . (5)

Note that I∗Y cannot be obtained from the maximum likelihood solution as it depends

on the unknown value θ∗. However, consistent estimates of the shift in parameter

values if θ1 were freed can be obtained from the restricted solution as the “expected

parameter change” EPC := θ̂1−θ∗1 ≈ −V̂−1s1(θ̂), where V̂ is consistent estimate of

I∗Y evaluated at the restricted solution. This implies that V̂ consistently estimates

the variance of the score vector s1, so that a score statistic can be obtained as

T = s1(θ̂)′V̂−1s1(θ̂) which is distributed as χ2
rk(S1)

under the null hypothesis.

Under the null hypothesis ψ = 0, the information matrix I∗Y is consistently

estimated by the expected information matrix evaluated at the restricted solution

ÎL, so that (Rao, 1948)

EPCL = −V̂−1L s1(θ̂) = −Î−1L s1(θ̂)

= −(ÎL11 − ÎL12Î
−1
L22ÎL21)

−1 s1(θ̂),

(6)
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where the last step, following from the rules for inverting a partitioned non-singular

matrix, is computationally convenient since the partition ÎL22 of the information

matrix corresponding to the free parameters will usually already be at hand in

latent class modeling software. The EPCL defined above is popular in the field of

structural equation modeling (Saris et al., 1987). Rao (1948)’s efficient score statistic

can be obtained as TL = s1(θ̂)′Î−1L s1(θ̂), which under the null hypothesis has a chi

square distribution with rank(S1) degrees of freedom. The efficient score statistic

is known in the structural equation modeling literature as the “modification index”

(MI) (Sörbom, 1989), and in the econometrics literature as the Lagrange multiplier

test (Aitchison and Silvey, 1958; Breusch and Pagan, 1980). By the same argument

of consistency under the null hypothesis, the expected information matrix ÎL can be

replaced by the observed information evaluated at the restricted solution, ÎY (see

Glas, 1999; van der Linden and Glas, 2010).

The derivation of V̂ under the null hypothesis suggests that when ψ 6= 0, the

EPCL is asymptotically biased. Under misspecified local independence, a “gener-

alized”, i.e. robust to misspecification, consistent estimate V̂GS of V can be used

(White, 1982). As shown by Boos (1992, p. 329),

V̂GS = (1,−ÎY 12Î
−1
Y 22)D̂(1,−ÎY 12Î

−1
Y 22)

′

= D̂11 − ÎY 12Î
−1
Y 22D̂

′
12 − D̂12Î

−1
Y 22Î

′
Y 12 + ÎY 12Î

−1
Y 22D̂22Î

−1
Y 22Î

′
Y 12,

(7)

where D is the outer product matrix of first derivatives of the log-likelihood (see

appendix) and ÎY and D̂ denote quantities evaluated at the sample estimates θ̂

under the restricted model. A “generalized expected parameter change” EPCGS is

obtained as EPCGS = −V̂−1GSs1(θ̂); the well known generalized score test (White,

1982) is TGS = s1(θ̂)′V̂−1GSs1(θ̂).
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4. ASYMPTOTIC AND FINITE SAMPLE EVALUATION OF EXPECTED

PARAMETER CHANGE

In this section we evaluate both the asymptotic and sampling performance of the

suggested EPCL and EPCGS statistics for detecting relevant local dependencies.

Under different conditions, we examine:

• To what extent the population EPC corresponds to the true local dependence;

• To what extent the average sample EPC corresponds to the population EPC.

By performing both a population and a finite sample analysis, we can separate errors

due to the approximation inherent in the EPC on the one hand from errors due to

sampling fluctuations on the other.

4.1 Setup

The population model is specified as a two-class model with five binary indicators

and one local dependence between a pair of indicators. In our setup, all design ma-

trices in equation 2 are chosen such that the columns sum to zero (“effect coding”).

