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Introduction 

In the seventies various probabilistic generalizations of the well-known Guttman 

scaling method were proposed. One type of generalization yielded a class of latent 

class (LC) scaling models with names such as the Proctor (Proctor, 1970), latent 

distance (Lazarsfeld and Henry, 1968), and omission-inclusion (Dayton and 

Macready, 1976) model. A LC scaling model for J dichotomous items is a LC model 

with J+1 latent classes containing specific equality and inequality constraints on the 

class-specific response probabilities (Dayton, 1998; Heinen, 1996). These restrictions 

guarantee that classes are linearly ordered, which means that class k “scores” lower 

than class k+1. The beauty a LC scaling analysis is that, contrary to the more typical 

exploratory LC analysis, always well interpretable ordered classes are obtained. 

However, because the LC scaling assumptions do often not hold, also variants have 

been proposed that relax the linear order constraint (Dayton, 1998) or include 

unscalable classes (Goodman, 1975; Dayton & Macready, 1980).  

 Whereas the standard LC model (Goodman, 1974; Lazarsfeld and Henry, 

1968; Dayton, 1998) was developed for the analysis of simple random sampling 

cross-sectional data, in the last decades various extensions have been proposed for 

dealing with data sets collected using more complex research designs. One of these is 

the latent Markov model, also referred to as latent transition or hidden Markov model, 

which can be used for the analysis of longitudinal data sets (Van de Pol & 

Langeheine, 1990; Collins & Wugalter, 1992; Vermunt, Tran, & Magidson, 2008). 

More specifically, it is a useful method when it makes sense to assume that 

individuals may move from one class to another across time points. More recently, 

Vermunt (2003) proposed an extension of the LC model for the analysis of multilevel 
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data sets. An example application could be the analysis of items measured on students 

which are nested within schools. This multilevel LC model accounts for the fact that 

the class memberships of lower-level units within the same higher-level unit are more 

likely to be the same than across different higher-level units. The model is somewhat 

similar to a LC model with concomitant variables (Dayton and Macready, 1988), but 

with the difference that the regression model for the latent classes contains not only 

fixed effects but also random effects (Vermunt, 2005). It is also similar to LC models 

for complex surveys data (Patterson, Dayton, and Graubard, 2002), but instead of 

applying a variance correction for the sampling design, the multilevel structure is 

made part of the model specification (Vermunt, 2002). 

 As far as I know, till now no connection has been made between LC scaling 

models and these more sophisticated LC models for longitudinal and multilevel data 

sets. The aim of this paper is to demonstrate how LC scaling models can be integrated 

into these recently developed extensions of LC analysis, which implies that LC 

scaling models are expanded by making them suitable for application with 

longitudinal and multilevel data sets. At the same time latent Markov and multilevel 

LC models are extended by allowing LC scaling restriction for the relationship 

between class membership and item responses. We will be able to investigate how 

groups differ in scaling class distribution and in predictor effects on the scaling 

classes, as well as how individuals change across scaling classes over time. 

 The remainder of this chapter is organized as follows. In the next three 

sections, I introduce the relevant LC scaling models, latent Markov models, and 

multilevel LC models, respectively. Then I present two LC scaling applications, one 

using a longitudinal data sets and one using a multilevel data set. The chapter ends 

with a few final remarks. 

Latent Class Scaling Models 

In this chapter we are dealing with LC models for dichotomous response variables, 

that is with false/true, incorrect/correct, disagree/agree, no/yes, or more generally 0/1 

responses. I will denote the response of subject i on item j by yij – where yij = 0, 1 – 

and the number of items by J. The full response vector of a subject is denoted by yi. In 

addition to these J observed variables, a LC model contains a discrete latent variable. 

I will denote a subject’s unobserved score on this latent variable by νi, the number of 

LCs by C, and a particular class by c, where c = 1, 2, . . ., C.  



