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Latent Class Models for Testing Monotonicity and Invariant

Item Ordering for Polytomous Items

Abstract

Two assumptions that are relevant to many applications using item response theory

are the assumptions of monotonicity (M) and invariant item ordering (IIO). A latent

class model is proposed for ordinal items with inequality constraints on the class-

specific item means. This model is used as a tool for testing for violations of M

and IIO. A Gibbs sampling scheme is used for estimating the model parameters. It

is shown that the deviance information criterion can be used as an overall test of

M and IIO, while posterior predictive checks can be used to test these assumptions

at the item level. A real-data application illustrates a model fitting strategy for

detecting item that violate M and IIO.

1 Introduction

Item response theory (IRT) models are used to construct measures using multiple

observed scores from tests or questionnaires. An example of a questionnaire item

used to measure a subject’s attitude towards women’s liberation reads “Women’s

liberation sets women against men.”, for which the subject scores 0 if he or she

agrees with the statement, 1 if he or she is neutral towards the statement, and

2 if he or she disagrees with the statement (Heinen, 1996, p. 291). The score on

each item i is considered to be a random variable Xi, for which each subject has

the ordered score xi ∈ {0, . . . , m}, and where for the example m = 2. In IRT an

unobservable latent variable θ is postulated to underly the items scores and the

item scores are assumed to be mutually independent conditional on θ. The latter

assumption is usually referred to as the assumption of local independence (Ip, 2001;

Lord & Novick 1968, p. 361). Further, in IRT the relationship between the latent

variable and the item scores is described by means of response functions, and it are
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these response functions about which specific assumptions are made. Let ai be the

slope parameter of item i and bxi
its difficulty parameter corresponding to item score

Xi = xi. Samejima’s (1969, 1997) graded response model, for example, specifies a

logistic function for the cumulative probability of item i (i = 1, . . . , k) and score

xi = 1, . . . , m; that is,

logitP (Xi ≥ x|θ) = ai(θ − bxi
). (1)

with ai > 0. In this IRT model, the cumulative probabilities P (Xi ≥ x|θ) are

nondecreasing in θ, which implies that subjects with higher scores on θ (e.g., with a

more extreme attitude related to women’s liberation) are expected to score higher

on each of the items. The nondecreasingness of the response functions is referred to

as the assumption of monotonicity (M; e.g., Holland & Rosenbaum, 1986).

The logistic shape of the response function in Equation 1 is mathematical conve-

nient, but it may also be too restrictive, in which case model-data misfit may occur

while M may still hold. When solely interested in the assumption M, more flexible

models may be considered which still allow for an ordering of the subjects on θ (e.g.,

Junker & Sijtsma, 2001; Molenaar, 1997). These subject ordering models are based

on the assumption M, which states that for all i,

E(Xi|θ), is nondecreasing in θ. (M)

In contrast to most IRT models which define m response functions for each item,

taking the conditional expectation E(Xi|θ) as the point of departure yields an IRT

model with only one response function per item.

In addition to assumption M relating to the ordering of subjects based on θ, a

second assumption relating to the ordering of the items is sometimes considered.

The latter assumption, which is known as an invariant item ordering (IIO; Sijtsma

& Hemker, 1998), implies that the same ordering of items, in terms of attractiveness

(or difficulty), holds for all subjects. Let the items be indexed so that i < i′ indicates

2



that E(Xi) ≤ E(Xi′), then IIO states that

E(X1|θ) ≤ E(X2|θ) ≤ · · · ≤ E(Xk|θ), for all θ. (IIO)

Sijtsma and Junker (1996) provided various examples of practical applications of

IRT requiring IIO. However, only few IRT models imply IIO (Sijtsma & Hemker,

1998), and those models that do so are often too restrictive to fit real life data well.

