
Quality & Quantity manuscript No.
(will be inserted by the editor)

Logistic regression analysis with multidimensional random
effects: A comparison of three approaches
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Abstract This paper investigates the performance of three types of random coefficients
logistic regression models; that is, models using parametric, semi-parametric, and nonpara-
metric specifications of the distribution of the random effects. Whereas earlier studies fo-
cussed on models with a single random effect, here we look at models with multidimensional
random effects (intercepts and slopes). Moreover, also the performance of a semi-parametric
approach – using mixture regression models with number of latent classes is selected using
the BIC – is investigated.

One of the main conclusions of our study is that the good results obtained with the non-
parametric approach in the unidimensional case do not generalize to the multidimensional
case. Parametric and semi-parametric approaches are much better in terms of bias and rel-
ative efficiency than the nonparametric approach. For the fixed-effects estimation, a para-
metric approach is the preferred method when the underlying assumption of the parametric
model holds. In other situations, the semi-parametric approach is the best choice.
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1 Introduction

During the last decades, multilevel regression analysis has become part of the standard statis-
tical toolbox of researchers in the social and behavioral sciences as well as in the biomedical
field. This statistical method is used for the analysis of data sets in which lower-level units
are nested within higher-level units (Hox, 2002; Skrondal and Rabe-Hesketh, 2004; Snijders
and Bosker, 1999). Examples include data sets with a nesting of persons within families, sur-
vey respondents within geographical units, patients within therapists, pupils within schools,
employees within firms, and repeated measurements within subjects. The lower level of the
hierarchical structure is often referred to as level-1 and the higher level as level-2.

Typical for multilevel data is that level-1 observations belonging to the same level-2
unit are more alike than level-1 units from different level-2 units, for example, because they
share common environments, experiences, and interactions. The implications of this is that
the responses of level-1 units within the same level-2 units are correlated and can thus not be
treated as independent observations in the statistical analysis. Whereas in some applications
this is perceived as a problem that should be dealt with when modeling multilevel data, in
other applications the multilevel data structure is seen as containing valuable information on
how groups (higher-level units) differ from each other, for example, in terms of the effects
of explanatory variables on the outcome variable of interest (Bryk and Raudenbush, 1992;
Hox, 1994; Snijders and Bosker, 1999).

The most popular approach for the analysis of such data sets is by means of multi-
level models, which are also referred to as hierarchical, mixed, random-effects, or random-
coefficients models (Bryk and Raudenbush, 1992; Hox, 1994; Longford, 1995; Snijders and
Bosker, 1999). Whereas the terms “multilevel” and “hierarchical” refer to the data structure,
the terms “mixed”, “random-effects” and “random-coefficients” indicate what these models
are from a more technical point of view. More specifically, these models capture differences
between level-2 units – and thus also correlations between level-1 observations within level-
2 units – by allowing one or more of the model parameters to vary randomly across level-2
units. Whereas the earliest developments and applications of multilevel regression models
concerned linear models for continuous responses, these are nowadays also applied with dis-
crete response variables. The most popular model for binary responses is the random-effects
logistic regression model (Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993).

A key issue in the specification of a multilevel regression model is that not only assump-
tions have to be made about the distribution of the residuals, but also about the distribution of
the random effects, also referred to as the mixing distribution. The most common approach
is to assume that it has a convenient parametric form, in most cases a normal distribution.
However, as stressed by Aitkin (1999), parametric distributional assumptions about the ran-
dom effects will usually not hold in practice, which may have serious implications for the
parameter estimates. For example, various studies found that misspecification of the dis-
tribution of random effects results in a loss of efficiency of the fixed coefficient estimates
(Agresti et al., 2004; Heagerty and Kurland, 2001; Maas and Hox, 2004; Neuhaus et al.,
1992). Lukočienė (2008) not only confirmed this result for the random-intercept logistic re-
gression model, but also showed that the estimate for the random-intercept variance may be
severely biased when its distribution is misspecified.

Rather than using a parametric random-effects approach, it is also possible to use either
a nonparametric or a semi-parametric approach. These two alternatives have in common
that they are both latent class models; that is, a discrete mixing distribution with K nodes
(latent classes) is used to approximate the underlying distribution with an unknown shape.
The locations and weights corresponding to the nodes are quantities to be estimated. Al-
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though the nonparametric and semi-parametric approach are similar, they are fundamentally
different in how they determine the number of latent classes. In the former, the number of
latent classes is increased till the likelihood function is maximized, which yields what is
called the nonparametric maximum likelihood (NPML) estimator of the random-effects dis-
tribution (Heckman and Singer, 1984; Laird, 1978; Lindsay, 1995). As indicated by Leroux
(1992) and Leroux and Puterman (1992), the NPML estimate may yield unnecessarily large
numbers of latent classes and well fitting models with fewer latent classes may be preferred.
Rather than increasing the number of latent classes till a saturation point is reached, it is also
possible to decide about the number of classes using information criteria such as AIC and
BIC. Note that this is what is usually done in mixture regression analysis (Vermunt and van
Dijk, 2001; Wedel and DeSarbo, 1994), as well as in other types of latent class analyses. To
distinguish this approach from NPML, we call it a semi-parametric approach.

