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Abstract

Initem response theory, modeling the iterasponse time& addition to the item responsasay

improve the detection of possible betweeand withinsubjectdifferences in the process that resulted

in the responsed-or instanceif respondents rely orapid guessing on some items but not on e

joint distribution of theresponssand responséimeswill be a multivariate withirsubject mixture
distribution Suitableparametricnethods to detect these withisubject differences have been
proposedln these approaches distributionneeds to be assumed for thvathin-clasgesponse times.

In this paperijtis demonstrated that these parametridthin-subjectapproachesnay produce false
positivesand biased parameter estimatéthe assumption concerning the response time distribution is
violated. A semparametric approach is proposed whikchrdly producesfalse positiveand parameter
bias. In addition, the serparametric approachas approximately the same power to detect within

subject differences in responses and response tiasssompared to the parametric approach

Keywords: Item Respaa Theory, Response times, Mixture Modeling;
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The interestin response timesitem response theory modeling (IRT) dates ltackany decenniago
(Thorndike, Bregman, Cobb, & Woodyard, 9&nce thengffort has beerdevoted to the
development of RT models for responses and response tireeg. (Roskam, 1987; Thissen, 1983
Schnipke & Scrams, 2002, for a more comprehensive ovenReggntly, he work in this areawas
boosted by the development of a general modeling framework for responseseapdnse times (Van
der Linden 2007; 2009)n this framework, measurement models are specified for the responses and
response times separately, after which these models are conndmtedrrelating the random effects
across the model¥ey characteristic of this framework is that the responses and response times are
independent conditional on the underlying latent speed and latent ability variakbesousinstances
and extensions adhe general approach have beeeveloped since themncluding for instance:
multilevel modelsKlein Entink, Fox, & Van Der Linden, 2009), models for different distributions of the
response timesKleinEntink,Van deiLindeng& Fox 2009 Loeys, Legrand, Schettino, & Pourtois, 2014
Wang, Chang, Dougl&§13 Wang, Fan, Chang, & Douglas, 2(&nger &uhn, 2012Ranger &
Ortner, 2012, 2013, andmodels for personality datdferrando & Lorenz&eva, 2007a; 2007bAlso,
some of the earlier approaches (e.g., Roskam, 1987; and Thissen 1983) are spesial ca

The mairnpurposeto incorporate the response times as an additional source of information
aboutindividual differences in the existing IRT mades been twofold (see Molenaar, 2015). First, it
has been shown that the response times may improve saeament precision of the latent ability in
traditional IRT modeldRanger & Ortner, 2011; Van der Linden, Klein Entink, & FoX, Z4€ond, the
response times may shed light on differences in the psychological process that resulted in the responses.
That is, the response times have been used to detected abereapbnses{an der Linden & Guo,
2008; Marianti, Fox, Avetisyan, Veldk, & Tijmstra, 2014 guessinggchnipke & Scrams, 1997
differences in the adopted solution strategygn der Maas & Jansen, 2008 m preknowledge

(McLeod, Lewis, & Thissen, 2008armingup and slowing down effect¥@n der Linden, 2009b
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effectsrelated to testing Carpenter, Just, & Shell, 1998nd faking on personality itemsl¢lden &
Kroner, 199)

Although response times have been successtidhd for the two purposes above, some
challenges still remaikor instanceswith respect to impoving the measurement precision, it has been
shown within the general framework that the benefits of adding the response times are limited and
largely apply to the easier items or{lganger, 2013Furthermore, with respect tadetectingdifferences
in the response procesinferenceshave been hampereby thefocus e models fobetweensubject
inferences onlyNlolenaar, Oberski, Vermunt, & De Boeck, 2016

With respectto the latter, effort has been devoted to develop IRT models that explicitly take
into account the withinsubject differences in responses and response times. The conventional
betweensubject approaches assume that the item and person propeatiesonstantvithin a given
respondent In the withinsubject approaches, thismet necessarilyhe case Specificallyitemand/or
person properties are allowed to be different i@sponses that differ in their response tin#es a
result,conditionalindependence between the responses and response times is violated

Tomodelwithin-subjectdifferences researcthas focused on models wittvo item specific
classesinderlying the responses and response tinfesl rapani, Jeon, De Boeck, & Partchev, 2016; Jeon
and De Boeck, 2016; Molenaar, Oberski, Vermunt, & De Boeck, in press; Molenaao\BoRozsa,
and De Boeck, 2016; Partchev & De Boeck, 20Hhg & Xu, 2015;)n one classhe item properties of
the faster responseare modeledandin the other clasghe item properties of theslower responses
are modeledNext, ¢ass membership mayary from item to itenfor eachrespondent In this way,
within-subject differences are capturdxythe classrariablessnablingnferences aboudlifferencesin
the underling response processa$us, in these approaches, witksabject differences arisedrause of
discrete differences in the response proceBisese differences may reflect true discrete differences in

the response procesg.g., guessingnd norrguessingtwo different solution strategig®ritem
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preknowledgeon some of the itemsHowever the classes do not necessarily need to be substantively
interpretable. They can also be seen a statistical tool to capture the heterogeneity of the responses with
respectto the response times. Thatis, there may be more classes in the data, or theremeasu

properties may differ continuously across the response tifgesBolsinovaTijmstra, & De Boeck,

2016; BolsinovaTijmstra, & Molenaar, 201&0x, & Marianti, 2016), however, the two classes in the

model are used to statistically capture the mostimportant patterns in the data.

