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Abstract

This paper discusses the testing of log-linear models with inequality constraints using
both asymptotic and empirical approaches. Two types of likelihood ratio tests statistics
are investigated: one comparing the order-restricted model to the independence model,
which is the most restricted model, and the other comparing the order-restricted model to
the saturated model, or the data. As far as the asymptotic approach is concerned, we will
focus on the chi-bar-squared distribution and methods for obtaining the weights for this
distribution. The proposed empirical approach makes use of parametric bootstrapping.
Keywords: log-linear models, inequality constraints, chi-bar-squared distribution, parametric
bootstrap

Resumen

TESTS DE RAZON DE VEROSIMILITUDES PARA HIPOTESIS DE ORDEN: UNA
REVISIÓN DEL BOOTSTRAP PARAMETRICO Y DE LAS APROXIMACIONES PARA
CALCULAR LOS PESOS DE LA DISTRUBUCION CHI CUADRADO BARRA

En este articulo se discute el ajuste de modelos loglineales con restricciones de de-
sigualdad. Para ello se utilizan dos aproximaciones: una basada en la teor{ia asintótica y
otra emṕirica. Dos tipos de estad́isticos de razón de verosimilitudes son investigados: en el uno el
modelo con restricciones ordinales se compara con el modelo de independencia, que es el modelo
más restringido, en el otro el modelo con restricciones ordinales se compara con el modelo saturado
que representa los datos. En cuanto a la teoŕia asintótica, la distribución chi cuadrado barra y los
métodos para obtener los pesos en esta distribución son estudiados. La aproximación emṕirica se
centra en el bootstrap paramétrico.
Palabras clave: Modelos loglineales, restricciones de desigualdad, distribución chi
cuadrado barra, bootstrap paramétrico

In the social sciences, the variables and the relationships studied often have an ordinal

nature. Such ordinal variables can be analyzed in different manners. One option is to use

methods for nominal variables, like simple log-linear models, which amounts to ignoring in-

formation about the order of categories. Other methods, like correspondence analysis and

log-bilinear association models, estimate the unknown category scores of the ordinal variables.

These models are, however, not strictly ordinal because the score parameters do not necessar-

ily reflect the assumed direction of the association. A third approach involves estimating the

model probabilities under specific inequality restrictions on relevant association measures. Such
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a nonparametric approach permits to define and test more intuitive hypotheses about ordinal-

ity. An example is a model that assumes that all local log-odds ratios are at least zero. Even

though model estimation and testing is more complicated when adopting such a nonparametric

approach, quite some work has been done on this topic (Robertson, Wright & Dykstra, 1988;

Croon, 1990, 1991; Dardanoni & Forcina, 1998; Vermunt, 1999, 2001). An important reason

why these nonparametric methods have not been extensively used so far is that this literature

is not very accessible for applied researchers. One of the aims of this paper is to provide a less

technical overview of this field.

Hypotheses involving maximum likelihood estimates are usually tested by means of the

likelihood-ratio (LR) statistic. Under some regularity conditions, the LR statistic is asymp-

totically chi-squared distributed, where the number of degrees of freedom equals the difference

between the number of free parameters in the two models that are compared to one another.

This simple rule for obtaining the number of degrees of freedom can, however, not be applied

when inequality constraints are imposed. The reason for this is that in such models the number

of free model parameters depends on the sample. As a consequence, the asymptotic distribution

of the LR statistic is no longer a unique chi-squared distribution, but a mixture of chi-squared

distributions that is often referred to as chi-bar-squared.

The main difficulty of using asymptotic tests based on the chi-bar squared is the computation

of the weights associated with the various numbers of degrees of freedom. Analytical solutions

are only available if the number of inequality restrictions is smaller than 5. However, several

methods to approximate the weights of the chi-bar-squared distribution have been developed.

We will present the most important ones.

Rather than using an asymptotic approach to obtain the p value associated with the LR

statistic, it can also be estimated using parametric bootstrapping. It is well-known that boot-

strapping methods can be used to obtain an empirical approximation of the distribution of a test

statistic when its asymptotic distribution is complicated or unknown (Langeheine, Pannekoek

& Van de Pol, 1996). These methods have been successfully applied to the testing of various

types of order-restricted models for categorical data. Ritov and Gilula (1993), for example,

proposed such a procedure in maximum likelihood correspondence analysis with ordered cate-

gory scores. Vermunt & Galindo (2001) showed that parametric bootstrapping offers reliable

results when applied in order-restricted row-column association models. Vermunt (2001) used

the method for testing order-restricted latent class models.