This paper provides a comparison of the three random-effect approaches within the con-
text of multilevel logistic regression analysis. It extends the work by (Lukočienė, 2008) on
the comparison of parametric and NPML approaches for random-effects logistic regression
analysis to the situation in which not only the intercept but also slopes are random coef-
ficients, as is usual in social and behavioral science application of multilevel regression
analysis (Kreft and de Leeuw, 1998; Singer, 1998; Snijders and Bosker, 1999). As far as
we know, there are no studies investigating the performance of the NMPL approach when
applied with multidimensional random effects. Moreover, we include the semi-parametric
approach in the comparison. This is the commonly used latent-class based regression model-
ing approach for situations in which not only the intercept but also the slopes vary randomly
across level-2 units. We focus on binary logistic regression models because these are more
sensitive to specification issues in multilevel analysis than models for continuous response
variables or counts (Agresti et al., 2000, 2004).

Using a simulation study we wish to find out which of the three approaches – parametric,
semi-parametric or nonparametric – should be used under different types of true random-
effects distributions and specific features of the sample. More specifically, we are interested
in whether it makes sense to use a nonparametric or semi-parametric model as an alterna-
tive when the underlying assumptions of the parametric model do not hold? Moreover, we
wish to know whether it harms to use a nonparametric or semi-parametric model – say for
practical reasons – when the assumptions of the parametric model hold?

The next section describes the multilevel logistic regression model of interest. Section
3 discusses the set up of the simulation study. Results of the simulation study are presented
in Section 4. The last section summarizes the main conclusions and provides some practical
recommendations.

2 The two-level logistic regression model

This section describes the two-level logistic regression model using the single equation
mixed model formulation (Skrondal and Rabe-Hesketh, 2004). An alternative would be to
use the hierarchical model formulation, which contains separate regression equations for the
various hierarchical levels (Bryk and Raudenbush, 1992; Hox, 2002; Snijders and Bosker,
1999).

Let yi j denote the binary response (yi j = 0,1) of the level-1 unit i, i = 1, . . . ,n j, belonging
to the level-2 unit j, j = 1, . . . ,n. Explanatory variables are referred to by xi j and zi j, where
the former concern the fixed and the later the random effects. The vector with fixed effects
is denoted by β and the vector with the unobservable common random coefficients shared
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by all level-1 units belonging to the jth level-2 unit by u j. Let πi j = E(yi j|xi j,zi j,u j) be the
conditional expectation of yi j. The multilevel logistic regression model for yi j takes on the
following form:

log
πi j

1−πi j
= β′xi j +u′jzi j. (1)

The typical assumption for the random coefficients u j is that these are independently and
identically distributed multivariate normal random variables with zero means and covariance
matrix Σu. Consistent with this distributional assumption, parameters of the two-level logis-
tic regression model may be estimated by maximum likelihood (ML), where construction of
the likelihood function is simplified by the fact that the yi j can be assumed to be independent
within level-2 units conditionally on the observed predictors and the unobserved random ef-
fects. ML estimation involves maximizing the following marginal likelihood function:

L(β,Σu) =
n

∏
j=1

∫
u j

[
n j

∏
i=1

π
yi j
i j (1−πi j)1−yi j

]
f (u j;Σu)du j, (2)

where π
yi j
i j (1−πi j)1−yi j represents the Bernoulli distribution for the level-1 errors. Note that

the fixed effects β and covariance matrix Σu are the unknown parameters to be estimated.
The integral should be solve numerically, for example, using Gauss-Hermite quadrature,
which is basically a discrete approximation of the multivariate normal integral. Algorithms
for maximizing the resulting numerically integrated marginal likelihood are the EM algo-
rithm (Agresti et al., 2000; Bock and Aitkin, 1981; Dempster et al., 1977) and gradient meth-
ods, such as the Fisher scoring (Longford, 1987) and Newton-Raphson algorithm (Pan and
Thompson, 2003; Rabe-Hesketh et al., 2004). In our study, we used numerical integration
with 50 nodes per dimension. For maximization a combination of EM and Newton-Raphson
was used, where the estimation process starts with EM iterations and switches to Newton-
Raphson when the relative change in parameters is very small (Vermunt and Magidson,
2005).

As was indicated in the introduction, usually nothing or very little it is known about
the underlying distribution of the random effects (Aitkin, 1999). To prevent possible mis-
specification, it may therefore be attractive to assume the random effects u j come from an
unspecified mixing distribution concentrated on a finite number of latent classes or mass
points (Aitkin, 1999; Heckman and Singer, 1984; Laird, 1978; Vermunt, 1997). Let K de-
note the number of latent classes, k a particular latent class, and u∗k the unknown values of
the random effects u j when level-2 unit j belongs to latent class k, and let πk = P(u j = u∗k)
represent the probability that a randomly selected level-2 unit belongs to latent class k or
in other words that the random effects correspond to the location of class k. Using such
a K-class discrete characterization of the random effects distribution yields the following
marginal likelihood function:

L(β,u∗,π) =
n

∏
j=1

K

∑
k=1

[
n j

∏
i=1

π
yi j
i j|k(1−πi j|k)

