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Abstract. We propose analyzing personal or ego-centered network data by means of two-level generalized linear models. The approach is
illustrated with an example in which we assess whether personal networks are homogenous with respect to marital status after controlling for
age homogeneity. In this example, the outcome variable is a bivariate categorical response variable (alter’s marital status and age category). We
apply both factor-analytic parametric and latent-class-based nonparametric random effects models and compare the results obtained with the
two approaches. The proposed models can be estimated with the Latent GOLD program for latent class analysis.
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Introduction

One of the main types of network data is personal network
data, sometimes referred to as ego-centered network data.
Since personal network data can be collected by means of
survey methods, sample sizes are typically larger than for
data sets on complete networks. The information obtained
is, however, more limited: Rather than providing a full
reconstruction of one or more complete networks, ego-
centered network data sets list the network members (al-
ters) for each respondent (ego) participating in the survey.
In addition, one may have information on alter and tie char-
acteristics, such as demographics and the type of relation-
ship between ego and alter. In some cases (partial) infor-
mation is also available on the presence of ties among the
alters (the alter-alter dyads) in the personal networks (Ger-
ich & Lehner, 2006).

Many research questions to be answered using ego-
centered network data require no more than simple descrip-
tive analyses, such as the computation of the average num-
ber of alters (or ties) with a certain characteristic (e.g.,
average number of married alters) or the distribution of
alters (or relationships) across categories (e.g., marital
status distribution), possibly conditional on characteristics
of the ego (e.g., separately for men and women). For
slightly more advanced (multivariate) research questions,
one will, however, need to switch to regression analysis
techniques.

In a regression analysis of personal network data, the
dependent variable will usually be a characteristic of either
the alter or the ego-alter dyad, whereas predictors can be
characteristics of the ego, the alter, or the dyad. Because
each ego has multiple alters—that is, alters are nested

within egos—the data have the form of a two-level data
set. A natural way to analyze personal network data is
therefore to make use of multilevel or random-coefficients
regression techniques (Van Duijn, Van Busschbach, &
Snijders, 1999). Note that in order to have a two-level data
structure, there should be (negligible) overlap between the
personal networks of the egos involved in the study. This
is, however, a realistic assumption in survey research based
on representative samples. It should also be noted that our
approach uses only ego-alter dyads, and thus does not make
use of alter-alter dyads’ information if available. In this
article, we propose two alternative approaches for dealing
with data on personal networks. These are (a) standard
parametric random effects models that assume random co-
efficients to come from a (restricted) multivariate normal
distribution and (b) nonparametric random effects models
based on latent class methods. The latter approach has sev-
eral advantages: It is more practical with categorical out-
come variables, it makes no assumptions about the distri-
bution of the random effects across egos, and it yields a
clustering of egos based on dependencies between alters as
a by-product.

The random-coefficients models for ego-centered net-
work data are illustrated with an application on marital
status homogeneity of network ties, controlling for their
age homogeneity. To facilitate the introduction of random
effects, we transform the well-known quasi-symmetry log-
linear model for studying homogeneity in squared fre-
quency tables into a conditional logit model.

The organization of the article is as follows. The next
section introduces the application and the data set that is
at our disposal. Then we present the two types of random-
coefficients models and describe the results obtained in our
application. The article ends with some final remarks.



J. K. Vermunt & M. Kalmijn: Random Effects Models for Personal Networks 35

� 2006 Hogrefe & Huber Publishers Methodology 2006; Vol. 2(1):34–41

Description of Data Set and
Motivation of Application

Background of the Study

The literature on the selection of marriage partners and the
literature on social networks have both shown that personal
relationships are homogeneous with respect to various so-
cial and cultural characteristics (Kalmijn, 1998; Lazarsfeld
& Merton, 1954; Marsden, 1988, 1990; Miller McPherson,
Smith-Lovin, & Cook, 2001). Examples are class and edu-
cational homogeneity, religious and ethnic homogeneity,
and homogeneity by age. An important feature of the se-
lection of friends or marriage partners is that people have
to consider multiple characteristics simultaneously. Be-
cause traits are correlated within persons, a choice for a
given characteristic in a friend or potential spouse often
implies a choice for another characteristic as well. If some-
one looks for a friend who is highly educated, for example,
the chances are good that the friend he or she will find is
also relatively rich. Similarly, if someone prefers to marry
someone who shares his or her national background, the
chances are high that they will also be of the same religion.