 3 

 LC analysis involves defining a model for )( iP y , the probability density of the 

multivariate response vector yi or, more specifically for the case of J  dichotomous 

responses, the probability of answering the items according to one of the J
2
 possible 

response patterns, for example, of answering the first two items correctly and the 

other ones incorrectly. The assumption underlying any type of LC or mixture model is 

that the density )( iP y  is a weighted average (or mixture) of the C class-specific 

densities )|( cP ii =νy  (McLachlan & Peel, 2000). This is expressed mathematically 

as follows: 
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The assumed mechanism by equation (1) is that each individual belongs to one of C 

exhaustive and mutually exclusive classes with probability )( cP i =ν  and that given 

membership of LC c one provides responses according to the probability density 

associated to this class. The classical LC model combines the assumption of equation 

(1) shared by all mixture models with the assumption of local independence (Dayton, 

1998; Goodman, 1974). Local independence means that the J responses are mutually 

independent given a subject’s class membership. It can be expressed as follows: 
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Independence implies that the joint density )|( cP ii =νy  is obtained as a product of 

the J item-specific densities )|( cyP iij =ν . Note that the local independence 

assumption is also used in other types of latent variables models, such as in factor 

analysis and IRT modeling, and is thus not specific for LC analysis. Combining the 

two basic equations (1) and (2) yields the following model for )( iP y : 
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To complete the model specification, we need to define the form of the conditional 

densities )|( cyP iij =ν . In a LC model for dichotomous items these are Bernoulli 

probability densities; that is,  
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Note this is a slightly complicated, but mathematically elegant, way to express that 

someone in LC c has a probability equal to )|1( cyP iijcj === νπ  of giving response 

1 to item j. Sometimes it is useful to parameterize the response probabilities cjπ  using 

a logistic equation; that is, 
)exp(1

)exp(

cj
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log . Various types or 

constrained LC models have been proposed which involve imposing restrictions on 

the probabilities cjπ  or their logits cjβ .  

 The constrained LC models I would like to discuss here are based on 

Guttman’s (1947) notion of respondents and items being located along a common 

linear (ordinal) scale. Assume there are four 0/1 (negative/positive; incorrect/correct) 

items (J=4) and that these are ordered from most easy to most difficult. These items 

form a perfect Guttman scale if a positive response to the most difficult item 4 implies 

a positive response to the other items as well, a positive response to item 3 implies a 

positive response to items 1 and 2, and a positive response to item 2 implies a positive 

response to item 1. In other words, in a 4-item Guttman scale only the response 

patterns 0000, 1000, 1100, 1110, and 1111 may occur, which are the response patterns 

for the 5 ideal types. However, in practice, even with carefully constructed and 

administered items, other response patterns will be observed, for example, because of 

measurement errors. To tackle this problem, Proctor (1970) proposed a generalization 

of Guttman scaling incorporating response errors. This model is, in fact, a restricted 

LC model with J+1 latent classes, where each class corresponds to one of the ideal 

Guttman types and where cjθ  is the probability of giving a response which is 

inconsistent with the ideal type concerned; that is, cjcj πθ =  for c ≤  j and 

cjcj πθ −= 1 for c > j. Dayton and Macready (1976) referred to these two types or 

errors as intrusions (when a 1 response replaces a 0) and omissions (when a 0 

response replaces a 1). 

 Proctor’s probabilistic version of the Guttman model assumes that the error 

probabilities are independent of the ideal type and the item; that is, θθ =cj . Dayton 

and Macready (1976) presented a modified version of Proctor’s model with different 

probabilities for intrusions and omissions, implying that 1θθ =cj  for c ≤  j and 

2θθ =cj for c > j. Other response-error models have been proposed that assume that 
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error rates vary across items ( )jcj θθ =  or across classes ( )ccj θθ = . The latent distance 

model described by Lazarsfeld and Henry (1968) assumes that 1jcj θθ =  for c ≤  j and 

2jcj θθ = for c > j ; that is, it has item-specific intrusion and omission probabilities. 

 Goodman (1975) proposed another type of probabilistic extension of the 

Guttman linear scales. Respondents from the J+1 ideal pattern latent classes respond 

exactly as expected ( 0=cjθ ) but one or more intrinsically unscalable classes are 

added with completely unrestricted response probabilities. Dayton and Macready 

(1980) generalized the Goodman model by allowing for errors in the latent classes 

corresponding to ideal patterns; that is, the response probabilities are unconstrained 

for the intrinsically unscalable class(es), but those for the ideal type classes are 

constrained to be in agreement with the Proctor model, the item-specific error model, 

etc.. 

