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Abstract 

Current approaches to model responses and response times to psychometric tests solely focus on 

between-subject differences in speed and ability. Within-subjects, speed and ability are assumed to 

be constants. Violations of this assumption are generally absorbed in the residual of the model. As a 

result, within-subject departures from the between-subject speed and ability level remain 

undetected. These departures may be of interest to the researcher as they reflect differences in the 

response processes adopted on the items of a test. In this paper, we propose a dynamic approach 

for responses and response times based on hidden Markov modeling to account for within-subject 

differences in responses and response times. A simulation study is conducted to demonstrate 

acceptable parameter recovery and acceptable performance of various fit indices in distinguishing 

between different models. In addition, both a confirmatory and an exploratory application are 

presented to demonstrate the practical value of the modeling approach.  

 

Keywords: Response time modeling; Hidden Markov modeling; Item response theory; Latent class 

models; Dynamic modeling; conditional independence. 
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Inferences about individual differences in psychological abilities have traditionally been based on 

latent variables that are operationalized using measurement models for the responses to test items. 

Popular measurement models include for instance the Rasch model (Rasch, 1960), the two 

parameter model (Birnbaum, 1968), and the graded response model (Samejima, 1969). Due to the 

increased popularity of computerized testing, response times have become available in addition to 

the responses. Such response times may aid in estimating the latent ability because of the “speed-

accuracy tradeoff” – that is, faster responses may tend to be less thought out.  

Research has focused on how to incorporate this additional source of information 

concerning individual differences in the existing measurement models. Main motivations to include 

the response times in the measurement model have been to increase measurement precision about 

the latent ability (e.g., Ranger & Ortner, 2011; Van der Linden, Entink, & Fox, 2010), to test 

substantive theories about cognitive processes (e.g., Klein Entink, Kuhn, Hornke, & Fox, 2009; Van 

der Maas, Molenaar, Maris, Kievit, & Borsboom, 2011) and personality constructs (Ferrando & 

Lorenzo-Seva, 2007a; 2007b), and to improve test construction (item calibration, item selection in 

adaptive testing, etc.; Van der Linden, 2007). 

Currently, the dominant approach to the analysis of responses and response times is the 

hierarchical generalized linear modeling approach. In this approach, a latent speed variable is 

operationalized using a measurement model for the response times. This measurement model is 

subsequently connected to the measurement model for the responses. For instance, the person and 

item parameters from both measurement models can be considered as random variables which 

have a common multivariate normal distribution across the models (Glas and van der Linden, 2010; 

Klein Entink, Fox, & van der Linden, 2009; Loeys, Legrand, Schettino, & Pourtois, 2014; Van der 

Linden, 2007; 2009). Other researchers have simplified this model by only assuming a common 

distribution for the speed and ability variable (Molenaar, Tuerlinckx, and Van der Maas, 2015a; 

Ranger & Ortner, 2012; Wang, Chang, & Douglas, 2013; Wang, Fan, Chang, and Douglas, 2013). 

Alternatively, the speed and ability variable are assumed to be uncorrelated, but with linear cross-
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loadings of the response times on the ability variable (Furneaux, 1961; Molenaar, Tuerlinckx, and 

Van der Maas, 2015b, Thissen, 1983). This approach has been extended to include non-linear cross-

loadings to accommodate personality data (Ferrando and Lorenzo-Seva, 2007a; 2007b; Molenaar, 

Tuerlinckx, and Van der Maas, 2015b; Ranger, 2013).   

Between-subject differences. 

All the approaches above have in common that they solely model differences between subjects in 

ability and speed. That is, the main effects of the respondents’ speed and the respondents’ ability 

are captured by the latent speed and latent ability variables. As these latent variables are static 

variables, speed and ability are assumed to be constant within-subjects (Van der Linden, 2009a; 

Meng, Tao, & Chang, in press; Goldhammer & Kroehne, 2014). Thus, it is assumed that respondents 

work with a constant speed and a constant ability through the test. Statistically, this assumption is 

relatively unproblematic as violations of this assumption can -at least partly- be accommodated by 

modeling the conditional dependence of the responses and the response times of a given item (see 

Meng, Tao, & Chang, in press; Molenaar et al., 2015b; Ranger and Ortner, 2012). In addition, the 

effect of differential speededness can be controlled for by design (Goldhammer & Kroehne, 2014; 

Goldhammer, 2015; Van der Linden, 2009b; Van der Linden, Scrams, & Schnipke, 1999). However, 

these approaches, while accounting for violations of the assumptions, do not allow the researcher to 

study how speed and ability develop within-subjects.  

Within-subject differences. 

There are various reasons why a researcher might be interested in within-subject differences in 

speed and ability (Molenaar, 2015). First, the researcher may want to assign different scores to 

different speed-ability compromises (see Maris & Van der Maas, 2012). That is, a fast correct 

response might be given more credit as compared to a slow correct response. A second reason, 

which is the focus of this paper, is that a researcher might be interested in the underlying process 

that resulted in the response. That is, there may be differences in the response process of an 

individual throughout the test administration. These differences may be due to the use of different 
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psychologically relevant solution strategies, for instance, if different cognitive strategies are being 

used to solve the test items (Van der Maas & Jansen, 2003). Or, there might be undesirable 

strategies such as faking on some of the items of a test (Holden & Kroner, 1992) or the use of item 

preknowledge (McLeod, Lewis, & Thissen, 2003). Other examples include differences due to factors 

related to ‘testing’, for instance, learning and practice effects (Carpenter, Just, & Shell, 1990), post 

error slowing (Rabbit, 1979), and fatigue and motivation issues (Mollenkopf, 1950). 

If the differences in response processes are large enough and if the response processes 

differ in their execution time, the measurement properties of the faster responses will differ from 

those of the slower responses reflecting that a different process underlies the measurement. If 

respondents stick to the same response process on all items of a test, this effect will be captured by 

the between-subjects speed and ability variables. However, if respondents switch between response 

processes during test administration, this is a within-subjects effect.  

Existing approaches.  

As discussed above, in the hierarchical generalized linear models, the within-subject effects are 

absorbed in the residual of the model. Therefore, currently, researchers have focused on detecting 

different response processes by considering the residual response times. These residuals can be 

tested for aberrances: For instance, extreme residuals may suggest the use of different response 

strategies (Van der Linden, & Guo, 2008) or trends in the residuals may suggest an effect related to 

‘testing’ (e.g., learning during the test or a decreased motivation; Van der Linden, Breithaupt, Chuah, 

& Zhang, 2007; or warming up and slowing down effects; Van der Linden, 2009).  

Besides the residual response time approach, the IRT tree approach is suitable to detect 

within-subject differences in responses and response times (Partchev & De Boeck, 2012). In this 

approach, the continuous response times are dichotomized into a fast and slow category. As a result, 

the fast responses can be investigated separately from the slow responses to reveal possible 

differences among them. Finally, a suitable approach to detect within-subject differences in speed 

and ability due to rapid guessing behavior is the hierarchical mixture modeling approach by Wang 
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and Xu (2015). In this model, faster responses are assumed to be the result of a guessing process 

which is modeled separately from the slower responses.   