An important question this raises is whether the homo-
geneity found in reality is based on explicit selection on
that trait, or whether it is a by-product of selection on an-
other trait. To establish that there is direct selection, one
would need to show that the degree of similarity with re-
spect to a certain trait is greater than one would expect
from the similarity that exists in another trait. Because the
problem is symmetric, this needs to be established the other
way around as well, and hence, the traits need to be ana-
lyzed simultaneously.

Age and marital status are closely related aspects of the
life course, with age being the gradual component of the
life course and marital status being the discrete and tran-
sitional component. Several studies have shown that per-
sonal networks tend to be homogeneous by age (Burt,
1991; Louch, 2000; Marsden, 1988; Miller McPherson et
al., 2001). Moreover, in his classic American study on per-
sonal networks, Fischer (1982, pp. 180–181) demonstrated
that networks are homogenous with respect to marital
status: Married respondents tend to name more often mar-
ried associates, those that never married more often never
married, and divorced more often divorced. However, be-
cause Fischer did not correct for age homogeneity, we do
not know whether the encountered marital status homo-
geneity is spurious (a by-product of age homogeneity) or
caused by selection of network members based on their
marital status.

The research goal within the application is threefold.
First, we want to describe the degree of age and marital
status homogeneity in personal networks in our data set.
Second, we want to assess to what extent marital status
homogeneity can be attributed to age homogeneity and vice
versa. Third, by using a multilevel framework, we want to
take into account explicitly the dependencies between the
multiple alters of a respondent.

Description of Data Set

The ego-centered network data we analyze come from a
survey based on face-to-face interviews with a random na-
tional sample of 902 individuals in the Netherlands (Fise-
lier, Vander Poel, & Felling, 1987). Network members
were identified through a mix of the contact, exchange, and
role methods (Broese van Groenou & Van Tilburg, 1996).
For example, respondents had to list the people with whom
they regularly went out (contact method) and the persons
who had helped (or could have helped) with odd jobs
around the house (support method). Respondents also had
to list certain role relationships (e.g., the spouse, the chil-
dren). The respondent was not only asked about actual sup-
port given and received (which is heavily dependent on
needs), but also about potential support (i.e., persons from
whom support was or could be expected and persons who
could have asked for support). For each network member,
several pieces of personal information were collected, in-
cluding age and marital status. The marital status categories
are (a) single and never married, (b) married or cohabiting,
(c) divorced, and (d) widowed. Unfortunately, we do not
have information on whether the alter has children living
at home. We should therefore emphasize that the status of
being married often combines the effects of having a part-
ner and the effects of having children. Five age categories
are distinguished: (a) under 30, (b) 30–39, (c) 40–49,
(d) 50–59, and (e) 60 and over. By categorizing age, we
are able to study age homogeneity and marital status ho-
mogeneity in a single categorical data analysis framework.
Although the choice of the specific age categories is always
somewhat arbitrary, these age categories are meaningful in
the sense that they represent important life stages. As
shown in other studies, conclusions on homogeneity are
robust for how the specific (age) categories are formed
(Van Poppel, Liefbroer, Vermunt, & Smeenk, 2001). The
age range in the sample of respondents is 20–72.

In the analyses, some types of relationships were ex-
cluded because marital status or age differences are theo-
retically of a different order. More specifically, we ex-
cluded alters who are partners because this would lead to
an overestimate of the degree of similarity by marital
status. We excluded family relationships where age differ-
ences are extreme for reasons that have little do with choice
(i.e., parents, children, parents-in-law, children-in-law,
grandparents, and grandchildren). After these selections are
made, the number of respondents is 875 (7,896 relation-
ships).

Random Effects Conditional
Logit Models

A Conditional Logit Multivariate Quasi-
Symmetry Model

Let and denote the marital status and age of ego jM AZ Zj j

and let and denote the marital status and age of alterM AY Yij ij

i of ego j. A particular marital status will be denoted by r
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and p, for egos and alters, respectively, and a particular age
category by s and q. Let us first concentrate on the marital
status variables. A well-established approach for studying
homogeneity of pairs of actors with respect to a categorical
outcome variable is the use of the log-linear quasi-
symmetry model (Hout & Goldstein, 1994; Kalmijn, 1991;
Uunk, Ganzeboom, & Róbert, 1996). This model has the
following form:

