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Latent class modeling with covariates: Two
improved three-step approaches

Researchers using latent class (LC) analysis often proceed using the following
three steps: 1) a LC model is built for a set of response variables, 2) subjects are as-
signed to latent classes based on their posterior class membership probabilities, and
3) the association between the assigned class membership and external variables is
investigated using simple cross-tabulations or multinomial logistic regression anal-
ysis. Bolck, Croon, and Hagenaars (2004) demonstrated that such a three-step
approach underestimates the associations between covariates and class membership.
They proposed resolving this problem by means of a speci�c correction method
which involves modifying the third step.

In this article, I extend the correction method of Bolck et al. by showing that
it involves maximizing a weighted log-likelihood function for clustered data. This
conceptualization makes it possible to apply the method not only with categorical
but also with continuous explanatory variables, to obtain correct tests using complex
sampling variance estimation methods, and to implement it in standard software for
logistic regression analysis. In addition, a new maximum likelihood (ML) based
correction method is proposed, which is more direct in the sense that it does not
require analyzing weighted data. This new three-step ML method can be easily
implemented in software for LC analysis.

The reported simulation study shows that both correction methods perform very
well in the sense that their parameter estimates and their standard errors can be
trusted, except for situations with very poorly separated classes. The main advan-
tage of the ML method compared to the Bolck et al. approach is that it is much
more e�cient, and almost as e�cient as one-step ML estimation.
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Latent class modeling with covariates: Two
improved three-step approaches

1 Introduction

Latent class (LC) analysis (Lazarsfeld and Henry 1968; Goodman 1974a/b; Mc-
Cutcheon 1987; Vermunt and Magidson 2004) and related methods such as latent
pro�le analysis (Lazarsfeld and Henry 1968) and �nite mixture modeling (McLachlan
and Peel 2000) are becoming increasingly popular statistical tools in a broad range of
applied �elds. Applications in political science research include Blaydes and Linzer
(2006), Breen (2000), Edlund (2006), Feick (1989), Hill and Kriesi (2001a/b), Katz
and Katz (2009), Linzer (2006), McCutcheon (1985), Moors and Vermunt (2007),
and Simmons (2008). These methods are used to construct a typology or clustering
based on a set of observed variables; that is, to classify observational units into a
{ preferably small { set of latent classes. In most LC analysis applications, one
not only wishes to build a measurement or classi�cation model based on a set of
responses, but also to relate the class membership to explanatory variables. These
latter variables are referred to as covariates, predictors, external variables, indepen-
dent variables, or concomitant variables. In a more explanatory study, one may wish
to build a predictive or structural model for class membership whereas in a more de-
scriptive study the aim would be to simply pro�le the latent classes by investigating
their association with external variables.

In the LC analysis literature two ways for dealing with covariates have been
proposed: a one-step and a three-step approach. The former involves simultane-
ous estimation of the LC (measurement) model of interest with a logistic regres-
sion (structural) model in which the latent classes are related to a set of covari-
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ates. For categorical covariates, this method was described among others by Clogg
(1981), Goodman (1974a), Haberman (1979), Hagenaars (1990, 1993), and Vermunt
(1997). LC models with continuous covariates were proposed by Bandeen-Roche et
al. (1997), Dayton and Macready (1988), Kamakura, Wedel, and Agrawal (1994),
and Yamaguchi (2000). This one-step approach, which is similar to the MIMIC
model developed in the context of factor analysis, is implemented in the most soft-
ware packages for LC analysis.

However, the one-step approach has certain disadvantages. The �rst is that it
may sometimes be impractical, especially when the number of potential covariates
is large, as will typically be the case in a more exploratory study. Each time that a
covariate is added or removed not only the prediction model but also the measure-
ment model needs to be reestimated. A second disadvantage is that it introduces
additional model building problems, such as whether one should decide about the
number of classes in a model with or without covariates. Third, the simultaneous
approach does not �t with the logic of most applied researchers, who view intro-
ducing covariates as a step that comes after the classi�cation model has been built.
Fourth, it assumes that the classi�cation model is built in the same stage of a study
as the model used to predict the class membership, which is not necessarily the case.
It can even be that the researcher who constructs the typology using a LC model is
not the same as the one who uses the typology in a next stage of the study.

What is clear is that in many applications it is more natural to use a stepwise
approach, and moreover, that sometimes it is the only reasonable way to proceed.
The typical stepwise approach includes:

1. A LC model is built for a set of response variables or items. This not only
involves decisions on which items and how many latent classes to use in the
classi�cation model, but also model speci�cation issues such as the distribution
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of the items within classes and the relaxation of the local independence for
certain pairs of items.