In themodels for discrete withirsubject differencedPartchev and De Boec®]129), DiTrapani
et al. (2016), andeon and De Boeck (201d)erationalized the faster and slower clasby
dichotomizinghe response time$o obtain theitem classrariables for each responderithis approach
results in deterministic class@sth the class sizehosen by the researcher (i.e., depending on thetiut
pointthat is used to dichotomize the response timés)additionthe amount of information in the
continuous response timestisduced To this end, Molenaar et gin press) proposed an approach
based on mixtures modeli(gee also Wang & Xu, 201%n this approach, the classes are
operationalized by two componenmultivariatemixturedistribution on the responses and response
timessimultaneouslyAs aresultthe clasgsarestochastiavith the class sizes estimated from the data
In addition the continuous nature of the response times is retained. However, to enable such a mixture
modeling approactthe distributionof the response timewithin each classeeds to be specified
Molenaar et al. and Wangnd Xu presented approaches for ksgprmal response time distributions
within each class.

The aim of the present study is twofold. First, it willdesnonstrated thathe within-subject
mixture modeling frameworls sensitive to violations of the assumed response time distribution. That
is,if the response timalistribution deparsfrom the assumed distributioril)spuriousclassesnaybe
detectedif there are naclassesinderlying the dataand 2)parameterestimates are biaseithere are

truly differentclassesn the dataKey of the problen is the misspecidationof theresponse time
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distributionwhich can obviousllge solved by specifying a more appropriate response time distribution
for the data Howeverdoing sds challenging asis hard toinfer the true distribution within each aks
from the data. That is, the observed response time distribution will depart from the wilsiss
distribution by definitiorbecause of the mixture of the two withiolass distributionsFor instanceif the
within-class distribution iBdxg-normal, theobservedmarginalre sponse time distribution will depart
from a lognormal distribution Thus, itis unclear whether departures from{ogrmality reflect a
mixture of two classes or whether the departures reflect a misspecified response time distribution
Therefore, itihard to infer a plausible distribution for the withitlass response time distributions from
the marginal response time data.

A second aim of the present study is thawill beshown thatthe problemoutlined abovecan
be remedied bydopting asemiparametricwithin-subject mixture modeling approachhis is a
practical but effective approach in whittne distributionalassumptioron the response times relaxed
by categorizing the response times into an arbitrary numbeatégories. Next, to the responses and
categorized response times, a suitable witbimbject mixture model is appligtat takes the categorical
nature of the response timesintoaccoulite r ef er t o t hiparapmeroach as 't
assumption orthe response time distribution is less stringent as compared to the parametric (log
normal modeling) approacin a simulation study we show thtite semiparametric approachardly
resultsin false positivesr parameter biagven if the response timaistribution is truncated or highly
skewedIn additionjtis shown thathe power to detecthe differentclasses in the daianot affected
in the semiparametric approachs compared to the parametric approach.

The outline is as follows: First, we prestte parametriovithin-subjects mixturanodel with
log-normal response times within theassesNext, in a simulation study we show that this model is
associated with false positives and parameter bias if the assumption-eidogal response timesis

violated. Thenwe presenthe semiparametric alternative and we show on the same simulated
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datasets as above that this approadbeshardly suffer from false positives and parameter bilisen,
we apply the parametric and serpiarametricapproactesto a real datasepertaining to logical

reasoningWe end with a general discussion.

TheParametridVithin-Subject MixturéModel
In theparametriowithin-subject mixture approach, a latent class varia@jés assumed to underlie the
response ofespondenponitemi(Molenaar et al., in pres$Vang & Xu, 2015)n principle, Gcan
have multiple levels, referred to as statétere, we focus on two statesséowerstate G; =0, and a
fasterstate, G;= 1, which are all collected in the state veator [G1, G2, ol Th&probability of

response vectox,= [%1, %2,  on} iS thEn given by

Oe —HF B% 5| — S — @y
whernies 86t he | atent abil i tgsthedisCrimipationsefitedmimstates=00gi st i ¢ f
1, @qisihe e@siness of itenn states. Next,within each statethe response timeareassumed to

have a lognormal distribution such thahe vector of logtransformed response times
to = [INTo INTyo, ..on] CaN ImeModeled using a conditional multivariate normal distribution with

uncorrelated dimensions, thatis,

<t B —AQ@D- 2 0 )