1−yi j

]
πk, (3)

where πi j|k is the conditional density function of yi j given that level-2 unit j belongs to latent
class k. The two-level logistic regression model can now be written as a model for πi j|k; that
is,

log
πi j|k

1−πi j|k
= β′xi j +u∗k

′zi j. (4)



5

The weights are restricted such that πk > 0 and ∑
K
k=1 πk = 1. In addition one identify-

ing location constraint should be imposed on each of the M + 1 random coefficients, e.g.
∑

K
k=1 u∗mkπk = 0, which implies that the u∗k = (u∗0k, . . . ,u

∗
mk, . . . ,u

∗
Mk) are centered. The un-

known parameters to be estimated are the fixed effects β, K− 1 free mass point locations
per dimension (u∗0k, . . . ,u

∗
Mk) and K− 1 free mass point weights πk. Note that although the

variances and covariance of the random effects are not model parameters, they can easily be
estimated as follows (Vermunt and van Dijk, 2001):

σ̂2
m =

K
∑

k=1
(u∗mk)

2πk and σ̂mm′ =
K
∑

k=1
u∗mku∗m′kπk.

Maximization of the marginal likelihood function in equation (3) for a specific K, as
in the parametric case, can be achieved by means of the EM and/or Newton-Raphson algo-
rithm. It is usually advised to use of multiple sets of starting values to reduce the likelihood
of ending up in a local maximum.

To obtain the solution corresponding to the NPML estimate of the random effects dis-
tribution, we not only have to maximize (3) for specific values of K; but we simultaneously
have to find the value of K – say KNPML – that yields the largest marginal likelihood value.
In other words, we have to find the saturation point at which increasing K no longer re-
sults in an increase of the likelihood function. A method to find KNPML proposed by various
authors involves introducing latent classes one by one using directional (Gateaux) deriva-
tives (Böhning, 2000; Lindsay, 1983, 1995; Rabe-Hesketh et al., 2003). A much simpler
alternative approach is to estimate the model with a large number of latent classes, KMAX .
When KMAX > KNPML, the ML estimates for u∗k will be equal for some latent classes and/or
the estimate for πk will be equal to zero for some latent classes (Böhning, 2000). In other
words, classes may be merged (equal u∗k) and/or removed (πk equal to zero). To prevent
local maxima this procedure should be repeated with several sets of starting values. More-
over, to guarantee that also the more difficult to find mass points located at −∞ and +∞

are encountered when needed in the NPML solution, it is advisable to include latent classes
located at these values in each starting set (Hartzel et al., 2001; Wood and Hinde, 1987).

As already mentioned, the NPML estimates may yield unnecessarily large K (Leroux,
1992; Leroux and Puterman, 1992) and estimates with a smaller number of latent classes
that describe the data sufficiently may be preferred. Moreover, the latent classes may have
substantive interpretations which are useful for the study concerned. This yields an approach
in which the value of K should be estimated, yielding what we called the semi-parametric
random-effects modeling approach. In this approach the value of K is increased till the
criterion used for model selection no longer improves. In our study, we will use the BIC
(Schwarz, 1978) for deciding about the number of classes, as was for example done by
Vermunt and van Dijk (2001); Wedel and DeSarbo (1994).

3 Design of the simulation study

This section describes the design of the simulation study. First, we discuss the design factors
that were kept constant, and subsequently the ones that were varied. The key factors that
were kept contant are the overall structure of the population model, the values of the fixed-
effect parameters, and the values of the intraclass correlations for the random effects.

The population model we used is a two-level random coefficients logistic regression
model with one level-1 and one level-2 explanatory variable. This model can be formulated
as follows:

log
πi j

1−πi j
= β0 +β1x1i j +β2x2 j +u0 j +u1 jz1i j. (5)
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Here, both x1i j and z1i j represent the level-1 predictor (in fact, x1i j = z1i j), where x1i j is
used to define its fixed part and z1i j its random part. The other fixed effects correspond to
the intercept and the level-2 predictor x2 j. The two explanatory variables are assumed to
be binary predictors taking on the values 0 and 1 with probability 0.5 independently of one
another. For the fixed intercept β0 and slopes β1 and β2, we used the same values across
simulation replications. More specifically, we set their values to: β0 = −2, β1 = β2 = 2.
This yields large enough but not too extreme differences between the response probabilities
for u0 j = 0 and u1 j = 0. More specifically, the corresponding response probabilities for the
four possible combinations of explanatory variables are

P(y = 1|x1 = 1,x2 = 1,u0 = u1 = 0) = e2/(1+ e2) = 0.88,
P(y = 1|x1 = 1,x2 = 0,u0 = u1 = 0) = e0/(1+ e0) = 0.5,
P(y = 1|x1 = 0,x2 = 1,u0 = u1 = 0) = e0/(1+ e0) = 0.5

and

P(y = 1|x1 = 0,x2 = 0,u0 = u1 = 0) = e−2/(1+ e−2) = 0.12.