2. Subjects are assigned to latent classes based on their posterior class member-
ship probabilities which can be obtained from their observed responses and the
estimated parameters of the step-one LC model. Possible classi�cation meth-
ods are modal, random, and proportional assignment (Goodman 1974a/b,
2007; McLachlan and Peel 2000; Dias and Vermunt 2008). Modal and random
assignment yield what is sometimes referred to as a hard partitioning of the
sample whereas proportional assignment yields a soft or crisp partitioning.

3. A standard multinomial logistic regression model is estimated using the step-
two class assignment as the (observed) dependent variable. Rather than using
a regression model one can also simply compute two-way tables summarizing
the class membership probabilities per covariate category (e.g., for males and
females, for educational levels, for age groups, etc.). When combined with
proportional assignment, the latter yields Magidson and Vermunt's (2001)
\inactive covariates" method (see also Van der Heijden, Gilula, and Van der
Ark 1999).

Bolck, Croon, and Hagenaars (2004) demonstrated that irrespective of whether
one uses modal, random, or proportional assignment, three-step approaches underes-
timate the relationships between covariates and class membership. More speci�cally,
they showed that the larger the amount of classi�cation error introduced in the sec-
ond step, the larger the downward bias in the parameter estimates. Based on the
same derivations, Bolck, Croon, and Hagenaars (2004) and Croon (2002) developed
a method for correcting the three-step approach, which I will call the BCH method.
Similar approaches were proposed by Croon (2002), Lu and Thomas (2008), and
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Skrondal and Laake (2001) for continuous latent variables.
The BCH three-step approach proceeds as follows: a) the data on covariates

to be included in the structural model and class assignments are summarized in
a multidimensional frequency table, b) via a matrix multiplication the frequencies
counts of this table are reweighted by the inverse of the matrix of classi�cation errors,
and c) a logistic regression model is estimated using this reweighted frequency table
as if it were the observed data. Problems associated with this approach are that 1)
covariates need to be categorical so that the data can be summarized in a frequency
table, 2) cumbersome matrix multiplications are needed in the data preparation
stage and, moreover, these need to be repeated when a new set of covariates is
selected, and 3) analyzing the reweighted data using a standard logistic routine
yields severely downward biased standard errors, and thus too liberal signi�cance
test for the logistic regression coe�cients.

The aim of the current paper is three-fold: 1) proposing a modi�ed BCH proce-
dure which removes several limitations of the original BCH approach, 2) presenting
an alternative more direct three-step method, and 3) reporting the results of a sim-
ulation study which show when the various three-step methods work and when they
do not.

As shown in more detail below, the three problems associated with the BCH ap-
proach be tackled by applying this method to individual observations rather than a
table of frequency counts. It then becomes straightforward to use continuous in addi-
tion to categorical predictors and, moreover, cumbersome data preparation steps are
no longer needed. In addition, the resulting weighted likelihood function maximized
for parameter estimation has the form of a pseudo likelihood similar to the one used
with complex sampling designs. This suggests that correct standard errors can be
obtained with the linearization (sandwich) variance estimator (Skinner, Holt, and
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Smith 1989), or alternatively with a jackknife variance estimator Patterson, Dayton,
and Graubard (2002). As is shown in the simulation study, use of the linearization
variance estimator does remove the downward bias in the standard errors, which
makes the BCH procedure preferable in practice. The modi�ed BCH procedure can
be implemented in standard software for logistic regression analysis that allows for
(negative) sampling weights and complex sampling variance computations.

In addition, I discuss an alternative three-step method based on a logic similar
to the BCH approach, namely that in step three one should take into account the
classi�cation error introduced in step two. This new three-step maximum likelihood
(ML) procedure involves de�ning a LC model in which the step-two class assignment
serves as a single response variable with known measurement error probabilities. In
this LC model, one can introduce the relevant predictors while keeping the mea-
surement model �xed. A similar procedure was proposed by Van Hout and Van der
Heijden (2004) in the context of data collected by randomized response questions,
which also yields responses with known error probabilities. The proposed three-step
method can be easily implemented in software for LC analysis that allows for pa-
rameter restrictions. Besides being more elegant, the new procedure is easier to use
in practice, as well as easier to extend to more complex situations, such as mod-
els with multiple latent variable constructed separately and measurement models
which di�er across groups. The simulation study reported below shows that this
new three-step ML method is more e�cient { yields smaller standard errors for the
covariate e�ects { than the BCH approach.