For example, while the IRT model described in Equation 1 does not imply IIO, a

version with equal slope parameters across items and difficulty parameters restricted

by bxi
= di + cx yields a model that is consistent with the IIO assumption. The

resulting rating scale version of the grade response model (Sijtsma & Hemker, 1998)

is defined as

logitP (Xi ≥ x|θ) = a(θ − di − cx). (2)

This parametric IRT model will typically be too restrictive to show an acceptable

model-data fit, whereas in reality the M and IIO assumptions may still hold. The

reason for such a misfit is that the model imposes many more constraints than M

and IIO alone. The contribution of this article is that it proposes a class of less

restricted models that in addition to assumption M can be used to test assumption

IIO without imposing parametric restrictions such as logistic response functions.

The resulting non-parametric models can be considered additions to existing tools

for IIO research (see also, Ligtvoet, Van der Ark, Te Marvelde, & Sijtsma, 2010).

Constrained latent class models (LCMs) have been shown to be useful tools for

obtaining approximations of IRT models, where the underlying continuous latent

variable is discretized by assuming that subjects belong to q homogenous latent

classes (Heinen, 1996). By imposing linear constraints on the logistic parameters of

a LCM, discretized versions of parametric IRT models, such as the graded response

model, can be obtained (Vermunt, 2001). The approach proposed in this paper is to

assess the assumptions M and IIO using latent class models with inequality restric-

tions. Such LCMs with inequality constraints on the model parameters have been

used for testing model assumptions in the context of nonparametric IRT models
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(e.g., Croon, 1990, 1991; Karabatsos & Sheu, 2004; Vermunt, 2001). Also Hoijtink

and Molenaar (1997; see also Hoijtink, 1998; Van Onna, 2002) showed how to formu-

late nonparametric IRT models as LCMs with ordinal constraints, and illustrated

how to estimate and test such models using Bayesian methods. These Bayesian

methods are not just confined to LCMs, but have, for example, also been applied in

the context of ANOVA model selection (Klugkist, Laudy, & Hoijtink, 2005a). Here,

we apply a similar type of Bayesian procedure to formulate a non-parametric model

for the conditional expected item scores to test for violations of the assumptions of

M and IIO. As an alternative, likelihood based methods developed by Bartolucci

and Forcina (2005), and Vermunt (1999, 2001) could be adapted to the models of

interest in this paper, but this approach is not further pursuit here.

The remainder of this paper is organized as follows. First, we present the unre-

stricted LCM and explain how to estimate its parameters using a Gibbs sampler.

Then we describe the restricted LCMs corresponding to M and IIO and show how

to incorporate the implied inequality restrictions in a Gibbs sampler. Subsequently,

Bayesian tests for violations of M and IIO are described. And finally, the proposed

LCM procedure for testing M and IIO is illustrated with an application using five

questionnaire items measuring respondents’ attitudes toward women’s liberation.

2 Unrestricted Latent Class Models

To test the assumptions M and IIO, we approximate the continuous latent variable

in IRT using a finite number of latent classes (i.e., θ = 1, . . . , q). The resulting

latent class model is a model for P (x); that is, a model for a particular response

pattern (note that x refers to the vector of k item scores). LCMs are finite mixture

models (Agresti, 1990; McLachlan & Peel, 2000), where subjects belonging the same

latent class are homogeneous with respect to the probability P (x|θ) of obtaining a

certain response pattern. In addition, we assume that within each latent class, the

item scores are mutually independent (e.g., Lazarsfeld & Henry, 1968, p. 22), which
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is equivalent to the IRT assumption of local independence (see Clogg, 1988). Let

πxi|θ denote the probability of a score Xi = xi given θ and letting πθ be the class

proportion; the probability P (x) is expressed as

P (x) =
∑

θ

πθP (x|θ) =
∑

θ

πθ

∏

i

πxi|θ. (3)

Apart from choosing a fixed number of latent classes q and the local independence

assumption, Equation 3 is yet unconstrained and referred to as the unconstrained

LCM.