M M M M MMlog[P(Y � p, Z � r)] � � � � � b � 0.5b ,ij j 0 r p pr

MM MM MMwith b � b if p � r, and b � 0 otherwise. (1)pr rp pr

In this equation, �0 represents a normalizing constant, M� r

the main effect of the ego’s status, the main effect ofMbp

the alter’s status, and the association parameter cap-MMbpr

turing the dependence between ego’s and alter’s status
categories. By imposing a symmetric structure on the as-
sociation parameters ( ) one obtains what isMM MMb � bpr rp

known as the log-linear quasi-symmetry model (Agresti,
2002). The chosen parameterization in which is mul-MMbpr

tiplied by �0.5 and equals 0 for the diagonal elements
yields association parameters with a very simple and useful
interpretation; that is, is the odds ratio in the two-MMexp(b )pr

way table formed by egos’ and alters’ marital status cate-
gories p and r. For example, the coefficient for the single-
married combination (p � 1 and r � 2 or p � 2 and r �
1) compares the odds of having a single rather than a mar-
ried alter for single and married egos. A value for

that is larger than 1 indicates that among p andMMexp(b )pr

r egos it is more likely (than can be expected based on the
marginal distributions) that they will choose alters with the
same marital status. Worded differently, large positive

values indicate a strong boundary between the twoMMbpr

categories concerned and small positive values a weak
boundary.

In Equation 1, the quasi-symmetry model was specified
as a restricted log-linear model for the joint distribution of
ego’s ( ) and alter’s ) marital status. It can, however,M MZ (Yj ij

also be specified as a model for the conditional distribution
of alter’s status given ego’s status, a formulation that will
simplify the various extensions discussed below. This
yields the following logistic regression equation:

M MMexp(b � 0.5b )p prM MP(Y � p|Z � r)] � . (2)ij j 4

M MMexp(b � 0.5b )� p p r� �
p��1

As can be seen, the �0 and terms cancel from the equa-M� r

tion because they do not depend on alter’s status. More-
over, the constraints on and the interpretation of the andMbp

parameters remain exactly the same. Note that theMMbpr

model described in Equation 2 is not a standard multino-
mial logit model but a conditional logit model (McFadden,
1974) because parameters are constrained across categories
of the dependent variable .MYij

The model described in Equation 2 does not take into
account the mutual dependence between marital status and
age homogeneity. To study the impact of age homogeneity
on status homogeneity, we have to analyze the marital
status and age variables simultaneously by means of a
multivariate variant of the quasi-symmetry model. Using

again the logistic regression form, we obtain the following
conditional logit model for the joint distribution of alter’s
marital status and age given ego’s marital status and age:

M T A M AP(Y p, Y � q|Z � r, Z � s)ij ij j j (3)
M A MA MM AAexp(b � b � b � 0.5b � 0.5b )p q pq pr qs

� .
4 5

M A MA MM AAexp(b � b � b � 0.5b � 0.5b )� � p� q� p�q� p�r q�s
p��1 q��1

Here, and are the intercepts corresponding to the twoM Ab bp q

dependent variables and captures their mutual depen-MAbpq

dency. For identification, we use the well-known effects-
coding constraints M A MA� b � � b � � b �p p q q p pq

. The other two terms— and —describeMA MM AA� b � 0 b bq pq pr qs

the association between alter’s and ego’s marital statuses
and ages, respectively, and are restricted to have the sym-
metric association structure that was already introduced
above for .MMbpr

The parameters of main interest are the symmetric as-
sociation parameters , denoting the strength of the re-MMbpr

lationship between ego’s and alter’s marital status. The ef-
fect of age homogeneity on marital status homogeneity can
be determined by comparing the results obtained with
Equation 2 with the ones of a model in which the termsMAbpq

are omitted or, equivalently, in which . Note thatMAb � 0pq

with this set of constraints, we obtain the same estimates
for and as are obtained with the simpler modelM MMb bp pr

described in Equation 2 in which the age variables are fully
omitted.