The remainder of this article is organized as follows. First, I describe the standard
three-step and one-step approaches for LC modeling with covariates. Subsequently,
I discuss the BCH method, including various modi�cations of this method, as well
as the new three-step ML method. Then I report the results of a simulation study

6



comparing the performance of the various methods. Subsequently, I present an
empirical application. The paper ends with a summary of the main results of the
current research and a discussion of possible directions for future research.

2 LC modeling with covariates

2.1 The standard three-step approach
Let us �rst look at the standard three-step approach, which involves 1) estimating
a standard LC model without covariates, 2) assigning subjects to latent classes, and
3) estimating a logistic regression model for the latent classes.

2.1.1 The standard LC model
In the following I assume that I have a LC model for a set of K categorical responses
(items). The response of subject i on item k is denoted by Yik, and the full response
vector by Yi. The discrete latent class variable is denoted by X, a particular latent
class by t or s, and the total number of classes by T . A LC or mixture model for
P (Yi) can be de�ned as follows (Goodman 1974a/b; McCutcheon 1987; Hagenaars
1990; McLachlan and Peel 2000):

P (Yi) = TX
t=1

P (X = t)P (YijX = t): (1)

Typically, categorical responses are assumed to be independent given class member-
ship; that is,

P (YijX = t) = KY
k=1

P (YikjX = t) = KY
k=1

RkY
r=1

�I(Yik=r)ktr ; (2)

where I(Yik = r) = 1 if subject i gives response r on item k and 0 otherwise.
The parameters to be estimated are the class proportions �t = P (X = t) and the
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multinomial parameters �ktr = P (Yik = rjX = t). Maximum likelihood estimation
of these parameters involves maximizing the following log-likelihood function:

logLSTEP1 = NX
i=1

logP (Yi) = NX
i=1

log
2
4 TX
t=1

�t
KY
k=1

RkY
r=1

�I(Yik=r)ktr
3
5 : (3)

This de�nes the �rst step of the three-step analysis.

2.1.2 Estimating class membership and classi�cation error
In the second step, one assigns subjects to latent classes on the basis of their observed
responses Yi and the parameter estimates from the �rst step. The assigned class
membership of subject i is denoted byWi. The key quantity for the class assignment
is the probability of belonging to class t given the observed responses Yi, or the
posterior class membership probability P (X = tjYi), which can be obtained by the
Bayes rule (Dias and Vermunt 2008; Goodman 1974a/b, 2007; McLachlan and Peel
2000); that is,

P (X = tjYi) = P (X = t)P (YijX = t)
P (Yi) : (4)

Note that the terms appearing at the right-hand side of this equation were de�ned
above.

The two most widely used classi�cation rules are modal and proportional as-
signment. Modal assignment estimates Wi as the value of t for which P (X = tjYi)
is largest; that is, it yields a hard partitioning in which individual i is treated as
belonging to class t with weight wit = P (Wi = tjYi) = 1 if P (X = tjYi) is largest
and with weight wit = 0 otherwise. Proportional \assignment" treats subjects as
belonging to latent class t with probability P (X = tjYi); that is, it yields a soft (or
crisp) partitioning with weights wit = P (Wi = tjYi) = P (X = tjYi). Another clas-
si�cation rule is random assignment which yields a hard partitioning by estimating
Wi using a random draw from P (X = tjYi) (Goodman 2007). Below I focus on
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modal and proportional assignment only.
The amount of classi�cation error can be quanti�ed by means of the conditional

probability P (W = sjX = t) expressing the probability of the estimated value
conditional on the true value. Using simple probability calculus, this probability
can be obtained as follows:

P (W = sjX = t) = X
Y
P (YjX = t)P (W = sjY)

=
P
Y P (Y)P (X = tjY)P (W = sjY)

P (X = t) : (5)
where the sum is over all possible response patterns. Note that P (W = sjY) is
either 0 or 1 with modal assignment and P (W = sjY) = P (X = sjY) with propor-
tional assignment. The total proportion of classi�cation errors equals PTt=1 P (X =
t)Ps 6=t P (W = sjX = t).

Often, it is practical to replace the sum over all possible response patterns ap-
pearing in equation (5) by a sum over all observations in the data set used to esti-
mate the LC model of interest, which implies that P (Y) is replaced by its empirical
distribution. This yields,

P (W = sjX = t) =
PNi=1 P (X = tjYi)P (Wi = sjYi)

P (X = t)
=

PNi=1 P (X = tjYi)wis
P (X = t) : (6)

The results obtained with equations (5) and (6) can be expected to be very similar
as long as the model �ts the data well and the sample size is large enough. This is
investigated in more detail in the simulation study reported below.