The Gibbs sampler is an iterative algorithm that can be used for obtaining sam-

ples from the posterior distribution of the parameters of a statistical model given

a set of data, a likelihood function linking the data to the model of interest, and a

prior distribution for the unknown parameters (e.g., Zeger & Karim, 1991). Let t

denote the tth iteration of the Gibbs sampler algorithm. When applied to the model

described in Equation 3, the algorithm starts by assigning initial values to the class

proportions

π
(0)
θ = π

(0)
1 , . . . , π(0)

q

and the conditional item probabilities

π
(0)
xi|θ

= π
(0)
01|1

, . . . , π
(0)
m1|1

, · · · , π
(0)
0k |1

, . . . , π
(0)
mk|1

,

· · · , π
(0)
01|q

, . . . , π
(0)
m1|q

, · · · , π
(0)
0k |q

, . . . , π
(0)
mk |q

.

The subsequential three steps are passes iteratively. The first step is a data augmen-

tation step, which involves assigning each subject to one of the latent classes (Tanner

& Wong, 1987). The second and third steps consist of sampling values to the class

proportions π
(t)
θ and the conditional item probabilities π

(t)
xi|θ

, respectively. The algo-

rithm is repeated until a criterium of convergence is reached. Ones this criterium

is reached, the parameters are sampled in successive iterations as if sampled from

their posterior distribution (Gelfand, Smith, & Lee, 1992). Based on these samples

from the posterior, inferences can then be made about the parameter values. Our

Gibbs sampler algorithm consists of the following three steps:
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Step 1: Given the parameters values at the previous iteration, we derive from Equa-

tion 3 for each subject j with a score pattern x the probability of belonging to

latent class θ as

P
(

θ(t)
∣

∣xj

)

=
π
(t−1)
θ

C

∏

i

π
(t−1)
xi|θ

,

with

C =

q
∑

θ=1

π
(t−1)
θ

∏

i

π
(t−1)
xi|θ

.

Each subject is assigned to a latent class by a single draw from a multinomial

distribution. This augmentation step yields values of the number of subjects

in latent class θ, denoted n
(t)
θ , and values of the number of subjects in latent

class θ with the item score xi on item i, denoted n
(t)
xi|θ

. The n
(t)
θ and n

(t)
xi|θ

are

used in the next two steps of the algorithm.

Step 2: The number of subjects the latent class θ (n
(t)
θ ) is defined by a multinomial

distribution, which combined with a (conjugate) Dirichlet prior distribution

yields a Dirichlet posterior distribution for πθ
(t):

πθ
(t) ∼ Dir(n

(t)
1 + α, . . . , n(t)

q + α).

Here, the α are hyper-parameters which are chosen to equal unity; reflecting

ignorance concerning the information of the prior.

Step 3: Likewise, for a given item i and θ the parameters π
(t)
0i|θ

, . . . , π
(t)
mi|θ

are sampled

form a Dirichlet distribution

π
(t)
0i|θ

, . . . , π
(t)
mi|θ

∼ Dir(n
(t)
0i|θ

+ α, . . . , n
(t)
mi|θ

+ α).

3 Latent Class Models with M and IIO Constraints

We wish to test whether there are violations of the assumptions M and IIO by

making use of LCMs. Recall that these assumptions imply particular inequality

constraints on E(Xi|θ) across θ values and across items, respectively. Because
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E(Xi|θ) =
∑

x xiπxi|θ and πxi|θ are the LCM parameters, imposing the M and IIO

constraints in a LCM implies that the inequality constraints on E(Xi|θ) should be

translated into inequality constraints on the joint outcome space of (π0i|θ, . . . , πmi|θ).