Modeling Dependencies Between Alters
Using Random Effects

So far, we have ignored the fact that the multiple obser-
vations within individuals (the characteristics of the vari-
ous alters within egos) cannot be assumed to be indepen-
dent of each other, even after controlling for ego’s
characteristics. More specifically, alters may resemble each
other in age and martial status in a way that is not com-
pletely explained by ego’s own age and marital status. It
is well known that standard errors are biased (usually
downward) when dependencies between observations are
not taken into account, which yields incorrect tests. In non-
linear regression models such as our conditional logit
model, parameter estimates may also be biased, usually
downward (Agresti, 2002). In other words, ignoring de-
pendencies may seriously distort the results. Important to
recognize, however, is that the dependencies between the
alters’ characteristics are not just a methodological prob-
lem: they also contain relevant information on individual
differences with respect to the structure of their networks,
that is, on the (unobserved) heterogeneity of preferences
and opportunities. Ignoring this information would be a
loss.

Yamaguchi (1990) proposed modeling and describing
dependencies between alters’ characteristics in friendship
networks using a restricted log-linear model for a table
cross-tabulating the ego’s status with the combination of
statuses of all ego’s alters. When there are c status cate-
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gories and n alters, the model is estimated for a cn�1 table.
The associations between the alters’ statuses are captured
by two-variable log-linear association terms that can be
assumed to be the same for each pair of alters. Despite the
fact that this approach is elegant, conceptually simple, and
fits very well within the log-linear modeling framework
introduced above, it is not practical with more than a few
alters per ego. In our data set, for example, the largest
personal network consists of 31 alters, which means that—
given that we deal with two characteristics simulta-
neously—we would have to set up a log-linear model for
a frequency table consisting of (4 � 5)32 cells, which is,
of course, impossible.

An alternative approach for dealing with dependent ob-
servations involves introducing random effects. Van Duijn
et al. (1999) proposed using linear regression models with
random effects for the analysis of personal networks with
tie information—in their example, change in contact fre-
quency—that can be treated as a continuous outcome vari-
able. In our application, the tie outcome is clearly not a
continuous variable, which implies that we cannot apply
such a standard hierarchical linear model. What is needed
is a random effects variant of the conditional logit model
described in Equation 3, that is, a model in which (at least)
the main effect parameters and are specified to beM Ab bp q

random effects; that is,
M A M AP(Y � p, Y � q|Z � r, Z � s)ij ij j j (4)

M A MA MM AAexp(b � b � b � 0.5b � 0.5b )pj qj pq pr qs
� .

4 5

M A MA MM AAexp(b � b � b � 0.5b � 0.5b )� � p�j q�j p�q p�r q�s
p��1 q��1

The fact that the two main effects now contain an index j
indicates these parameters may vary across egos. In total,
this model contains 7 (� 3 � 4) random effects. Under
the standard assumption that random effects come from an
unrestricted multivariate normal distribution, the log-like-
lihood function will thus contain a seven-dimensional in-
tegral. Because this integral cannot be solved analytically
but only approximated by numerical or Monte Carlo inte-
gration methods, maximum likelihood estimation of the
above random effects conditional logit model is very com-
putationally intensive. Another problem is that the inter-
pretation of the parameters associated with the random ef-
fects may become difficult with so many random effects.
A possible way out of these two problems is to make use
of more parsimonious factor-analytic structures for the ran-
dom effects, as described by Skrondal and Rabe-Hesketh
(2004) and used by Hedeker (2003) and Vermunt (2005)
in the context of random effects multinomial logit models.
The following factor-analytic structures may be of interest
for restricting the term : a one-factor modelM Ab � bpj qj

M A M Ab � b � k F � k F , (5)p q p1 j1 q1 j1

a simple structure two-factor model
M A M Ab � b � k F � k F , (6)p q p1 j1 q2 j2

with either correlated or uncorrelated(r � 0)F F1 2

factors, or a full two-factor model(r � 0)F F1 2

M A M A M Ab � b � k F � k F � k F � k F , (7)p q p1 j1 q1 j1 p2 j2 q2 j2

with uncorrelated factors . In each of these(r � 0)F F1 2

specifications, F denotes a normally distributed continuous
factor with a variance equal to 1 and k2 2(r � r � 1)F F1 2

are factor loadings, which for identification purposes are
assumed to sum to 0 across categories

M M A A(� k � � k � � k � � k � 0).p p1 p p2 q q1 p q1

An alternative approach that does not have the compu-
tational and conceptual difficulties associated with the
parametric random effects conditional logit model is to use
a nonparametric specification for the random effects in
which individuals are assumed to belong to one of T latent
classes that differ with respect to the model parameters of
interest (Skrondal & Rabe-Hesketh, 2004; Vermunt & Van
Dijk, 2001). In our application, this yields a model that is
called a latent class or mixture conditional logit model
(Kamakura, Wedel, & Agrawal, 1994). As pointed out by
Aitkin (1999), such a latent-class-based random effects ap-
proach is not only more practical, it is also much less re-
strictive than the standard approach in the sense that no
arbitrary a priori assumptions need to be made about the
distribution of the random effects.