A second element that was kept constant in the simulation study is the overall impor-
tance of the random part, which can be expressed by means of the intraclass correlation
(ICC). Although Hox and Maas (2001) found that the value of the ICC may affect the im-
pact of a misspecification of the random effects distribution, the study by Lukočienė (2008)
on the random-intercept logistic regression model found that parametric and nonparametric
approaches are almost indistinguible when the ICC value is small (e.g. 0.1). We will there-
fore not investigate this situation again, but instead focus on the condition with a moderate
ICC value of 0.3. For this ICC value, Lukočienė (2008) found important differences in the
performance of the parametric and nonparametric approaches.

The ICC values can be set by using the fact that level-1 errors coming from a logistic
distribution have a variance equal to π2/3. Since ICC = σ2/(σ2 + π2/3), the variance of
the random intercept σ2

0 can be obtained by σ2
0 = ICC/(1− ICC)π2/3, which for ICC =

0.3 yields σ2
0 = 1.41. Similar to Busing (1993) and Maas and Hox (2004), we used the same

variance for the random slope as for the random intercept (σ2
1 = 1.41 as well).

So far, we discussed only the elements that were not varied in the simulations study. The
three design factors that were varied are the random effects distribution, the level-1 sample
size, and the level-2 sample size. We wish to assess how the parametric, nonparametric,
and semi-parametric models perform under different true random-effect distributions and
whether the performance depends on the level-1 and level-2 sample sizes. The study by
Lukočienė (2008) on the random-intercept logistic regression model showed that these are
the main factors affecting the performance of the parametric and nonparametric approaches.

Data sets were generated using four distributional forms for the random effects, two
continuous distributions (exponential and normal) and two discrete mixing distributions –
one five-class distribution with class membership probabilities of 0.1, 0.2, 0.4, 0.2, and
0.1, respectively, and another four-class distribution with equal membership probabilities
of 0.25. As demonstrated in Figure 1 and Figure 2, the locations of the classes of these
two discrete mixing distribution were chosen in such a way that the random intercept and
random slope would be uncorrelated, but strongly associated. With these four choices we
have apart from the normal distribution, distributions that considerably deviate from normal
in terms of skewness, kurtosis, discontinuity, and association between dimensions.

The other two factors that were varied are the level-1 and level-2 sample sizes. More
specifically, for the number of level-2 units we used n = 30, 100, and 1000 and for the
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Fig. 1 Discrete mixing distribution with five classes
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Fig. 2 Discrete mixing distribution with four classes

number of level-1 units n j = 10, and 50. These sample sizes reflect the typical sample sizes in
multilevel analysis (see also Kreft and de Leeuw (1998); Maas and Hox (2004); Lukočienė
(2008)).

Combining the 3 design factors – distributional form, level-2 sample size, and level-1
sample size – yielded a total of 4×2×3 = 24 conditions. We generated 1000 simulated data
sets for each of these conditions. For each simulated data set, the unknown model parameters
were estimated using the parametric approach assuming that random effects come from a
normal distribution, the NPML approach, and the semi-parametric approach using BIC as
the model selection criterion.
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4 Results of the simulation study

The aim of the simulation study was to determine the bias and relative efficiency of the
parametric, nonparametric, and semi-parametric random effects approaches under the dif-
ferent true random effects distributions and sample sizes. Let θ be one of the parameters of
interest, which in our case are the fixed effects β0, β1, and β2, and the standard deviations of
the random effects distribution σ0 and σ1 which in the nonparametric and semi-parametric
cases are computed from the nodes’ locations and weights. The ML estimate of θ obtained
in replication s, s = 1, . . . ,1000, is denoted by θ̂ s. Rather than using the more standard def-
initions of bias and relative efficiency – E(θ̂ s−θ) and E

[
(θ̂ s−θ)2

]
– we used a more

robust definition to prevent that the results are affected by a small number of replications
with boundary estimates. More specifically, when using the NPML estimator, especially in
the conditions with large number of level-2 units and small number of level-1 units, there is
a positive probability that one of the latent classes is located at infinity. In our case, latent
classes can have 4 such possible locations: (−∞,−∞), (−∞,∞), (∞,∞), and/or (∞,−∞).
When such boundary estimates may occur E(θ̂ s−θ) and E

[
(θ̂ s−θ)2

]
do not exist. This

not only applies to σ0 and σ1, but also to β0, β1, and β2. To prevent this problem from oc-
curring we define bias as the median of (θ̂s− θ) and relative efficiency as the median of
|θ̂s−θ |. For similar approaches, see Agresti et al. (2004) and Galindo-Garre et al. (2004).

Below we first discuss the results for the fixed effects and then for the random effects.

4.1 Fixed effects

The first evaluation criterion of interest is the bias in the parameter estimates. Table 1 pro-
vides the estimated biases of the fixed effects for the level-2 sample sizes of 1000 and 30.
The first three columns of Table 1 indicate the values for the design factors: level-2 sample
size, level-1 sample size, and the random-effects distribution used to generate the data sets.
The fourth column indicates which of the three approaches – parametric, nonparametric or
semi-parametric – was used for the estimation of the parameters. The last three columns
present the biases in the estimates of the intercept and the two slopes. Reported biases are
marked by a “*” when they are larger than 5% of the true parameter value, and smaller
values are considered negligible.