In the Gibbs sampler, this corresponds to sampling from truncated Dirichlet distri-

butions; more specifically, from distributions in which the (π0i|θ, . . . , πmi|θ) parame-

ters can only attain values which at the aggregated level of the expected item scores

are in agreement with M and IIO. The sampling of πxi|θ under the relevant con-

straints is, however, complicated by the fact that the m + 1 probabilities for item

i and class θ are not independent of one another. To deal with this dependency,

the m + 1 probabilities can be sampled at once from a Dirichlet distribution and

retained only if they agree with the constraints imposed by M and IIO, and rejected

otherwise. A downside of this procedure is that it may become inefficient when the

admissible outcome space is small. Van Onna (2002) proposed resolving this issue

by a sequential sampling scheme in which the probabilities for categories 0 to m− 1

are sampled from truncated Beta distributions and the probability for category m is

obtained by π
(t)
mi|θ

= 1−
∑m−1

x=0 π
(t)
xi|θ

. A small simulation (not reported here) revealed

that this procedure does not yield correct samples from the posterior distribution.

Instead we follow Hoijtink (1998, see also Laudy & Hoijtink, 2007) suggestion and

re-parameterize πxi|θ as

πxi|θ =
γxi|θ

∑

x

γxi|θ

, (4)

where γxi|θ ∼ Gamma(nxi|θ +α, 1). It is important to note that also E(Xi|θ) can be

expressed in terms of these γxi|θ parameters; that is,

E(Xi|θ) =

∑

x

xγxi|θ

∑

x

γxi|θ

. (5)

The advantage of this re-parametrization is that in contrast to the πxi|θ’s, the γxi|θ’s

can be sampled independently of one another (e.g., Ferguson, 1973; Narayanan,

1990). It is well-known that sampling m + 1 γxi|θ parameters from independent
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Gamma distributions is equivalent to sampling the m + 1 πxi|θ from a m + 1

dimensional Dirichlet distribution. For the Gibbs sampler this means that the

γ0i|θ, . . . , γmi|θ parameters are sampled one by one from a truncated Gamma dis-

tribution with bounds depending on the other parameters. The latter implies that

the constraints by M and IIO need to be reevaluated at each step.

3.1 Monotonicity Constraints

Implementation of the assumption M in a LCM means that in addition to the model

formulated in Equation 3, for each item i, E(Xi|θ − 1) ≤ E(Xi|θ) for θ = 2, . . . , q

and E(Xi|θ) ≤ E(Xi|θ + 1) for θ = 1, . . . , q − 1. Substitution of E(Xi|θ) by its

definition in Equation 5 yields

E(Xi|θ − 1) ≤

∑

x

xγxi|θ

∑

x

γxi|θ

(6)

∑

x

xγxi|θ

∑

x

γxi|θ

≤ E(Xi|θ + 1). (7)

for 2 ≤ θ ≤ q and 1 ≤ θ ≤ q − 1, respectively.

In the Gibbs sampler, γxi|θ is sampled at each iteration given the values of all the

other parameters. This means that the restrictions on γxi|θ implied by M should be

derived from Equations 6 and 7; that is, the bounds for the admissible values of γxi|θ

are obtained by isolating the term γxi|θ from these equations. More specifically, we

derive the first bound for γxi|θ using the equality E(Xi|θ − 1) = E(Xi|θ). Denoting

this bound by uM, we obtain

uM
xi|θ

=

∑

y 6=x

γyi|θ

(

E(Xi|θ − 1)− y
)

x−E(Xi|θ − 1)
,

for θ ≥ 2. The second bound corresponds to the value of γxi|θ for which E(Xi|θ) =
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E(Xi|θ + 1). Denoting this bound by vM, for θ < q

vMxi|θ
=

∑

y 6=x

γyi|θ

(

E(Xi|θ + 1)− y
)

x− E(Xi|θ + 1)
.