The relevant latent class variant of the conditional logit
described in Equation 3 has the following form:

M A M AP(Y � p, Y � q|Z � r, Z � s, X � t)ij ij j j j (8)
M A MA MM AAexp(b � b � b � 0.5b � 0.5b )pt qt pq pr qs

� .
4 5

M A MA MM AAexp(b � b � b � 0.5b � 0.5b )� � p�t q�t p�q� p�r q�s
p��1 q��1

Here, the term Xj�t indicates that we condition the logit
on ego j’s membership of latent class t. As can be seen,
the parameters and contain an index t, indicatingM Mb bpt qt

that these terms may differ across latent classes; that is,
that these terms can be viewed as random effects. More
specifically, rather than assuming that each individual has
its own specific selection of alters, it is assumed that there
are groups of individuals who have a specific selection of
alters.

The connection between the above model and a standard
latent class model becomes clearer if we write down the
model for the joint probability density function associated
with the full network of ego j; that is,

M A M AP(Y , Y |Z , Z )j j j j

T

M A M A� P(X � t)P(Y , Y |Z , Z , X � t) (9)� j j j j j j
t�1

T N j

M A M A� P(X � t) P(Y , Y |Z , Z , X � t).� j � ij ij j j j
t�1 i�1

As in a standard latent class model, the joint distribution
of the observed response variables given external variables,

, is obtained as a weighted average of TM A M AP(Y , Y |Z , Z )j j j j

class-specific distributions, ,M A M AP(Y , Y |Z , Z , X � t)j j j j j

where the class sizes P(Xj�t) serve as weights. As can be
seen, the Nj observations of case j (alters’ responses of ego j)
are assumed to be independent given the class membership
of case j, which is equivalent to the local independence
assumption in a standard latent class model (Goodman,
1974). Note that also in the parametric random effects
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Table 2. Cross-tabulation of marital status of ego and alter:
row percentages.

Alter

Ego �30 30–39 40–49 50–59 60� Total Percentage

�30 60.7 22.8 7.8 4.7 4.0 100.0 21.2

30–39 19.9 52.2 18.6 4.9 4.4 100.0 26.7
40–49 6.8 29.6 39.8 14.2 9.6 100.0 20.9
50–59 4.4 12.6 29.9 31.4 21.8 100.0 16.9
60� 3.0 9.0 12.9 23.0 52.1 100.0 14.2
Total 20.8 28.4 21.8 13.8 15.1 100.0 100.0

Table 1. Cross-tabulation of marital status of ego and alter:
row percentages.

Alter

Ego Single Married Divorced Widowed Total Percentage

Single 38.5 55.7 2.0 3.8 100.0 21.7
Married 9.5 82.5 3.1 4.9 100.0 71.8
Divorced 17.4 65.0 8.7 9.0 100.0 4.2
Widowed 10.0 63.3 6.7 20.0 100.0 2.3
Total 16.2 75.5 3.2 5.1 100.0 100.0

Table 3. Fit measures for the estimated conditional logit
models.

Model Descriptiona

log-
likelihood BIC

# para-
meters

A Equation 3 with
MAb � 0pq

�15917 31990 23

B1 Equation 3 �15074 30385 35
B2 Equations 8 and 9,

2 classes
�14891 30074 43

B3 Equations 8 and 9,
3 classes

�14807 29960 51

B4 Equations 8 and 9,
4 classes

�14758 29915 59

B5 Equations 8 and 9,
5 classes

�14725 29904 67

B6 Equations 8 and 9,
6 classes

�14699 29907 75

C1 Equations 4 and 5,
one factor

�14876 30036 42

C2 Equations 4 and 6,
simple structure and
two correlated
factorsb

�14807 29906 43

C3 Equations 4 and 6,
simple structure and
two uncorrelated
factors

�14807 29899 42

C4 Equations 4 and 7,
two uncorrelated
factors

�14792 29916 47

aSee text for a detailed explanation of the models. bWhereas all
other models where estimated with Latent GOLD Choice 4.0, this
model was estimated with an experimental version of Latent
GOLD Choice that allows including factor correlations.

model we make the assumption of local independence; that
is, responses are assumed to be independent given the ran-
dom effects. Different from a standard latent class model
are that variable pairs serve as joint indicatorsM A(Y , Y )ij ij

instead of single variables and that the number of indicators
(observed responses) varies across cases.