with
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wheries 1t he | afiesntt hsep @ e ,ijiskhe tinhe intedsrtiya, n caedjffereiceins t h e
log-response time between the stat€}=0andG,;=1.T h e ¢ o n sOtisingosedito edsure that
stateG, = 1 correspond to théasterstate (i.e., response times in this state are smaller).
In the model given by Equatiods2, and3, it is assumed that the item effects are fixed and the
subject effects are randoifsee Molenaar, Tuerlinckx, and Van der Maas, 2015; Ranger and Ortner,
2012; Van der Linden & Guo, 2008; Wang, Chd&@®ouglas, 2013; Wang, Fan, Chang, & Douglas
2013)For t he r andomaas ¢gdbvariate norenal distributios is asBumed witieans
Mea n d, withyv ar i astameds oa nd c qyFaridentfication reasong= 30 andoy® = 1.
No further constraints are needed to identify the modBie [atent class variableG,, isassumed to be

di stri buted according to a Bermsuwhtial i di stri buti ot

04 B zmp ¢ = @

Thus, it is assumed thtite item statesareindependent andime homogenous (i.e., the item states

have equastate probabilitiescross itempwith P(G= 1 ) . It /s possible to relax the independence
assumption byntroducing a time homogenous firsirder Markov structure on the item statés.g.,
MacDonald, & Zucchini, 1997; Vermunt, Langeheine, & Bockenhol), 538%9Molenaar et alirf press).

We will referto the model above as tiarametridtem SatesModel(ISM. Note that in data for which

the model above holds, the assumption of conditional independence thatis commonly imposed in the

framework of Van der Linden (2007) is violated.
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The approach by Partchev and De Boeck (28 paratewithin-subjects from between
subject effects in responses and response tiresbe seen asspeciakase of thdSMwherethe class
variables, ¢, are observedariablesThat is the observed response times atehotomized to obtain
Gi. In thiswayoi, 1, Boi@ n d;fram Equatiori can be estimated using standard IRT packages (see De
Boeck & Partchev, 2012; Jeon & De Boeck, 2016). As discussed aboymrtiasiadoes not take into
account the measurement error in the assessmentpfi€additiontdepends on the cutoff point used
to dichotomize the response times

The free parametersin the paramett8Mi n c | v, diets, BB © 2 @’vos @ n dfor alli.
If the parameters are collected in model parameter vectothen thelogmarginal likelihood of
response vectox, and thelog-response time vectdy, for the parametridSMis given by

/Jbehgdh a& B B EB OJe —RE Qa«t R 06 Q—ft Q-0

whered o —Rt isgivenby Equatioh Q< 1 RE is given by Equain2, and g(.) is the bivariate
normaldensity function

Baseline model

To enable inferences about the relative goodnressit of the item states model, a baselimeodel is
needed(see Molenaar et al., in presdjo derive a baseline model, the sknstate is assumed to be
empty (.e.,i= 1) with equal discrimination and easiness paramdtet®thstates ( i;=. (&. ;,@nda
B= of 1B | n ad@ The resolting madlel &slatent variable model with atwo parameter
model for the responses and a linear model for the response times and correlated random subject

effects. This model iglentical to the hierarchical model for responses and responsesiof Van der
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Linden (2007) with fixed item effeatseeMolenaar, Tuerlinckx, & van der Maas, 20Ranger & Ortner,

2012). We will simply refer to this model as tiBaselineModelor BM.

SimulationSudy 1A
In simulation study Awe show that 1) the parametric ISM model is viable if the response times are
truly log-normal; 2) if the response time distribution departs from ategmal distribution, the
parametric ISM produces false positives and biased parameter estimates.

Method

Scenaris
We simulated data according to 6 scenarios. The first 3 scenarios (S1b, S2b, and S3b) concern baseline
scenarios in which the data do not include item states. The scenarios differ in the exact distribution that
is used for the logransformed reponses times. These are either normal, truncated, or skewed.
Speci fically, we consider the following scenario’
Slb: A normaBM. In this scenario, the data are generated using a baseline model with normally
distributed logresponse times. Inthisnormla s e | i n e mo;dZEforali. Rorthe easireds o
p ar a me;twe usad,ncr@asing, equally spaced values betw2and 2. The time intensity
parameters gERoraihmd etnhé or @si dual respong=02ti me va
for alli. I n ag=dbbDeRSiamm~0®. 1 such that tjaemdequakapi on I
See the top row in Figurkfor a normal Q@lot and a histogram of the response times to an example
item within this scenario.
Sb: A truncatedBM. In this scenario, the data are generated using the same setup as in S1b. However,

instead of the normal distribution for thieg-response times, a truncated normal distribution is used

with truncation at the upper limit, InJ=1og(12) such that the untransformed response time distribution
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istruncated at 12 seconds. See the middle row in Figimea normal Q@lot and a histogram of the
response times to an example item within this scenario.
S3b: Askewed BMIn this scenario, the data are generated using the sagtap as in S1b. However, the
normal logresponse times are transformed using a Boax transformation (Box & Cox, 1964).
CommonlytheBoxCox transf orImpatfi ok, X& wmseHd to transform
case),suchthatthe transfore d v ar i abl e, X', i s closer to a norm
transformation the other way around. That is, we transform the normally distributegiéggonse times
usingIny = ¥1), suchithatThe transformed legesponse times,Inf , are skewed. Fo
transformation parameter A wdforan@malQQidatandGae e t he boa
histogram of the responserhes to an example item within this scenario.