The intercepts τ = 0, the latent class intercept α = 0.20, and the “loadings” and

bivariate local dependence are varied across conditions:

1. Local dependence size (ψ): -0.50 (high-negative), -0.20 (middle-negative) , -

0.05 (low-negative), 0 (none), +0.05 (low-positive), +0.20 (middle-positive),

0.50 (high-positive);

2. Effect of latent variable on indicators (β): 0.5 (medium-low), 0.8 (high).

A subsequent Monte Carlo simulation crosses these 14 conditions with sample size,

3 Sample size (nobs): 128, 256, 512, 1024, 2048.
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Figure 1: Effect of local dependence. Shown is the conditional probability that an
observed variable Yj = 1 given the latent class variable ξ and a different observed
variable Yj′ (j 6= j′), for six conditions. (Only conditions with positive slopes are
shown here.)
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We therefore examine the sampling performance of the two statistics for 70 condi-

tions in total.

To give the reader an idea of the implications of these conditions, Figure 1 shows

the effect of choosing different combinations of the slope parameter λ and the local

dependence parameter ψ on the conditional probability for one observed variable.

For illustrative purposes, many different values for the latent class variable ξ are

plotted; in practice there will be only T points along the horizontal axis. The

Figure shows that ψ = 0.05 constitutes a rather small local dependency, while

choosing ψ = 0.5 has a very large effect on the implied conditional probability. This

effect is larger in absolute terms when the slope parameter λ is small.

To illustrate the implications of these conditions, Figure 1 depicts how the class-

specific response probability for variable Yj is affected by the value of a different

variable Yj′ for particular values of λ and the local dependence, ψ, between the two

items. For illustrative purposes, the latent variable ξ is treated as continuous, but

12



in fact it takes on only the values 0 and 1. It can be seen that ψ = 0.05 constitutes

a rather small local dependency (lines are close to one another), while choosing

ψ = 0.5 has a very large effect on the implied class-specific response probabilities.

This effect is larger in absolute terms when the slope parameter λ is small.

4.2 Asymptotic performance

We will first evaluate the asymptotic performance of the EPCL and EPCGS obtained

from the H0 model which omits the local dependence. For this purpose, we compute

maximum likelihood estimates under the H0 model using the population proportions

under the H1 model as data. Since this amounts to minimizing the Kullback-Leibler

distance, we refer to this model as the “KL-model”. The KL-model provides the

asymptotic value (as the sample size approaches infinity) of the EPC and score

statistic given H1.

The top parts of Tables 2 and 3 show the obtained EPCL and EPCGS values under

the different conditions. It can be seen that when there is no misspecification, i.e.

when the true local dependence parameter is zero, both EPC’s will also estimate

zero. When there is a small misspecification of -0.05 or +0.05, both EPC’s have

population values that are very close to the true local dependence. The top part of

Table 2 shows that with larger local dependencies in absolute value, the population

EPCL is a biased estimate of the true local dependence parameter. The percentage

relative bias in the EPCL is shown in the bottom part of Table 2. Local dependencies

of +0.2 and +0.5 cause larger asymptotic biases than their negative counterparts.

Under the condition with lower slopes and the largest positive misspecification, the

EPCL is an 338% overestimate of the true local dependence. In contrast, with

negative local dependencies, the EPCL is underestimated in absolute terms.

Table 3 shows the population EPCGS estimates (top part) as well as the percent-
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Table 2: Population EPCL statistics under the 14 simulation conditions.
Local dependence (ψ)

λ -0.5 -0.2 -0.05 0 0.05 0.2 0.5
0.5 -0.374 -0.165 -0.047 -0.000 0.054 0.313 2.190
0.8 -0.329 -0.159 -0.047 -0.000 0.054 0.277 1.425

Percent relative bias in EPCL

0.5 -25 -17 -6 - 9 56 338
0.8 -34 -20 -6 - 7 39 185

Table 3: Population EPCGS statistics under the 14 simulation conditions.
Local dependence (ψ)

λ -0.5 -0.2 -0.05 0 0.05 0.2 0.5
0.5 -0.403 -0.186 -0.050 -0.000 0.050 0.181 0.694
0.8 -0.439 -0.209 -0.051 -0.000 0.048 0.167 0.344

Percent relative bias in EPCGS

0.5 -19 -7 -1 - -1 -10 39
0.8 -12 5 3 - -4 -17 -31

age bias relative to the true population local dependence (bottom part). The table

shows that the relative asymptotic bias in the EPCGS is uniformly much lower than

that in the EPCL: on average it is 60% lower. Overall the relative bias appears to

be within acceptable limits, showing that the EPCGS has much better asymptotic

performance.