Allowing parameters to vary across latent classes of in-
dividuals is not only a way to take into account dependen-
cies between observations, it also provides us information
about the marital status and age homogeneity of networks,
controlling for alter and ego characteristics. As will be
shown when presenting the results obtained with our anal-
ysis, latent classes not only capture dependencies, but can
also be given meaningful labels in terms of types of per-
sonal networks.

Whereas the model without random effects can be esti-
mated with either standard log-linear analysis or condi-
tional logit procedures, our two random effects variants
require specialized software. We used the Latent GOLD
Choice 4.0 software package (Vermunt & Magidson,
2005), a program that provides maximum likelihood esti-
mates for standard and latent-class-based random effects
conditional logit models using a hybrid EM and Newton-
Raphson algorithm.

Results

Tables 1 and 2 present the cross-tabulations for the re-
spondents’ and alters’ marital status and age, respectively.
As can be seen from the bottom row of Table 1, the overall
marginal distribution of alters’ marital status is far from
uniform (large overrepresentation of married), which

should be taken into account when interpreting the num-
bers in this table. Comparison of the row percentages with
the overall marginal distribution provides evidence for
marital status homogeneity: Married egos have more alters
with the same married status in their network than overall
(82.5% versus 75.5%), and the same applies for egos that
are single (38.5% versus 16.2%), divorced (8.7% versus
3.2%), and widowed (20.0% versus 5.1%). Similarly, Ta-
ble 2 shows that there is a high degree of age homogeneity
in this sample, which is confirmed by the large correlation
(r � .63) between the respondents’ and alters’ age (com-
puted using the original noncategorized age variables).
Note that the logit models presented in this article yield an
easier understanding of the boundaries that exist between
the groups because (log) odds ratios are not affected by
marginal distributions.

The fit results of the estimated conditional logit models
are presented in Table 3. Model A is a conventional con-
ditional logit model—in which we do not control for the
association between alter’s age and alter’s marital status
( ). Model B1 is also equal to a conventional con-MAb � 0pq

ditional logit model, but compared to Model A, it adds a
set of parameters for the association between alter’s age
and marital status. Both the large increase of the log-like-
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Table 4. Log odds ratios (beta parameters) for boundaries between age and marital status groups.

Model A Model B1 Model B5 Model C3

Beta SE Beta SE Beta SE Beta SE

One age class difference
�30 vs. 30–39 1.95 0.08 1.75 0.08 1.95 0.12 2.01 0.11
30–39 vs. 40–49 1.32 0.08 1.32 0.08 1.46 0.11 1.40 0.09
40–49 vs. 50–59 1.04 0.10 1.04 0.10 1.11 0.12 1.10 0.11
50–59 vs. 60� 1.20 0.11 1.17 0.11 1.26 0.14 1.22 0.12

Two age class difference
�30 vs. 40–49 3.81 0.14 3.57 0.14 3.94 0.18 4.27 0.19
30–39 vs. 50–59 3.25 0.13 3.25 0.13 3.69 0.18 3.48 0.16
40–49 vs. 60� 2.81 0.13 2.78 0.13 2.97 0.16 3.02 0.16

Three age class difference
�30 vs. 50–59 4.54 0.18 4.29 0.18 4.94 0.24 5.29 0.25
30–39 vs. 60� 4.23 0.15 4.20 0.15 4.84 0.22 4.69 0.21

Four age class difference
�30 vs. 60� 5.45 0.21 5.32 0.21 6.03 0.26 6.97 0.31

Marital status differences
Single - married 1.78 0.07 1.22 0.07 1.27 0.09 1.38 0.11
Married - divorced 1.27 0.21 1.22 0.21 1.17 0.24 1.15 0.24
Divorced - widowed 1.19 0.40 0.76 0.41 0.69 0.43 0.67 0.43
Single - divorced 2.21 0.28 1.20 0.29 1.26 0.30 1.28 0.30
Single - widowed 3.06 0.29 0.79 0.30 0.88 0.32 0.89 0.32
Married - widowed 1.66 0.20 0.91 0.20 0.88 0.22 1.03 0.22

lihood value and the lower Bayesian Information Criterion
(BIC) value compared to Model A show that the fit im-
proves considerably when taking into account the depen-
dency between marital status and age homogeneity, which
is as expected.