The remaining 3 scenarios (S1s, S2s, and S3s)
different item states. The scenarios differ in the exact distribution that is used for thigdagformed
responsdimes. Thatis, each scenario corresponds to a baseline scenario above (S1b, S2b, or S3b). That
is:
Sk A normalSM In this scenario, the data are generated using the ISM model given by Equiagpns
3, and4. The true parameter values are chosen as f ol |
discri mi nati on pagp=ane tgert.é For theeasinesepdranteters, we used
increasing, equally spaced vallestween-2 and  ®&nd obbe Bwe e n,. Thesadiffdren2es f or 3
may seem large, but together with the other parameter ates above, these values resulted in residual
correlations between the responses and thed@ggponse times of around 0.11 which are reasonable.
For instance, Molenaar et al. (2016) found residual correlations between 0.07 and 0.16 in the
standardization d& of the HungarianWISICV bl ock desi gn test. T3oe respc

0?2, o-a@re giventhe same values as in the normal baseline scenario Sib.
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SZ: Atruncated ISMIn this scenario, the data are generated using the same setup as iH&isver,

similar as in baseline scenario S2b, we use atruncated normal distribution for thedpgnse times

with truncation at the upper limit, InJ=log(12).

s Askewed ISMn this scenario, the data are generated using the same setup as.in@4sver,

similar as in baseline scenario S3b, the normaktsponse times are transformed using a Boox
transformati on, with the transformation paramet er
Procedure

We conducted 100 replications of each scenario. For the data wetich replication, the Parametric

ISMis fit (ASM) together with its corresponding parametric baseline modd3#. Next, the model fit

of the RISM and the BBM are compared using the Akaike Information Criterion (AIC; Akaike, 1987), the
Bayesian Infanation Criterion (BIC; Schwarz, 1978), the AIC3 (Bozdogan, 1993), the Consistent AIC
(CAIC; Bozdogan, 1987), and the sample size adjusted BIC (saBIC; Sclove, 1987). We used 20 items and
500 subjects. Models are estimated using marginal maximum likelihsibchation in the LatentGOLD

software packageermunt & Magidson, 2013. We used 100 nodes to approximate the two integrals in

the likelihood function (10 nodes for each dimension). Syntax to fit the different models is available

from the website of the first author.
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Results
Falsepositive and true positive rates
Tablel contains the false positive and true positiveratesoftle BM i n t he di fferent s
the false positive rate is obtained by considgiine acceptance rateasf the RISMoverthe PBMin the
scenarios in which the data do not contain item states (S1b, S2b, and S3b). As can be seen frm Table
for the RISMthere are no false positives in the case of a baseline modelwith normally distributed log
response times. However, if the lagsponse time distribution is either truncated (S2b) or skewed (S3b)
the P-ISMis never rejected (falsegsitivesrate 0f1.00) despite the fact that the data do not include
item states Similarly, the true positive rate is obtained by consideringabee ptance ratesf the P-ISM
overthe P-BMin the scenarios in which the data do indeed contain differeaitstates §1s, S2s, and
S33. As can be seen from Taldéhe true positive rate i4.00 in all cases.
Parameter recovery
See Tabl@for the means and standard deviationsof theestimdtesr t he cl ass si ze pa
response time diff er evadaacebfg tivaedehe cotrdtagonbetwadne s, o, t

speed andtatlei Isiceynwarp,0’'isnwhere the data truly cont
As can be seen from the table, if the withtiass distribution of the logesponse times is normal (S1s),
parameters are adequately recovered. However, in the case of truncation (S2s) or skewness (S3s) in the
distribution of the logresponse times, all parameters are biased ex€ept rithe porrelation between
Gbang T

Box plots of the parameter estimate$the odd items in the RSMfor the scenarios that

include item states (S1s, S2s, and S3s) are depictedinigwer t he i tem easandness p:

By, andFigur&f or t he di scr i mjamaltAsexpectpdatnegpareenetersae, d

lWe estimate the Chol es ky dgacnognimeesee tor the easaof greaentatienwaa t r i x
transformed thesPanglapaméinemsddi ni @ong we esti mated | ogi t (
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acceptably recovered in the BMif the data is generatedccording to thenormal item statescenario

