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Abstract

In itemresponse theory, modeling the item response times in addition to the item responses may
improve the detection of possible between- and within-subject differences in the process thatresulted
inthe responses. Forinstance, if respondents rely on rapid guessingon some items but not on all, the
jointdistribution of the responses and response times will be a multivariate within-subject mixture
distribution. Suitable parametric methods to detect these within-subject differences have been
proposed. Inthese approaches, adistribution needs to be assumed forthe within-class response times.
In this paper, itis demonstrated that these parametric within-subject approaches may produce false
positives and biased parameter estimates if the assumption concerning the response time distribution is
violated. A semi-parametricapproachis proposed which hardly produces false positives and parameter
bias. In addition, the semi-parametricapproach has approximatelythe same powerto detect within-

subjectdifferencesinresponsesandresponse times as compared to the parametricapproach.
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Theinterestinresponse times initem responsetheory modeling (IRT) dates back to many decennia ago
(Thorndike, Bregman, Cobb, & Woodyard, 1926). Since then, effort has been devoted to the
development of IRT models forresponses and response times (e.g., Roskam, 1987; Thissen, 1983; see
Schnipke & Scrams, 2002, for a more comprehensive overview). Recently, the workin this areawas
boosted by the development of ageneral modeling framework forresponses and responsetimes (Van
derLinden 2007; 2009). In this framework, measurement models are specified forthe responsesand
response times separately, after which these models are connected by correlating the random effects
across the models. Key characteristicof thisframework is that the responses and response times are
independent conditional onthe underlying latent speed and latent abilityvariables. Various instances
and extensions of the general approach have been developed since then, including, forinstance:
multilevel models (Klein Entink, Fox, & Van Der Linden, 2009), models fordifferent distributions of the
response times (Klein Entink, Van derLinden, & Fox, 2009; Loeys, Legrand, Schettino, & Pourtois, 2014;
Wang, Chang, Douglas, 2013; Wang, Fan, Chang, & Douglas, 2013; Ranger & Kuhn, 2012; Ranger &
Ortner, 2012a, 2013), and models for personality data (Ferrando & Lorenzo-Seva, 2007a; 2007b). Also,
some of the earlierapproaches (e.g., Roskam, 1987; and Thissen 1983) are special cases.

The main purpose toincorporate the response times as an additional source of information
aboutindividual differencesinthe existing IRT models has been twofold (see Molenaar, 2015). First, it
has been shown that the response times may improve measurement precision of the latent ability in
traditional IRT models (Ranger & Ortner, 2011; VanderLinden, Klein Entink, & Fox, 2010). Second, the
response times may shed light on differencesin the psychological process thatresultedinthe responses.
That is, the response times have been used to detected aberrant responses (Van der Linden & Guo,
2008; Marianti, Fox, Avetisyan, Veldkamp, & Tijmstra, 2014), guessing (Schnipke & Scrams, 1997),
differencesinthe adopted solution strategy (Van der Maas & Jansen, 2003), item preknowledge

(McLeod, Lewis, & Thissen, 2003), warming-up and slowing down effects (Van der Linden, 2009b),
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effectsrelated to testing (Carpenter, Just, & Shell, 1990), and faking on personality items (Holden &
Kroner, 1992).

Although response times have been successfully used for the two purposes above, some
challengesstill remain. Forinstances, with respect toimproving the measurement precision, it has been
shown within the general framework that the benefits of adding the response times are limited and
largely apply tothe easieritems only (Ranger, 2013). Furthermore, with respect to detecting differences
inthe response process, inferences have been hampered by the focus on models for between-subject
inferences only (Molenaar, Oberski, Vermunt, & De Boeck, 2016).

Withrespectto the latter, effort has been devoted to develop IRT models that explicitly take
into account the within-subject differencesin responses and response times. The conventional
between-subject approaches assume thatthe itemand person properties are constant withinagiven
respondent. Inthe within-subject approaches, thisis not necessarily the case. Specifically, itemand/or
person properties are allowed to be differentfor responses that differintheirresponse time. Asa
result, conditionalindependence between the responses and response times is violated.

To model within-subject differences, research has focused on models with two item specific
classes underlying the responses and responsetimes (DiTrapani, Jeon, De Boeck, & Partchev, 2016; Jeon
and De Boeck, 2016; Molenaar, Oberski, Vermunt, & De Boeck, in press; Molenaar, Bolsinova, Rozsa,
and De Boeck, 2016; Partchev & De Boeck, 2012; Wang & Xu, 2015;). Inone class the item properties of
the fasterresponses are modeled, and inthe otherclass, the item properties of the slower responses
are modeled. Next, class membership may vary fromitem toitem foreach respondent. In this way,
within-subject differences are captured by the class variables enabling inferences about differencesin
the underlingresponse processes. Thus, in these approaches, within-subject differences arise because of
discrete differencesin the response process. Thesedifferences may reflect true discrete differencesin

the response process (e.g., guessing and non-guessing, two different solution strategies, oritem
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preknowledge on some of the items). However, the classes do not necessarily need to be substantively
interpretable. They can also be seen a statistical tool to capture the heterogeneity of the responses with
respectto the response times. Thatis, there may be more classesinthe data, or the measurement
properties may differ continuously across the responsetimes (see Bolsinova, Tijmstra, & De Boeck,
2016; Bolsinova, Tijmstra, & Molenaar, 2016; Fox, & Marianti, 2016), however, the two classesin the
model are used to statistically capture the mostimportant patternsinthe data.