This paper gives a less technical overview of methods for the estimation and testing of

log-linear models with inequality constraints. The next Section introduces the log-linear model

with inequality constraints, describes maximum likelihood estimation by activated-constraints

algorithms, and presents the relevant test statistics. Then we describe the asymptotic testing

approach, discus the problems associated with the computation of the weights of the chi-bar-

squared distribution, and explain the parametric bootstrapping method. Subsequently, the

different approaches are compared with one another using an empirical example. The paper

ends with a short discussion.
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Log-linear models with inequality constraints

Log-linear definition of a positive association

Consider a log-linear model in which the logarithm of the expected frequency for data pattern

i is given by,

log mi =
K∑

k=1

βkXik, (1)

with βk denoting one of the K unknown parameters (k = 1, ..., K), and Xik an element of

the design matrix.

As is shown below, the hypotheses of a positive relationship can be tested by assuming that

some of the two-variable term are at least zero. In other words, some of the parameters are

restricted by the inequality constraint βk ≥ 0. This means that the K model parameters can be

divided into two sets: a set of k1 unrestricted parameters whose values can be any real number,

and another set of k2 order-restricted parameters, where k1 + k2 = K.

Consider the case of a 3-by-3 contingency table for which the independence model does not

hold. The most natural manner to define the strength of the relationship between two variables

in a log-linear analysis framework is via the local log-odds ratios, θrc, defined as

log θrc = log mrc + log mr+1c+1 − log mr+1c − log mrc+1, (2)

where r denotes a row, and c a column of the contingency table. If the two variables are

ordinal and if their relationship is positive, one would expect each local log odds ratio to be

non-negative. In other words, a positive relationship implies that

log θrc ≥ 0.

By using an special coding scheme based on the differences between categories, it is possible

to represent the log θrc in terms of βk parameters. In this system, each of the two-variable

parameters corresponds to a local log-odds ratio. As a result, the constraint log θrc ≥ 0 can be

imposed via a log-linear model of the form (1) with constraints βk ≥ 0, for k > k1.

[INSERT TABLE 1 HERE]

Table 1 gives the appropriate design matrix for the case of a 3-by-3 table. The first column

containing only ones corresponds to the constant β1. The next two columns represent the one-

variable terms for the row variable. Because of the incremental coding, these two columns of

the design matrix correspond to the difference between levels one and two and between levels

two and three of the row variable, respectively. The same incremental coding is used for the

column variable in the fourth and fifth column of the design matrix. Columns six to nine

represent the two-variable interaction effects. As usual, these are obtained by multiplying the

appropriate pairs of columns of the one-variable effects.
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The logarithm of the expected frequency mrc equals the scalar product of the row of the

design matrix corresponding to pattern (r, c) and the vector of parameters. For example,

log(m12) can be expressed as follows:

log m12 = β1 + β2 + β3 + β5 + β8 + β9.

The correspondence between the log-odds ratios and two-way interaction parameters can

easily be seen by replacing the logs of the expected frequencies appearing in equation (2) by

the log-linear parameters. For example, the local log-odds ratio log θ22 turns out to be equal

to β9; that is,

log θ22 = log(m22) + log(m33)− log(m32)− log(m23)

= (β1 + β3 + β5 + β9) + (β1)− (β1 + β5)− (β1 + β3)

= β9.

In the remaining of the paper, we will concentrate on this simple log-linear model for two-

way tables. It should, however, be noted that the estimation and testing methods described

can be used with any type of order-restricted log-linear model.

Maximum-likelihood estimation

An easy way to obtain maximum-likelihood (ML) estimates of the parameters of a model with

inequality constraints is by means of an activated-constraints algorithm (Gill & Murray, 1974).

An activated constraint is an equality restriction that is imposed (activated) when an inequality

restriction is violated; in our case, it is an order-restricted parameter that is equated to zero

if it would otherwise become negative. It is straightforward to convert the Newton-Raphson

algorithm for standard log-linear models into an activated-constraints method.