Models B2–B6 are random effects models with 2 to 6
latent classes, and Models C1–C4 are factor-analytic ran-
dom effect models based on the various specifications de-
scribed in Equations 5 to 7. The fit measures indicate that
the random effects models fit much better than the conven-
tional conditional logit model, indicating that even after
controlling for ego characteristics there is substantial de-
pendence between alters’ marital statuses and ages. The
optimal number of latent classes according to the BIC cri-
terion is 5. According to the BIC criterion, Model C3 is
the preferred parametric model, indicating that heteroge-
neity in marital status and age are different and even un-
correlated dimensions. Note that despite the fact that the
best latent class model (Model B5) yields a much lower
log-likelihood value than the best parametric models
(Model C3), the latter has a slightly lower BIC value be-
cause it contains a smaller number of free parameters.

In Table 4, we present the quasi-symmetry parameters
describing the boundaries between categories (i.e., the log
odds ratios). Positive log odds ratios indicate that there is
less interaction between categories than one would expect
under the independence model and the more positive the
parameter, the stronger the boundary between the two cate-
gories concerned. We present the estimates for Model A,
Model B1, the preferred latent class model (Model B5),
and the preferred parametric random effects model (Model
C3).

Let us first have a look the differences between Models
A and B1. In Model A, all age and marital status param-
eters are strong and positive, confirming that age and mar-

ital status serve as boundaries in interaction. In Model B1
the age parameters hardly change. The reduction varies
somewhat across parameters but is 10% at the highest. The
parameters for marital status selection change consider-
ably, where the exact reduction depends on the parameter
we look at. Whereas these findings clearly support the by-
product hypothesis, this explanation is not sufficient since
the marital status parameters remain positive and statisti-
cally significant (in most cases). Hence, our first conclusion
is that marital status selection is in large part a function of
selection by age, whereas age selection is not a function of
selection by marital status. More important, there is an in-
dependent tendency to select alters within marital status
groups.

The degree to which age selection is responsible for mar-
ital status selection depends on the type of marital status
boundary we look at. For the degree of interaction between
widows and the other categories, age selection is very im-
portant. For the combination of single and widowed, for
example, the reduction is 74%. This is also plausible, given
the older ages of most widows and widowers. For the
boundary between single and married people, age selection
is comparatively less important. After controlling for age,
the relevant parameter declines by 31%. According to this
model, the boundary between divorced and married people,
finally, cannot be explained at all by age selection.

Models B5 and C3 take into account that alters may
show dependencies within egos. When comparing param-
eters of the two random effects models with the ones of
the conventional conditional logit model, we see that the
standard errors increase for virtually all parameters. This
shows that the efficiency is lower when alters are clustered
within egos. At the same time, however, we see that in
most cases, the parameters increase in magnitude. These
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Table 5. Latent class parameters (transformed to probabilities) for Model B5 and factor loadings for Model C3.

Model B5 Model C3

Class 1 Class 2 Class 3 Class 4 Class 5 Loadings

Alter’s age group
�30 0.05 0.19 0.18 0.02 0.25 0.86
30–39 0.09 0.39 0.10 0.19 0.20 0.34
40–49 0.24 0.21 0.07 0.19 0.22 �0.07
50–59 0.28 0.09 0.13 0.09 0.16 �0.35
60� 0.34 0.12 0.51 0.52 0.17 �0.77

Alter’s marital status
Single 0.13 0.12 0.06 0.21 0.31 0.38
Married 0.83 0.83 0.84 0.72 0.59 �0.43
Divorced 0.02 0.02 0.07 0.04 0.08 0.17
Widowed 0.02 0.03 0.03 0.02 0.03 �0.12

Size of latent class 0.25 0.25 0.2 0.17 0.13

increases are not large, but it is interesting that they more
than compensate the increase in the standard errors. This
is a common phenomenon in nonlinear random effects
models. Not only are standard errors biased when depen-
dencies are not taken into account, but the parameters es-
timates themselves may be biased downwards. See, for ex-
ample, the discussion on the difference between marginal
and subject-specific effects by Agresti (2002).