In the models fordiscrete within-subject differences, Partchevand De Boeck (2012), DiTrapani
et al. (2016), and Jeon and De Boeck (2016) operationalized the fasterand slowerclasses by
dichotomizing the responsetimes to obtain the item class variables for each respondent. This approach
resultsin deterministic classes with the class size chosen by the researcher (i.e., depending on the cut off
pointthatis usedto dichotomize the response times). In addition, the amount of information in the
continuous response timesis reduced. To this end, Molenaar etal. (in press) proposed an approach
based on mixtures modeling (seealso Wang & Xu, 2015). In this approach, the classes are
operationalized by a two component multivariate mixture distribution on the responses and response
times simultaneously. As aresult, the classes are stochasticwith the class sizes estimated from the data.
In addition, the continuous nature of the response times is retained. However, to enable such a mixture
modeling approach, the distribution of the response times within each class needs to be specified.
Molenaar et al. and Wang and Xu presented approaches forlog-normal response time distributions
within each class.

The aim of the present studyistwofold. First, it will be demonstrated that the within-subject
mixture modeling framework is sensitive to violations of the assumed response time distribution. That
is, if the response time distribution departs from the assumed distribution: 1) spurious classes may be
detectedif there are no classes underlying the data; and 2) parameter estimates are biased if there are

truly different classes in the data. Key of the problem is the misspecification of the response time
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distribution which can obviously be solved by specifyinga more appropriate response timedistribution
for the data. However, doingsois challengingasitis hard to inferthe true distribution within each class
fromthe data. That is, the observed response time distribution will depart from the within-class
distribution by definition because of the mixture of the two within-class distributions. Forinstance, if the
within-class distributionis log-normal, the observed marginal response time distribution will depart
froma log-normal distribution. Thus, itis unclear whether departures from log-normality reflect a
mixture of two classes or whetherthe departures reflect a misspecified response time distribution.
Therefore, itis hardto infera plausibledistribution for the within-class response time distributions from
the marginal response time data.

A secondaimof the presentstudyisthatit will be shown thatthe problem outlined above can
be remedied by adopting a semi-parametric within-subject mixture modeling approach. Thisisa
practical but effectiveapproach in which the distributional assumption on the response timesis relaxed
by categorizingthe responsetimesintoanarbitrary number of categories. Next, tothe responsesand
categorized responsetimes, asuitable within-subject mixture model is applied that takes the categorical
nature of the response timesinto account. We referto this approach as ‘semi-parametric’ as the
assumption on the response time distribution s less stringent as compared to the parametric(log-
normal modeling) approach. Inasimulation study we show that the semi-parametricapproach hardly
resultsinfalse positives or parameterbias evenif the response time distribution is truncated or highly
skewed. Inaddition, itis shownthat the powerto detect the different classesinthe datais not affected
inthe semi-parametricapproach as compared to the parametricapproach.

The outlineis asfollows: First, we presentthe parametric within-subjects mixture model with
log-normal responsetimes within the classes. Next, inasimulation study we show that this model is
associated with false positives and parameter bias if the assumption of log-normal responsetimesis

violated. Then, we present the semi-parametricalternative and we show on the same simulated
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datasets as above that this approach does hardly sufferfrom false positives and parameterbias. Then,
we apply the parametricand semi-parametricapproaches to areal dataset pertaining to logical

reasoning. We end with ageneral discussion.

The Parametric Within-Subject Mixture Model
In the parametricwithin-subject mixture approach, alatentclass variable C,;isassumed to underlie the
response of respondent ponitemj(Molenaaretal., in press; Wang & Xu, 2015). In principle, C,can
have multiple levels, referred to as states. Here, we focus on two states, a slowerstate C,;=0, and a
fasterstate, C,; = 1, which are all collected in the state vector ¢, = [C,1, Cy, ..., Con]. The probability of

response vector X, = [X,1, Xp2, .-, Xpn] isthen given by

i 1-xpi
P(xp|9p; Cp) = H?:l m(“si X gp + ﬁsi)xp m(_[asi X Gp + ﬁsi]) xp (1)

where 8, is the latentability, w(.) is the logisticfunction, a;is the discrimination of itemiin state s = O,
1, and B, is the easiness of itemiinstate s. Next, within each state, the response times are assumed to
have a log-normal distribution such that the vector of log-transformed response times,

t, = [InT,1,InTyy, ..., INnT,n] can be modeled using a conditional multivariate normal distribution with

uncorrelated dimensions, thatis,

(2)

[ 1(lnTpl Hpt|TpCpl)

f(tpley ) =TI 1j—exp

with
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MpilTpICpi = E(lnTpilrp,Cpi) =v;—06 XCpi—Tp with6>0 (3)

wheret,is the latentspeed, 0% is the residual variance, v;is the time intensity, and § is the differencein
log-responsetime between the states C,;=0and C,; = 1. The constraintd> 0 isimposed to ensure that
state C,; = 1 correspond to the fasterstate (i.e., responsetimesin this state are smaller).