In Newton-Raphson, the parameters are updated as follows:

β(ν) = β(ν−1) − (H(ν))−1q(ν),

where ν represents the iteration number, q denotes the gradient vector containing the partial

derivatives of the log-likelihood function with respect to the parameters to be estimated, and

H denotes the matrix of the second partial derivatives, also called the Hessian matrix. In

an activated-constraints variant of Newton-Raphson, the unrestricted and non-activated order-

restricted parameters are updated in the usual manner. Parameters corresponding to activated

constraints are only updated if the update is in the right direction; that is, if an update will

yield a non-negative parameter value. This can be checked via the sign of the corresponding

element of the gradient vector. After updating the parameters, it may be necessary to activate

certain constraints; that is, if β̂k < 0, for k > k1. This procedure is repeated until some

convergence criterion is reached.
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Two likelihood-ratio tests

Let H0 denote the model in which all k2 order-restricted parameters are set equal to zero. In

our case, H0 equals to the independence model. moreover, let H1denote the order-restricted

model and H2 the model in which no restrictions are imposed on the log-linear parameters. In

our case, H2 is the saturated model. In order to test whether there is a positive relation between

the two ordinal variables, we can either compare H0 with H1 or H1 with H2. Likelihood-ratio

(LR) statistics are usually used for this purpose. The corresponding statistics, L2
01 and L2

12, are

defined as

L2
01 = 2

∑
i

ni log

(
mi(1)

mi(0)

)

L2
12 = 2

∑
i

ni log

(
mi(2)

mi(1)

)
, (3)

where ni represents an observed frequency, and mi(g) an expected frequency under model g

(g = 0, 1, 2). Both statistics measure discrepancies between two models: L2
01 indicates whether

the differences between the estimated frequencies under the independence model (H0) and the

ones under order-restricted model (H1) are significant. If this is the case, there is evidence that

we need the non-negative two-variable interaction terms to explain the data. L2
12 tests whether

the estimated frequencies under the order-restricted model (H1) differ significantly from the

data. If these differences are not significant, it can be concluded that the order-restricted

model gives a good representation of the data.

An empirical example

The order-restricted log-linear model will be illustrated with an analysis of a two-way contin-

gency table taken from Agresti’s textbook “Categorical Data Analysis” (Agresti, 1990: Table

2.4). The two variables of interest are ‘Income’ and ‘Job satisfaction’. Income is measured in

dollars and has four levels. Job satisfaction also has four levels: very dissatisfied, little dissatis-

fied moderately satisfied, and very satisfied. The research question of interest is as to whether

there is a positive relationship between income and job satisfaction.

[INSERT TABLES 2 AND 3 HERE]

Table 3 reports the parameter estimates for the independence, the order-restricted, and

the saturated model. If we look at the results obtained from the order-restricted model, we

see that the constraints corresponding to the parameters β11 and β12 are activated while only

one parameter, β11, took a negative value in the saturated model. This illustrates that the

constraints that should be activated to obtain the order-restricted ML solution cannot always

be derived from the unrestricted model. The reason for this is that the parameters are not

independent of one another.

In order to test H0 versus H1 and H1versus H2, we should examine the values of L2
01

and L2
12. These take on the values 11.59 and 0.44, respectively, indicating that there is a
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large discrepancy between the independence model and the order-restricted model and a small

discrepancy between the order-restricted model and the data. The problem is, however, how

to decide as to whether these discrepancies are significant. A naive approach to determine

the p values corresponding to L2
01 and L2

12 would be to treat the activated constraints as a

priori zeros and apply standard chi-squared tests. It this case, such a procedure would yield

chi-squared tests with 2 and (K − 2 − 1) degrees of freedom, respectively. Such a method is,

however, incorrect because the number of activated constraints and, therefore, also the degrees

of freedom depend on the sample. As is explained in more detail below, the appropriate method

is to assume a chi-bar-squared distribution for L2
01 and L2

12.

The asymptotic method

The chi-bar-squared distribution

The likelihood-ratio test leads to rejection of the null hypothesis if the LR value exceeds the

critical value corresponding to a nominal probability α, which is the maximum type I error

that can be accepted. In order to find the critical value, we need the null asymptotic distri-

bution of the statistic. The distribution for testing inequality constrains was first obtained by

Bartholomew (1959), and subsequently studied by many other authors like Perlman (1969),

Shapiro (1988), Wolak (1991), and Dardanoni & Forcina (1998).