Table 1 shows that the bias of the fixed effects in the models estimated under the semi-
parametric approach is negligible for all cases with true discrete and exponential underlying
distributions, except for the fixed effect β1 when n = 30 and true underlying discrete dis-
tribution has 5 latent classes. When the semi-parametric approach is applied with the true
bivariate normal distribution, we see biases only for β2. The NPML approach yields biased
estimates for almost every parameter, where it makes no difference whether the true dis-
tribution is discrete or continuous. The parametric approach performs very well when the
true underlying distribution is bivariate normal, in which case the bias in the fixed effects is
always negligible. However, for other true underlying distributions, the parametric approach
gives biased estimates for at least one of the fixed effects. The results for the medium level-2
unit sample size n = 100 (which are not shown) are very similar to the results obtained with
n = 1000.

As was mentioned above, the second evaluation criterion of interest is the efficiency of
the parameter estimates. Table 2 reports results on relative efficiency of the fixed effects
obtained with the largest and smallest level-2 unit sample sizes n = 1000 and n = 30 (results
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Table 1 Bias of the fixed effects for the conditions n = 1000 and 30

n n j True distribution Assumed β̂0s−β0 β̂1s−β1 β̂2s−β2

1000 10 Exponential Normal -0.12* -0.03 0.04
Nonparametric -0.09 0.90* 0.04
Semi-parametric 0.04 -0.09 -0.08

Normal Normal 0.00 0.01 0.03
Nonparametric -0.17* 0.28* 0.05
Semi-parametric 0.06 -0.07 -0.06

Discrete (4 classes) Normal -0.02 0.00 0.04
Nonparametric -0.11* 0.24* 0.05
Semi-parametric 0.00 -0.01 -0.01

Discrete (5 classes) Normal 0.07 -0.21* 0.02
Nonparametric -0.02 0.13* 0.01
Semi-parametric 0.00 -0.01 0.00

1000 50 Exponential Normal -0.04 -0.05 -0.03
Nonparametric -0.01 0.40* 0.01
Semi-parametric 0.04 -0.04 -0.05

Normal Normal 0.00 0.00 0.02
Nonparametric -0.01 0.15* 0.03
Semi-parametric 0.08 -0.03 -0.11*

Discrete (4 classes) Normal -0.06 0.04 -0.24*
Nonparametric -0.01 0.13* 0.02
Semi-parametric 0.00 0.00 0.01

Discrete (5 classes) Normal 0.05 -0.21* 0.05
Nonparametric -0.02 0.16* 0.01
Semi-parametric -0.01 0.00 0.00

30 10 Exponential Normal -0.10* -0.02 0.01
Nonparametric -0.58* 2.35* 0.29*
Semi-parametric 0.06 0.03 -0.06

Normal Normal -0.02 0.07 0.02
Nonparametric -0.94* 2.46* 0.32*
Semi-parametric 0.096 0.01 -0.18*

Discrete (4 classes) Normal 0.02 0.05 -0.03
Nonparametric -0.88* 2.19* 0.28*
Semi-parametric 0.08 -0.02 -0.04

Discrete (5 classes) Normal 0.105* -0.16* -0.08
Nonparametric -0.16* 2.09* 0.02
Semi-parametric 0.01 0.11* 0.00

30 50 Exponential Normal -0.06 -0.04 -0.08
Nonparametric -0.24* 1.59* -0.14*
Semi-parametric 0.05 -0.03 -0.01

Normal Normal 0.00 0.04 -0.09
Nonparametric -0.26* 0.92* -0.34*
Semi-parametric 0.07 0.01 -0.16*

Discrete (4 classes) Normal -0.07 0.07 -0.15*
Nonparametric -0.15* 0.22* 0.04
Semi-parametric 0.00 0.01 0.01

Discrete (5 classes) Normal 0.10* -0.16* -0.08
Nonparametric -0.17* 2.20* 0.01
Semi-parametric 0.01 0.14* 0.00

? Cases with medians absolute value over 5%.

for n = 100 are again similar to the ones for n = 1000). Table 2 can be read similarly to
Table 1.

The semi-parametric approach clearly outperforms the parametric and nonparametric
approaches in cases when the true underlying distribution of random effects is discrete.
However, when the true underlying random effects distribution is bivariate normal the para-



10

Table 2 Efficiency of the fixed effects for the conditions n = 1000 and 30

n n j True distribution Assumed |β̂0s−β0| |β̂1s−β1| |β̂2s−β2|

1000 10 Exponential Normal 0.12 0.05 0.067
Nonparametric 0.13 0.93 0.08
Semi-parametric 0.05 0.11 0.070

Normal Normal 0.06 0.05 0.06
Nonparametric 0.18 0.87 0.070
Semi-parametric 0.07 0.07 0.071

Discrete (4 classes) Normal 0.06 0.07 0.09
Nonparametric 0.11 0.30 0.08
Semi-parametric 0.04 0.05 0.07

Discrete (5 classes) Normal 0.08 0.21 0.10
Nonparametric 0.04 0.15 0.023
Semi-parametric 0.03 0.04 0.021

1000 50 Exponential Normal 0.06 0.05 0.07
Nonparametric 0.04 0.40 0.04
Semi-parametric 0.05 0.06 0.06