In the model given by Equations 1, 2, and 3, it isassumed that the item effects are fixed and the
subject effects are random (see Molenaar, Tuerlinckx, and Van der Maas, 2015; Rangerand Ortner,
2012b; Vander Linden & Guo, 2008; Wang, Chang, & Douglas, 2013; Wang, Fan, Chang, & Douglas
2013). For the random subject effects, 6,and t,, a bivariate normal distribution is assumed with means
U and W, with variances og? and o2, and covariance og.. Foridentification reasons pg= . =0 and og? = 1.
No furtherconstraints are needed to identify the model. The latentclass variable, C,, isassumedto be

distributed according to aBernoulli distribution with success probability t, such that

P(CP) =1~ mi(1 —m) =G, "

Thus, it isassumed that the item states are independent and time homogenous (i.e., the item states
have equal state probabilities across items) with P(C,=1) =m. It is possible to relax the independence
assumption by introducing atime homogenous first-order Markov structure on the item states (e.g.,
MacDonald, & Zucchini, 1997; Vermunt, Langeheine, & Bockenholt, 1999), see Molenaaretal. (in press).
We will refertothe model above as the Parametric Item States Model (ISM). Note that in datafor which
the model above holds, the assumption of conditional independencethatis commonlyimposedin the

framework of Van der Linden (2007) is violated.
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The approach by Partchevand De Boeck (2012) to separate within-subjects from between-
subjecteffectsinresponsesand responsetimes can be seen as a special case of the ISM where the class
variables, C,;, are observed variables. Thatis, the observed response times are dichotomized to obtain
Cyi. In this way, By, B1i, 0oi and ay; from Equation 1 can be estimated using standard IRT packages (see De
Boeck & Partchev, 2012; Jeon & De Boeck, 2016). As discussed above, this approach does not take into
account the measurementerrorinthe assessment of C,.. In addition, mdepends on the cutoff point used
to dichotomize the response times.

The free parametersinthe parametric ISM include: o, a4, Boi, B1i, 6, Vi, 0<% 02, 0g; and 1t forall i.
If the parameters are collected in model parametervector, n, then the log marginal likelihood of

response vector x,and the log- response time vector t, for the parametricISM is given by

(xp tyin) = In JI7 32, 28, B, P(pl6p,€,) f(t5|tp,¢,) P(C) 96,7, ) dBdtz (5)

where P(xp|9p, cp) isgiven by Equation 1, f(tp |Tp,Cp) is given by Equation 2, and g(.) is the bivariate
normal density function.

Baseline model

To enable inferences about the relative goodness-of-fit of the item states model, abaseline model is
needed (seeMolenaaretal.,inpress). Toderive abaseline model, the slowerstate isassumedto be
empty (i.e., m=1) with equal discrimination and easiness parameters in both states (i.e., a;=0a;= 03 and
Bi = Boi = B1). Inaddition, 6 = 0. The resultingmodel is alatent variable modelwith atwo parameter
model forthe responsesand a linear model for the responsetimes and correlated random subject

effects. Thismodel is identical to the hierarchical model forresponses and responsetimes of Vander
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Linden (2007) with fixed item effects (see Molenaar, Tuerlinckx, & van der Maas, 2015; Ranger & Ortner,

2012b). We will simply referto this model as the Baseline Model or BM.

Simulation Study 1A
In simulation study 1A we show that 1) the parametricISM model is viable if the response times are
truly log-normal; 2) if the response time distribution departs from alog-normal distribution, the
parametricISM produces false positives and biased parameter estimates.

Method

Scenarios
We simulated data accordingto 6 scenarios. The first 3 scenarios (S1b, S2b, and S3b) concern baseline
scenariosin whichthe data donot include item states. The scenarios differin the exact distribution that
isusedfor the log-transformed responses times. These are either normal, truncated, or skewed.
Specifically, we considerthe following scenario’s:
S1b: A normal BM. In this scenario, the dataare generated usingabaseline model with normally
distributed log-response times. In this normal baseline model, we used a;=1 forall i. For the easiness
parameters, B;, we used increasing, equally spaced values between -2and 2. The time intensity
parameters are chosento v;=2 for alli and the residual response time variances are chosentoo.? =0.2
foralli. In addition, 0, =0.0625 and o, = 0.1 such that the correlation between 6,and t, equals pe. = .4.
See thetop rowin Figure 1 for a normal QQ-plotand a histogram of the response timestoan example
item within this scenario.
S2b: A truncated BM. In this scenario, the data are generated using the same setupasinS1b. However,
instead of the normal distribution forthe log-response times, atruncated normal distributionis used

with truncation at the upperlimit, InT,; = log(12) such that the untransformed response time distribution
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istruncated at 12 seconds. See the middlerow in Figure 1 fora normal QQ-plotand a histogram of the
response times to an example item within this scenario.

S3b: A skewed BM. In this scenario, the dataare generated using the same setup asin S1b. However, the
normal log-responsetimes are transformed using a Box-Cox transformation (Box & Cox, 1964).
Commonly the Box-Cox transformation, X’ =(X*— 1) / A, is used to transform skewed variables (X in this
case), such that the transformed variable, X’, is closerto a normal distribution. Here, we use the
transformation the otherway around. That is, we transform the normally distributed log-response times
usingInT,’ = (Ax InT,;+1)*, such thatthe transformed log-response times, InT,/, are skewed. For
transformation parameter A we use 0.3. See the bottom row in Figure 1 for a normal QQ-plotanda
histogram of the response times to an example item within this scenario.