Note that the major LC analysis software packages report classi�cation informa-
tion closely related to P (W = sjX = t) for modal assignment. For example, the
classi�cation table provided by Latent GOLD (Vermunt and Magidson 2005, 2008)
equals P (X = t;W = s) times the sample size, from which P (W = sjX = t) is
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easily obtained by rescaling the rows to sum to 1. Mplus (Muth�en and Muth�en
2007) reports P (X = tjW = s) as well the number of persons assigned to each of
the latent classes, from with P (W = sjX = t) can also be obtained. Both programs
get this information using equation (6); that is, using the empirical distribution of
Y.

2.1.3 Regressing the estimated class membership on covariates
Let Ziq be one of Q covariates and Zi the covariate vector for subject i. The third
step of the analysis involves estimating the e�ect of these covariates on the estimated
class membership W using a multinomial logistic regression model; that is,

P (W = tjZi) = exp(
0t +PQq=1 
qt Ziq)PTs=1 exp(
0s +PQq=1 
qs Ziq) : (7)

The parameters of interest are the 
qt, for 0 � q � Q. These are obtained by
maximizing the following weighted log-likelihood function:

logLSTEP3 = NX
i=1

TX
t=1

wit logP (W = tjZi); (8)

where wit = P (W = tjYi) was de�ned above. Note that this involves performing a
standard multinomial logistic regression analysis using an expanded data set with
T records per observation and the wit as weights. However, with modal assignment
there is no need to construct such an expanded data �le because wit = 1 for the
assigned class and 0 otherwise.

2.2 The one-step ML approach
It is also possible to de�ne a LC model with covariates, which makes it unnecessary
to use the above three-step approach. The covariate e�ects are then estimated simul-
taneously with the parameters de�ning the class-speci�c item distributions. Models
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with categorical covariates were used earlier by Goodman (1974b), Clogg (1981),
and Hagenaars (1990); models with continuous covariates have been developed by
Dayton and Macready (1988), Bandeen-Roche et al. (1997), and Yamaguchi (2000).

When covariates are included in the LC model, one has a model for P (YijZi)
rather than for P (Yi): More speci�cally, the one step (or full information ML es-
timation) approach to LC analysis with covariates involves using a model of the
form

P (YijZi) = TX
t=1

P (X = tjZi)P (YijX = t); (9)
where again local independence across the Yi variables may be assumed restricting
P (YijX = t) as shown in equation (2). Note that it is also assumed that Yi is
independent of Zi conditional on X. The probability P (X = tjZi) will typically be
parameterized by means of a multinomial logistic regression model:

P (X = tjZi) = exp(
0t +PQq=1 
qt ziq)PTs=1 exp(
0t0 +PQq=1 
qs ziq) : (10)
Full information ML (FIML) estimates of the 
 parameters and the multinomial pa-
rameters de�ning P (YijX = t) are obtained by maximizing a log-likelihood function
based on P (YijZ); that is,

logLFIML = NX
i=1

logP (YijZi) = NX
i=1

log TX
t=1

P (X = tjZi)P (YijX = t): (11)
This is what software for LC analysis with covariates will do.

3 The BCH approach and some improvements

Bolck, Croon, and Hagenaars (2004) and Croon (2002) demonstrated that the esti-
mated 
 parameters from the three-step approach are biased towards 0, and indi-
cated how this bias can be corrected by modifying the third step of the three-step
approach. The key of their contribution is the demonstration of the relationship
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between P (W = sjZi) and P (X = tjZi); that is between the probability that is
modeled in the third step of the three-step approach and the probability that one
intends to model.

The starting point is the joint probability P (X = t;Y;W = sjZi) and its de-
composition:

P (X = t;Y;W = sjZi) = P (X = tjZi)P (YjX = t)P (W = sjY); (12)
which is based on the assumptions made in the LC model with covariates { P (X =
t;YjZi) = P (X = tjZi)P (YjX = t) { and in the step two classi�cation procedure {
P (W = sjX = t;Y;Zi) = P (W = sjY). As always P (W = sjZi) can be obtained
from P (X = t;Y;W = sjZi) by summation over all latent classes X and all response
patterns Y; that is:

P (W = sjZi) = TX
t=1

X
Y
P (X = tjZi)P (YjX = t)P (W = sjY)

= TX
t=1

P (X = tjZi)X
Y
P (YjX = t)P (W = sjY)