(S1s; lefplotin Figure2 and Figure3). However, if the datais gerstedaccording to théruncated

item statesscenarid S2s; middle plotin FiguBand Figure3) or skewed item statescenari S3s; right

plotin Figure and Figure3), the parameters are systematically biased in th&RI. Specifically, the

di fference between the faster and sl owegandtmates i
are recoveredcceptablyi.e., biasseemsmall) by ih @;arecunderestimated. In the case of
skewngisss,unBder esgiismateaed vaermrd di a c gampdsadmio pe.hardtyar a me t e

bi ased in the case of baveveyhamsstandarddrrors.he esti mat es

A SemiParametic Iltem States Model
As we showdin the simulation studgbove theparametrionodelissensitiveto violations of the
normality assumption in Equatich That s, if the distribution of the response times departs ftbm
log-normal(e.g. the response time distribution is truncated due toigem time limit), spurious item
states may be detecteand parameters are biased
As a solution, we propose a sefparametric item states model. The separametrianodel
differs from the model above in that the response times are categorized, thhtisategorized

response timesl,,’, are obtained fronthe raw response timeg,,;, as follows:

Yooa i YN R ) wi t-h z

I
o
-

—

N
N

whereb,are the thresholds at which the response times are categorizediwi#® andbz,, [, i&nd
Z denotes the number of categories that is usdth the threshold$,;and the number of response
time categoriesZ arechosen by the researcheéBut as we illustrate in the real data application,

multiple option can be considered to study theoxgstness of the results.
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Next, within the semiparametridtem states model, the probability of the vector of categorized

response times, & L TT pn...] suljected taan adjacent categories model

° ﬁﬂ_
u )

0 «f HI: 5. BL ged with o6 > 0 (7)

wherer areresponse timeategoryparametergor categoryzof the response times afemi.

Cat egory piachaseransecha way that

B, t T (8)

Equation7 together with the model for the responses in Equatiitand thebivariate normal
di st r i bjatnidamstitdtedhre fubmodel. The free parameters in tsemiparametridSM
include:ag, 1,00, B, B Y &, ,0:00 a fordalliand allz> Q If these parameters are collected in
model parameter vector, then thelog marginal likelihood aesponse vectox, and thecategorized

response time vectdr,Qor the semiparametridSMis given by

/be haf aA B B EB Oe —RE O «tR 06 "0—H Q—Q9

whered o —Rk isgiven by Equatiohand0d <« 1 RE is given by Equation
Baseline model
For the semiparametric item states model, the baselimodel can be derived in a similar way as was

done for theparametricnormal model above. The resulting model is a latent variable model with a two
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parameter model for the responses angatial credit modefor the categorized response times and
correlated random subject effect¥his model can be seen as a generalization of the hierarchical model
for responses and response times of Van der Linden (2007) for categorical response times and fixed item
effects.

SimulationSudy 1B
Inthissimulation stugwe analyze the same datasets as in simulation studlweshowin these data
that 1) the semiparametricapproach as discussed abdvardly suffers from the increased false positive
rate orthe parameter bias as was found for the parametric apprqadhile 2) the semiparametric
approach is still capable of detecting truly different item states in the datiaacceptabldrue positive
rates.

Method

Procedure
We used the same 100 replications of the 6 scenarios as in simulation stuidythasedata,we fitthe
three Semiparametrid SMswith respectively Z=7, Z=5, and Z=3 response time catedoefesred to as
SISM, SISMb, and SISMB). In addition, we fit theorresponding baseline mode{SBM7, SBM5 and
SBMJ.

For the response time categort&an in Equatior6, bpandlpar e 0 and o by def i ni
remaining thresholds, by, 21y arelchosen at the-Auantiles of the observed responsetime
distribution of itemi, where Z is the number of thresholds used to categorize the response times as
defined aboveWe consider thispecific procedure to categorize the response tirassdesiralle
becausedhe thresholds depend on the shape of the response time distribution. In addition, by using this
approach, it does not matter whether the raw response times or therbgponse times are categorized

as the resulting categorization will be equisat.
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For eacldataset the fit of the threeitem state models$&ISM, SISV, andSISMB) is
compared to its corresponding baseline mo&BM7, SBM5 SBM3). All other details concerning
model estimation and model fit (i.e., the fitindices used, soétware, the estimation algorithm, and the
number of nodes) are the same as in the simulation stud$gataxo fit the different modelss
available from the website of the first author.

Results

Falsepositives
In Table3, thefalse positiveates are depicted for the item states mode®& EM, SISV, andS 1SIVB)
inthe scenarios in which the data do not contain item states (S1b, S2b, and S&in).lesseen from
the table,the semiparametric models do not suffer frofalse positivesvith false positive rates of 0.00
for all fitindices exceptthe AIC. The AICfitindex is associated with an increased false positive rate for
the semiparametric nodel with rates between 0.02 and(3.
True Positives
In Tabled, thetrue positives rates ardepicted for the item state models in the case of thersamgos in
which the data truly contain item states (§$523, and S8). True positive rates of 0.80 or larger are
considerechsacceptableAs can be seen frothe table, generally, the true positive rate is acceptable
for all modelsAn exceptionsthe true positive rateof 0.54 for theCAI®f the semiparametric item
states modeWwith Z=3in the case of a truncated response time distribution (scend2gh.S
Parameter recovery
SeeTabléf or t he means and standard deviations of the
response time difference bg t’aedehecotrdtagomstweart es, o, t

speed and ability, p, in the scenario’s where the
As can be seen from the table, m and p are recove

esti mat e gareonbtcldse tilre ttue parameter value. However, this is not surprising as both
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0 a g@ate dependentupon the scale of the categorized response times which differs for different
number of response ti me cajBaugo miod £ ardiabad ipf, f & rheen tc
bet wgamg 6twhi ch i s giaunaffactedhy thidscdlerdifference. This parameteris
adequately recovered.