The remaining 3 scenarios (S1s, S2s, and S3s) are scenario’s in which the data do include
differentitem states. The scenarios differin the exact distribution thatis used for the log-transformed
response times. Thatis, each scenario corresponds to a baseline scenario above (S1b, S2b, or S3b). That
is:

S1s: A normal ISM. Inthis scenario, the data are generated usingthe ISMmodel given by Equations 1, 2,
3, and 4. The true parametervalues are chosen as follows. First,we chose § =0.5 and it = .5. For the
discrimination parameters, we used ay;=1 and a,;= 1.5. For the easiness parameters, we used
increasing, equally spaced values between-2and 0 for 3,; and between 0and 2 for B,;. These differences
may seem large, buttogetherwith the other parameterchoices above, these valuesresulted in residual
correlations between the responses and the log-response times of around 0.11 which are reasonable.
For instance, Molenaaretal. (2016) found residual correlations between 0.07and 0.16 in the
standardization data of the Hungarian WISC-IV block design test. The responsetime parametersv,, .,

02, 0g; are given the same values asinthe normal baseline scenario Sib.
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S2s: A truncated ISM. In this scenario, the dataare generated using the same setup asinS1s. However,
similarasin baselinescenario S2b, we use atruncated normal distribution for the log-response times
with truncation at the upperlimit, InT,;=log(12).

53s: A skewed ISM. In this scenario, the data are generated using the same setupasinS1s. However,
similarasin baselinescenario S3b, the normal log-responsetimes are transformed using a Box-Cox
transformation, with the transformation parameter, A, equal to 0.3.

Procedure

We conducted 100 replications of each scenario. Forthe datawithin each replication, the Parametric
ISMiis fit (P-ISM) togetherwith its corresponding parametric baseline model (P-BM). Next, the model fit
of the P-ISMand the P-BM are compared using the Akaike Information Criterion (AIC; Akaike, 1987), the
Bayesian Information Criterion (BIC; Schwarz, 1978), the AIC3 (Bozdogan, 1993), the Consistent AIC
(CAIC; Bozdogan, 1987), and the sample size adjusted BIC (saBIC; Sclove, 1987). We used 20 items and
500 subjects. Models are estimated using marginal maximum likelihood e stimation in the LatentGOLD
software package (Vermunt & Magidson, 2013). We used 100 nodesto approximate the two integralsin
the likelihood function (10nodes for each dimension). Syntax to fit the different models is available

fromthe website of the first author.
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Results

False positive and true positive rates.
Table 1 contains the false positive and true positiverates of the P-ISMin the different scenario’s. First,
the false positive rate is obtained by considering the acceptance rates of the P-ISMoverthe P-BMin the
scenariosinwhich the data do not containitem states (S1b, S2b, and S3b). As can be seen from Table 3,
for the P-ISM, there are no false positivesin the case of a baseline modelwith normally distributed log -
response times. However, if the log-response time distribution is either truncated (S2b) or skewed (S3b)
the P-ISMis neverrejected (false positives rate of 1.00) despite the fact that the data do not include
item states. Similarly, the true positive rate is obtained by considering the acceptance rates of the P-ISM
overthe P-BMin the scenariosin which the data doindeed contain differentitem states (S1s, S2s, and
S3s). As can be seenfrom Table 3 the true positive rateis 1.00 in all cases.
Parameter recovery
See Table 2 for the means and standard deviations of the estimates forthe class size parameter, i, the
response time difference between the states, §, the variance of t,, 6, and the correlation between
speed and ability, p, in the scenario’s wherethe datatruly contain differentitem states (S1s, S2s, S3s).?
As can be seenfromthe table, if the within-class distribution of the log-response timesis normal (S1s),
parameters are adequately recovered. However, in the case of truncation (S2s) or skewness (S3s) inthe
distribution of the log-response times, all parameters are biased except forp, the correlation between
8, and 1,.

Box plots of the parameter estimates of the odd itemsinthe P-ISMforthe scenarios that
include item states (S1s, S2s, and S3s) are depictedin Figure 2for the item easiness parameters, By;and

B1;, and Figure 3 for the discrimination parameters, ag;and a;;. As expected, the parameters are

1 We estimate the Cholesky decomposed covariance matrix of 8, and tp. However, for the ease of presentation we
transformed these parameters into o and p. In addition, we estimated logit(rt) but we present the results for .
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acceptably recoveredinthe P-ISMif the data is generated according to the normal item states scenario
(S1s; left plotin Figure 2 and Figure 3). However, if the datais generated according to the truncated
item states scenario (S2s; middle plotin Figure 2and Figure 3) or skewed item states scenario (S3s; right
plotin Figure 2 and Figure 3), the parameters are systematically biased in the P-ISM. Specifically, the
difference between the fasterand slower statesis underestimated: In the case of truncation, f;and ay;
are recovered acceptably (i.e., bias seem small), but By and ag; are underestimated. In the case of
skewness, Byiis underestimated and By;is recovered acceptably. Parameter oy and a;;seemto be hardly

biasedinthe case of skewness butthe estimates of ay have very large standard errors.