= TX
t=1

P (X = tjZi)P (W = sjX = t): (13)
The last equation shows that P (W = sjZi) is a linear combination of P (X = tjZi),
where the classi�cation errors serve as \regression" weights. Note that P (W =
sjX = t) was de�ned in equations (5) and (6)

Bolck et al. (2004) used the linear relationship in equation (13) for two purposes:
1. to show that the (population) log odds-ratios computed using P (W = sjZi)

are always smaller (closer to 0) than those obtained from P (X = tjZi); and
2. to show how to obtain P (X = tjZi) by a linear transformation of P (W = sjZi).
In order to illustrate the second point, which is of primary interest here, let

eis=P (W = sjZi), ait = P (X = tjZi), and dts = P (W = sjX = t) be elements
12



of matrices E, A, and D respectively. Equation (13) can be expressed in matrix
notation as follows:

E = AD: (14)
Using simple matrix calculus, it can be shown that A can be obtained as follows

A = ED�1 (15)

which can be solved as long as D nonsingular. The latter requires that the condition
P (W = sjX = t) = P (W = sjX = t0) for all s does not hold for any t 6= t0.

In order to understand how Bolck et al. (2004) used equation (15) to modify the
last step of the three-step approach, it is important to realize that they assumed all
covariates are categorical which implies the data can be summarized in a frequency
table. Let Z�j denote one of the J covariate patterns, njs the number of observations
with covariate pattern j assigned to latent class s, and N the frequency table with
entries njs. Note that N contains the data used to estimate E in the standard
implementation of the third step. The correction proposed by Bolck et al. (2004)
involves using the reweighted observed frequency table N� = ND�1 as data matrix
to obtain consistent estimates of A. Although they do not provide the function
they are maximizing for parameter estimation, they are, in fact, using a kind of
pseudo ML estimation. With D� = D�1 and d�st being an element of D�, the pseudo
log-likelihood function that is maximized is

logLBCH = X
j

TX
s=1

njt
TX
t=1

d�st logP (X = tjZ�j)

= X
j

TX
t=1

n�jt logP (X = tjZ�j); (16)

where n�jt = PTs=1 njs d�st. This shows that the application of the BCH procedure
requires constructing a data set with J � T rows where n�jt serve as weights, and
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subsequently performing a logistic regression analysis in the usual way. Three lim-
itations of this approach are that it can only be used with categorical predictors,
that a new data matrix should be created each time that the set of covariates is
changed, and, most importantly, that the procedure does not yield correct standard
errors.

It can easily be seen how to solve these three problems by writing the pseudo
log-likelihood in terms of individual observations rather than weighted covariate
patterns. This yields

logLBCH = NX
i=1

TX
s=1

wis
TX
t=1

d�st logP (X = tjZi);
= NX

i=1

TX
t=1

w�it logP (X = tjZi) (17)
where wis was de�ned above, and w�it = PTs=1wis d�st. Closer inspection of this log-
likelihood shows that it involves creating an expanded data matrix with T records
per individual with responses t = 1; :::; T and weights w�it. The log-likelihood can
then be maximized by estimating the logistic regression model of interest using this
expanded data matrix. Variances can be estimated using the sandwich estimator
for clustered and weighted observations which is also used with complex samples
(Skinner, Holt, and Smith 1989). This is the correct way to take into account that
each individual provides T observations weighted by w�it.

An important di�erence with standard pseudo likelihood estimation is that the
w�it are not all positive. More speci�cally, w�it will typically be negative for s 6= t. For
parameter estimation this means that a procedure is needed that allows for negative
weights. Moreover, it should be investigated whether the sandwich estimator yields
the correct standard errors for the parameter estimates when weights are negative.
Another issue related to the estimation of the standard errors is that the weights w�it
are estimates (from step one and two) themselves, which is not taken into account
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by the sandwich estimator. On the other hand, the fact that weights are estimates
is typical for situations in which complex survey estimators are applied. One of
the purposes of the simulation study described below is to determine the quality of
the proposed variance estimator; that is, to check whether it works with negative
weights and whether ignoring the sampling 
uctuation in the w�it is harmful.

It should be noted that while Bolck et al. (2004) indicated that standard errors
were underestimated in their procedure, they attributed this to the fact that the
sampling 
uctuation in the class assignments and the D matrix is neglected. In
fact, the primary reason for the underestimation of the standard errors is that their
procedure involves maximizing a weighted log-likelihood for clustered observations.