 Another extension of Guttman scaling involves the incorporation of more than 

a single linear scale underlying the observed responses (Dayton, 1998). For example, 

with four items, a combination of the linear Guttman scale orderings 0000, 0001, 

0011, 0111, and 1111 and 0000, 0001, 0101, 0111, and 1111 yields a biform scale 

with six latent classes corresponding to the ideal patterns 0000, 0001, 0011, 0101, 

0111, and 1111. In such a scale, items 2 and 3 do not show a prerequisite mutual 

relationship but a positive response to item 1 requires positive responses to items 2, 3, 

and 4, and a positive response to 2 and/or 3 requires a positive response to item 4. 

This can be extended to more complex multi-form scaling models, where errors can 

be taken into account. 

Latent Markov Models 

The latent Markov model – also referred to as hidden Markov model or latent 

transition model – is an extension of the LC model for the analysis of longitudinal 

data sets (Baum et al., 1970; Van de Pol & Langeheine, 1990; Collins & Wugalter, 

1992; Vermunt, Tran, & Magidson, 2008). Similar as in standard LC models, 

individuals are assumed to belong to one of C latent classes at each of the 

measurement occasions, but what is different is that they are allowed to switch from 

one class to another across measurement occasions. 

 The notation should slightly be expanded to be able to deal with the 

longitudinal data structure. Individual i’s time-specific latent class membership, 
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response to item j, and vector of item responses will be denoted by νit, yitj, and yit, 

respectively, where t = 0, 1, …,  Ti, with t denoting a particular time and Ti+1 being 

the total number of observations for individual i. A particular latent class at occasion t 

is denoted by ct, where ct = 1, 2, . . ., C.  Using this notation, a latent Markov model 

can be defined as follows: 
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where )( 00 cP i =ν  is the initial state probability, )|( 11 ++ == tittit ccP νν  is the transition 

probability between adjacent time points, and )|( titit cP =νy  is the time-specific 

conditional item density.  

 The specific form used for )|( titit cP =νy  depends on the number of indicators 

and their scale types, where it should be noted that latent Markov models can be 

estimated with J=1, even when the single response variable is categorical. In this 

chapter, I will focus on latent Markov models for multiple dichotomous item 

responses per occasion. The new element is that the items will be assumed to form a 

probabilistic Guttman scale. More specifically, it is assumed that the J time-specific 

item responses are locally independence and Bernoulli distributed; i.e.,   
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and that, moreover, the class-specific response probabilities cjπ  are in agreement with 

one of the probabilistic Guttman models discussed in the previous section. Note that it 

is also assumed that the measurement model is time-homogeneous, which can be seen 

from the fact that the cjπ  do not contain an index t. 

 In latent Markov modeling, one will often also include explanatory variables 

affecting the initial state and the transition probabilities (Vermunt, Langeheine,and 

Böckenholt). Similar to LC modeling with concomitant variables, this involves 

defining logistic regression models for these model probabilities (Dayton and 

Macready, 1988). A regression model for the transition probabilities could be defined 

as follows: 
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Here itrz  is a (time-varying) predictor and itz  the vector of time-varying predictors. 

The term at the left-hand side is the logit of making a transition from state d to state c 

instead of staying in state c.  

 To apply the latent Markov model with more that a few time points, parameter 

estimation using maximum likelihood requires a special implementation of the E step 

of the EM algorithm, which is referred to as the Baum-Welch or forward-backward 

algorithm (Baum et al., 1970). This algorithm circumvents the computation and 

storage of the joint posterior distribution of the time-specific class memberships, 

which may have a very large number of entries, but instead computes and stores only 

the bivariate posterior distributions for adjacent time points. Vermunt, Tran, and 

Magidson (2008) showed how the forward-backward algorithm can be applied with a 

general class of latent Markov models, including models with multiple indicators, 

explanatory variables, multiple time-varying latent variables, mixture versions with 

one or more time-constant latent variable, and observations with missing values. This 

algorithm is implemented in the Latent GOLD software (Vermunt & Magidson, 

2008). 