A Semi-Parametricltem States Model
As we showed in the simulation study above, the parametric model is sensitive to violations of the
normality assumptionin Equation 2. Thatis, if the distribution of the response times departs from the
log-normal (e.g., the responsetime distribution is truncated due toanitemtime limit), spurious item
states may be detected and parameters are biased.
As a solution, we propose asemi-parametricitem states model. The semi-parametric model
differsfromthe model above inthatthe response times are categorized, that s, the categorized

response times, T, are obtained from the raw response times, T;, as follows:

Téi =z |if Tpi € (bzi'b(z+1)i) with z=0, 1, .., 2-1 (6)

where b,;are the thresholds at which the response times are categorized with by;=0 and bz;);= e, and
Z denotesthe number of categories thatis used. Both the thresholds b,;and the number of response
time categories, Z, are chosen by the researcher. Butas we illustrate in the real dataapplication,

multiple option can be considered to study the robustness of the results.
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Next, within the semi-parametricitem states model, the probability of the vector of categorized

response times, t," =[T,:’, Tp2', ..., Ton'], is subjected to an adjacent categories model

T!.
( | ) exp<Zz’="0yzi—5xCpi—rp>
P(t)|t,,¢c,,) =1~ :
pi*p’*p i=1 Z}Z;lexp(zlz=0yzi_5xcpi_rp)

with6>0 (7)
where y,; are response time category parameters for category z of the response times of item i.

Category parameteryyis choseninsuch a way that
22=0_6s —Tp +v0i = 0. (8)

Equation 7 together with the model forthe responsesin Equation 1and the bivariate normal
distribution for8,and T, constitute the full model. The free parameters in the semi-parametricISM
include: ay;, a1, Boi, B1i, Vair 6, 02, 0oy, and mfor alliand all z> 0. If these parameters are collectedin
model parametervector, {, then the log marginal likelihood of response vector x, and the categorized

response time vector t,”forthe semi-parametricISMis given by

{(xp, t;;i{) = lnﬂ_oooozgpl IR, P(xp|9prcp)P(t;7|prcp)P(Cp)g(9p:Tp)d9dT (9)

Cpz2 "~ “Cpn

where P(xp|6p,cp) isgiven by Equation 1 and P(t;, |rp,cp) is given by Equation 7.
Baseline model

For the semi-parametricitem states model, the baseline modelcan be derivedinasimilarway as was

done forthe parametricnormal model above. The resulting model is alatent variable model with atwo
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parameter model forthe responsesand a partial credit model for the categorized responsetimesand
correlated random subject effects. This model can be seen as a generalization of the hierarchical model
for responsesandresponsetimes of VanderLinden (2007) for categorical response times and fixed item
effects.

Simulation Study 1B
In this simulation study we analyze the same datasets asin simulation study 1A. We show inthese data
that 1) the semi-parametricapproach as discussed above hardly suffers from the increased false positive
rate or the parameterbias as was found for the parametricapproach; while 2) the semi-parametric
approach isstill capable of detecting truly different item states in the data with acceptable true positive
rates.

Method

Procedure
We used the same 100 replications of the 6 scenarios asin simulation study 1a. To these data, we fit the
three Semi-parametricISMs with respectively Z=7, Z=5, and Z=3 response time categories (referred to as
S-1SM7, S-ISM5, and S-ISM3). In addition, we fit the corresponding baseline models (S-BM7, S-BMS5, and
S-BM3).

For the response time categorization in Equation 6, bg;and by are 0 and o= by definition. The
remainingthresholds, by;, by, ..., bz1) are chosen at the Z-quantiles of the observed responsetime
distribution ofitem i, where Zis the number of thresholds used to categorize the responsetimesas
defined above. We consider this specificprocedure to categorize the response times as desirable
because the thresholds depend on the shape of the response time distribution. In addition, by using this
approach, it does not matter whetherthe raw response times orthe log-response times are categorized

as the resulting categorization will be equivalent.
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For each dataset, the fit of the three item state models (S-1SM7, S-ISM5, and S-ISM3) is
compared to its corresponding baseline model (S-BM7, S-BM5, S-BM3). All other details concerning
model estimation and model fit (i.e., the fitindices used, the software, the estimation algorithm,and the
numberof nodes) are the same as in the simulation study 1a. Syntax to fitthe differentmodels is
available fromthe website of the first author.