4 A three-step ML method

As shown in equation (13), the key contribution of Bolck et al. (2004) was showing
how P (W = sjZi) is related to P (X = tjZi):

P (W = sjZi) = TX
t=1

P (X = tjZi)P (W = sjX = t): (18)

Closer inspection of this equation shows that it is very similar to the LC model
with covariates de�ned in equation (9). Two di�erences are that W replaces the
observed item responses Yi and that the error probabilities P (W = sjX = t) are
assumed to be known (in step three they need not to be estimated anymore). The
model described in equation (18) is, in fact, a LC model with a single indicator with
known error probabilities, which is a well-known type of LC model. The same type
of model can, for example, be used for the analysis of randomized response data,
where the response variable is measured with known random error induced by the
researcher to protect the respondent (Van den Hout and Van der Heijden 2001).
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The above results suggests an alternative implementation of a corrected third
step of the three-step analysis with covariates. More speci�cally, correct estimates
of the covariate e�ects can be obtain by including the covariates of interest in a
LC model in which the assigned class membership serves as the single (nominal)
indicator and in which the step two P (W = sjX = t) are treated as known error
probabilities. This involves maximizing the following log-likelihood function:

logLML = NX
i=1

log TX
t=1

P (X = tjZi)P (W = sjX = t): (19)

Note that this procedure yields maximum likelihood estimates for not only P (X =
tjZi), but also the 
 coe�cients. It can be implemented in any software for LC
modeling that allows de�ning �xed-value constraints on the model parameters.

As in the extended BCH pseudo-likelihood procedure discussed above, standard
errors may be slightly underestimated because the classi�cation error probabilities
P (W = sjX = t) are treated as known whereas in fact they are obtained with the
estimated parameters of the LC model without covariates. The simulation study
reported below investigates how serious this problem is.

5 A simulation study

5.1 Design
A simulation study was conducted to assess the performance of various methods for
estimating covariate e�ects and their standard errors in LC analysis. The proce-
dures which are compared are the one-step ML approach, the standard three-step
approach, the BCH approach, the BCH approach with robust standard errors, and
the new three-step ML approach, where the latter four methods were applied with
both modal and proportional assignment.
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The quality of the investigated procedures can be expected to depend on two key
factors: 1) the amount of measurement error, and 2) the sample size. Our situation
is limited to these two key factors since 1) the necessity for the correction depends
on the size of the measurement error or the uncertainty about the classi�cation from
step two (on the rows of matrix D), and 2) the certainty about the estimate of the
measurement error introduced in the second step depends on the sample size.

As the population model I used a three-class LC model with 6 dichotomous
(low/high) responses and 3 numeric covariates with 5 categories scored -2, -1, 0,
1 and 2 (all 125 covariate combination are assumed to be equally likely to occur).
Class 1 is most likely to give high response on all 6 items, class 3 scores low on all
items, and class 2 scores high on the �rst 3 items and low on the last 3. Using the
�rst class as the reference category, the logit parameters for the covariate e�ects
are set to 2 and 2 for Z1, -1 and 0 for Z2, and 0 and 0 for Z3, representing large,
moderate, and no e�ect conditions. The two intercepts are such that overall the
three classes are equally likely.

The classi�cation error (or separation between the classes) was manipulated by
means of the size of the response probabilities for the most likely response. The
three levels I used are .70, .80, and .90, respectively, which correspond to misclassi�-
cation proportions of .31, .15, and .04, respectively.1 These low, moderate, and high
separation conditions can also be expressed using pseudo R-squared measures for
nominal variables (see e.g., Magidson 1981): a qualitative variance based measure
(Goodman and Kruskal's tau b) yields values of , .33, .63, and .88, and an entropy
based measure yields values of .36, .65, and .90. I will use the later three values
to refer to the three conditions. Note that the low separation condition in indeed
very bad, the moderate condition is what can be seen as a rather typical situation
in (exploratory) LC analysis, and the high condition corresponds to a strong mea-
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surement model. While here I manipulate the size of the classi�cation error using
the response probabilities, one can also manipulate these using factors such as the
number of items, the number of classes, the class sizes, and the number of item
categories.

For the sample size I used three levels: 500, 1000, and 10000. Here, 500 is a kind
of minimal sample size for LC analysis, especially in the low separation condition,
1000 is a typical sample size in survey research, and 10000 is a very large sample
size in which sampling 
uctuation can be expected to be almost negligible.

I will compare the various methods with respect to 1) bias in the estimates of the
covariate e�ects, 2) bias in the standard error estimates, and 3) relative e�ciency.