4.3 Finite sample performance

In finite samples, sampling fluctuations in the score and the V matrix will influence

the EPC’s as well. We therefore performed a Monte Carlo simulation to evaluate the

sampling behavior of these statistics. From each of the 70 populations, a sample of

N observations was drawn and the EPCL and EPCGS were calculated. This process

was replicated 400 times to yield a sampling distribution for EPCL and EPCGS.
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Table 4: Monte Carlo simulation results: median EPCL statistics over 400 repli-
cations for each condition. For comparison, the bottom rows provide population
values obtained from the KL-model.

Local dependence (ψ)
ψ = −0.05 ψ = −0.20 ψ = −0.50

Loading (λ)
No. obs. 0.5 0.8 0.5 0.8 0.5 0.8

128 -0.053 -0.054 -0.164 -0.163 -0.377 -0.330
256 -0.040 -0.046 -0.157 -0.159 -0.374 -0.333
512 -0.055 -0.045 -0.166 -0.158 -0.380 -0.332

1024 -0.041 -0.047 -0.164 -0.160 -0.378 -0.328
2048 -0.045 -0.051 -0.163 -0.162 -0.376 -0.330

Population -0.047 -0.047 -0.165 -0.159 -0.374 -0.329

ψ = +0.05 ψ = +0.20 ψ = +0.50
No. obs. 0.5 0.8 0.5 0.8 0.5 0.8

128 0.032 0.030 0.212 0.235 1.235 0.993
256 0.053 0.045 0.278 0.282 1.695 1.199
512 0.052 0.049 0.282 0.292 1.962 1.330

1024 0.049 0.051 0.294 0.271 2.079 1.358
2048 0.055 0.057 0.302 0.276 2.110 1.351

Population 0.054 0.054 0.313 0.277 2.190 1.425
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Table 4 shows the median EPCL estimates over each of the 400 samples in each

of the conditions. For the EPCL to be unbiased with respect to the true local

dependence, these values should correspond to the size of the ψ local dependence

parameter shown in the table headers. Considering the population bias reproduced

in the rows marked “population”, we would not expect unbiasedness with respect

to ψ in general. Except in conditions with sample sizes 128 and 256, the median

sample estimates in Table 4 are close to the population values.

With a small sample size of N = 128, the sample estimates of the EPCL are

biased with respect to the population values. Paradoxically, the small-sample esti-

mates can be closer to the true misspecification than the population values are (see

for example the conditions with ψ = +0.20 and ψ = +0.50). As expected, increas-

ing the sample size brings the median EPCL closer to the population value. It is

clear that the conditions with the larger slopes perform much better than those with

lower slopes, both in the population and in finite samples. With five indicators and

true slopes equal to 0.8, the EPCL provides reasonable estimates in all conditions.

Whether this condition is satisfied cannot be verified from a given restricted sample

solution, since the restriction itself may bias the loading estimates.

Table 5 shows the Monte Carlo simulation results for the EPCGS. Even for very

small sample sizes, the median EPCGS over simulated samples is close to the popu-

lation EPCGS. The sample EPCGS estimates are close to the true local dependence

parameters. The EPCGS clearly performs much better than the EPCL both in the

population and in finite samples. Overall the bias in the EPCGS can be viewed as

acceptable for the purpose of detecting the substantive size of local dependencies.
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Table 5: Monte Carlo simulation results: median EPCGS statistics over 400 repli-
cations for each condition. For comparison, the bottom rows provide population
values obtained from the KL-model.

Local dependence (ψ)
ψ = −0.05 ψ = −0.20 ψ = −0.50

Loading (λ)
No. obs. 0.5 0.8 0.5 0.8 0.5 0.8

128 -0.052 -0.053 -0.155 -0.196 -0.330 -0.424
256 -0.040 -0.049 -0.168 -0.207 -0.350 -0.432
512 -0.057 -0.051 -0.185 -0.202 -0.375 -0.439

1024 -0.044 -0.052 -0.186 -0.208 -0.388 -0.438
2048 -0.048 -0.055 -0.183 -0.211 -0.396 -0.440