Though at first glance one may think that uM
xi|θ

and vMxi|θ
are the lower and upper

bounds for γxi|θ, respectively, this is not correct. To illustrate this point, consider

γ0i|1, the parameter for the first category of item i at θ = 1. Its bound is derived

from the equality E(Xi|θ = 1) = E(Xi|θ = 2). Here, vM is not an upper but a lower

bound for γ0i|1, because gamma values smaller than vM yield higher E(Xi|θ = 1)

values, which not allowed according to the M restriction. It turns out that the

bounds define the domain of admissible values for γxi|θ, which can lie either inside

or outside the interval defined by uM
xi|θ

and vMxi|θ
. This means that not only the

bounds should be computed at each step of the Gibbs sampler, but it should also be

checked whether the domain of admissible values lies inside or outside the bounds.

Denoting the admissible domain under assumption M by AM
xi|θ

, Step 3 of the Gibbs

sampler can be implemented as follows:

Step 3∗: For each γxi|θ at each iteration t compute the bounds uxi|θ and vxi|θ and

sample a new value γ
(t)
xi|θ

from a truncated Gamma distribution:

γ
(t)
xi|θ
∼ Gamma(n

(t)
xi|θ

+ α, 1
∣

∣γ
(t)
xi|θ
∈ Axi|θ).

After each sample of γ
(t)
xi|θ

, E(x|θ)(t) is recomputed using Equation 5.

The method of inverse probability sampling is used to obtain samples from the

relevant truncated gamma distributions (e.g., Gelfand, Smith, & Lee, 1992).

3.2 Invariant Item Ordering Constraints

The IIO constraints on the LCM are similar to the ones for M, but with the role of

the items and latent classes reversed; that is, for any class θ E(Xi−1|θ) ≤ E(Xi|θ)
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for i = 2, . . . , k and E(Xi|θ) ≤ E(Xi+1|θ) for i = 1, . . . , k − 1. The bounds on γxi|θ

under IIO are

uIIO
xi|θ

=

∑

y 6=x

γyi|θ

(

E(Xi−1|θ)− y
)

x− E(Xi−1|θ)
,

for i ≥ 2, and

vIIOxi|θ
=

∑

y 6=x

γyi|θ

(

E(Xi+1|θ)− y
)

x−E(Xi+1|θ)
,

for i < k. At each iteration of the Gibbs sampler, both bounds are computed and

the admissible domain AIIO
xi|θ

is determined. To constrain the LCM by both M and

IIO, the γ
(t)
xi|θ

parameters are sampled from truncated Gamma distributions with

admissible ranges Axi|θ defined as the intersection of AM
xi|θ

and AIIO
xi|θ

.

3.3 Assessing Convergence

The values of the parameters obtained from the Gibbs sampler can be considered

samples from their posterior distribution as the number of iterations t of the Gibbs

sampler approaches infinity. In practice however, we are interested in t to be suf-

ficiently large for our samples to correctly approximate the posterior distributions.

The first samples of the model parameters are drawn after discarding the initial

10000 parameter values corresponding to the burn-in period. Sequential samples

are drawn at intervals of 10 iterations. For these samples, convergence is first as-

sessed by comparing the samples from the posteriors between successive samples of

size 5000 (e.g., Hoijtink & Molenaar, 1997). If the differences between the posteriors

are small, it is concluded that convergence is reached. If the differences are large,

the samples are discarded and new samples are taken until it can be concluded

that convergence is reached. A second assessment for convergence we used is by

inspection of the trace lines for the likelihood function across iterations of the Gibbs

sampler (e.g., Gamerman, 1997, pp. 134-137). A nearly flat trace line across the

samples indicates convergence.
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3.4 Parameter Estimation

With the 10000 samples of parameter values taken from their posterior, the parame-

ter values are estimated by the median value. Likewise, the 95% credibility interval

is taken between the 2.5th percentile and the 97.5th percentile. Values of E(Xi|θ)

were computed for each of these samples, the corresponding posterior expectations

and credibility intervals are reported. In the application described below, the 10000

samples were obtained after 10000 burn-in iterations by running the Gibbs sampler

another 100000 iterations and retaining each 10th draw.