Results
False positives.
In Table 3, the false positive rates are depicted forthe item states models (S-ISM7, S-ISM5, and S-1ISM3)
inthe scenariosinwhich the datado not containitem states (S1b, S2b, and S3b). As can be seenfrom
the table, the semi-parametricmodels do not suffer from false positives with false positive rates of 0.00
for all fitindices exceptthe AIC. The AlCfitindexis associated with anincreased false positive rate for
the semi-parametric model with rates between 0.02and 0.08.
True Positives.
In Table 4, the true positives rates are depicted forthe item state modelsin the case of the scenariosin
which the data truly containitem states (S1s, S2s, and S3s). True positive rates of 0.80 or largerare
considered as acceptable. As can be seen from the table, generally, the true positive rate is acceptable
for all models. An exception is the true positive rate of 0.54 for the CAIC of the semi-parametricitem
states model with Z=3 inthe case of a truncated response time distribution (scenario S 2s).
Parameter recovery
See Table 5 for the means and standard deviations of the estimates forthe class size parameter, i, the
response time difference between the states, §, the variance of t,,, 6%, and the correlation between
speed and ability, p, inthe scenario’s wherethe datatruly contain differentitem states (S1s, S2s, S3s).
As can be seenfromthe table, mand p are recovered adequately inall scenario’s. However, the mean

estimates of 6 and o2 are not close to the true parametervalue. However, thisis not surprisingas both
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6 and o2 are dependentupon the scale of the categorized response times which differs for different
number of response time categories and different thresholds, B .. But note that p, the correlation
between 6,andt,, whichis calculated from o2 is unaffected by this scale difference. This parameteris
adequately recovered.

Box plots of the parameterestimates of the odd itemsin the semi-parametricitem state models
(S-1SM7:top row; S-ISM5: middle row; and S-ISM3: bottom row) for the scenarios thatinclude item
states (S1s, S2s, and S3s) are depictedin Figure 4 forthe item easiness parameters, Bo;and B,;, and
Figure 5 for the discrimination parameters, ayand a,;. Note again that these models have been fitto the
same simulated datasets as used for the parametricmodel in Figure 2 and Figure 3. As can be seen, for
all scenarios and all semi-parametric models, the estimates tend to be unbiased with reasonable
standard errors. That is, the parameters are acceptably recovered irrespective of the distribution of the
response times.

Overall conclusion

As appears fromthe results of simulation study 1A and 1B above, if the log-response timedistribution
departsfrom normality but a normal item states model isapplied nevertheless, spuriousitem states
may be detected by the AIC, BIC, AIC3, CAIC, and saBIC if the data do not contain differentitem states. If
the data do contain differentitem states, the normal item states model is stillable to detect these,
however, parameter estimates are biased. The proposed class of semi-parametric model with Z=7, Z=5,
and Z=3 were shown to not sufferfrom these problems while the power to detect differentitem states
inthe data was hardly affected.

Illustration

Data

The data comprise the responses and response times of 664 Dutch high school studentstothe 23 items

of the so-called “puzzles” test. This testis based on the Raven progressive matrices test (Raven, 1962).
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Each item consists of a matrix that constitutes a pattern but with one element missing. The respondents
have to indicate which of 5 optional elements would completethe pattern. The items are administered
using a 40 seconds deadline. As aresult, the observed response times show truncation effects with the
severity of the effectincreasing forthe lateritems becausethe items are of increasing difficulty. 36
respondents are omitted from the analyses because they showed suspiciously smallresponse times (1

second or faster) resultingin asample size of 628 respondents.

To the data we fitted the same parametricand semi-parametricbaseline and item states models
as consideredinthe simulation study. We were interested to see whether the results (parameter
estimates and model fit) are similaracross the different approaches. Parameter estimation and
assessment of model fitis conducted using the same procedure as outlined in the simulation study

section.

Results

See Table 6 for the model fitindices of the different models. As can be seen, forall semi-parametricand
parametricapproaches, the ISM is the best fitting model according to the indices considered. One
exceptionisthe S-BM3which isfavored overS-ISM3 by the CAIC. However, in the simulation study, the
CAlICwas already shown to have poor powerinthe case of Z=3 and truncation, see Table 4. We
therefore acceptthe ISM model and lookinto the parameter estimates within this model for the semi-

parametricand parametricapproach.

In Table 7 for the parameters estimates of the class size parameter, 1, the response time
difference between the states, §, the variance of t,, 6, and the correlation between speed and ability,
p,in the ISM models. As can be seen, inthe parametricmodel (P-ISM), the estimate of the fasterclass
size, m, is substantially smaller thanin the semi-parametric models (S-ISM), .16 versus .38-.44. In

addition, the estimate of mis relatively stable across the semi-parametric models. The estimate of the
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response time difference, 6, fluctuates between the semi-parametric models. However, thisis expected

as the scale of T, on which 6 is a parameter, depends on the number of response time categories. Thisis
alsoreflected in the estimates of the variance of T, which differs across the semi-parametric models. The
correlation between 6,and T, (i.e., p, which we calculated from the estimates of og;and o.?) ishowever

stable across the semi-parametric models. In addition, the estimated correlation does not differ

importantly between the parametricand semi-parametricapproaches.

In Figure 6 parameter estimates of Bo;, B1;, 0oi, and a;are depicted forthe different models. In
the figure, the items are ordered according to the estimatesin S-ISM3for clarity. As can be seen, the
estimates of the semi-parametricmodels are close to each other. The estimates of the parametric
approach deviate most notably fromthe semi-parametricapproach for Bo;and ay. This is congruent with

whatwe foundinthe truncation scenario of the simulation study.

To conclude, results seemto be stable between the semi-parametricapproaches. Thatis, the
exactnumber of response time categories does affect the resultsimportantly. There are, however,
notable differences between the semi-parametricapproach and the parametricapproach inthe class
size parameter, i, and the item parameters. Nevertheless, as we know from the simulation study that
the semi-parametricmodels are less sensitive to violations of normality in the log-responsetimes, and
because the results of the semi-parametricmodels are largely insensitive to the number of response
time categories, we trust the results from the semi-parametric better than those of the parametric

model.