Population -0.050 -0.051 -0.186 -0.209 -0.403 -0.439

ψ = +0.05 ψ = +0.20 ψ = +0.50
No. obs. 0.5 0.8 0.5 0.8 0.5 0.8

128 0.027 0.027 0.102 0.136 0.305 0.214
256 0.047 0.042 0.130 0.158 0.468 0.263
512 0.046 0.045 0.152 0.164 0.605 0.298

1024 0.044 0.046 0.165 0.162 0.619 0.321
2048 0.049 0.050 0.171 0.166 0.670 0.326

Population 0.050 0.048 0.181 0.167 0.694 0.344

5. APPLICATION 1: MEASUREMENT OF HISPANIC ETHNICITY IN THE

U.S. CENSUS

Johnson (1990) performed a latent class analysis of four indicators of Hispanic eth-

nicity in the U.S. Census. For 9701 respondents to the 1986 National Content

Test, two indicators were obtained during an initial interview: whether Spanish

was spoken at home during childhood (“Language-interview”) and Hispanic origin

(“Origin-interview”). In a subsequent reinterview, two additional indicators of eth-

nicity were obtained: Hispanic ancestry (“Ancestry-reinterview”) and a repetition

of the “Origin-interview” measure (“Origin-reinterview”). We analyze the group of

9485 respondents not born in a Hispanic country. Of interest are false positive and
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false negative rates for the alternative question formulations.

Johnson (1990) fitted a two-class model to these data, yielding a deviance of 103.6

with 6 degrees of freedom (p < 10−5), and a Bayesian Information Criterion (BIC)

of 48.7. The two class model’s lack of fit to the data led the authors to fit a model

with two separate two-class latent variables corresponding to the two measurement

occasions, which improved the deviance to 3.1 with 4 degrees of freedom (p =

0.54; BIC equals -33.5). The false negative rates were, respectively, 0.19 and 0.08

for Ancestry-reinterview and Origin-reinterview, measuring the first latent variable,

and respectively 0.17 and 0.22 for Origin-interview and Language-interview, which

measure the second latent variable. False positive rates were below 0.01 for all

variables. Since the latent variables represent a nuisance dependency due to the

measurement occasion, however (p. 64), these false positive and false negative rates

are difficult to interpret in sociological terms.

Table 6: Local dependencies between indicators of Hispanic ethnicity in the Census.

Local dependence EPCL TL EPCGS TGS ψ̃ Wald
Ancestry-re ↔ Language-in 0.92 5.0 1.45 7.9 0.22 0.2
Ancestry-re ↔ Origin-in -0.76 2.5 -1.23 4.1 -0.23 0.1
Ancestry-re ↔ Origin-re 2.94 45.6 1.32 20.5 1.82 18.7

Language-in ↔ Origin-in 4.14 97.1 1.59 37.2 3.52 53.4
Language-in ↔ Origin-re -1.08 7.9 -1.76 12.8 1.33 7.1

Origin-in ↔ Origin-re 1.10 6.1 2.20 12.2 0.52 0.3

Table 6 shows the results of calculating the EPCL, EPCGS, and the corresponding

score statistics after fitting the two-class model. For reference, the column ψ̃ reports

the estimate of the local dependence parameter concerned when it is freed, and the

last column gives the corresponding Wald test. Table 6 clearly indicates the local

dependencies that led Johnson (1990) to fit a two-dimensional model: the two local

dependencies between observed variables measured at the same occasion have large
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score statistics and large and positive EPCL and EPCGS estimates.

Based on Table 6, a reasonable alternative model is the two-class model including

both local dependencies – this model produces identical expected frequencies and

deviance to the multidimensional model chosen by Johnson (1990), and is there-

fore equivalent to it. Crucially, however, the false negative rates of interest differ

considerably. Since the nuisance dependencies due to measurement occasions are

absorbed by the local dependence parameters ψ, the false negative rates can be

interpreted as being with respect to a common latent class variable that might be

labeled “Hispanic ethnicity”.