3.5 Assessing Model Adequacy

Three statistics are considered to assess the fit of the M and IIO constrained LCMs.

The first one is the deviance information criterion (DIC; Spiegelhalter, Best, Carlin,

& Van der Linde, 2002), which can be used to compare the overall goodness-of-fit of

competing models. Here, an increase in DIC after adding the M or IIO constraints

to the model indicates an overall violation of the model assumptions. In addition,

two statistics were developed to test for violations of the assumptions M and IIO,

respectively, at the item level.

3.5.1 Bayesian Deviance Statistic

Under inequality constraints, the number of free parameters of a model (or model

complexity) is not easily defined. However, Spiegelhalter, Best, Carlin, and Van der

Linde (2002) proposed a Bayesian measure pD for the effective number of parameters

of a model that can easily be obtained with our Gibbs sampler. Let P (X|π) denote

the likelihood function, and let D(π) = −2 lnP (X|π) denote the deviance. From

the sampled parameter values from the Gibbs sampler, the following two quantities

can be computed: PE

(

D(π)
)

which is the posterior expectation of the deviance, and

D
(

PE(π)
)

which is the deviance given the posterior expectation of the parameters.
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The effective number of parameters is expressed as

pD = PE

(

D(π)
)

−D
(

PE(π)
)

.

Spiegelhalter, Best, Carlin, and Van der Linde (2002) suggested using DIC as a

measure for comparing model-data fit across competing models. Similar to Akaike’s

(1973) information criterion, DIC equals the deviance penalized by the complexity

of the estimated model. It defined as

DIC = PE

(

D(π)
)

+ pD.

Lower DIC values indicate a better model-data fit.

3.5.2 Posterior Check for Monotonicity

Now we define the statistic expressing the deviation from M for item i. For two

items i and i′, let the corresponding rest score be defined as

Yii′ =
∑

i′′ 6=i,i′

Xi′′ ,

which is the sum score excluding items i and i′, and let ny denote the number of

observations with rest score Yii′ = y. Let S(Xi, Xi′|y) be the covariance between

Xi and Xi′ conditional on their rest score Yii′ = y. Holland and Rosenbaum (1986;

Rosenbaum, 1984) showed that M implies that these covariances are nonnegative.

We define the item specific statistic for M as

Mi(X) =
1

n

∑

i′ 6=i

∑

y

nyS(Xi, Xi′|y), (8)

where the weighing factor ny accounts for small observations yielding less reliable

estimates of the covariances.

To obtain a distribution of the statistic in Equation 8 under the null-hypothesis

that the constrained LCM holds, new data sets X(t) are generated using the pa-

rameter values of the tth sample. For each of these data sets, statistic Mi(X
(t))
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is computed, which yields a sampling distribution for the test statistic under the

null-hypothesis of the constrained LCM. We define the (one-sided) p-value for as-

sessing for each item whether it fits the constrained LCM as the proportion of times

Mi(X
(t)) is smaller than the observed Mi(X) (cf. Gelman, Meng, & Stern, 1996;

Meng, 1994). A small p-value undermines the credibility of assumption M for that

particular item (i.e., M is likely to be violated for that particular item).

3.5.3 Posterior Check for Invariant Item Ordering

The last statistic expresses the deviation from IIO for item i. It is derived in a

similar manner as Mi(X). For two items i and i′, where i < i′, IIO implies that

E(Xi′ −Xi|y) ≥ 0, for all Yii′ = y (Ligtvoet, Van der Ark, Bergsma, & Sijtsma, in

press). As a statistic for goodness of fit of item i, we propose

IIOi(X) =
1

n

∑

i′ 6=i

∑

y

nyE(Xi′ −Xi|y). (9)

In Equation 9, we only consider for i′ the items adjacent of i. Similar to Mi(X),

a posterior sample distribution of IIOi(X) with the corresponding p-value can be

computed by replicating new data sets X(t). A small p-value undermines the cred-

ibility of the IIO assumption with the particular item involved in the most severe

violations.