Aim of the present study 

In this paper, we adopt a dynamic modeling approach to separate the between-subjects variability 

from the within-subjects variability (Molenaar, 2004). Specifically, using a hidden Markov modeling 

framework (e.g., MacDonald, & Zucchini, 1997; Vermunt, Langeheine, & Bockenholt, 1999) we 

distinguish the between-subjects ability and speed variables from the within-subjects states 

variables (Hamaker, Nesselroade, & Molenaar, 2007). That is, respondents are assumed to work at 

an overall speed and overall ability level through the test, but for each item, the response may be 

the result of a different state. The states are Markov dependent and may differ in their 

measurement properties.  As a result, inferences can be made about the nature of the response 

processes underlying a given test. The present approach is embedded in the hierarchical generalized 

linear modeling framework and therefore applicable to the modeling instances discussed above. This 

approach has the advantages over the existing approaches that 1) it combines the response and 

response time information into a single measure for inferences about dynamic response behavior 

instead of only considering the residual response times; 2) it takes the dependency of the responses 

and response times to subsequent items into account (e.g., if a respondent guesses on a given item, 

he or she may be more likely to guess on the next item); 3)  it enables the formulation of an explicit 

model-based multivariate approach to test for dynamics in the response behavior of a given test 

administration; 4) it enables researchers to specify theoretical constraints to identify specific answer 

strategies; 5) it takes the possible differences in the measurement properties of the different 

solution strategies or response processes into account; 6) it avoids the dichotomization of the 

continuous response times as in the IRT tree approach, hereby we retain all information about 

individual differences in the response times; and 7) it provides a statistically justified distinction 

between faster and slower responses instead of an ad-hoc chosen cut-off point.  All these 

possibilities will be demonstrated in the present paper. 
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The outline is as follows: First we derive the hidden Markov modeling approach to the 

analysis of responses and response times. Next, we present a simulation study to establish the 

parameter recovery of the model and to study the performance of various fit indices in 

distinguishing between models with and without different item states. Then, we present an 

exploratory application to the knowledge subtest of the Intelligence Structure Test (Amthauer, 

Brocke, Liepmann, & Beauducel, 2001) and a confirmatory application of the model to data on the 

balance scale task in children (Van der Maas & Janssen, 2003). We end with a general discussion of 

the results. 

 

Hidden Markov Modeling of Responses and Response Times 

To account for within-subject differences in the measurement properties of faster and slower 

responses, we assume an item specific latent class variable, Cpi, to underlie the response, Xpi, and the 

response time, Tpi of respondent p on item i. In the following, we assume that the response times 

follow a log-normal distribution such that the log-response times are normally distributed (see e.g., 

Thissen, 1983; Van der Linden , 2007). The latent states of the latent class variable, Cpi = 0, …, K-1, 

may represent different response processes or different solution strategies, where K represents the 

number of states which is chosen by the researcher as will be explained below. As the latent state on 

item i may depend on the latent state on item i-1, we assume a Markov dependency of order 1 for 

Cpi. Let xp denote the vector of item responses, xp = [Xp1, Xp2, … Xpn], let tp denote the vector of log-

response times, tp = [lnTp1, lnTp2, …, lnTpn], and let cp denote the vector of item states,  

cp = [Cp1, Cp2, …, Cpn], then the joint data density is given by  

 

            
   

     
                                   

 

   

   

     

   

     
 

            (1) 



   Markov Response Models      8 

were        is the initial state probability which models the probability that a response belongs to a 

given state at item 1. In addition,                is the transition probability which models the 

dependency between the states on subsequent items. Note that our approach of introducing 

Markov dependent item states is one possibility to account for dynamic behavior, for other 

possibilities see Hamaker et al. (2007), Kempf (1977), Verhelst and Glas (1993), and Wang, Berger 

and Burdick (2013).  

In this model, differences in item and person properties are not taken into account. The 

latent class variables in cp will be conflated by differences between respondents in overall ability 

(θp), overall speed (τp), and by differences between items in overall easiness (βi) and overall time 

intensity (νi). That is, we need to specify a measurement model for the responses and the response 

times to separate item effects, person effects, and the effect of the latent state Cpi. We follow 

Molenaar et al. (2015a), Ranger & Ortner (2012), Ranger (2013), Wang, Chang et al. (2013) and 

Wang, Fan et al. (2013), and treat the item parameters as fixed and the respondent parameters as 

random. Note that Glas & Van der Linden (2010), Klein Entink, Fox, & van der Linden (2009), and Van 

der Linden (2007) proposed measurement models for responses and response times incorporating 

both random person and random item effects. 

By assuming independence between xp and tp conditional on θp and τp within the states,   , 

the bivariate data density function factors as follows:  

 

                                          

  

As a result, we can specify separate measurement models for the responses and the response times 

within the latent states. In the hierarchical generalized linear modeling approach, models that have 

been considered for the responses are the Rasch model (Loeys, Legrand, Schettino, & Pourtois, 

2014), the two-parameter model (Thissen, 1983; Molenaar et al., 2015a, 2015b), the graded 

response model (Molenaar et al., 2015b; Ranger, 2013), the linear factor model (Ferrando & 
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Lorenzo-Seva, 2007b), and the three-parameter model (Van der Linden, 2007; Klein Entink, Fox, & 

Van der Linden, 2009). Here we specify a two-parameter model for binary item scores within each 

state, that is 

 

                          
   

                
     

 

 

   

 

 

where ω(.) is the logistic function. Parameters αsi and βsi denote the discrimination and easiness 

parameters in state Cpi = s on item i.  

For the response times, measurement models that have been considered are a log-normal 

model (Thissen, 1983; Van der Linden, 2007), a proportional hazards model (Wang, Fan, Chang, and 

Douglas, 2013; Loeys, Legrand, Schettino, & Pourtois, 2014), a linear transformation model (Wang, 

Chang, & Douglas, 2013), or a categorical model for discretized time (Ranger & Kuhn, 2012; 2013). 

Here we specify a log-normal model for continuously distributed response times conditional on τp 

within each state, that is, the vector of log-response times,  tp, is assumed to have a conditional 

multivariate normal distribution with uncorrelated components (      , that is, 

 

             
 

      
 
      

 

 

                  
 

   
   

      

 

with 

                                                with δ0=0, and δ0 ≤  δ1 ≤ … ≤ δK-1  

 

where νi is the time intensity parameter and σεi
2 is the residual log-response time variance. In 

addition, δs denotes the expected speed for state Cpi = s. For identification reasons, we fix 0=0. In 

addition, the constraint δ0 ≤  δ1 ≤ … ≤ δK-1 ensures that the states are decreasing in their expected 
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response time. Thus, if we assume two states, δ1 denotes the mean difference in expected speed 

between state 0 and 1, where state 1 has a larger speed (and smaller expected response time). 

Therefore, a response Xpi has a higher probability to be from state 0 if the corresponding log-

response time is closer to νi  – τp and the response has a higher probability to be from state 1 if the 

corresponding log-response time is closer to νi - δs – τp. 

Likelihood function 

Here, we focus on the log marginal likelihood of the data to facilitate marginal maximum likelihood 

estimation discussed later. To this end, we assume a bivariate normal distribution for the continuous 

latent variables θp and τp, with VAR(τp) = στ
2, covariance σθτ, and VAR(θp) = σθ

2 =  1. The log marginal 

likelihood of response vector xp and the log-response time vector tp given the model parameter 

vector, , is then given by 

 

                                                

   

   

   

   

   

   

 

  

                

 

   

             

 

where the initial state probability is parameterized as             with         
   
   . In 

addition, the transition probabilities are parameterized as                         with  

            
   
   . That is, there are K initial state probabilities and K×(K-1) transition 

probabilities. Note that we assume time homogeneity of the Markov chain (Bacci, Pandolfi, & 

Pennoni, 2014), that is, the transition probabilities are equal for all subsequent items. 

The Markov-dependent item states model. 

The model described above is referred to as the Markov-dependent item states model. The Markov 

structure of this model is thus characterized by time homogeneity of the n latent class variables each 

with K states. The free parameters in  for this model are the n × (2×K) item parameters for each 
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state (αsi, βsi), the 2 × n response time parameters (i, and σi
2), the K-1 state response time 

parameters (s, for s ≠0), the K-1 initial state parameters ( s, for s ≠ 0), the K×(K-1) transition 

parameters ( s|r, for s ≠ 0), and the population parameters (στ
2 and σθτ). The total number of 

parameters is thus equal to n × (2×K) + 2 × n + 2 × (K-1) + K × (K-1) + 2.  See Figure 1 for a schematic 

representation of the model.  