The false negative rates, i.e. respondents “incorrectly” reporting a non-Hispanic

ethnicity, estimated under the model allowing for local dependence within mea-

surement occasions are 0.38, 0.30, 0.33, and 0.29, for Ancestry-reinterview, Origin-

reinterview, Origin-interview, and Language-interview, respectively. The respective

estimated false positive rates were 0.001, 0.001, 0.002, and 0.005. This suggests, in

accordance with expectations, that the pure repetition of Origin has similar mea-

surement properties on both occasions. This more easily interpretable model would

lead to two new conclusions for the U.S. Census: 1) Origin may be the better mea-

sure of ethnicity, where the choice of measurement occasion is inconsequential; 2)

the false negative rates in all indicators are considerable, meaning that the number

of U.S. residents of Hispanic ethnicity is likely to be underestimated.

6. APPLICATION 2: DENTISTRY X-RAY RATINGS

In their discussion of local dependencies in diagnostic testing, Qu et al. (1996, pp.

804-6) discuss a dataset due to Espeland and Handelman (1989) consisting of the

ratings five dentists gave to dental x-rays that may show incipient caries. Each

rating is a binary observed variable, and two latent classes represent true caries
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state. Qu et al. (1996, pp. 804-6) suggested that the two-class model taking into

account local dependencies is easier to interpret than a four class model that was

used in the earlier literature. These authors discussed an interesting alternative

approach to taking local dependency into account, whereby the dependencies are

parameterized as arising from a continuous random effect variable. This model is

more parsimonious than freeing all local dependencies at once but also assumes that

the dependencies are all in the same direction.

Table 7 shows the EPC’s and score statistics for the local dependence parameters.

The EPC’s and score statistics are large for five bivariate local dependencies. The

local dependency between dentists three and four is negative, violating the random

effects model’s assumption that all dependencies are in the same direction.

Table 7: Local dependencies between five dentists’ x-ray ratings for caries.

Dentist dependence EPCL TL EPCGS TGS ψ̃ Wald
1 ↔ 2 0.32 3.1 0.35 3.4 0.33 3.8
1 ↔ 3 1.04 34.0 0.97 31.6 1.07 40.5
1 ↔ 4 0.59 13.1 0.59 13.1 0.61 13.6
1 ↔ 5 0.47 2.7 0.44 2.6 0.42 2.3
2 ↔ 3 0.56 6.8 0.53 6.4 0.56 8.6
2 ↔ 4 0.23 1.8 0.22 1.7 0.25 1.8
2 ↔ 5 0.63 16.4 0.48 12.6 0.54 18.7
3 ↔ 4 -0.30 2.7 -0.35 3.2 -0.37 2.8
3 ↔ 5 0.76 5.1 0.55 3.7 0.70 6.0
4 ↔ 5 0.42 3.5 0.27 2.3 0.46 3.7

The deviance for the fully restricted two-class model equals 129.9 with 20 degrees

of freedom (p < 10−10) and the BIC is -35.4, while Qu et al. (1996, p. 805)’s random

effects model including two additional equality restrictions has a much improved

deviance of 15.8 with 12 degrees of freedom (bootstrap p = 0.38) and BIC equal

to -83.4. An even more parsimonious model can be found in a stepwise manner
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by using the EPC’s and score statistics shown in Table 7. We freed the large local

dependencies between dentists one and two, one and five, two and four, two and five,

and three and five. This model has a deviance of 28.4 with 15 degrees of freedom

(bootstrap p = 0.07) and a BIC of -95.5. The BIC therefore favors this model

over the random effects latent class model. The estimates of specificity, sensitivity,

and prevalence are similar for these two models, never differing more than 0.03 in

absolute value. There is one exception, however: under Qu et al.’s final model, the

specificity of dentist four is estimated at the boundary of unity and the sensitivity

at 0.68, while these estimates are 0.997 and 0.57 respectively under the final local

dependence model arrived at using the EPC’s and score statistics.

7. CONCLUSION

We have shown how the EPCL and EPCGS can aid in the detection of local de-

pendence when the commonly made local independence assumption in latent class

analysis of binary data does not hold. The asymptotic and finite sample proper-

ties of these measures appear adequate for this purpose. Applications to two real

datasets previously analyzed by other authors demonstrated the advantage of this

approach in trading off model realism and parsimony, and showed that different and

more easily interpretable results can be obtained.

Extensions to polytomous data are possible in our framework by adjusting the

relevant design matrices. Unless additional restrictions are imposed, the local de-

pendence parameter for a pair of variables will then become multivariate. Class-

specific and trivariate local dependencies can likewise be accomodated. Finally, the

EPCL and EPCGS could be applied to other parameters than local dependencies.