5.2 Results
[Insert Table 1 about here]

Table 1 presents the average results across the nine conditions investigated (3
separation level times 3 sample sizes) obtained using equation (6) to estimate the
classi�cation error. These are based on 100 replications per condition. Before dis-
cussing these results, I would like to mention that almost indistinguishable results
were obtained with equation (5), which con�rms our expectation that averaging the
errors over the empirical distribution is not a problem when the model is correct.
Because these results are so similar, I will focus on the results obtained with the
more practical equation (6) only.

As can be seen from Table 1,2 the standard three-step procedures based on
modal and proportional assignment perform poorly; that is, these methods yield
severe downward biases in the parameter estimates. Both the BCH and the ML
three-step methods reduce the parameter bias substantially, but still show a slight
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downward bias. The one-step ML parameter estimates are slightly upward biased.
Comparison of the average estimated standard error (SE) with the standard

deviation (SD) of the parameter estimates across simulation replications shows that
the standard BCH method yields severe downward biases in the SEs. The sandwich
variance estimator very much improves the SE estimates with the BCH method,
although they are still slightly (15%) underestimated. As can be seen from the
much lower SDs, the new ML method is much more e�cient than the BCH method,
and moreover almost as e�cient as one-step ML estimation. Its SE estimates are
somewhat underestimated with modal assignment and slightly overestimated with
proportional assignment.

[Insert Table 2 about here]

Thus far I looked only at the results averaged over the 9 conditions. However,
the results turn out to vary considerably across conditions. Table 2 reports the
average estimated value for the �rst covariate e�ect (with a population value of 2)
as obtained with the seven estimation methods under the 9 investigated conditions.
It can easily be observed that the corrected three-step methods perform better with
higher separation between classes and larger sample sizes. Problematic are the
conditions combining the lowest separation level (R2entr=.36) and the two smallest
sample sizes (N=500 and N=1000), showing that neither the BCH nor the ML
three-step method performs well when separation between classes is poor, except
for extremely large sample sizes (N=10000).

[Insert Table 3 about here]

But how can this result be explained? The explanation is that, as observed
among others by Galindo and Vermunt (2006), ML estimation of LC models tends
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to yield solutions where di�erences between classes are larger than the true di�er-
ences, which is also an explanation for the commonly occurring boundary estimates.
This is especially true when classes are weakly separated and the sample size is
small.3 When di�erences between classes are overestimated, the amount of classi-
�cation error used in both correction methods (see equations and 5 and 6) will be
underestimated. To demonstrate this, Table 3 reports the true and estimated pro-
portions of misclassi�cation for each of the nine conditions. As can be seen, under
the R2entr=.36 and N=500 or 1000 conditions this number is substantially underesti-
mated, which is why the correction methods do not work well; that is, they are too
optimistic and as a result the covariate e�ects remain downwardly biased. In such
situations, FIML of the covariates e�ects is clearly preferred. Note that covariates
yield additional information on class membership, and thus increase the separation
between classes. It should, however, be noted that the low separation condition
was chosen to be rather extreme. In empirical applications, often separation levels
which correspond to our moderate condition (R2entr=.65) or somewhat higher are
encountered (for example, also in the application presented below).

[Insert Table 4 about here]

A similar pattern as for the parameters can be seen for the estimated SEs.
The correction methods do perform poorly with R2entr=.36 but work very well with
R2entr=.90. In the latter condition, the sandwich SEs for the BCH method are almost
unbiased and the same applies for the SEs of the ML method. Table 4 provides more
details for the R2entr=.65 condition combined with each of the three sample sizes.
These con�rm the overall results reported in Table 1. The sandwich SEs for the
BCH method are still somewhat biased downwards. The ML method is much more
e�cient than the BCH estimator, but its SEs may be overestimated when combined
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with proportional allocation, which makes signi�cance tests for covariate e�ects
somewhat conservative.

6 An application: Citizenship types

I illustrate the various methods for using covariates in LC analysis with data from
the 2005 U.S. Citizenship, Involvement, and Democracy (CID) survey (Howard,
Gibson, and Stolle 2005). The CID has 1001 respondents, and I selected nine re-
sponse variables and three covariates. The nine response variables were used by
Dalton (2006, 2008) to measure citizen norms or, more speci�cally, to illustrate his
claim that citizenship norms are shifting from a pattern of duty-based citizenship to
engaged citizenship, which in turn alters and expands the patterns of political par-
ticipation in America. The citizenship norms questionnaire items in the CID were
worded as follows: \To be a good citizen, how important is it for a person to be .
. . [list items]. 0 is extremely unimportant and 10 is extremely important." The
nine items could be grouped into 4 categories: items related to participation (vote
in elections, be active in voluntary organizations, be active in politics), autonomy
(form his or her opinion independently of others), social order (serve on a jury if
called, always obey laws and regulations, for men to serve in the military when the
country is at war, report a crime that he or she may have witnessed), and solidarity
(support people who are worse o� than themselves).