In the Markov independent item states model, two features are worth mentioning. The first 

feature is that the response time parameters are assumed to be equal across states while the item 

response parameters are allowed to differ across states. Our main interest is to study the differences 

across states in the item discrimination and item easiness parameters to make inferences about the 

response processes underlying the item responses. The response times are used as a tool to 

accomplish this. Differences between states in the item time intensity and residual variance are 

therefore not our main interests and make the model needlessly complex (it would increase the 

number of item parameters from 2×K+2 to 4×K+2). Instead, we used the δs parameterization (which 

can be seen as a uniform difference across states in the time intensities) to identify -in a 

parsimonious way- the faster states in terms of the faster responses and the slower states in terms 

of the slower responses. We used a similar line of reasoning for the assumed homogeneity of the 

Markov states. That is, we could have introduced item specific transition parameters making the 

Markov states time heterogeneous. However, this will increase model complexity severely while 

these additional parameters will not directly contribute to our substantive understanding of the 

differences between faster and slower responses. We note however, that if it is of theoretical or 

practical interest, it is certainly possible to relax the time homogeneity assumption and the 

assumption of state independent time intensity and residual variance parameters.  

The second feature involves the fixed item effects in the model above. In the log-normal 

model by Van der Linden (2007), the item effects are considered as random effects (see also Glas & 

Van der Linden, 2010). Here, we follow Molenaar, Tuerlinckx, and Van der Maas (2015b), Ranger and 

Ortner (2012), Van der Linden & Guo (2008), Wang, Chang, and Douglas (2013), Wang, Fan, Chang, 
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and Douglas (2013) and treat the item effects as fixed. Note that Molenaar, Tuerlinckx, and Van der 

Maas (2015a) have shown that neglecting the randomness in the item parameters does not notably 

bias the results of the log-normal model for 20 or 40 items. We do however note that random item 

effects may be valuable in some research situations (see De Boeck, 2008). 

 

Special cases 

We consider two special cases of the Markov-dependent item states model above. The first special 

case arises when the Markov dependencies between the latent class variables in cp are dropped 

from the model, that is, 

 

                            

 

with time homogenous state probabilities 

 

                       for i = 1, …, n. 

 

Thus, for each item, the respondents have a probability of  s to respond according to the state s 

measurement model. We will refer to this model as the independent item states model. This model 

follows from the Markov dependent item states model by omitting the K × (K-1) transition 

parameters (i.e., if πs|r = πs and πs|s = πs the transition parameters cancel out of the likelihood 

equation). That is, the probability to be in class s at a given item does not depend on the state at the 

previous item and equals πs for all items: for instance, this will be the case when the response 

strategy is chosen for each item independently, irrespective of the strategy employed to answer the 

previous items. The model contains: n × (2×K) + 2 × n + 2 × (K-1) + 2 parameters and may be a useful 

baseline model to make inferences about the presence of dependencies between the item states by 

comparing its fit to the fit of the Markov-dependent item states model.  If, in the independent item 
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states model, one specifies K=2, α0i = α0 = 0 and β0i = β0 = ω-1(g) where g is a guessing probability, 

then the resulting model is equivalent to the mixture model by Wang and Xu (2015) for rapid 

guessing behavior. 

The second special case arises when we omit all latent class variables, cp, from the model. 

That is, in the independent item states model, we specify π1 = 1 and αsi = αri, βsi = βri, and  

δs = 0 for all s and r. The model thus includes 4 × n  + 2 parameters and is equivalent to the 

hierarchical generalized linear model of Van der Linden (2007) with random person effects and fixed 

item effects (see Molenaar et al., 2015a; Ranger & Ortner, 2012; Ranger, 2013; Wang, Chang et al., 

2013; and Wang, Fan et al., 2013). This will be appropriate when any given respondent chooses one 

single response strategy for all items and sticks to it during the entire test, for instance. This model 

without item states constitutes a useful baseline model to make inferences about the presence of 

dynamic item states by comparing its fit to the Markov-dependent and independent item states 

models.  

Exploratory and confirmatory use 

The dynamic item states models above can be used in an exploratory and confirmatory application. 

In an exploratory application, there are no expectations about the item states underlying the data. In 

such a case, all parameters are estimated freely to infer differences in measurement properties 

across faster and slower item responses. As the Markov-dependent item states model contains  

n × (2×K) + 2 × n + 2 × (K-1) + K × (K-1) + 2  parameters and the independent item states model 

contains n × (2×K) + 2 × n + 2 × (K-1) + 2 parameters, the full unconstrained model becomes very 

demanding for K>2. In exploratory settings we therefore advise that for moderate sample sizes (500 

– 1000), K=2 is used. In the simulation study below we demonstrate that this model is feasible for 

N=500 and N=1000. We think that, in an exploratory setting, additional states (K>2) will not capture 

substantial patterns in the data that are missed by the K=2 model for sample sizes around 500-1000. 

That is, if the data truly contain 5 states differing in their expected response times, the K=2 

exploratory model will be a reasonable approximation that captures the most important patterns in 
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the data. The slow state will contain the measurement properties of the slower states in the data, 

and the fast state will contain the measurement properties of the faster states in the data. If a 

researcher wants to know how many states are truly in the data, either a very large sample size 

should be used, or ideally, a theory about the number of states is considered to enable a 

confirmatory application, as explained below.  

 In exploratory settings, the item parameters αsi and βsi and δs are used to quantify the 

differences in measurement properties between the faster and slower item responses. That is, if αsi 

and/or βsi are unequal across states, measurement invariance is violated indicating that the faster 

responses measure a psychometrically different state than the slower responses. Therefore, in some 

cases the differences among the states in αsi and βsi may be used to interpret the item states. For 

instance, fast guessing is characterized by discrimination parameters that approach 0 and easiness 

parameters that approach the guessing level in the fast state (e.g., ω-1(0.25) = -1.10 in the case of a 

multiple choice test with four answer options). In addition, item preknowledge will be reflected by 

small discrimination and high easiness parameters in the fast class. However, as with measurement 

invariance and differential item functioning research, sometimes it is unclear why a violation occurs. 

This can then be addressed in follow up research (e.g., explaining the invariance using covariates, 

see Steinmayr, Bergold, Margraf-Stiksrud, & Freund, 2015).  

 In a confirmatory setting, the number of parameters can be decreased substantially by 

introducing constraints (e.g., by fixing the item easiness parameters to reflect a fast guessing state). 

Hereby, models with K>2 are feasible depending on the number of states expected theoretically. 

Identification of these models depends on the exact constraints that are introduced by the 

researcher. It is therefore important that in confirmatory applications of the model, the modeling 

results are carefully checked on signals of non-identification (e.g., large standard errors and ill 

conditioning of the Hessian matrix). We also encourage researchers to use multiple sets of starting 

values in both the exploratory and confirmatory applications of the present model.  
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 Another issue in confirmatory applications is related to testing the number of states in the 

data. That is, multiple theories might exist that predict a different number of states. In the 

simulation study, we identify fit indices that are suitable to select among models with either K=1 

(i.e., a static model) or K=2. Similarly as in our simulation study below, for K>2 it has been found that 

the various information-based fit indices, that is, the Bayesian Information Criterion (BIC; Schwarz, 

1978) performs satisfactorily while the Akaike Information Criterion (AIC; Akaike, 1987) tends to 

under-penalize model complexity (Celeux & Durand, 2008; Visser, Raijmakers, & Molenaar, 2002). 

The bootstrapped likelihood ratio statistic is also known to be suitable to determine the number of 

states in a Markov model (Gudicha, Schmittman, Tekle, & Vermunt, 2015). 

Estimation 

The parameters from the models can be estimated using Marginal Maximum Likelihood estimation 

(MML; Bock & Aitkin, 1981). To this end, the models above are implemented in the LatentGOLD 5.0 

software package (Vermunt & Magidson, 2013). The integrals in the likelihood function are 

approximated using Gauss-Hermite quadratures with 10 nodes per dimension (100 in total). This 

function is optimized using the EM algorithm and the Newton-Raphson algorithm. In the E-step of 

the EM algorithm, the Baum-Welch forward-backward algorithm is used to avoid the computation of 

the joint density of the latent class variables in cp which is numerically demanding (Baum, Petrie, 

Soules, & Weiss, 1970; Vermunt, Tran, & Magidson, 2008). To facilitate parameter estimation, the 

logit of the initial state probability parameters, πs’ and the transition probability parameters, πs|r’, 

are estimated. In addition, στ
2 and σθτ are estimated by estimating the corresponding elements from 

the Cholesky decomposition of the covariance matrix of θ and τ, denoted στ
2’ and στθ’. Note that σθ

2 

is not a free parameter in the model. The syntax to fit the different models is available from the site 

of the first author. 