For example, Glas (1999) suggested examining item bias (direct effects of covari-

ates on response variables) in item response models. Based on our findings, the
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EPCL, EPCGS, and corresponding score statistics have been implemented in an ex-

perimental version of the standard latent class modeling software Latent GOLD,

which allows for the above extensions (Vermunt and Magidson, 2005). The online

supplement provides R code (R Core Team, 2012) for the applications.

A. INFORMATION MATRICES, JACOBIAN, AND IDENTIFICATION OF

THE LOCALLY DEPENDENT LATENT CLASS MODEL

This appendix defines the information matrices, Jacobian, and outer product matrix

for (partially) locally dependent latent class models used in the derivation of the

EPC. We also provide a theorem giving conditions under which the local dependence

parameters are locally identifiable.

By applying the rules of vector differentiation to model 1, the Jacobian of the

patternwise likelihood vector with respect to one of the parameter vectors τ ,λ, or

ψ is obtained as

S(.) :=
∂ log Pr(Y)

∂(.)
=

T∑
t=1

[1′ ⊗ Pr(ξ = t|Y = y) ◦ (X(.) − ER[X(.)])], (A.1)

where ◦ denotes the elementwise (“Hadamard”) product, the kronecker product ⊗

here serves to duplicate the posterior probabilities columnwise, X(.) is the design

matrix corresponding to either τ ,λ, or ψ, and ER[X(.)] is a matrix with R rows, in

which each row equals X′(.)Pr(Y = y|ξ). For a two-class model with effect coding,

the Jacobian with respect to the latent class intercept parameter is

Sα :=
∂ log Pr(Y)

∂α
= 2[Pr(ξ = 1|Y = y)− Pr(ξ = 1)]. (A.2)

That is, the Jacobian depends on the change in the latent class classification be-

fore and after observation of Y. This change therefore plays a large role in the
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determinant of the outer product of the patternwise score vectors used below.

Using obvious notation for the full Jacobian S(θ), the gradient (p-score vector)

over all response patterns will equal

s :=
∂`(θ)

∂θ
=

N∑
i=1

∂`i(θ)

∂θ
= S(θ)′n. (A.3)

Define the observed and expected information matrices as

IY := − ∂s

∂θ′
= −∂

2`(θ)

∂θ∂θ′
, (A.4)

IL := EL(IY ) =
R∑
r=1

n̂rSr(θ)′Sr(θ), (A.5)

where n̂r = n · Pr(Y = yr) and the outer product matrix as

D :=
R∑
r=1

nrSr(θ)′Sr(θ). (A.6)

The form of the Jacobian in equation A.1 can be used to determine identifiability.

Theorem 1. Assume that Sθ2 is of full column rank. Let Xnew denote a design

matrix such that:

(i.) Xnew is of full column rank;

(ii.) The number of columns in Xnew is smaller than or equal to the number of

degrees of freedom df := R− 1− rk(Sθ2);

(iii.) The columns of Xnew are linearly independent of the columns of the design

matrix Xθ2 corresponding to the parameters θ2;

(iv.) Xnew,t = Xnew for all t ∈ {1..T}.

Then the parameters θnew corresponding to Xnew in model 1 are locally identifiable.
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Proof. To show local identifiability, it suffices to show that Snew is of full column

rank and its columns linearly independent of those in Sθ2 (Goodman, 1974). Since

Xnew is not class-specific by (iv), equation A.1 reduces to Snew = Xnew−ER(Xnew),

so that rk(Snew) = rk(Xnew), implying full column rank by (i). Furthermore, by

assumption rk(Sθ2) = rk(Xθ2), so that by equation A.1, (ii) and (iii) guarantee that

the columns of Snew are also independent of those in Sθ2 .

The theorem suggests that when the local independence model is identifiable

and the number of local dependencies ψ to be freed does not exceed the degrees of

freedom, these additional parameters will also be identifiable.

B. SUPPLEMENTAL MATERIALS

R code: Provides S4 classes to perform latent class analysis for binary variables

with local dependencies and obtain the EPCL and EPCGS and score tests.

Includes both data sets used as examples in the article. (GNU zipped tar file)
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