3.5.4 Model Fitting Strategy

We propose using a three-step model fitting strategy for assessing whether assump-

tions M and IIO hold. The steps involve: 1) determining the number of latent classes

q̂, 2) determining for which items M holds, and 3) determining for which items IIO

holds. This procedure yields a LCM for which M and IIO holds for a certain number

of items. We refer to the number of items for which M holds as k̂M and for which

IIO holds as k̂IIO.

Step 1 involves estimating LCMs with different numbers of classes, where the

13



model with the lowest DIC is retained for the next step. Step 2 starts by fitting a

M restricted q̂-class model and comparing its DIC value to the unrestricted q̂-class

model. In case the constrained LCM fits worse, the posterior check for M is used

to determine for which items assumption M is violated. The M constraint is then

removed for the item with the largest misfit, and the model is reestimated with M

constraints on the remaining items. This is repeated until the DIC indicates that

the LCM constrained by M for the remaining k̂M items fits at least as well as the

unconstrained LCM. Step 3 starts with the estimation of a LCM constrained by

both M and IIO, with constraints imposed only on those k̂M items for which M

held. The fit of this LCM is compared to the fit of the final model from step 2.

As long as the DIC values indicate that the IIO restricted model fits worse, the

IIO constraint is relaxed for the item for which the posterior check indicates the

largest misfit due to a violation of IIO. The three-step strategy gives information

on the items involved in misfit due to violations of M and IIO. On the basis of this

information, the researcher can choose to discard items from the test.

4 Application

To illustrate the procedure for testing M and IIO by means of constrained LCMs,

we use an application to a set of items from a study on sociocultural developments

in The Netherlands (Felling, Peters, & Schreuder, 1987; Heinen, 1996, chap. 2 and

3). These were self-ratings of 1134 subjects to five statements related to women’s

liberation, each with three ordered score categories.

Because DIC values showed that an unrestricted four-class model did not improve

the model-data fit compared to a three-class model, we retained the three-class

model for testing M and IIO. The unconstrained LCM with three latent classes had

a DIC equal to 8539.62. The estimates of the conditional expectations revealed no

violations of the assumption M for any item, whereas the item ordering of items 1

and 2 was different at the first latent class than at the remaining two classes, and
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Table 1: Median Values Constrained LCM (IIO Relaxed for Item 2).

Latent Class Conditional Expectation

Class Proportion Item 1 Item 2 Item 3 Item 4 Item 5

1 .16 .23 .17 .55 .69 1.49

2 .34 .72 .73 1.30 1.65 1.90

3 .51 1.61 1.79 1.69 1.93 1.97

the item ordering of items 2 and 3 was different at the third latent class.

Then a LCM was fitted constrained by M for all five items. This constrained

LCM fitted as well as the unconstrained LCM, with DIC = 8539.56. The posterior

check for M also indicated that all items fitted the model (i.e., no violation of M

was detected). So there is no reason to relax the M assumption for any of the items.

With the LCM constrained by both M and IIO for all five items we obtained DIC

= 8544.52, which indicated that the model fitted the data less well than the LCM

constrained by only M. The posterior check for IIO indicated that the lack of model-

data fit might be due to item 2, for which IIO2 = 0.284 (p = .001). All other items

had p-values larger than .10. The posterior checks for M remained similar to those

of the LCM constrained by only M. Then we released the IIO constraint for item 2,

which means that item 1 is now constrained by IIO from above by item 3 and item

3 from below by item 1. This model showed a good model-data fit based on DIC

= 8538.93 (lowest value of DIC for all models tested). None of the posterior checks

for M and IIO showed any remaining violations of M or IIO. Table 1 contains the

median values of the samples of the class proportions and conditional expectations

under the LCM constrained by M for all five items and IIO for items 1, 3, 4, and 5.
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5 Discussion

It was shown how the M and IIO assumptions in IRT can be translated into LCMs

with inequality constraints on the class-specific item means. A Gibbs sampling

procedure was presented which uses a re-parametrization of the model probabilities

to make the implementation of the complex inequality constraints feasible. Our data

application illustrated the proposed three-step model fitting strategy for detecting

items that violate M and IIO. This procedure makes use of the overall fit statistic

DIC, as well as item-specific posterior checks.