Simulation Study 

The simulation study presented here served multiple purposes. First we wanted to establish whether 

true parameter values can satisfactorily be recovered for the Markov-dependent item state model 
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and the independent item state model. In addition, we wanted to establish the performance of 

various fit indices in distinguishing between the models with and without item states. As the 

dynamic models become increasingly complex for increasing K, we focus on K = 2 here. That is, a fast 

and a slow state. Adding more states to the model is possible in principle but additional constraints 

to identify each state are needed. We will illustrate this in the application section.  

Design.  

We simulated data according to the Markov-dependent item state model, the independent item 

state model, and the model without item states. We used 100 replications. In the case of the models 

with item states, we manipulated the expected speed difference between the two states, δ1, into 

three levels which we refer to as a ‘small’ (δ1 = 0.4), ‘medium’ (δ1 = 0.5), and ‘large’ (δ1 = 0.6) effect. 

In addition, we manipulated the state stability into two levels, ‘stable’ and ‘unstable’ states. The 

stability of the states is defined by the transition probabilities, π1|0 and π1|1. Larger values for π1|1 

and smaller values for π1|0 indicate more stable states. We chose π1|0 = 0.15 and π1|1 = 0.85 for the 

stable condition and π1|0 = 0.3 and π1|1 = 0.7 for the unstable condition. Finally, we manipulated the 

sample size to be N=500 and N=1000. 

The remaining parameters are not manipulated. We used 20 items. For the easiness 

parameters in state 1, β1i, we used increasing, equally spaced values between -2 and 2 for the 20 

items. For the easiness parameters in state 0, β0i, we used increasing, equally spaced values between 

-1.5 and 2.5. Possibly, the difference between β0i and β1i might also affect the success with which 

differences between the two states are detected by the fit indices. However, as the two states are 

formally defined in terms of a difference in speed and not in terms of a difference in easiness (e.g., a 

‘hard’ and ‘easy’ state) we chose to manipulate s instead of manipulating the difference between β0i 

and β1i.  

The discrimination parameters in state 1, α1i, were all chosen to equal 1 for the odd items, 

and 2 for the even items. For the discrimination parameters in state 0, α0i, we chose 1.5 for the odd 

items and 2.5 for the even items. For the time intensity parameters in the response time model, i, 
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we used 2 for the odd items and 3 for the even items. The residual response time variance, σei
2, was 

chosen to equal 0.2. The latent speed factor variance, στ
2, was equal to .01 and σθτ was chosen to be 

0.07 such that the correlation between θp and τp equaled .7. We chose this positive correlation 

based on our own experiences with response and response time modeling. However, we note that 

the correlation between speed and ability can also be negative (see Van der Linden, 2009). In 

addition, the values for σei
2 and στ

2 may seem small but they are reasonable in a response time 

modeling setting. That is, they result in untransformed response times between approximately 2 and 

14 seconds. Finally, for the dynamic models,  1 = .7 was used. For the static model without item 

states, we used the values of νi, σε
2, and στ

2 discussed above together with α1i and β1i from class 1 

and with 1=0. 

Model selection 

To see whether we can successfully distinguish the different models, we study the performance of 

various fit indices in indicating the best fitting model under the different conditions of the simulation 

study. The three models considered here are nested according to the restrictions discussed above. 

However, as these restrictions include various boundary constraints, we do not consider the power 

of the likelihood ratio test to distinguish between the different models. Although the performance of 

fit indices like AIC and BIC may also suffer from such boundary constraints (see e.g., Greven & Kneib, 

2010), we identify specific fit indices that can be successfully used to separate between competing 

models despite these boundary constraints. Specifically, we focus on the AIC and BIC discussed 

above and the Consistent AIC (CAIC; Bozdogan, 1987), the AIC3 (Bozdogan, 1993), and the sample 

size adjusted BIC (saBIC; Sclove, 1987). For these fit indices it holds that a smaller value indicates 

better model fit.  

 For each model fitting attempt, we run 16 different sets of random starting values. If the 

estimation algorithm did not converge, we re-run the model at most two more times, again using 16 

different sets of random starting values. Only for a few cases, convergence issues remained after 

these 3 estimation attempts. The Markov dependent item states model failed to converge in 13 out 
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of the 2,000 simulated datasets, the independent item states model failed to converge in 29 of the 

out of the 2,000 simulated datasets. These non-converged cases concerned mainly cases in which 

the true model was the static model without item states. We retained the non-converged cases as 

these will hardly affect the results presented below.  

Results 

Parameter recovery 

Item parameters. We limit the presentation of the results for the recovery of the item parameters to 

the medium effect size condition. The recovery for the small and the large effect size condition 

follows a similar pattern of results. We study parameter recovery of the item parameters by means 

of a box plot of the parameter estimates in the case that the true model is fit to the data. For the 

Markov-dependent item states model, these box plots are displayed in Figure 2 (N=500) and Figure 3 

(N=1000) for the easiness parameters (β0i and β1i) and the discrimination parameters (α0i and α1i). 

For the independent item states model the box plots of the parameter estimates are in Figure 4 

(N=500) and Figure 5 (N=1000). As can be seen, the item parameters seem to be generally unbiased, 

that is, the parameter estimates scatter around the true parameter values for all items and for both 

dynamic models. The discrimination parameters have generally more variability as compared to the 

easiness parameters. In addition, the parameter estimates in state 1 are associated with somewhat 

less variability as compared to the estimates in state 0 for both the easiness parameters and the 

discrimination parameters. This is due to state 0 being proportionally smaller (π1 = .7). Finally, the 

parameter recovery in the Markov-dependent item states model is generally associated with less 

variability in the estimates as compared to the independent item states model. 

 

Class parameters.  For the initial state probability (Markov-dependent item states model) or state 

probability (independent item states model) parameter π1, the transition parameters π1|0 and π1|1 

(Markov-dependent item states model), and the state response time parameter, δ1, the results 

concerning parameter recovery are in Table 1 for the Markov-dependent item states model and in 
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Table 2 for the independent item states model. That is, the mean, standard deviation, and mean 

standard errors are depicted for the parameter estimates in the true model (Markov-dependent or 

independent item state model) for the different configurations of the parameters for N=500. Note 

that we estimate the logit transformed parameters, π1
’, π’

1|0 and π’
1|1 as discussed above, however, 

we provide the parameter recovery results in terms of the original parameterization (i.e., π1, π1|0 and 

π1|1). The reported standard errors are obtained by the univariate delta method. As can be seen 

from the table, true parameter values are generally recovered well, with slightly better recovery for 

larger effect sizes and hardly any difference between the recovery in the independent item states 

model and in the Markov-dependent item states model. Generally, standard errors decrease as the 

effect size increases. For N=1000 results are similar. In addition, the recovery of the true parameter 

values for στ
2 and στθ is good (not depicted).  

Model selection 

Tables 3, 4, and 5 contain the “selection rates” of the different models. We defined a selection rate 

as the proportions of replications in which the different models are identified as the best fitting 

model by the different fit indices when the true model is a Markov-dependent item states model, an 

independent item states model, or a static model without item states. The selection rate in the case 

that a given model is the true model is referred to as “hit rate”, the selection rate in the case that a 

given model is not the true model is referred to as “false positive rate”.  