Box plots of the parameter estimates of the odd items in the sparametric item state models
(SISM7: top row; 8VI5: middle row; and $SM3: bottom row) for the scenarios thatinclude item
states (S1s, S2s, and S3s) are depicted in Mdar¢he item easiness paramnt e gasn d;, &fd
Figuresf or t he di s cr i mjam atNateagainhat thesersoteds hawve been fitto the
same simulated data sets as used for the parametric model in F2qure Figure3. As can be seen, for
all scenarios and akemiparametrianodels, the estimates tend to be unbiasedh reasonable
standard errorsThat is, the parameters are acceptably recovered irrespeactithes distribution of the
response times.

Overall onclusion

As appears from the resultd simulation study Aand BB above, if the logresponse time distribution
departs from normality but a normal item states model is applied nevertheless, spueonsiates

may be detected by the AIC, BIC, AIC3, CAt&GaBIC if the data dwot contain different item states. If
the data do contain different item states, the normal item states model is still able to detect these,
however, parameter estimates areédsed.The proposed class of seqparametric model with Z=7, Z=5,
and Z=3 were shown to not suffer from these problems while the power to detect different item states
in the data was hardly affected.

[llustration

Data

The data comprise the responses aadponse times of @8Dutch high school students to the 23 items

of theso-called“puzzles t est . Thi the Rawsprogressivelmatsces Rawenl1962).
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Each item consists ofraatrixthat constitutes a patterut with one element missig. The respondents
have to indicate which of 8ptional elements would complete the pattern. The items are administered
using a 40 seconds deadlies a result, the observed response times show truncation effects with the
severity of the effectincreasgtor the lateritem$ecause the items are of increasing difficUB§y
respondents are omitted from the analyses because they showed suspiciously small response times (1

secondor fasten resulting in a sample size of 6&3pondents.

To the data we ftedthe same parametric and serparametric baseline and item states models
as considered in the simulation study. We were interested to see whether the results (parameter
estimates and model fit) are similar across the different approaches. Parameteatistn and
assessment of model fitis conducted using the same procedure as outlined in the simulation study

section.
Results

See Tabléfor the model fitindice®f the different models. As can be seen, for all sgrarametric and
parametric approaches, th&Mis the best fitting model according the indices consideredne
exception is the 8M3 which is favored overlSMB by the CAIC. However, in the simulatitndy, the
CAIC was already shown to have poor powerin the case of Z=3 and truncation, sek Wable
therefore accepttheSMmodel and look into the pameter estimates within this model for the semi

parametric and parametric approach.

In Table7 for the parameters estimates of the class size parameatghe response time
difference between the states t &h,e v a r,j 4 @nd the correlation between speed and ability,
p,in theISMmodels As can be seen, in the parametric model@®), the estimate of théasterclass
size T, is substantiallymaller than in the semparametric models (5M), .16 versus .3844. In

addition, the estimate oftisrelativelystable across the serparametric models. The estimate of the



SemiParametric RT models 20

response time difference 9o , fl uct uat e@aambtecmedele Hoevehtlss isssrepatied

as the ,escawki ofi & i s a parameter, depends on the
al so refl ected i n t hgwhiehsliffearsmaocssdhe sesphranietticamodeslhe anc e
correlationbetweenf,a n ¢( it . whichwemalculated fromthe estimate fo, a® &) isdhhowever

stable across the serparametric models. In addition, thesstimatedcorrelationdoes not differ

importantly between the parametric and sefparametric approaches.

InFHgure6p ar amet er &,Sif Ao,mead s dapidted for the different models. In
the figure, the items are ordered accordinghe estimates in $SM3for clarity. As can be seen, the
estimates of the seraparametric models are close to each other. The estimates of the parametric
approach deviate most notably fromthesemiar amet r i ¢ ga p phrThifiscbhngientrwit 3

what we found in the truncation scenario of the simulation study.

To conclude, results seem to be stable between the seanametric approaches. Thatis, the
exact number of response time categories does affect the results importdhtye are however
notable differences between the semiarametric approach and the parametric approach in the class
size parameterny, and the item parameterdlevertheless, as we know from the simulation study that
the semiparametric models are less sensitive to viadas of normality in the logesponse times, and
because the results of the serparametric models are largely insensitive to the number of response
time categories, we trust the results from the separametric better than those of the parametric

model.