Normal Normal 0.04 0.04 0.07
Nonparametric 0.05 0.23 0.09
Semi-parametric 0.09 0.05 0.13

Discrete (4 classes) Normal 0.06 0.05 0.24
Nonparametric 0.03 0.04 0.03
Semi-parametric 0.02 0.02 0.02

Discrete (5 classes) Normal 0.07 0.21 0.10
Nonparametric 0.04 0.16 0.021
Semi-parametric 0.03 0.03 0.020

30 10 Exponential Normal 0.29 0.27 0.388
Nonparametric 0.80 3.07 0.50
Semi-parametric 0.32 0.39 0.391

Normal Normal 0.29 0.29 0.38
Nonparametric 1.08 3.94 0.59
Semi-parametric 0.36 0.34 0.47

Discrete (4 classes) Normal 0.32 0.322 0.44
Nonparametric 0.96 3.51 0.51
Semi-parametric 0.31 0.320 0.36

Discrete (5 classes) Normal 0.27 0.23 0.35
Nonparametric 0.28 2.13 0.16
Semi-parametric 0.21 0.44 0.14

30 50 Exponential Normal 0.27 0.20 0.36
Nonparametric 0.37 1.85 0.38
Semi-parametric 0.35 0.38 0.35

Normal Normal 0.27 0.21 0.41
Nonparametric 0.45 1.64 0.58
Semi-parametric 0.30 0.23 0.48

Discrete (4 classes) Normal 0.29 0.23 0.37
Nonparametric 0.27 0.44 0.15
Semi-parametric 0.18 0.18 0.14

Discrete (5 classes) Normal 0.28 0.23 0.34
Nonparametric 0.29 2.22 0.16
Semi-parametric 0.21 0.46 0.14

metric approach is most efficient. For the true underlying exponential distribution, the para-
metric and semi-parametric approaches perform equally well in terms of efficiency. We find
a considerable lower efficiency under the nonparametric approach for almost every condi-
tion.
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Table 3 Bias and efficiency of the random effects for the conditions n = 1000 and 30

n n j True distribution Assumed σ̂0s−σ0 σ̂1s−σ1 |σ̂0s−σ0| |σ̂1s−σ1|
1000 10 Exponential Normal 0.35* -0.17* 0.35 0.17

Nonparametric 0.57* 6.15* 0.57 6.15
Semi-parametric -0.12* -0.26* 0.13 0.32

Normal Normal 0.26* 0.28* 0.26 0.28
Nonparametric 1.20* 6.59* 1.20 6.59
Semi-parametric -0.09* -0.17* 0.10 0.18

Discrete (4 classes) Normal 0.29* 0.74* 0.29 0.74
Nonparametric 0.16* 2.26* 0.16 2.26
Semi-parametric 0.02 0.00 0.07 0.07

Discrete (5 classes) Normal -0.02 -0.39* 0.07 0.39
Nonparametric 0.03 2.25* 0.03 2.25
Semi-parametric -0.01 0.00 0.03 0.04

1000 50 Exponential Normal 0.13* -0.26* 0.13 0.26
Nonparametric -0.02 3.30* 0.07 3.30
Semi-parametric -0.05 -0.13* 0.06 0.16

Normal Normal 0.11* 0.18* 0.11 0.18
Nonparametric 0.02 1.90* 0.05 1.90
Semi-parametric -0.05 -0.08* 0.04 0.08

Discrete (4 classes) Normal 0.24* 0.89* 0.24 0.89
Nonparametric 0.02 0.09* 0.03 0.09
Semi-parametric 0.00 0.01 0.02 0.02

Discrete (5 classes) Normal -0.04 -0.39* 0.08 0.39
Nonparametric 0.01 2.81* 0.04 2.81
Semi-parametric -0.01 0.00 0.03 0.04

30 10 Exponential Normal 0.15* -0.23* 0.61 0.81
Nonparametric 2.45* 9.10* 2.45 9.10
Semi-parametric -0.18* -0.47* 0.35 0.88

Normal Normal 0.05 0.29* 0.54 0.83
Nonparametric 3.40* 10.69* 3.40 10.69
Semi-parametric -0.22* -0.42* 0.39 0.75

Discrete (4 classes) Normal 0.14* 0.90* 0.57 1.06
Nonparametric 2.78* 9.50* 2.78 9.50
Semi-parametric -0.27* -0.33* 0.37 0.48

Discrete (5 classes) Normal 0.23* -0.40* 0.42 0.52
Nonparametric 0.18* 7.75* 0.24 7.75
Semi-parametric -0.05 0.12* 0.16 0.51

30 50 Exponential Normal 0.25* -0.24* 0.49 0.50
Nonparametric 0.39* 6.87* 0.51 6.69
Semi-parametric -0.11* -0.13* 0.26 0.47

Normal Normal 0.23* 0.39* 0.39 0.55
Nonparametric 0.95* 6.35* 0.95 6.35
Semi-parametric -0.08* -0.10* 0.18 0.28

Discrete (4 classes) Normal 0.37* 0.90* 0.45 0.91
Nonparametric 0.14* 0.72* 0.21 0.72
Semi-parametric -0.05 0.00 0.15 0.14

Discrete (5 classes) Normal 0.22* -0.41* 0.41 0.65
Nonparametric 0.21* 7.93* 0.26 7.93
Semi-parametric -0.04 0.14* 0.16 0.51

? Cases with medians absolute value over 5%.