Discussion
In the simulation study we established thatthe parametricitem states model is associated with a
substantial false positive rate and parameterbias if the log-response times are not normally distributed.

The proposed solution to this problem, a semi-parametric model for the responses and categorized
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response times was shown to not suffer from this problem, while the true positiverates are still
comparable tothose of the parametricmodel.

Generally, categorization of continuous variables is discouraged due to the loss of information
aboutindividual differences, smaller power, and the arbitrary nature of the thresholds (Cohen, 1983;
MacCallum, Zhang, Preacher, & Rucker, 2002; Maxwell & Delaney, 1993). In the present mixture
framework it can howeverbe desirable to categorize the response times such that violations of the
assumed distribution do not affect the results. In addition, we showed that although the poweris
indeed affected, for our parameter choicesin the simulation study, this effect was not large. However,
in othersituations not covered by the simulation study, the loss of power may be larger. The present
approach can therefore be seen as aconservative approach to the within-subject analysis of responses
and response times. Furthermore, although the numberandthe location of the thresholds are indeed
arbitrary, in the simulation study and the real data application, we showed that results are largely
consistentacross models with different numbers of responsetime categories. In practice we thus advice
to always fitthe semi-parametricapproach using different numbers of response time categories to
investigatethe stability of the results.

With respect to the exact categorization of the response times, we chose a quantile -based
approach resultingin equal-distant scores that are uniformly distributed. This approach was shown to
performwellinthe simulation study in terms of parameterrecovery and power. However, an
alternative approach might be to use the mid-points within each category such that the categorized
distribution resembles the observed response timedistribution better.

In the present paper, we demonstrated thatif the data do not contain classes (item states) with
differentresponseand response time properties and a normal distributionis wrongfully assumed for the

log-transformed response times, spurious classes may arise. The same willhold forthe case where there
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are two classes underlying the data, if a normal log-response time model is applied to these data,
additional classes may be detected.

In the presentundertaking, we assumed the classes to be independent. However, it would be
interesting to considerrelaxing this assumption in future work by extending the presentapproach to
include a Markov structure on the item states.
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Table 1.
False positive rates and true positiverates of the P-ISMas compared to its baseline model, P-BMforthe

different datascenario’s withoutitem states (S1b, S2b, and S3b).

Data BIC AIC AIC3 CAIC saBIC
False positiverate  S1b: Normal baseline 000 000 000 000 0.00

S2b: Truncated baseline 1.00 1.00 100 1.00 1.00

S3b: Skewed baseline 1.00 1.00 1.00 1.00 1.00
True positiverate  Sls: Normal item states 1.00 1.00 1.00 1.00 1.00

S2s: Truncateditemstates  1.00 1.00 1.00 1.00 1.00
S3s: Skewed item states 1.00 1.00 1.00 1.00 1.00

Table 2.

Means (me) and standard deviations (sd) of the parameter estimates in the P-ISMin the cases where the

data truly containitem states (S1s, S2s, S3s). The true parametervalues are in brackets.

Scenario 1t (0.50) 6 (0.50) o2 (0.06) p (0.40)
me sd me sd me sd me sd
S1s: Normal 0.50 0.04 0.50 0.05 0.06 0.01 0.40 0.05
S2s: Trunc 0.29 0.02 0.67 0.01 0.03 0.00 0.38 0.05

S3s: Skewed 0.84 0.01 2.53 0.08 0.38 0.03 0.39 0.05




Table 3.

False positive rates of the differentitem states models (S-ISM7, S-ISM5, and S-ISM3) as compared to
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theirbaseline models without item states (S-BM7, S-BM-5, and S-BM3) for the different datascenario’s

withoutitem states (S1b, S2b, and S3b).

Model Data BIC AIC AIC3 CAIC saBIC
S-ISM7: Semi-par. item states with Z=7 S1b: Normal baseline 000 003 000 000 0.00
S2b: Truncated baseline 0.00 008 0.00 000 0.0
S3b: Skewed baseline 0.00 004 000 0.00 0.00
S-ISM5: Semi-par. item states with Z=5 S1b: Normal baseline 0.00 001 000 0.00 0.00
S2b: Truncated baseline 000 006 000 000 0.00
S3b: Skewed baseline 0.00 002 000 0.00 0.00
S-ISM3: Semi-par. item states with Z=3 S1b: Normal baseline 0.00 001 0.00 000 0.00
S2b: Truncated baseline 0.00 001 000 0.00 0.00
S3b: Skewed baseline 0.00 001 0.00 0.00 0.00
Note. Non-zero rates are in boldface
Table 4.
True positive rates of the differentitem states models (S-ISM7, S-1ISM-5 and S-ISM3) as compared to
theirbaseline models withoutitem states (S-BM7, S-BM5, and S-BM3) for the different datascenario’s
with item states (S1s, S2s, and S3s).
Model Data BIC AIC AIC3 CAIC saBIC
S-ISM7: Semi-par. item states with Z=7 S1s: Normal item states 100 100 100 0.99 1.00
S2s: Truncateditemstates  1.00 1.00 1.00 0.88 1.00
S3s: Skewed item states 1.00 1.00 100 1.00 1.00
S-ISM5: Semi-par. item states with Z=5 S1s: Normal item states 1.00 1.00 100 099 100
S2s: Truncateditemstates  0.99 1.00 1.00 0.82 1.00
S3s: Skewed item states 1.00 1.00 1.00 1.00 1.00
S-ISM3: Semi-par. item states with Z=3 S1s: Normal item states 0.99 1.00 1.00 0.9 1.00
S2s: Truncateditemstates 0.94 1.00 1.00 0.54 1.00
S3s: Skewed item states 1.00 1.00 1.00 0.95 1.00