Discussion
In the simulation study we established that tharametridtem statesmodelisassociated witla
substantial false positive rand parameter bias the logresponse times are not normally distributed.

The proposed solution to this problemsamiparametric modefor the responses and categorized
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response times was shownmmt suffer from this problem, while the true positive rates are still
comparable to those of thparametric model

Generally, categorization of continuous variabledissouraged due to the loss of information
about individual differences, smaller power, and the arbitrary nature of the thresholds (Cohen, 1983;
MacCallumZhang, Preacher, & Rucker, 2002; Maxwell & Delaney).1898e present mixture
framework it can bwever bedesirableto categorize the response times such that violations of the
assumed distribution do not affect the results. In additiase, showed that althougthe poweris
indeed affectedfor our parameter choices in the simulation study, this efigas not large. However,
in other situations not covexdby the simulation studythe loss of powemay be larger. The present
approach can therefore be seen as a conservative approach to the wathiject analysis of responses
and response times. Furgiimore,althoughthe number and the location of the thresholds are indeed
arbitrary, in the simulation study and the real data application, we showed that results are largely
consistent across models with different numbers of response time categtmipsactice we thus advice
to always fit the semparametric approach using different numbers of response time categories to
investigate the stability of the results.

With respect to the exact categorization of the response times, we chose a qubaskal
approachresulting in equadistart scores that are uniformly distributed. This approach was shown to
perform well in the simulation study in terms of parameter recovery and power. However, an
alternative approach might be to use the mpdintswithin each céegory such that the categorized
distribution resembles the observed response time distribubetter.

In the present paper, we demonstrated that if the data do not contain classes (item states) with
different response and response time propertasl a rormal distribution is wrongfully assumed for the

log-transformed response times, spurious classes may arise. The same will hold for the case where there



SemiParametric RT models 22

are two classes underlying the data, if a normattegponse time model is applied to these data,
additional classes may be detected.

In the present undertaking, we assumed the classes to be independent. However, itwould be
interesting to consider relaxing this assumption in future work by extending the present approach to
include a Markov structure on #hitem states.
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Tablel.
False positive rates and true positive rates of thRkSR as compared to its baseline modeBM for the

di f ferent dithoutitensstaeen(8lb,iS2b, arsd S3b).

Data BIC AIC AIC3 CAIC saBIC
False positive rate S1b: Nrmalbaseline 0.00 0.00 0.00 0.00 0.00
S2b: Tuncated baseline 1.00 100 100 1.00 1.00
S3b: Skewed baseline 1.00 1.00 1.00 1.00 1.00
True positive rate  S1s: Mrmalitem states 100 100 100 100 1.00
S2s: funcated itemstates 1.00 1.00 1.00 1.00 1.00
S3s: Skeweditemstates 1.00 1.00 1.00 1.00 1.00

Table2.
Means (me) and standard deviations (sd) of pa@ameter estimates in the-FSMin the cases where the

data truly contain item states (S1s, S2s, S3s). The true parameter values are in brackets.

Scenario nm (0. o (0. a2 (0.06) p (0.
me < me sd me sd me sd

Sis: Mrmal 0.50 0.04 0.50 0.05 0.06 0.01 0.40 0.05

S2s: lunc 0.29 0.02 0.67 0.01 0.03 0.00 0.38 0.05

S3s: Skewec  0.84 0.01 2.53 0.08 0.38 0.03 0.39 0.05
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Table3.
False positive rates of the different item states model$S®7,SISM5, and $SM3) as compared to
their baseline models without item states-B8317, SBM-5,andS B M3 ) f or t he di fferent

withoutitem states (S1b, S2b, and S3b).

Model Data BIC AIC AIC3 CAIC saBIC
SISM7: Sempar. item states with Z=7  S1b: Mrmalbaseline 0.00 0.03 0.00 0.00 0.00
S2b: Tuncated baseline  0.00 0.08 0.00 0.00 0.00
S3b: Skewed baseline 0.00 0.04 000 0.00 0.00
SISM5: Sempar. item states with Z=5  S1b: Mrmalbaseline 0.00 001 0.00 0.00 0.00
S2b: Tuncated baseline 0.00 0.06 0.00 0.00 o0.00
S3b: Skewed baseline 0.00 0.02 0.00 0.00 0.00
SISM3: Sempar. item states with Z=3  S1b: Mrmalbaseline 0.00 001 0.00 0.00 0.00
S2b: Tuncated baseline 0.00 0.01 0.00 0.00 0.00
S3b: Skewed baseline 0.00 0.01 0.00 0.00 o0.00

Note.Non-zero rates are in boldface

Tabled.
True positive rates of the different item states modeld$$17, SSM5 and SSISM3) as compared to
their baseline models without item states-8817, SBM5,and BM3) fot he di f f erent dat a

with item states (S1s, S2s, and S3s).