First, we focus on the hit rates and the false positive rates when the true model is the 

Markov-dependent item states model, see Table 3. As can be seen, generally, the hit rates of the 

Markov-dependent item states model increase for increasing N and δ1, and the hit rates decrease for 

increasing π1|0. The hit rate of the BIC fit index is conservative for π1|0 = 0.3 and poor for π1|0=0.15 

and δ1=0.4, but the hit rates are acceptable for the other cases (between 0.77 and 1.0). The AIC fit 

index has hit rates close to 1 in all cases. The AIC3 index has hit rates close to 1.0 in all cases except 

the case of N=500, π1|0 = 0.30, and δ = 0.4 where the hit rate equals 0.12. The CAIC fit index has 

acceptable hit rates in the cases that π1|0 = 0.15 (close to 1.0 for medium and large effect sizes in δ1 
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but 0 for a small effect size). However, in the case that π1|0 = 0.30, the hit rate is close to 0.0 for N = 

500 and conservative for N=1000 (only large for large effect in δ1). Finally, the saBIC fit index is 

associated with acceptable to good hit rates (only small for small effects in δ1). 

Next, we focus on the hit rates and false positive rates of the independent item states 

model, see Table 4. As can be seen from the table, generally, the hit rates are poor. The hit rate is 

only acceptable for the AIC in the case that δ1 = 0.6, and in the case δ1 = 0.5 for N=1000. For the 

AIC3, the hit rate is only acceptable for N=1000 and δ1 = 0.6. For all other fit indices and all other 

conditions, the hit rates are unacceptable. As can be seen, the static model without item states is 

generally the preferred model over the independent item states model.  

Finally, Table 5 contains the hit rates and false positive rates when the true model is the 

static model without item states. Ideally, the Markov-dependent item states and the independent 

item states models are not detected by any of the fit indices as the best fitting model as this would 

indicate that the fit indices might be biased in favor of the dynamic models. As can be seen from the 

table, this is not the case for the BIC, AIC3, CAIC, and saBIC. The AIC indicates in 13% (N=500) and 

17% (N=1000) of the replications wrongfully that the Markov-dependent item states model underlies 

the data while the static model is the true model. This fit index is thus associated with a slightly 

increased false positive rate.  

From the above it appears that the independent item states model is difficult to distinguish 

from a static model while the Markov-dependent item states model can be acceptably distinguished 

using the fit indices considered. That is, when the true model is an independent item states model 

and a static model is fit to that data, the misfit is only minor causing the selection rates to be small. 

On the contrary, when the true model is a Markov-dependent item states model, fitting a static 

model to the data causes more severe misfit which results in larger selection rates. To study the 

source of misfit, we investigated which parameters in the static model are biased systematically 

when the true model is a Markov-dependent item states model, but which are not biased (or only 

mildly) when the true model is an independent item states model. It appeared that misfit is most 
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evident in the covariance between θ and τ. To see this, we scaled the estimates of the covariance στθ 

into correlations ρθτ, see Table 6. As can be seen, when the true model is the independent item state 

model, but a static model is fit to the data, ρθτ is hardly affected. That is, the true value for the 

correlation equals 0.7 and this value is acceptably recovered with mean estimates of about 0.67. 

However, when the Markov independent item states model is the true model, the estimates of ρθτ
 

are affected majorly with values between 0.39 and 0.58. Thus, correlations between responses and 

response times are underestimated in the static model causing model misfit. This misfit is not 

apparent if the true model is the independent item states model, causing this model to be hard to 

distinguish from the static model. However, it should be noted that the effect size for the 

independent item states model is small. We return to this point in the discussion section. 

In conclusion, from the parameter recovery results, we can conclude that the true values are 

retrieved generally satisfactorily. In addition, from results of the fit indices, it appears that the 

Markov-dependent model is generally well separable from the independent item states model and 

static model without item states using the BIC, AIC, CAIC, AIC3, and the saBIC. However, the AIC is 

associated with a slightly increased false positive rate and should thus be interpreted with care. The 

independent item states model, on the other hand, is hard to separate from the static model. All fit 

indices generally favored the static model when the true model was in fact an independent item 

states model. 

 

Application 1: Identifying Within-Subject Differences in the Response Process 

Data 

We now demonstrate how our model can be applied to explore possible differences in solution 

strategies used by the respondents. The data comprise the responses and response times of 389 

psychology freshmen on the 28 items of the knowledge subtest of the Dutch Intelligence Structure 

Test (Amthauer, Brocke, Liepmann, & Beauducel, 2001). 

Modeling 
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To the responses and response times, we apply the Markov-dependent item states model with 2 

states (K=2), the independent item states model with 2 states (K=2), and the static model without 

item states. Within the independent and Markov-dependent item states model we also studied the 

degree to which the item parameters differ across states. To this end we considered a model in 

which we parameterized the discrimination parameters in state 1 as follows 

 

  αi1 = αi0 + Δα. 

 

That is, we allowed for a uniform difference between the discrimination parameters in state 1 as 

compared to the discrimination parameters in state 0. We also considered a model in which we 

specified a similar effect on the item easiness parameters in addition to the uniform effect on the 

discriminations, that is 

 

 βi1 = βi0 + Δβ. 

 

In addition, we studied a model with uniform differences on both the discrimination and easiness 

parameters. 

 Using the best fitting model, we will illustrate how the modeling results can be used to 

make inferences about the within-subject differences in the response process. To this end we 

compare 1) the raw log-response times; 2) the standardized residual log-response time; and 3) the 

estimated state probabilities. First, the raw log-response times are simply the observed log-

transformed response times on the items. Making inferences based on the raw log-response times is 

difficult because these response times conflate item and respondent main effects. Therefore, we 

also consider the standardized residual log-response times. A comparable Bayesian version of this 

statistic has been proposed by Van der Linden and Guo (2008) to investigate aberrant response 

times. If the standardized residual of a given response time is large, the response time deviates from 
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the model expectations given νi and τp. This might suggest that a different response process 

underlies this response (e.g., guessing, item preknowledge, different response strategy, etc). Here 

we calculate the standardized residual log-response times as follows: 

 

    
               

    
 

 

where      and      are the MML estimates from the static model and     is the EAP estimate from the 

static model. Finally, we consider the expected a posteriori (EAP) state probabilities in the best 

fitting model. The information included in these probabilities differs from the information in the 

residuals zpi in the sense that the EAP state probabilities also directly include information about the 

responses (correct or false) and that they incorporate the restrictions introduced in the Markov 

dependent item states model (in this case the fast and slow restriction imposed in δ).  

 

Results 

The model fit results are in Table 7. As can be seen, all fit indices indicate Model 3b as the best 

fitting model (a Markov-dependent item states model with uniform difference in αsi between the 

states and separate βsi parameters in each state). Note that although the CAIC for this model is equal 

to the value of Model 2b, all other fit indices favor Model 3b. We therefore select Model 3b as the 

best fitting model. For this model, the estimate of Δα (which represents the uniform difference 

between α0i and α1i) is equal to 0.02 (SE: 0.21) indicating that the faster and slower responses do not 

differ in their discrimination. In addition, the difference in mean speed between the two states, δ1, 

was estimated to be 0.53 (0.02). For the initial state and transition parameters in Model 3b, see 

Table 8. As can be seen from the initial probabilities, the slow state is larger at the first item. 

However, from the transition probabilities, it can be seen that the slow state is relatively unstable, 

and a large portion of the respondents switch to the fast state during the test. In Figure 6 (top), the 
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marginal probability of a correct response, P(Xpi=1|Cpi), is depicted for the fast (s=1) and slow state 

(s=0). The responses in the fast state are associated with larger probabilities of a correct response as 

compared to the responses in the slow state. In Figure 6 (bottom), it is illustrated how the difference 

in marginal probability in the different states is related to the violation of local independence 

between the responses and the response times. To this end we estimated the residual correlations 

between the responses and response times of the same item using weighted least squares 

estimation in Mplus (Muthén & Muthén, 2007), and plotted these against the difference in P(Xpi|Cpi) 

in the slow state and the fast state. As can be seen, most items are associated with negative residual 

correlations, indicating that the faster responses (smaller lnTpi) are associated with higher probability 

of a correct response.  