Note. Rates smallerthan 0.80 are in bold face
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Means (me) and standard deviations (sd) of the parameter estimatesinthe P-ISMin the cases where the

data truly containitem states (S1s, S2s, S3s). The true parametervalues are in brackets.

Model Scenario 1 (0.50) 6 (0.50) o2 (0.06) p (0.40)
me sd me sd me sd me sd
S-ISM7 S1s: Normal 0.50 0.04 2.32 0.76 0.16 0.05 0.40 0.05
S2s: Trunc 0.50 0.07 1.57 0.80 0.09 0.04 0.40 0.05
S3s: Skewed 0.49 0.04 230 0.78 0.16 0.05 0.40 0.05
S-ISM5 S1s: Normal 0.50 0.05 1.09 0.36 0.26 0.08 0.40 0.05
S2s: Trunc 0.50 0.07 0.76 0.35 0.16 0.05 0.39 0.05
S3s: Skewed 0.49 0.04 1.09 0.37 0.26 0.08 0.40 0.05
S-ISM3 S1s: Normal 0.49 0.06 1.03 0.32 0.50 0.12 0.40 0.05
S2s: Trunc 0.49 0.07 0.87 0.33 0.37 0.09 0.40 0.05
S3s: Skewed 0.48 0.05 1.04 0.33 0.51 0.12 0.40 0.05
Table 6.

Model fitindices forthe different parametricand semi-parametric modelsin the illustration.

z Model BIC AlC AlIC3 CAIC saBIC
Parametric - P-ISM 34752 34122 34264 34894 34302
P-BM 35493 35075 35169 35587 35194
Semi-parametric 7 S-ISM7 68359 67320 67554 68593 67616
S-BM7 68493 67667 67853 68679 67903
5 S-ISM5 58826 57991 58179 59014 58229
S-BM5 58932 58310 58450 59072 58487
3 S-ISM3 44921 44290 44432 45063 44470
S-BM3 44959 44541 44635 45053 44660

Note. For each pairof ISM and BM models, the smallest fitindices are in bold face.



Table 7.

Parameterestimates (est.) and standard errors (se) of the class size parameter, i1, the response time
difference between the states, §, the variance of the latent speed variable, 6 2, and the correlation

between speed and ability, p.

Semi-Parametric RT models

Model (oF

est se est se est se est se
P-ISM 0.16 0.01 -0.74 0.01 0.13 0.01 -0.52 0.02
S-1SM7 0.44 0.04 -1.05 0.08 0.72 0.07 -0.48 0.04
S-1ISM5 0.44 0.04 -1.32 011 1.16 0.10 -0.46 0.04
S-1ISM3 0.38 0.04 -2.06 0.18 253 024 -0.49 0.05

31
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Figure Captions
Figure 1. Normal QQ-plots and histograms of the log-response time distribution foran example item

within the baseline scenarios (S1b, S2b, and S3b).

Figure 2. Box plots of the By (white) and B,;(grey) parameter estimates forthe odd itemsinthe
parametricnormal model (P-ISM) inthe different scenarios thatincludeitem states (S1s, S2s, and S3s).

The solid grey line denotes the true values of B (lowergreyline) and B,; (uppergreyline).

Figure 3. Box plots of the a; (white) and a;; (grey) parameter estimates for the odditemsinthe
parametricnormal model (P-ISM) in the different scenarios thatincludeitem states (S1s, S2s, and S3s).

The solid grey line denotes the true values of a; (uppergrey line) and a,; (lower grey line).

Figure 4. Box plots of the B, (white) and B4;(grey) parameter estimates of the odd items in the different
semi-parametric models (S-1SM7, S-ISM5, and S-ISM3) in the different scenarios thatincludeitem states
(S1s,S2s, and S3s). The solid grey line denotes the true values of B (lower grey line) and B4 (uppergrey

line).

Figure 5. Box plots of the a; (white) and a;;(grey) parameter estimates forthe odd items in the different
semi-parametric models (S-1SM7, S-ISM5, and S-ISM3) in the different scenarios thatincludeitem states
(S1s,S2s, and S3s). The solid grey line denotes the true values of a o (uppergreyline) and ay; (lowergrey

line).
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Figure 6. Plots of the By; B1;, 0o, and oy; parameter estimates forthe normal item states model (P-ISM;
solid black line) and the semi-parametricitem states model (S-ISM7, S-ISM5, and S-ISM3; striped grey

lines). Ineach plot, the items are ordered on basis of the estimatesin S-ISM3for clarity.
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Semi-ParametricRT models
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Semi-Parametric RT models
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Semi-Parametric RT models
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