After controlling for age selection and for dependencies
between alters, we see positive and statistically significant
marital status parameters. How strong are these marital
status boundaries and where in the life course are they
strongest? The parameter for single and married persons is
1.27 (Model B1). This shows that the odds that a single
person picks a single person (rather than a married person)
are e1.27 � 3.6 times higher than the odds that a married
person picks a single person. This is a substantial bound-
ary. There is also a strong boundary between married and
divorced persons (the odds ratio is 3.2), and a strong
boundary between single and divorced persons (3.5).
While these three boundaries are more or less comparable
in magnitude, the boundaries involving widows are much
weaker (2.0 for interaction with divorced persons and 2.4
for interaction with either married or single persons). To-
gether these results show that life course events that in-
volve choice (i.e., marriage, divorce) produce stronger
boundaries in social life than life course events that do not
(i.e., widowhood). One could have expected divorce to
produce the strongest boundaries, because divorce is often
normatively disapproved of by others or can be considered
a threat to others. This is not the case, however. The bound-
aries between divorced and married persons are as strong
as the boundaries between (never-married) single persons
and married persons.

We now turn to the interpretation of the latent classes
and the continuous factors in the two types of random ef-
fects models. A latent class is a cluster of egos having a
tendency of choosing alters of a certain kind, indepen-
dently of their own ages and marital statuses. As a result
of this clustered selection, alters are more similar in terms
of age and marital status than can be explained by ego’s

age and marital status. The (partial) conditional probabili-
ties obtained with the and parameters (e.g.,M Ab bpt rt

) reportedM M 4 MP(Y � p|X � t) � exp(b )/� exp(b )ij j pt p��1 p�t

in Table 5 show the (ego) cluster differences with respect
to the ages and marital statuses of their personal network
members. The first class consists of egos having a tendency
to pick age categories 50–59 and 60� more often than
average (averages appear in the last row of Table 2), Class
2 age category 30–39, Classes 3 and 4 age category 60�,
and Class 5 age category 18–29. Classes 1 to 3 as well as
Classes 4 and 5 are similar with respect to their marital
status preferences. Egos in Classes 4 and 5 have more sin-
gle people in their network compared to the average (see
last row, Table 1) and egos in Classes 1 to 3 more married
people. The classes of egos are clearly different with re-
spect to the distribution of alters’ age and marital status,
which means that there is evidence for what we called clus-
tered selection. The labeling of the classes is, however, less
clear than in standard latent class cluster or scaling appli-
cations. One may, however, also treat the latent class pa-
rameters of our model as nuisance parameters; that is, as
parameters that are only included in the model to correct
for dependencies between the multiple alters within an ego.

The factor loadings for the parametric random effects
model (Model 3c) are reported in the last column of Table
5. As can be seen, the category-specific loadings for the
age-related factor show a clear monotonic pattern, indicat-
ing that there is a positive residual association between
alters’ ages. The loadings for the marital status factor in-
dicate that the main contrast is between networks with an
overrepresentation of either married alters or singles, which
is in agreement with what we saw in the latent class solu-
tion. Widowed and divorced take an intermediate position,
where in terms of the ego preferences divorced alters are
more similar to singles and widowed to married alters.

Final Remarks

Using an example on network homogeneity, we showed
that random effects models provide an elegant manner to
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deal with regression-like problems for ego-centered net-
works. Whereas in our application, we had to use a rather
complex regression model—a conditional logit model for
a bivariate response variable—in other applications, the re-
gression model may be much simpler, for example, a Pois-
son regression for counts (number of events), a binary logit
model for a dichotomous outcome variable, or a linear re-
gression model for a continuous response variable.

Various existing extensions of the random effects mod-
els described in this article may be of interest for analyzing
more complex personal network data. One useful extension
is the possibility to include ego-level covariates in the
model affecting either the latent class membership or the
continuous factors. This would be a way to explain why
egos differ with respect to their choice of alters. Another
extension involves the possibility to deal with longitudinal
personal network data. This could be done either by means
of a growth model, which in our case would imply speci-
fying a three-level random effects model, or by a transition
model such as a latent class Markov model. A last inter-
esting extension we would like to mention is relevant when
egos are nested with groups of egos, for example, within
regions or organizations. In such a situation, one would
need a three-level random effects model, either a standard
parametric model or a latent-class-based model.
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