By means of the Delta Method and the Central Limit Theorem, it can be shown that, under

some regularity conditions, the LR statistic is asymptotically chi-squared distributed. One of

these conditions is that the true parameter value is an interior point of the parameter space

under the null hypothesis. With inequality restrictions, this condition need not be fulfilled

because the true parameter value can be on the boundary of the parameter space. For this

more general case, Shapiro (1985) showed that discrepancy statistics have the same asymptotic

distribution as

min
y∈Θ

(ŷ− y)′H−1(ŷ− y),

where ŷ is a random variable with distribution N (0, H), and Θ represents a cone (the part

of the parameter space that is in agreement with the inequality constraints). Their asymptotic

distribution is a chi-bar-squared (χ2)distribution, which is a mixture of chi-squared distributions

given by

P
[
χ2 ≥ c

]
=

k2∑
`=0

w` (H, Θ) P
[
χ2

` ≥ c
]
, (4)

Here, χ2
` denotes a chi-squared random variable with ` degrees of freedom for ` = 1, ..., k2,

and P [χ2
0 ≥ c] = 0. Furthermore, w` (H, Θ) denotes a non-negative weight that depend on

the matrix H and on Θ. This weight represents the probability that exactly ` constraints are

activated in a particular sample.

Let β̂ and β denote the maximum likelihood estimates and the true parameter values,

respectively. It has been shown that, under some regularity conditions, the function n
1
2

(
β̂ − β

)
follows a multivariate normal distribution with mean zero and variance-covariance matrix H,
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where H can be approximated by the Fisher information matrix. Since LR statistics measure

the discrepancy between estimated parameters under two hypothetical models, and, following

the results of Shapiro (1985), LR statistics are asymptotically χ2 distributed.

The L2
01 statistic measures the discrepancy between estimated parameters under the inde-

pendence model (H0) and the ones under the order-restricted model (H1). It has the same

distribution as the β that are in agreement with the ordering and that minimize the distance

to the estimated parameters β̂0 under the independence model. The matrix H can be replaced

by the information matrix under the independence model, H0. That is,

min
β∈Θ

(β̂0 − β)′H−1
0 (β̂0 − β).

The asymptotic distribution is defined by equation (4).

The L2
12 case is somewhat more complicated. This statistic represents the distance between

the estimated parameters under the order-restricted model (H1) and the ones under the sat-

urated model (H2). It has the same distribution as the β minimizing the distance with the

estimated β̂1 under the order-restricted model. Its asymptotic distribution equals

P
[
χ2

12 ≥ c
]

=
k2∑

`=0

wk2−` (H, Θ) P
[
χ2

k2−` ≥ c
]
.

A problem in the choice of H arises from the fact that the number of activated constraints

depends on the sample. As a result, the dimension of the vector of free parameters and the

rank of the variance-covariance matrix vary from one sample to the other. Actually, the only

way to find a critical value that does not depend on the number of activated constraints in a

particular sample is by taking the least favorable case in which all the constraints are activated;

that is H = H0. As is shown below, this yield a somewhat conservative test.

The weights corresponding to χ2

Because exact weights can only be calculated in certain special cases, several methods have

been developed for approximating the weights of the chi-bar-squared distribution. The most

important ones will be exposed in this section.

Direct calculation of weights

Robertson et al. (1988: section 2.4) and Shapiro (1985) showed that, under certain regularity

conditions, weights can be calculated for k2 ≤ 4. For example, when k2 = 3, the weights can

be obtained as follows:

w0(H,Θ) =
1

4
π−1

(
2π − [cos (p12)]

−1 [cos (p13)]
−1 [cos (p23)]

−1
)
, (5)

w1(H,Θ) =
1

4
π−1

(
3π − [cos (p12.3)]

−1 [cos (p13.2)]
−1 [cos (p23.1)]

−1
)
,

w2(H,Θ) =
1

2
− w0(H,Θ), w3(H,Θ) =

1

2
− w1(H,Θ),
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where pij denotes element (i, j) of the matrix that is obtained by,

p = (diagH−1)−
1
2H−1(diagH−1)−

1
2 ,

and pij.k = (pij − pikpik) (1− p2
ik)

− 1
2

(
1− p2

jk

)− 1
2 is the conditional correlation between elements

i and j given k. Equation (5) gives an idea about the complexity of the computations for larger

number of constraints.