In Figure 7 and 8 the raw and standardized residual log-response times are displayed for four 

respondents together with the estimated slow-state probabilities on all items (based on Model 3b). 

First, in Figure 7 two examples are given for respondents that speed-up during the testing. As 

appears from the figure, the speeding-up effect can hardly be seen from the raw response times as 

the item differences in νi mask the effect. From the standardized residuals, the effect is noticeable 

for the first respondent (top of the figure) but not so much for the second respondent (bottom 

figure). A statistical test might be needed to test the presence of the effect. From the state-

probabilities however, the effect is clear with the responses to the first halve of the test items being 

generally more probable in the slow state than in the fast state.    

 In Figure 8 two other examples respondents are given that have aberrances in their 

responding. For the first respondent (top) item 23 stands out for the residual response time which is 

not evident from the raw response times. This item stands also out for the class probabilities. 

However, the class probabilities also indicate that the response to item 1 has a large probability of 

being in the slow state. This is not apparent for zpi, as for the residuals, item 1 is about average. The 

difference between the class probability and the residual for item 1 is due to the class probability 

taking into account that the response to item 1 has been correct. As can be seen from Figure 6, for 



   Markov Response Models      25 

item 1, the slow state is associated with a higher probability of correct. Therefore, the fact that the 

respondent did item 1 correctly increases the probability of the response being from the slow state. 

A similar example can be found for the second respondent (bottom). Judged by the standardized 

residuals, item 17 also stand out which is also evident from the class probabilities. However judged 

by the class probabilities, item 10 also stands out, which is not evident from the standardized 

residuals. Thus, the results from the Markov-dependent states model can be a valuable addition to 

the standardized residual method in detecting differences in the response process within-subjects.  

 

Application 2: Detecting Within-Subjects Differences in Solution Strategies 

Our model can not only be used to “discover” differing response strategies, as demonstrated in the 

previous section, but also to investigate and test psychological theories about previously 

hypothesized strategies. The present application demonstrates this confirmatory feature based on a 

theory by Siegler (1981, see also Van der Maas & Jansen, 2003). 

Data.  

We analyzed the balance scale task data of Van der Maas and Jansen (2003). These data comprise 

the responses and response times of 191 respondents (mean age 11.84, min 6; max. 25) to 76 

balance scale items. Each item displayed a picture of a balance scale with equally heavy weights 

placed at pegs situated at equal distance from the fulcrum. The items differed in how many weights 

are placed at each arm; and at which pegs the weights were placed. The numbers and distances of 

the weights are altered according to eight different schemes resulting in 8 different item types 

(‘simple balance’, ‘simple weight’, ‘simple distance’, ‘conflict balance A’, ‘conflict balance B’, ‘conflict 

weight’, ‘conflict distance’, and ‘weight-distance’). For each item type, 10 items exist except for the 

‘weight-distance’ scheme where only 6 items exist.  

 The data were analyzed previously by Van der Maas and Jansen (2003) using cluster 

analysis and regression analysis, and by Molenaar et al. (2015a) using generalized linear latent 
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variable modeling. Both studies focused on the differences between respondents in their use of 

solution strategies. In this paper, we investigate whether there are differences within respondents in 

their solution strategies. That is, do respondents consistently apply the same solution strategy to all 

items, or do they switch between different solution strategies?  

Modeling 

Van der Maas and Jansen (2003) discuss five solution strategies of the balance scale items that can 

be derived from the theory of Siegler (1981). Each strategy has different predictions about the 

proportion correct across the eight different item types, see Table 9. The strategies are ordered 

based on their complexity. That is: Strategy I is considered the least complex strategy as it involves 

the least number of steps, while strategy V is the most complex strategy as it involves all steps 

necessary to solve all items correctly. Besides predictions about the proportion correct, the different 

strategies also differ in their predicted response times. That is, the more complex a strategy, the 

more time children need to apply it as it involves more steps. Molenaar et al. (2015) translated these 

predictions into constraints in a latent variable model with a categorical ability factor and a 

continuous speed factor. The model is however solely between subjects. Here, we use the 

predictions discussed above to identify a Markov dependent item states model with 5 item states 

where each item state represents a solution strategy (see Table 10). As the number of items is 

relatively large as compared to the number of respondents, we assume that items configured 

according to the same scheme (e.g., the ‘simple balance’ scheme) have equal easiness. In addition, 

as the theory predicts that more complex strategies require more time, we released the constrained 

on δs (i.e., the constraint that δ0 ≤  δ1 ≤ … ≤ δK-1). We did consider the constraint δ0 ≥  δ1 ≥ … ≥ δ4 

which is in line with the theoretical predictions, however this model did not converge due to a clear 

violation of this constraint (which will be shown below). We therefore estimated δ1, …, δ4 freely (as 

δ0=0 for identification purposes). 

 According to the theory by Siegler (1981) in this application, the balance scale items 

measure a categorical ability (i.e., the solution strategies). If the responses to these items would 
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have been analyzed without the response times, one would fit a 5 component latent class 

measurement model to these data (subject to the constraints as discussed in Table 10). Adding the 

response times and the Markov structure will not change this: The main ability measured by the 

items is categorical. Therefore, as both the ability and the states are categorical, they coincide. 

Therefore, we do not include a main effect for θ, as this effect coincides with Cpi in this application. 

Adding a continuous ability variable will not make sense from the theory by Siegler (1981) as this 

theory does not predict a continuum to underlie the item responses. Thus, the measurement model 

for the responses in this application equals 

 

                 ω     
   ω        

      

 

   

 

 

 here βsi are subject to the constraints in Table 10. 

 The full model including the response, the response times, and the Markov structure may 

seem numerically demanding because of the many states (K=5) and many items (n=76), however, 

the model is highly restricted containing only 53 parameters (as compared to the full Markov-

dependent item states model which would have contained 461 parameters for K equal to only 2 and 

n=76). In addition, we carefully checked the results on convergence issues (ill conditioning of the 

Hessian matrix and extreme standard errors) but we have no reason to doubt the final solution of 

the models.  

Results 

We fit the static baseline model (including θp and τp), the independent item states model, and the 

Markov dependent item states model to the data. The results concerning model fit are in Table 11. 

As can be seen, the Markov dependent item states model is identified as the best fitting model 

according to all fit indices. The parameter estimates for the initial state probabilities and the state 
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speed parameter are in Table 12, the parameter estimates for the transition probabilities are in 

Table 13. As can be seen, Strategy I is highly stable. Children adopting this strategy do not change to 

a different strategy. On the contrary, Strategy III is relatively unstable; Children adopting this 

strategy are likely to switch to a different strategy. From the estimates for δs, it can be seen that the 

predictions by Siegler (1981) about the response times (i.e., that the more complex strategies have 

larger response times and thus smaller δs) only hold partly. That is, Strategy I, II, and III are indeed 

decreasing in δs, however, strategy IV and V require approximately as much time as strategy II.  

 

Discussion 

We presented a hidden Markov IRT modeling approach for responses and response times. In this 

model, respondents are assumed to switch between different item states from item to item. The 

simulation study showed that the proposed model is feasible and yields good parameter recovery. 

Moreover, the example application to the intelligence data demonstrated how our approach is 

useful to explore differing response strategies, while the application to the balance scale task 

demonstrated its use for testing psychological theories regarding response strategies.  

 A dynamic model without Markov dependencies between the item states was shown to be 

less successful in detecting dynamic aspects in the response process. However, it should be noted 

that in the simulation study, the difference in item easiness between the fast and slow states was 

minor. Therefore, residual correlations between the responses and response times were only around 

.02 –.03 which is very small. For larger differences in item easiness between the item states, the hit 

rates will be larger. Judged by the results of the simulation study, the hidden Markov model is viable. 