Multilevel Latent Class analysis 

Another common research design in applied fields such as social sciences, education, 

and health is the multilevel study design in which individuals are nested within 

groups. Analyses of such hierarchical data sets require the use of multilevel 

techniques. Recently, Vermunt (2003, 2005) proposed a multilevel extension of the 

LC model in which the class membership probabilities and/or the item response 

probabilities are allowed to vary randomly across groups. This model fits within a 

more general latent variable modeling framework described among others by 

Skrondal and Rabe-Hesketh (2004) and Vermunt (2008). 

 Let h denote a particular higher-level unit or group, H the number of groups, 

and nh the number of individuals in group h. The index h will be used in νhi, yhij, and 

yhi, to indicate that it concerns a quantity of individual i belonging to group h. 

Moreover, yh is used to refer to the item responses of all members of higher-level unit 

h.  

 The simplest variant of the multilevel LC model – which is also the variant we 

will use here – is a model in which the class membership probabilities vary across 
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groups, but in which the item response probabilities are assumed to be the same 

across groups. In other words, observations within groups are dependent because they 

are more likely to belong to the same latent class. This model can be formulated as 

follows     

 ∑
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where the index h in )(⋅hP  indicates that the probably concerned is group specific, and 

where for our models )|( cP hihi =νy has again the form  
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and where, moreover, the class-specific response probabilities cjπ  are in agreement 

with one of the probabilistic Guttman models discussed earlier. Note that the 

measurement model is assumed to be homogeneous across groups, which can be seen 

from the fact that the cjπ  do not contain an index h. 

 In one variant of the multilevel LC model, Vermunt (2003, 2005) proposed 

modeling )( cP ihh =ν  using a random effects logistic regression model; that is,  
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where hu  is a normally distributed random effect with a mean equal to 0 and a 

variance equal to 1. When as in our applications the classes are ordered, the 

cτ parameters can be further restricted as ττ cc = . This implies using an adjacent-

category ordinal logit model for the class membership probabilities. 

 Similar to standard LC models, the multilevel LC model can be extended to 

include explanatory variables affecting the class memberships (Dayton & Macready, 

1988). With ordinal classes, the adjacent-category logit model for the latent classes 

will have the following form: 
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It is also possible to allow the random effects to depend of higher-level predictors, 

and to allow lower-level predictor effects on the class membership to vary across 

groups. In other words, a full multilevel logistic regression analysis can be performed 

for the class memberships (Vermunt, 2005).  
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 As for the latent Markov models discussed above, a special variant of the E 

step of the EM algorithm is required for the maximum likelihood estimation of the 

multilevel LC model parameters. This algorithm which Vermunt (2003, 2008) called 

the upward-downward algorithm is implemented in the Latent GOLD software 

package (Vermunt & Magidson, 2003, 2008). 

Application 1: Latent Markov scaling models for longitudinal 

data 

The latent Markov models described above will be illustrated with the nine-wave 

National Youth Survey (Elliott, Huizinga, & Menard, 1989) for which data were 

collected annually from 1976 to 1980 and at three year intervals after 1980. At the 

first measurement occasion, the ages of the 1725 children varied between 11 and 17. 

To account for the unequal spacing across panel waves and to use age as the time 

scale, we define a model for 23 time points (T +1=23), where t =0 corresponds to 

age 11 and the last time point to age 33. For each subject, we have observed data for 

at most 9 time points (the average is 7.93) which means that the other time points are 

treated as missing values.  

 I will focus on the change in three dichotomous variables indicating whether 

young persons used alcohol, marijuana, and hard drugs (1=no; 2=yes) use during the 

past year. Scaling models with 4 latent states are specified, which differ in the 

assumed structure for the measurement error probabilities. The four ideal types 

correspond to non-users, alcohol users, alcohol and marijuana users, and users of all 

three types of drugs. To account for the fact that the transition probabilities may 

change over the 23 time periods (between age 11 and 33), I used age and age squared 

as time-varying predictors in the logit model for the transition probabilities. 