In case the DIC indicates that the specified model does not hold, posterior checks

can be used for assessing which items violate M or which items were involved in

violations of IIO. In the data application with five items and 1134 subjects, the

posterior checks seem to work well. However, the sample size required for these

checks to achieve a reasonable power for detecting violations in larger tests remains

a question for future research. Alternative statistics for these checks may also be

considered.

Other methods for assessing model-data fit may also be considered. For exam-

ple, Kluglist, Laudy, & Hoijtink (2005a) considered the Bayesian factor for model

selection. A drawback of the Bayesian factor is that it depends on which other

models are included in the comparisons (Stern, 2005; see also Kluglist, Laudy, &

Hoijtink, 2005b). This means that to obtain the best fitting model, many models

with different numbers of latent classes and different sets of items for which M and

IIO holds, would need to be considered. In our three-step model fitting strategy we

first assess the number of latent classes; second, we assess for which items assump-

tion M is violated; and third, we assess for which items assumption IIO is violated.

This sequential strategy is efficient when it comes to identifying a set of items for

which both M and IIO holds. However, other strategies may be proposed, which

may identify another model as best fitting. For example, one could start with testing

both M and IIO for many latent classes and step-by-step relaxing some constraints
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or reducing the number of latent classes. Which kind of strategy is optimal with

respect to finding the best fitting model is a topic for future research.

Also, in our analysis the number of latent classes was fixed to three based on

the goodness-of-fit of the unrestricted LCM. An alternative strategy for testing M

and IIO using LCMs might be to use a model with a large number of latent classes

as the starting point. However, a downside of this alternative strategy is that some

of the classes will contain only a few subjects, hence reducing the reliability of the

estimates. Another possibility may be to treat the number of latent classes as an

additional parameter in the Bayesian estimation procedure. This would yield a

Gibbs sampler with in addition to the augmentation and the two sampling steps, a

step in which the number of latent classes is updated (e.g., Neal, 1991; Richardson

& Green, 1997).

Because most IRT models are used with the goal of obtaining an ordering of

subjects, it is most logical to assume IIO only in addition to M, which is also what

we did in this chapter. However, in theory it is also possible to test IIO without

assuming M. This could be done using a LCM with only the IIO constraints. A

practical problem one may encounter when estimating such a model with a Gibbs

sampler is what is referred to as the label switching problem (e.g., Redner & Walker,

1984; Stephens, 2000). Because the classes are not ordered, their labeling is arbitrary

and may thus change during the Gibbs sampling iterations (see Hoijtink, 1998, for

an example of this phenomena). Note that this may also occur in an unconstrained

LCM. Stephens (1997, 2000) developed an algorithm that can be used to reorder

the classes so that their order is same across Gibbs sample iterations (see also Jasra,

Holmes, & Stephens, 2005).

A last extension of the proposed procedures for testing M and IIO we would like to

mention is the possibility of imposing constraints that correspond to more common

IRT models implying M and IIO. For example, Van Onna (2002) defined a LCM

with order restrictions similar to ours but imposed on the cumulative probabilities
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P (Xi ≥ xi|θ) instead of the expected values E(Xi ≥ xi|θ). These restrictions imply

both M and IIO to hold (cf. the strong double monotonicity model, Sijtsma &

Hemker, 1998). Ligtvoet, Van der Ark, Bergsma and Sijtsma (in press) suggested

models with similar order restrictions for continuation ratios and adjacent category

odds (see also Vermunt, 2001).
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