Model Data BIC AIC AIC3 CAIC saBIC
SISM7: Sempar. item states with Z=7  S1s: Mrmalitem states 1.00 100 1.00 099 1.00
S2s: funcated itemstates 1.00 1.00 1.00 0.88 1.00
S3sSkeweditemstates 1.00 1.00 1.00 100 1.00
SISM5: Sempar. item states with Z=5  S1s: Mrmalitem states 100 100 1.00 0.99 1.00
S2s: Muncated item states 0.99 1.00 1.00 0.82 1.00
S3s: Skeweditemstates 1.00 1.00 1.00 1.00 1.00
SISM3:Semipar. item states with Z=3  S1s: Mrmalitem states 099 100 100 091 1.00
S2s: funcated itemstates 0.94 1.00 1.00 054 1.00

S3s: Skeweditemstates 1.00 1.00 1.00 0.95 1.00
Note.Rates smaller than 0.80 are in bold face
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Tableb.
Means (me) and standard deviations (sd) of the parameter estimates int8&Mn the cases where the

data truly contain item states (S1s, S2s, S3s). The true parameter values are in brackets.

Model Scenario m (0. 0 (0.50) o2 (0.06) p (0.
me sd me sd me s me s
SISM7 S1s: Mrmal 0.50 0.04 2.32 0.76 0.16 0.05 0.40 0.05
S2s: func 0.50 0.07 1.57 0.80 0.09 0.04 0.40 0.05
S3s: Skewec  0.49 0.04 2.30 0.78 0.16 0.05 0.40 0.05
SISM5 S1s: Mrmal 0.50 0.05 1.09 0.36 0.26 0.08 0.40 0.05
S2s: func 0.50 0.07 0.76 0.35 0.16 0.05 0.39 0.05
S3s: Skewec  0.49 0.04 1.09 0.37 0.26 0.08 0.40 0.05
SISM3 S1s: Mrmal 0.49 0.06 1.03 0.32 0.50 0.12 0.40 0.05
S2s:Munc 0.49 0.07 0.87 0.33 0.37 0.09 0.40 0.05
S3s: Skewec  0.48 0.05 1.04 0.33 0.51 0.12 0.40 0.05

Tableb.

Model fitindices for the different parametric and seqparametric models in the illustration.

Z Model BIC AlIC AIC3 CAIC saBIC
Parametric - P-ISM 34752 34122 34264 34894 34302
P-BM 35493 35075 35169 35587 35194
Semiparametric 7 SISM 68359 67320 67554 68593 67616
SBM7 68493 67667 67853 68679 67903
5 SISV 58826 57991 58179 59014 58229
SBM5 58932 58310 58450 59072 58487
3 SISMB 44921 44290 44432 45063 44470
SBM3 44959 44541 44635 45053 44660

Note For each pair of ISM and BM models, the smallest fitindices are in bold face.
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Parameterestimates e st . ) and standard errors
di fference between the states,
bet ween speed and ability, p.
Model o o2

est se est se est se est se
P-ISM 0.16 0.01 -0.74 0.01 0.13 0.01 -052 0.02
SISM/ 044 0.04 -1.05 0.08 0.72 0.07 -0.48 0.04
SISM5 044 0.04 -1.32 011 1.16 0.10 046 0.04
SISM3 038 0.04 -2.06 0.18 253 024 -0.49 0.05

(se)
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8 and thecarelatianr i
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Figure Captions
Figurel. Normal Q@plots and histograms of the lagsponse time distribution for an example item

within the baseline scenarios (S1b, S2b, and S3b).

Figure2. Box plod twsh i d fe;(greid padfheber estimates forthe odd items inthe
parametric normal model #SM) in the different scenarios thatinclude item states (S1s, S2s, and S3s).

The solid grey | i neg(deomoetre g rteluppéngmweeg). vaanidu s o f f

Figue 3. Box plod twh i afe;jdgrepeacmeter estimates forthe odd items in the
parametric normal model @SM) in the different scenarios thatinclude item states (S1s, S2s, and S3s).

The solid greylinedenoteseéh t r ue y(au pupeesr odg r exyowérgraykeng). and «a

Figured. Box plod twdh i d fe;(dgrekdgadPndier estimates of the odd items in the different
semiparametric models ($SM7, SSM5, and $SM3) inthe different scenarios that include item states
(S1s, S2s, and S3s). The sodl(il &dwgerreyrlg{yppergrdyern o taa sl

line).

Figure5. Box plod twsh i dfe,ldrelpepacomeatr estimates forthe odd items in the different
semiparametric models (BSM7, SSM5, and $SM3) in the different scenarios thatinclude item states
(S1s, S2s, and S3s). The so(iug pgerrey rleiyawergrdyer o taa g

line).
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Figure6. Pl ot B, 0sfa & hpdranfieter estimates for the normal item states modell§i;
solid black line) and the sermparametric item states model {{ISM7, SSM5, and $SM3; striped grey

lines). In each plot, the items are ordered on basis of the estimate$3iViS for clarity.
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Scenario
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S1s: Normal
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Scenario
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Scenario
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