 

   {Insert Tables 1 about here} 

  

 Table 1 reports the log-likelihood values, the numbers of parameters, and the 

BIC and AIC values for the four estimated latent Markov scaling models. As can be 

seen, the Proctor model is clearly too restrictive. Both the model with item-specific 

errors and the one with separate intrusion and omission probabilities perform better 



 10 

than the Proctor model. The latent distance model – which is the most general model 

with both features – is the preferred model for this data set. 

 

   {Insert Tables 2 about here} 

  

 Table 2 reports the class-specific response probabilities obtained with the 

Markov latent distance model. As can be seen the error probabilities are all rather 

small, with the largest been the omission probability for hard drugs. Note that while 

normally the latent distance model requires certain identifying restrictions, this is not 

the case when used in combination with a latent Markov model. 

   

   {Insert Table 3 about here} 

 

 Rather than reporting the initial state and the time-specific transition 

probabilities, I will show the estimated class proportions for each age. These are 

depicted in Figure 1. As can be seen, the size of the class of non-users decreases 

rapidly after age 11. The class of alcohol users increases monotonically from 2 

percent at age 11 to 60 percent at age 30. Class 3 increases from 0 percent at age 11 to 

29 percent at age 18 and decreases to 11 percent at age 33. The class of consumers all 

three types of drugs increases to 21 percent at age 22 and drops to 8 percent at age 33.  

Application 2: Multilevel LC scaling models for nested data 

This application uses a data set collected by Doolaard (1999), and which was also 

used by Fox and Glas (2001) to illustrate their multilevel IRT model. More 

specifically, information is available on a 18-item math test taken from 2156 pupils 

belonging to 97 schools in the Netherlands. The aim of the analysis is twofold: 

measuring pupils’ math abilities and assessing differences between schools. For the 

first aim, we will use a LC scaling model for 9 of the 18 math items, while the second 

aim involves introducing school-level random coefficients in the LC scaling model. 

There is also information on individual-level covariates socioeconomic status (SES; 

standardized), non-verbal intelligence (ISI, standardized), and gender (0=males and 

1=females), and a school-level covariate indicating whether a school participates in 

the national school leaving examination (CITO; 0=no, 1=yes). 
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   {Insert Table 4 about here} 

 

 Table 4 reports the log-likelihood values, the numbers of parameters, and the 

BIC and AIC values for the estimated multilevel LC scaling models. As in the 

previous application, the latent distance model performs best because both item-

specific errors and different intrusion and omission errors are needed. I also estimated 

10-class LC models with logistic constraints yielding a Rasch and a two-parameter 

logistic model respectively. These two models perform somewhat better than the LC 

scaling models. This shows that assuming an S-shape relationship between the 

ordered classes and the responses seems to be better than a relationship in the form of 

a step function as assumed by the LC scaling models.   

   

{Insert Tables 5 about here} 

 

 Table 5 presents the intrusion and omission probabilities obtained with the 

multilevel latent distance model. As can be seen, the intrusion probabilities are much 

larger than the ones we saw in the previous example, which indicates that the items 

are rather easy; that is, even the pupils with the lowest abilities have a rather high 

probability of making items 1 to 6 correctly. 

 The last model is the multilevel latent distance model with SES, ISI, gender 

and CITO predicting the class membership. This is specified using an ordinal logit 

model for the latent classes. Its much higher log-likelihood value and much lower BIC 

and AIC values compared to the model without covariates indicates that the covariates 

improve the model significantly.   

  

   {Insert 6 about here} 

 

 Table 6 reports the parameters of the (multilevel) ordinal logistic regression 

model for the latent classes. SES, ISI, and CITO have positive effects and gender has 

a negative effect. This shows that having a higher socioeconomic status, having a 

higher score on the nonverbal intelligence test, being a male, and belonging to a CITO 

school increases the likelihood of belonging to a higher ability class. It can also be 

seen that there remains a large amount of between-school variation after controlling 

for the four covariates. The size of the school effect can directly be compared with the 
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effects of SES and ISI because these are also standardized variables. The standard 

deviation of gender and CITO are about twice as small which means that we have to 

divide their effects by two if we want to compare these to other ones. The school 

effect turns out to be as important as the effect of a pupil’s nonverbal intelligence 

(ISI) and more important than the other covariates. The differences between schools 

cannot be explained by differences in the composition of their populations. 