Approximating the weights

Several methods have been developed to approximate the weights of the chi-bar-squared dis-

tribution when their values cannot be calculated directly. One of these methods consists of

assuming that the information matrix H is the identity matrix (I). Grove (1980) claimed that

the w` (H, Θ) are insensitive to the choice of H, and that, as a result, w` (I, Θ) provides a

reasonable approximations in most situations.

Gourieroux et al. (1982) proposed approximating the weights of the chi-bar-squared by a

Binomial distribution with k2 trials and probability of success equal to 1
2
. In other words,

w` (I, Θ) = 2−k2
k2!

[`! (k2 − `)!] ,

where k2 denotes again the number of order-restricted parameters.

Dardanoni & Forcina (1998) provided stochastic upper and lower bounds for the distribution

of L2
01 and a stochastic upper bound for the distribution of L2

12 which depend on the type of

order hypotheses. Here, we only give the bounds that apply to the model used in this paper.

For L2
01, these bounds have the following form:

χ2
1 �s χ2

01 �s χ2 (Ik2 , Θk2) ,

which means that for a certain critical value the cumulative probability under the asymptotic

distribution of the statistic is contained in the interval determined by the cumulative probabil-

ities under a chi-squared with one degree of freedom and a chi-bar-squared distribution defined

in the restricted parameters space and having the identity matrix as a covariance matrix.

For L2
12, the upper bound is given by

χ2
12 �s χ2

k2−1 + χ2
1,

which indicates that the cumulative probability under the asymptotic distribution of the statis-

tic is smaller than the combination of the cumulative probabilities of chi-squared distributions

with k2 − 1 and one degree of freedom.

Estimating the weights by simulation

Dardanoni and Forcina (1998, p. 1117) proposed estimating the weights of the chi-bar squared

distribution by means of a simulation procedure that makes use of the asymptotic distribution

of the maximum likelihood estimators, N
(
β̂,
√

nH−1
)
.Their procedure involves drawing a
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reasonable number of parameter vectors from a normal distribution with mean equal to the

hypothesized parameter values and a covariance matrix equal to the estimated information

matrix under H0. These simulated parameter vectors may contain values that violate the

order restrictions. An activated-constraints algorithm is used to find order-restricted parameter

values that are as close as possible to the simulated values in the weighted least squares sense.

This procedure is sometimes referred to as projecting the simulated values into the restricted

parameters space. The estimated weights of the chi-squared-bar are defined by the distribution

of the number of activated constraints across replications.

In the case of the L2
01 statistic, k2 parameters are drawn from a normal distribution with

mean equal to zero and covariance matrix equal to the information matrix under the inde-

pendence model. The simulated parameters are projected into the space of non-negative pa-

rameters. Each weight is defined as the proportion of times that the corresponding number of

activated constraints occurs in the replications. Using the simulated weights, the critical value

can be obtained by equation (4).

The L2
12 case is more complicated because the number of activated constraints in the model

estimated under H1 depends on the data. To circumvent this problem, Dardanoni and Forcina

(1998) proposed using the least favorable case in which all the constraints are activated. This

amounts to simulating the weights in the same manner as for the L2
01 test. They also proposed

an alternative, local, test in which the parameters are drawn from a multivariate normal dis-

tribution having the parameter estimates under the order-restricted hypothesis
(
β̂1

)
as mean,

and the information matrix of that model as variance-covariance matrix. A disadvantage of

this approach is that the approximation of the asymptotic distribution depends heavily on the

number of activated constraints in the order-restricted model. An advantage is that it is less

conservative.

The parametric bootstrapping method

For models as complex as the ones considered here, the parametric bootstrap seems to be an

attractive method to obtain the p values associated with L2
01 and L2

12. The distribution of the

test statistic is empirically reconstructed by drawing samples from the multinomial distribution

defined by estimated probabilities under the more restricted model. This method has been

used by various authors for testing models with inequality restrictions. For example, Ritov &

Gilula (1993) proposed such a procedure in maximum likelihood correspondence analysis with

ordered category scores, and Vermunt & Galindo (2001) applied the procedure in ordered row-

column association models. Furthermore, Wang (1996) showed that critical values obtained

by parametric bootstrapping are asymptotically consistent when testing stochastic ordering of

several populations.