If we have a closer look at results presented in Table 1 and Table 2 from the perspec-
tive of the effects of the level-1 and level-2 sample sizes, it can be observed is that the
nonparametric approach perform very bad with the smaller level-2 sample size, and this is
enforced when also the level-1 sample size is small. The quality of the other two approaches
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is less strongly affected by the sample sizes. However, when misspecified, the normal model
performs worse when the level-1 sample size increases.

4.2 Random effects

Table 3 shows the results on bias and relative efficiency for the random effects obtained with
sample sizes n = 1000 and n = 30. As in Table 1, biases larger than 5% of the true parameter
value are marked by a “*”. The semi-parametric approach yields negligible biases for both
random effects when the true underlying distribution is discrete and the sample size is 1000.
The parametric approach yields moderate biases for almost every condition. However, the
obtained biases of the parametric estimates with true continuous underlying distributions
in the smallest samples (n = 30 and n j = 10) are smaller than for the semi-parametric and
nonparametric estimates. In most other cases, the semi-parametric approach performs best
showing the smallest bias for all true distributions.

The last three columns of Table 3 report the information on the efficiency of the random
effects estimates (of the standard deviations of the random effects). For the random intercept,
the semi-parametric approach outperforms the parametric and nonparametric approaches in
all investigated conditions. The same applies to the random slope, except for one situation;
that is, when n j = 10 and the true underlying distribution is exponential, the parametric
approach is the most efficient method.

Results on bias and relative efficiency of random effects for the medium level-2 sample
size (n = 100) are again not presented because they are rather similar to the results obtained
with n = 1000.

4.3 Remarks on semi-parametric and nonparametric approaches

The results reported in Tables 1, 2, and 3 show that the nonparametric approach performs
worse than the semi-parametric approach in almost all investigated conditions. As explained
earlier, the difference between these two approaches is that they use different methods for
determining the number of latent classes. To see how the use of BIC worked out in our
simulation study, let us take a look at the number of latent classes selected according to
this criterion when the true distribution is discrete. More specifically, Table 4 presents the
percentage of simulation replications (out of 1000) in which a particular number of latent
classes was selected using the semi-parametric approach. As can be seen, the number of
latent classes is often underestimated with the smaller level-2 sizes, and this tendency is
stronger when also the level-1 sample size is small. It can also be observed that the semi-
parametric specification never overestimates the number of latent classes, which confirms
that BIC is a somewhat conservative measure when deciding about the number of classes
(see, for example, Dias (2004)).

As indicated earlier, in the nonparametric approach one increases the number of classes
till a saturations point in reached, which seemingly lead to severely biased and much less
efficient estimates. The NPML solution often consisted of a larger number of latent classes
than the true discrete distribution even for the smallest level-2 sample size of 30. Such
solutions contained nodes with small weights but very extreme locations, with explains the
bias and inefficiency of this approach. In contrast, the semi-parametric approach will not
accept such classes in the final solution because they do not yield a significantly better
description of the data according to the BIC.
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Table 4 Percentage of replications selecting a particular number of latent classes based on BIC in semi-
parametric approach

n n j True distribution 2 classes 3 classes 4 classes 5 classes
1000 50 Discrete with 4 classes 100

Discrete with 5 classes 100
10 Discrete with 4 classes 100

Discrete with 5 classes 100
100 50 Discrete with 4 classes 19 81

Discrete with 5 classes 1 70 29
10 Discrete with 4 classes 79 20 1

Discrete with 5 classes 1 70 29
30 50 Discrete with 4 classes 1 37 62

Discrete with 5 classes 5 34 58 3
10 Discrete with 4 classes 90 9 1

Discrete with 5 classes 3 36 58 3

5 Conclusions

The two questions that we wished to answer based on the simulation study are 1) whether
the NPML and/or semi-parametric approaches perform better in terms of bias and efficiency
compared to the parametric model when the latter is misspecified, and 2) whether the NPML
and/or semi-parametric approaches perform equally well in terms of bias and efficiency
compared to the parametric model when the latter is correctly specified. This was studied
for small and large level-1 and level-2 sample sizes and different types of random effects
distributions (with a moderate ICC value). We are now able to answer these two questions
for the two-level logistic regression model.

Our study showed that the NPML method gives the worst results in terms of bias and
relative efficiency when compared to the parametric and semi-parametric methods, and this
applies irrespective of the true random effects distribution. The semi-parametric approach
performs best when the true underlying distribution of random effects is discrete. When the
assumptions of the parametric model hold, the parametric approach is the best for the fixed
effects estimation, but the semi-parametric approach is the preferred one for the random
effects estimation. When the true distribution is exponential (continuous but not normal), the
parametric model is still preferred with a small level-1 sample size, but the semi-parametric
model is better with a larger level-1 sample size.