However, in order to ensure identification of the model, we assumed that the transition probabilities 

are homogenous over time. This assumption should ideally be tested which is possible in principle in 

the current modeling framework. However, as the resulting model with time heterogeneity will 

include n x n transition parameters, maximizing the resulting likelihood function will be a challenging 

endeavor. A feasible ad-hoc approach might be to test the assumption on the residual response 
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times (zpi, see application 2) and the residual responses (obtained in a similar way as zpi) 

simultaneously. Advantage is that no measurement model parameters need to be estimated; only 

the (n-1) × K × (K-1) transition parameters. 

 An implication of the assumed Markov structure for the item states is that the items should 

be administered in the same order for all respondents. Therefore, the present model cannot be 

applied to adaptive test data. However, for such applications, the independent item states model 

will constitute a suitable alternative as it does not assume a structure among subsequent item.  

In the simulation study, we compared the dynamic models to a static model with local 

independence between the responses and response times. It would be interesting to see how the fit 

of the dynamic models would compare to the fit of a static model with residual correlations (as 

applied with weighted least squares to the data of the application). However, we did not do this 

because the static model with residual correlations is not yet developed within a marginal maximum 

likelihood framework. This hampers the direct comparison of the static model with residual 

correlations to the dynamic models presented here.  

In the model selection analysis, we manipulated the mean speed between the states, the 

transition probabilities, and the sample size. However, it should be noted that the number of items 

will also affect the ability to distinguish between the different models, with more items resulting in 

better separable models. In addition, we investigated model selection only by considering 

information criteria based fit indices like the AIC and BIC. This has the disadvantage that the 

difference in likelihood of the different models is not taken into account. That is, the size of the AIC 

differences between the models is not used to calculate the hit rate. The only information taken into 

account is which of the models has the smallest fit index. As the models considered in this paper are 

all nested, it would be interesting to see how likelihood based (bootstrap) methods will perform 

(McLachlan, 1987; Feng, & McCulloch, 1996; Gudicha, Schmittman, Tekle, & Vermunt, 2015). These 

methods do take the difference in likelihood between two models into account by calculating the 

power to reject the more constraint model in favor of the less constraint model. Finally, researchers 
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may be interested in relating the estimated latent states of respondents to external covariates such 

as age, teacher, or educational program. The extension of our model to investigate such research 

questions is straightforward although its application remains a topic for future study. 

 Finally, a remark can be made about the applicability of the methodology presented in this 

paper to test model misspecification in IRT. That is, the item states model can be applied as a means 

to study person misfit (e.g., Reise, 2000) or item misfit. For instance, in a given sample, if for some 

but not all respondents the two-parameter model is violated, the deviating respondents may form a 

separate state on the items due to different properties of their responses and response times. These 

respondents can then be detected using posterior class probabilities. In addition, if for some but not 

all items the two-parameter model is violated (e.g., a 3-parameter model holds for these items), the 

malfunctioning items can be detected by considering the differences in item characteristics between 

the states. If these differences are large, the item can be considered to misfit the two-parameter 

model. 
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Table 1. 

Mean, standard deviation (sd), and mean standard error (mse) for the estimates of the class 
parameter, δ, π0, π1|0, and π1|1, in the simulation study for the different configurations of δ, π0, π1|0, 
and π1|1 in the Markov dependent item states model for N=500. 
 

δ  π0  π1|0  π1|1 

true mean sd mse  true mean sd mse  true mean sd mse  true mean sd mse 
0.4 0.40 0.03 0.02  0.7 0.65 0.16 0.11  0.15 0.15 0.04 0.03  0.85 0.84 0.04 0.03 
0.5 0.50 0.02 0.02  0.7 0.68 0.10 0.08  0.15 0.15 0.02 0.02  0.85 0.85 0.02 0.02 
0.6 0.60 0.02 0.02  0.7 0.70 0.06 0.06  0.15 0.15 0.02 0.01  0.85 0.85 0.02 0.01 
0.4 0.37 0.09 0.04  0.7 0.61 0.21 0.15  0.3 0.28 0.12 0.05  0.7 0.73 0.11 0.05 
0.5 0.50 0.04 0.04  0.7 0.65 0.17 0.12  0.3 0.30 0.04 0.04  0.7 0.71 0.05 0.04 
0.6 0.60 0.03 0.03  0.7 0.69 0.13 0.09  0.3 0.30 0.03 0.03  0.7 0.70 0.03 0.03 
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Table 2. 
Mean, standard deviation (sd), and mean standard error (mse) for the estimates of the class 
parameter, δ, π0, π1|0, and π1|1, in the simulation study for the different configurations of δ, π0, π1|0, 
and π1|1 in the independent item states model for N=500. 
 

δ  π0  

true mean sd mse  true mean sd mse  
0.4 0.36 0.13 0.05  0.7 0.62 0.14 0.07  
0.5 0.49 0.08 0.04  0.7 0.68 0.06 0.05  
0.6 0.60 0.03 0.03  0.7 0.70 0.03 0.03  
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Table 3. 

True Model: Markov-dependent item states model. Selection rates for the Markov dependent item 

states model, the independent item states model, and the static model without item states for the 

various conditions in the simulation study. 

 

N π1|0 δ Model fitted BIC AIC AIC3 CAIC saBIC 

500 .15 .4 Static 1.00 0.00 0.02 1.00 0.02 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 0.00 1.00 0.98 0.00 0.98 

  .5 Static 0.06 0.00 0.00 0.32 0.00 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 0.94 1.00 1.00 0.68 1.00 

  .6 Static 0.00 0.00 0.00 0.00 0.00 

   Independent 0.00 0.00 0.00 0.00 0.00 

  

 
Markov 1.00 1.00 1.00 1.00 1.00 

 .30 .4 Static 1.00 0.08 0.88 1.00 0.89 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 0.00 0.92 0.12 0.00 0.11 

  .5 Static 1.00 0.01 0.11 1.00 0.13 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 0.00 0.99 0.89 0.00 0.87 

  .6 Static 0.83 0.00 0.00 0.99 0.00 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 0.17 1.00 1.00 0.01 1.00 

1000 .15 .4 Static 0.23 0.00 0.00 0.70 0.00 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 0.77 1.00 1.00 0.30 1.00 

  .5 Static 0.00 0.00 0.00 0.00 0.00 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 1.00 1.00 1.00 1.00 1.00 

  .6 Static 0.00 0.00 0.00 0.00 0.00 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 1.00 1.00 1.00 1.00 1.00 

 .30 .4 Static 1.00 0.00 0.09 1.00 0.52 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 0.00 1.00 0.91 0.00 0.48 

  .5 Static 0.77 0.00 0.00 0.98 0.00 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 0.23 1.00 1.00 0.02 1.00 

  .6 Static 0.00 0.00 0.00 0.00 0.00 

   Independent 0.00 0.00 0.00 0.00 0.00 

   Markov 1.00 1.00 1.00 1.00 1.00 
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Table 4. 

True Model: Independent item states model. Selection rates for the Markov dependent item states 

model, the independent item states model, and the static model without item states for the various 

conditions in the simulation study. 

N δ Model fitted BIC AIC AIC3 CAIC saBIC 

500 .4 Static 1.00 0.81 1.00 1.00 1.00 

  Independent 0.00 0.05 0.00 0.00 0.00 

  Markov 0.00 0.14 0.00 0.00 0.00 

 .5 Static 1.00 0.61 0.99 1.00 0.99 

  Independent 0.00 0.26 0.01 0.00 0.01 

  Markov 0.00 0.13 0.00 0.00 0.00 

 .6 Static 1.00 0.08 0.88 1.00 0.91 

  Independent 0.00 0.72 0.12 0.00 0.09 

 

 
Markov 0.00 0.20 0.00 0.00 0.00 

1000 .4 Static 1.00 0.55 0.99 1.00 1.00 

  Independent 0.00 0.29 0.01 0.00 0.00 

  Markov 0.00 0.16 0.00 0.00 0.00 

 .5 Static 1.00 0.09 0.80 1.00 0.99 

  Independent 0.00 0.75 0.17 0.00 0.01 

  Markov 0.00 0.16 0.03 0.00 0.00 

 .6 Static 1.00 0.00 0.01 1.00 0.26 

  Independent 0.00 0.83 0.89 0.00 0.69 

  Markov 0.00 0.17 0.10 0.00 0.05 
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Table 5. 