For L2
01, the parametric bootstrap works as follows:

1. Estimate the model under H0 and H1, in this case, by using the activated-constraints

algorithm.

2. Compute the test statistic.
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3. Draw a sample of the same size as the original sample from the multinomial distribution

defined by the probabilities under H0.

4. Estimate the models defined by H0 and H1 with the generated sample and compute the

test statistic (L2
01)

∗
.

5. Repeat steps (3) and (4) a sufficiently large number of times B, yielding bootstrap repli-

cates (L2
01)

∗
1 , ..., (L2

01)
∗
B.

6. Use the empirical distribution of (L2
01)

∗
1 , ..., (L2

01)
∗
B to approximate the p-value by

p̂B = P̂B

[(
L2

01

)∗
≥ c

]
.

The estimated p-value is the fraction of bootstrap replicates (L2
01)

∗
exceeding the observed

value of the test statistic for the given sample. The standard error of the estimated p-value

equals
√

p (1− p) /B.

The bootstrap procedure for L2
12 differs from the one for L2

01 in that frequency tables have

to be simulated from the estimated probabilities under H1. Then, the order restricted model is

estimated with the simulated samples, and the distance with the generated data is calculated

by L2
12. The p value and its standard error is computed as was described above for L2

01 (see

also, Vermunt, 1999).

Application of the testing methods in the empirical

example

Let us return to the empirical example introduced in Section 2. In order to decide as to

whether the discrepancies found in our example (L2
01 = 11.59; L2

12 = 0.44) are significant, we

need to find either the associated p values or the critical values corresponding to a certain value

of α. Note that since k2 > 4, the weights of the corresponding chi-bar squared distribution

must be approximated by one of the procedures described above.

[INSERT TABLE 4 HERE]

For a significance level of 0.05, Dardanoni and Forcina’s (1998) method for obtaining bounds

yields a critical value lying between 3.84 and 11.74 for L2
01, and a critical value smaller than

19.3488 for L2
12. Since L2

01 = 11.59 and L2
12 = 0.44, none of the models needs to be rejected

when using this procedure.

With the parametric bootstrap method (1000 replications), we obtained p values of 0.0095

and 0.9125 for L2
01 and L2

12, respectively. According to this procedure, we would reject the

independence model in favor of the order-restricted model and not reject the order-restricted

model in favor of the saturated model. This indicates that there is evidence for a positive

association between the two variables.

Table 4 reports chi-bar-squared weights approximated by several procedures, as well as the

corresponding p values and critical values for α = 0.05. As can be seen, we used binomial
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weights and weights simulated from multivariate normal distributions under H0 and H1. For

the latter, we used variants based on a Hessian matrix with dimension K and k2, respectively.

We will refer to these as H1(K) and H1(k2).

As can be seen from Table 4, the critical values and the p values are strongly dependent

on the method used to obtain the weights. For L2
01, a procedure is more liberal, leads easier

to rejection of the independence model in favor of the order-restricted model, if larger weights

are given to the smaller numbers of activated constraints. In the case of L2
12, the effect of the

weights is the opposite: a procedure is more liberal if smaller weights are given to the smaller

numbers of activated constraints. It should be noted that a more liberal procedure yields lower

critical values and lower p values than a more conservative procedure.

For L2
01, the binomial weights yield the most conservative test. According to this method,

there is not enough evidence to reject the independence model. The conclusion is different if

we use the simulated weights based on H0, in which case we reject the independence model in

favor of the order-restricted model. Note that the latter procedure yields a p value that is very

close to one obtained with the bootstrap method.

For L2
12, the most liberal results come from the procedures using binomial weights and

weights simulated using H1(K). Note that the latter method gives a p value that is close to

the one obtained with the parametric bootstrap. The other two procedures, simulating weights

using H1(k2) or and H0, give almost the same results.

Discussion

Compared to standard log-linear models, the presented order-restricted models have the

benefit that they permit more precise specification of the nature of the relationship between

the variables of interest. Although for simplicity of exposition we concentrated on the analysis

of two-way tables, the proposed approach can also be used with multi-way tables. As we

saw, maximum likelihood estimation of log-linear models with inequality constraints is quite

straightforward. Testing of such models is, however, somewhat more problematic because the

results may dependent on the method that is used to obtain the critical value or the p value.

In the case of the L2
01 test, simulating weights under H0 and the bootstrap are the preferred

methods. As could be expected, these two methods give very similar estimates of the p value.