Final remarks 

This chapter demonstrated how LC scaling models can be used in longitudinal and 

multilevel studies. For this purpose, I proposed combining the probabilistic Guttman 

scaling models proposed by Proctor, Lazarsfeld, and Dayton and Macready with the 

more recently developed latent Markov and multilevel LC models. This new approach 

was illustrated using two empirical examples. The appendix describes the Latent 

GOLD syntax I used in these examples, so that interested readers will be able to apply 

these new models to their own data sets. 
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Appendix: Latent GOLD syntax for the two examples 

 

As indicated in the text, the models presented in this chapter can be estimated with the 

Latent GOLD Syntax module. These are the “variables” and “equations” sections for 

the estimated Markov latent distance model: 

 

variables 

   caseid id; 

   dependent alc, mrj, drugs; 

   independent age11, age11_2; 

   latent 

      Class nominal dynamic 4; 

equations 

   Class[=0] <- 1; 

   Class <- (~tra) 1 | Class[-1] + (~tra) age11 | Class[-1]  

             + (~tra) age11_2 | Class[-1]; 

   alc   <- (a1) 1 | Class; 

   mrj   <- (a2) 1 | Class; 

   drugs <- (a3) 1 | Class; 

    

   a1[2]=a1[4];a1[3]=a1[4]  

   a2[2]=a2[1];a2[3]=a2[4]  

   a3[2]=a3[1];a3[3]=a3[1] 

 

The “variables” section defines the “caseid” connecting the multiple records of a 

person (each time point is a record in the data file), as well as defines the 

“dependent”, “independent”, and “latent” variables to be use in the model. In a latent 

Markov model, the “nominal” “latent” variable is defined to be “dynamic”.  

 The first two equations are the logit equations for the initial state and 

transition probabilities. Here, “1” denotes an intercept term. The specification of the 

second equation – with “(~tra)” and “| Class[-1]” –  is such that it yields the 

parameterization described in equation (4) ; that is, coefficients which can be 

interpreted as effects on the logit corresponding to a certain transition. 

 The last three equations concern the three items. These imply that there are 

class-specific intercepts (logits of a positive response), which are labeled “a1”, “a2”, 

and “a3”, respectively. The restrictions defined for these logit parameters should be 

read as follows: for alcohol the logits for classes 2, 3, and 4 are equated, for marijuana 

the logits for classes 1 and 2 and of classes 3 and 4 are equated, and for hard drugs the 

logits for classes 1, 2, and 3 are equated. 
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 The other estimated scaling models can be obtained with additional 

restrictions. The intrusion-omission model assumes that the errors are the same across 

items, which can be specified by inserting these two lines before the other constraints: 

 

   a2[1]=a1[1];a3[1]=a1[1]; 

   a2[4]=a1[4];a3[4]=a1[4]; 

 

The item-specific error model assumes that the intrusion and omission probabilities 

are the same, or that the corresponding logits for positive responses have opposite 

signs. This can be specified by inserting this line before the other constraints: 

    

   a1[4]=-a1[1];a2[4]=-a2[1];a3[4]=-a3[1]; 

 

Combining the two sets of additional constraints yields the Proctor model; that is: 

   a2[1]=a1[1];a3[1]=a1[1]; 

   a1[4]=-a1[1];a2[4]=-a2[1];a3[4]=-a3[1]; 

 

  

The definition of the restrictions on the item parameters is in the same way in 

multilevel LC models. The difference compared to the above latent Markov model 

occurs in the part concerning the latent variables. This is the syntax I used in the 

multilevel LC scaling application: 

 

variables 

   groupid school; 

   independent cito, isi, ses, gender; 

   dependent y1, y2, y3, y4, y5, y6, y7, y8, y9; 

   latent 

      Class ordinal 10, 

      u continuous group; 

equations 

   Class <- 1 + cito + isi + ses + gender + u; 

   y1 <- (a1) 1 | Class; 

   y2 <- (a2) 1 | Class; 

   y3 <- (a3) 1 | Class; 

   y4 <- (a4) 1 | Class; 

   y5 <- (a5) 1 | Class; 

   y6 <- (a6) 1 | Class; 

   y7 <- (a7) 1 | Class; 

   y8 <- (a8) 1 | Class; 

   y9 <- (a9) 1 | Class; 