True Model: Static model without item states. Selection rates for the Markov dependent item states 

model, the independent item states model, and the static model without item states for the various 

conditions in the simulation study. 

 

  Fit Index 

N Model fitted BIC AIC AIC3 CAIC saBIC 

500 Static 1.00 0.86 1.00 1.00 1.00 

 Independent 0.00 0.01 0.00 0.00 0.00 

 Markov 0.00 0.13 0.00 0.00 0.00 

1000 Static 1.00 0.83 1.00 1.00 1.00 

 Independent 0.00 0.00 0.00 0.00 0.00 

 Markov 0.00 0.17 0.00 0.00 0.00 

 

  



   Markov Response Models      42 

Table 6. 

Mean, standard deviation (sd), and Root Mean Squared Error (RMSE) of the correlation between θ 

and τ (i.e., ρθτ) in the static model without item states for different true models for N=500. The value 

of ρθτ equals 0.7 in all true models. 

True model π1|0 mean sd RMSE 

Static  - 0.69 0.05 0.05 

Independent - 0.67 0.06 0.06 

 - 0.68 0.06 0.06 

 - 0.67 0.06 0.07 

Markov dependent 0.15 0.45 0.06 0.25 

  0.39 0.05 0.31 

  0.35 0.05 0.36 

 0.3 0.58 0.05 0.13 

  0.54 0.05 0.17 

  0.50 0.05 0.21 
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Table 7 

Model fit results for Application 1  

Model npar ℓ BIC AIC AIC3 CAIC saBIC 

1:  Static 114 -12787 26254 25802 25916 26368 25892 

2a:  Full Independent 172 -12474 25973 25291 25463 26145 25427 

  b: Uniform difference in αsi  145 -12497 25859 25285 25430 26004 25399 

  c: Uniform difference in βsi 145 -12547 25958 25384 25529 26103 25498 

  d: Uniform difference in αsi and βsi  118 -12629 25962 25494 25612 26080 25588 

3a: Full Markov dependent 174 -12468 25973 25284 25458 26147 25421 

  b: Uniform difference in αsi  147 -12490 25857 25274 25421 26004 25390 

  c: Uniform difference in βsi 147 -12539 25955 25373 25520 26102 25489 

  d: Uniform difference in αsi and βsi  120 -12620 25956 25480 25600 26076 25575 

Note. The smallest values are in bold face. npar: number of parameters in the model. ℓ: value of the 

log marginal likelihood function at the solution 
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Table 8 

Parameter estimates (standard errors) of the initial state probabilities, πs and the transition 

probabilities πs|r 

 

 
s = 0 s = 1 

πs 

 

0.77 (0.12) 0.23 (0.12) 

πs|r r = 0 0.26 (0.02) 0.74 (0.02) 

 r = 1 0.22 (0.01) 0.78 (0.01) 

Note. Standard errors are obtained from the standard errors of πs’ and πs|r’ using the delta method. 
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Table 9 

Predicted item score, 0 (false), 1 (correct) or 1/3 (guess), when using one of the strategies for each 

item type. 

item type Strategy I Strategy II Strategy III Strategy IV Strategy V 

simple balance 1 1 1 1 1 

simple weight 1 1 1 1 1 

simple distance 0 1 1 1 1 

conflict balance A 0 0 1/3 1 1 

conflict balance B 0 0 1/3 0 1 

conflict distance 0 0 1/3 1 1 

conflict weight 1 1 1/3 0 1 

weight-distance 1 1 1 1 1 
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Table 10 

Parameter configuration for the latent class response model. 

item type n Strategy 

 
 I II III IV V 

simple balance 10 β11 β11 β11 β11 β11 

simple weight 10 β12 β12 β12 β12 β12 

simple distance 10 - β13 β13 β13 β13 β13 

conflict balance A 10 - β14 - β14 -0.66* β14 β14 

conflict balance B 10 - β15 - β15 -0.66* - β15 β15 

conflict distance 10 - β16 - β16 -0.66* β16 β16 

conflict weight 10 β17 β17 -0.66* - β17 β17 

weight-distance 6 β18 β18 β18 β18 β18 

Note. *: this value is fixed to reflect guessing, i.e., P(Xpi = 1|Cpi) = ω(βsi) = ω(-0.66) ≈ 0.34. 
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Table 11 

Model fit results for Application 2 

Model npar ℓ BIC AIC AIC3 CAIC saBIC 

Static 33 -13670 27514 27406 27439 27547 27409 

Independent 33 -14807 29788 29681 29714 29821 29684 

Markov dependent 53 -13226 26729 26557 26610 26782 26562 

Note. The smallest values are in bold face. 
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Table 12 

Parameter estimates (standard errors) of the initial state probabilities πs and state speed parameter 

δs. 

Strategy I II III IV V 
πs 0.20 (0.04) 0.17 (0.06) 0.06 (0.03) 0.00 (0.00) 0.57 (0.07) 
δs 0* -0.22 (0.03) -1.14 (0.03) -0.19 (0.02) -0.22 (0.03) 

Note. *: This parameter is fixed for identification purposes. Standard errors are obtained from the 

standard errors of πs’ using the delta method. 
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Table 13 

Parameter estimates (standard errors) of transition probabilities πs|r. 

 

Cpi I II III IV V 
Cp(i-1) I 0.99 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 

 

II 0.01 (0.00) 0.95 (0.01) 0.04 (0.01) 0.00 (0.00) 0.00 (0.00) 

 

III 0.07 (0.01) 0.19 (0.03) 0.28 (0.02) 0.32 (0.03) 0.15 (0.03) 

 

IV 0.00 (0.00) 0.00 (0.00) 0.08 (0.01) 0.78 (0.01) 0.13 (0.01) 

 

V 0.01 (0.01) 0.00 (0.00) 0.15 (0.02) 0.26 (0.03) 0.58 (0.03) 
Note. Standard errors are obtained from the standard errors of πs|r’ using the delta method. 
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Figure Captions 

Figure 1. Graphical representation of the Markov dependent item states model. Dependency of the 

ability and speed loadings on the latent states Cpi has been omitted from the graph for clarity. 

 

Figure 2. Boxplot of the parameter estimates of the Markov dependent item states model in the 

medium effect size and stable classes condition for N=500. The solid line denotes the true parameter 

values. For the discrimination parameters α0i and α1i, the odd items correspond to the upper line and 

the even items correspond to the lower line.   

 

Figure 3. Boxplot of the parameter estimates of the Markov dependent item states model in the 

medium effect size and stable classes condition for N=1000. The solid line denotes the true 

parameter values. For the discrimination parameters α0i and α1i, the odd items correspond to the 

upper line and the even items correspond to the lower line.   

 

Figure 4. Boxplot of the parameter estimates of the independent item states model in the medium 

effect size and stable classes condition for N=500. The solid line denotes the true parameter values. 

For the discrimination parameters α0i and α1i, the odd items correspond to the upper line and the 

even items correspond to the lower line.   

 

Figure 5. Boxplot of the parameter estimates of the independent item states model in the medium 

effect size and stable classes condition for N=1000. The solid line denotes the true parameter values. 

For the discrimination parameters α0i and α1i, the odd items correspond to the upper line and the 

even items correspond to the lower line.   
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Figure 6. Top: Plot of the marginal probability of a correct response for the fast and slow state for 

each of the items. Bottom: The difference in the marginal probability of a correct response between 

the states, shortly denoted by Pslow – Pfast, as a function of the residual correlation as estimated in the 

static model without item states.   

 

Figure 7. The estimated probability of a slow state response for two example respondents who show 

speeding-up. Item numbers in bold indicate that this response was incorrect. 

 

Figure 8. The estimated probability of a slow state response for two example respondents who show 

aberrances in their responding. Item numbers in bold indicate that this response was incorrect. 
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