The bounds provided by Dardanoni and Forcina (1998) and the binomial weights yield too

conservative tests. This is not a problem as long as the independence model is reject. If,

however, as in our example, these procedures lead to acceptance of the independence model,

it is wise to perform a bootstrap or simulate the weights of the chi-bar squared distribution in

order to get a less conservative test.

In the L2
12 case, the upper bound provided by Dardanoni and Forcina is too conservative

and the binomial weights are much too liberal. Simulating weights using H0 or H1(k2) yield

similar but somewhat conservative results. These procedures provide a kind of upper bound

for the p value. The consequence of using such a too conservative upper bound is that the

order-restricted model may be accepted even when the relationship between variables is very

weak.
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The procedures based on the bootstrap and on weights simulated with H1(K), on the other

hand, may yield somewhat too liberal results. This is confirmed by results we obtained with

other data set to which we applied these methods. Parametric bootstrap and simulated weights

under H1 (with dimension K) are both affected by the number of constraints activated in the

estimated model. The consequence of this dependence is that they seem to give a kind of lower

bound for the p value.

Further research should be done on L2
12 test along two lines. First, we wish to get more

insight into the behavior of the too conservative procedures, simulating weights using H0 or

H1(k2), and the too liberal procedures, bootstrapping and simulating weights using H1(K).

This involves performing an extended simulation study. A second line of research is the search

for possible improvements of current procedures, as well as for other testing approaches, like

Bayesian methods, that might solve the problems associated with the current methods. An

example of a possible adaptation of the current procedures is the use of a double bootstrap to

make it less dependent on the number of the activated constraints in the maximum likelihood

solution.
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Table 1. Design matrix for a 3-by-3 table using difference coding
pattern i Xi1 Xi2 Xi3 Xi4 Xi5 Xi6 Xi7 Xi8 Xi9

1 1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 0 1 0 0 1 1
1 3 1 1 1 0 0 0 0 0 0
2 1 1 0 1 1 1 0 1 0 1
2 2 1 0 1 0 1 0 0 0 1
2 3 1 0 1 0 0 0 0 0 0
3 1 1 0 0 1 1 0 0 0 0
3 2 1 0 0 0 1 0 0 0 0
3 3 1 0 0 0 0 0 0 0 0
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Table 2. Observed cross-classification of job satisfaction and income
Job Satisfaction

Income($) Very dissatisfied Little dissatisfied Moderately satisfied Very satisfied
≤6000 20 24 80 82
6000-15000 22 38 104 125
15000-25000 13 28 81 113
≥25000 7 18 54 92
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Table 3. Parameter estimates of the three models estimated with the data of Table 2
Unrestricted β1 β2 β3 β4 β5 β6 β7

H0 4.36 -0.34 0.21 0.32 -0.56 -1.08 -0.26
H1 4.25 -0.42 0.10 0.21 -0.94 -1.10 -0.53
H2 4.52 -0.42 0.10 0.21 -0.94 -1.10 -0.53
Restricted β8 β9 β10 β11 β12 β13 β14 β15 β16

H1 0.22 0.26 0.19 0.00 0.00 0.02 0.11 0.16 0.20
H2 0.36 0.22 0.18 -0.20 0.06 0.04 0.16 0.15 0.20
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Table 4. Weights of the chi-bar-squared distribution and corresponding critical values and

p values for the empirical example
#activated constraints Binomial Simulated H0 Simulated H1(K) Simulated H1(k2)
0 0.0000 0.0474 0.0000 0.0000
1 0.0020 0.1780 0.0040 0.0140
2 0.0176 0.2896 0.0088 0.1067
3 0.0703 0.2631 0.0645 0.2583
4 0.1641 0.1515 0.2032 0.3065
5 0.2461 0.0554 0.3151 0.2072
6 0.2461 0.0132 0.2650 0.0849
7 0.1641 0.0018 0.1161 0.0201
8 0.0703 0.0001 0.0248 0.0022
9 0.0176 0.0000 0.0021 0.0002
χ2

01;0.05 11.7376 7.7179
χ2

12;0.05 8.4903 13.7421 9.6466 11.6364

P (χ2
01 ≥ 11.59) 0.0667 0.0099

P (χ2
12 ≥ 0.44) 0.8897 0.9960 0.9362 0.9822