We may finally compare our conclusions with those derived from the study by Lukočienė
(2008) on multilevel logistic regression with only a random intercept. One important differ-
ence concerns the performance of the NPML method. Whereas this earlier study found that
the NPML approach performs rather well as long as the level-1 sample size is not too small,
here we have to conclude that it is by far the worst approach. In fact, the NPML method
should not be used with multidimensional random effects. Another new element compared
to this earlier study is that we also looked at the semi-parametric method which turned out
to perform much better than the NPML method. As far as the parametric approach is con-
cerned, similarly to the previous study it can be concluded that it is the preferred method
when the normal distribution assumption holds, as well as when the distribution is continu-
ous but not normal and the level-1 sample size is small.

One limitation of our study is that it concerned two-level regression models, and it is not
clear whether our findings can be generalized to models containing more hierarchical lev-
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els. Another limitation is that we focussed on models for binary responses. The suggestion
for the future research would be to look at other models from the generalized linear mod-
eling family, as well as at models with more than two levels; that is, at the class of models
described by (Vermunt, 2004).

In our study we investigated three different specifications for the random effects distri-
bution: a parametric approach with an underlying normal distribution, as well as nonpara-
metric and semi-parametric approaches using an unspecified discrete mixing distribution.
As a possible alternative one may use a combination of these, namely a finite mixture of
normal distributions (Magder and Zeger, 1996; Verbeke and Molenberghs, 2000). Whereas
such an approach may have particular advantages, such as that contrary to the nonparametric
and semi-parametric approaches it yields nondiscrete random effects, Agresti et al. (2004)
obtained somewhat disappointing results with this approach in the context of a log linear
model for an odds ratio. Nevertheless, we believe that this hybrid approach may be promis-
ing in other situations, especially when the aim of the study is to obtain interpretable latent
classes (Magidson and Vermunt, 2007) .
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Lukočienė, O., Vermunt, J.K., A Comparison of multilevel logistic regression models with

parametric and nonparametric random intercepts, Manuscript submitted for publication
(2008).

Maas, C.J.M., Hox, J.J., The influence of violations of assumptions on multilevel parameter
estimates and their standard errors, Computational Statistics and Data Analysis 46, 427–
440 (2004).

Magder, L.S., Zeger, S.L., A smooth nonparametric estimate of mixing distribution using
mixtures of Gaussians, Journal of the American Statistical Association 91, 1141–1151
(1996).

Magidson, J., Vermunt, J.K., Use of a random intercept in latent class regression models
to remove response. Bulletin of the International Statistical Institute, 56th Session, paper
1604, 1–4 (2007).

Neuhaus, J.M., Hauck, W.W., Kalbfleisch, J.D., The effects of mixture distribution misspec-
ification when fitting mixed effects logistic models, Biometrika 79, 755–762 (1992).

Pan, J.X., Thompson, R., Gauss-Hermite quadrature approximation for estimationin in gen-
eralised linear mixed models, Computational Statistics 18, 57–78 (2003).

Rabe-Hesketh, S., Pickles, A., Skrondal, A., Correcting for covariate measurement error in
logistic regression using nonparametric maximum likelihood estimation, Statistical Mod-
elling 3, 215–232 (2003).

Rabe-Hesketh, S., Pickles, A., Skrondal, A., Generalized multilevel structural equation mod-
eling, Psychometrica 69, 167–190 (2004).

Schwarz, G., Estimating the dimension of a model, The Annals of Statistics 6(2), 461–464
(1978).

Singer, J.D., Using SAS PROC MIXED to fit multilevel models, hierarchical models, and
individual growth models, Journal of Educational and Behavioral Statistics 24, 323–355
(1998).

Skrondal, A., Rabe-Hesketh, S., Generalized latent variables modeling: multilevel, longitu-
dinal, and structural equation models. Boca Raton, FL: Chapman & Hall/CRC (2004).



16

Snijders, T.A.B., Bosker, R.J., Multilevel analysis. London: Sage Publications (1999).
Verbeke, G., Molenberghs, G., Linear mixed models for longitudinal data. Springer, Berlin

(2000).
Vermunt, J.K., Log-linear models for event histories. Advanced Quantitative Techniques in

the Social Sciences Series 8. Sage Publications (1997).
Vermunt, J.K., van Dijk, L., A nonparametric random-coefficients approach: the latent class

regression model, Multilevel Modelling Newsletter 13, 6–13 (2001).
Vermunt, J.K., An EM algorithm for the estimation of parametric and nonparametric hierar-

chical nonlinear models, Statistica Neerlandica 58, 220–233 (2004).
Vermunt, J.K., Magidson, J., Technical guide to Latent GOLD: basic and advanced. Bel-

mont, MA: Statistical Innovations Inc (2005).
Wedel, M., DeSarbo, W.S., A review of recent developments in latent class regression mod-

els. in Advanced Methods of Marketing Research, R.P. Bagozzi, ed. Cambridge: Black-
well Publishers, 352–388 (1994).

Wolfinger, R., O’Connell, M., Generalized linear mixed models: a pseudo-likelihood ap-
proach, Journal of Statistical Computation and Simulation 48, 233–243 (1993).

Wood, A., Hinde, J., Binomial variance component models with a non-parametric assump-
tion concerning random effects. In: Crouchley R, ed. Longitudinal data analysis. Avebury,
Aldershot: Hants, 110–128 (1987).