 

   restrictions on a1-a9 come here 
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As can be seen, a “groupid” connects the records of pupils belonging to the same 

school, and the group-level random effect “u” is defined as a “continuous” latent 

variable at the “group” level. The “equations” are the ordinal logit model for the latent 

classes (note that “Class” is defined to be “ordinal” instead of “nominal”) and the 

binary logit models for the items.
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Table 1: Fit measures for the estimated latent Markov scaling models 

  Log- Number of   

Model likelihood parameters BIC AIC 

Proctor -13847 40 27993 27775 

Intrusion-omission -13840 41 27985 27762 

Item-specific errors -13827 42 27968 27739 

Latent distance -13720 45 27775 27530 

 

Table 2: Response probabilities for the Markov latent distance model 

    Latent scale type 

    c=1 c=2 c=3 c=4 

Alcohol no 0.90 0.02 0.02 0.02 

 yes 0.10 0.98 0.98 0.98 

Marijuana no 0.98 0.98 0.09 0.09 

 yes 0.02 0.02 0.91 0.91 

Hard drugs no 0.99 0.99 0.99 0.15 

  yes 0.01 0.01 0.01 0.85 

 

Table 3: Age-specific latent scales type proportions for the Markov latent distance 

model 

  Latent scale type 

Age c=1 c=2 c=3 c=4 

11 0.98 0.02 0.00 0.00 

12 0.83 0.15 0.02 0.00 

13 0.67 0.24 0.07 0.02 

14 0.51 0.30 0.14 0.05 

15 0.37 0.33 0.21 0.09 

16 0.26 0.35 0.26 0.14 

17 0.19 0.35 0.28 0.17 

18 0.15 0.36 0.29 0.19 

19 0.13 0.37 0.29 0.21 

20 0.11 0.39 0.28 0.22 

21 0.10 0.41 0.26 0.22 

22 0.10 0.44 0.24 0.22 

23 0.10 0.47 0.22 0.21 

24 0.11 0.49 0.20 0.20 

25 0.12 0.52 0.18 0.19 

26 0.12 0.54 0.16 0.17 

27 0.13 0.56 0.15 0.15 

28 0.14 0.58 0.14 0.14 

29 0.15 0.59 0.13 0.12 

30 0.17 0.60 0.12 0.11 

31 0.18 0.60 0.12 0.10 

32 0.19 0.60 0.12 0.09 

33 0.21 0.59 0.11 0.08 
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Table 4: Fit measures for the estimated multilevel latent class scaling models 

  Log- Number of      

Model likelihood parameters BIC AIC 

Proctor -10496 11 21076 21014 

Intrusion-omission -10203 12 20498 20430 

Item-specific errors -10274 19 20693 20585 

Latent distance -10077 28 20369 20210 

Rasch -10068 20 20289 20175 

Two-parameter logistic -10032 28 20279 20120 

Latent distance + covariates -9850 32 19946 19764 

 

Table 5: Intrusion and omission probabilities for the estimated multilevel latent 

distance model 

Item Intrusion Omission 

1 0.44 0.02 

2 0.63 0.04 

3 0.47 0.06 

4 0.50 0.06 

5 0.53 0.15 

6 0.43 0.15 

7 0.33 0.12 

8 0.30 0.19 

9 0.30 0.25 

  

Table 6: Parameters of the ordinal logistic model for the latent classes obtained with 

latent distance model with covariates 

  coefficient S.E. Wald DF p-value 

School (random) 0.195 0.019 100.18 1 1.40E-23 

CITO 0.178 0.048 13.84 1 0.0002 

ISI 0.180 0.015 139.38 1 3.60E-32 

SES 0.113 0.014 68.80 1 1.10E-16 

Gender -0.086 0.021 16.70 1 4.40E-05 

 