Dalton (2006, 2008) presented a varimax-rotated two-factor principal compo-
nent analysis (PCA) solution for these nine response variables. The �rst component
represented duty-based citizenship and was strongly related to \report a crime",
\always obey the law", \serve in the military", and \serve on a jury". The second
component represented engaged citizenship with large loadings for \form own opin-
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ion", \support worse o�", \be active in politics", and \active in voluntary groups".
The item \vote in elections" loaded on both dimensions. As far as the relationship
with explanatory variables is concerned, Dalton (2006, 2008) stated that seniors
and Republicans emphasize a duty-based de�nition of citizenship and that younger
Americans, Democrats, and minorities stressed engaged citizenship.

I am not claiming there is something wrong with Dalton's data analysis, but
what is clear is that LC analysis is a suitable method to investigate the research
question of interest; that is, whether there are di�erent types of citizenship, and if so
whether age, ethnicity, and political preference is related to the typology. I will use
three covariates in the LC analysis to check whether similar conclusion are obtained
as Dalton obtained with his PCA. These are party preference (1 = Republican; 2 =
democrat; 3 = other), age (1 = younger than 50; 2 = 50 or older), and ethnicity (1
= white; 2 = non white).

While a LC analysis could have been performed on the original 11-category items,
for simplicity of exposition, I will present an analysis of dichotomized items. More
speci�cally, I combined the scores from 0 to 6 and from 7 to 10. It should be noted
that the responses are rather skewed in the sense that many respondent used scores
of 7 and higher, and scores lower that 3 are seldom used. On average across the
9 items, 72% of the respondents gave a score of 7 or higher. I checked whether
dichotomizing at 8 or 9 yielded similar results, and this turned out to be the case.
Also a LC analysis treating the original 11-point scale items as ordinal or continuous
yielded very similar latent classes.

[Insert Table 5 about here]

A four-class model �tted the CID data well. This model was selected by BIC and
the residuals in all two-way tables were small. Table 5 reports the parameters of the
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four-class model; that is, the class proportions and the class-speci�c probabilities of
given the higher (important) response for all items. Inspection of these estimates
shows that the LC solution is similar to Dalton's PCA solution in the sense that
it seems to capture the two-dimensional structure in the data. Class 1 (42% of
respondents) scores high on all items, class 2 (39%) scores high (higher than classes
3 and 4) on the the duty-based items, class 3 (11%) scores high (higher than classes
2 and 4) on the engaged citizenship items, and class (7%) scores low on all items.
Based on this it can concluded that four citizenship types were identi�ed: both
duty-based and engaged, duty-based, engaged, and neither duty-based or engaged.

[Insert Table 6 about here]

Table 6 presents the information on the classi�cation errors that is used by the
three-step correction methods; that is, the D matrix with entries P (W = sjX = t)
and the inverse of this matrix (D�1). As can be seen, the classi�cations errors
are somewhat larger with proportional than with modal assignment. The BCH
method uses the D�1 entries as weights in an expanded data set with 4 records per
respondent. With modal assignment, a respondent assigned to class 2 (W = 2) gets
weights -0.0787, 1.1271, -0.0354, and -0.0130 for its records corresponding to X = 1,
X = 2, X = 3, and X = 4, respectively. Note that these weights are larger than 1
for X = W , may be negative when X 6= W , and sum to 1 across values of X. For
comparison with the simulation results it is important to report that under modal
assignment the total proportion of classi�cation errors equals .11 and R2entr=.73.
This indicates that in terms of separation between the classes, our application is
between the moderate and high separation conditions of the simulation study.

The D entries are used as �xed parameter values in the three-step ML approach.
In Latent GOLD (Vermunt and Magidson 2008) this can be achieved as follows:
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variables
dependent W nominal;
independent party nominal coding=1, age nominal coding=1,

ethnicity nominal coding=2;
latent

X nominal 4 coding=1;
equations

X <- 1 + party + age + ethnicity;
W <- (D~wei) 1 | X;
D = {0.9426 0.0471 0.0104 0.0000

0.0704 0.8968 0.0220 0.0108
0.1469 0.1560 0.6675 0.0296
0.0000 0.1169 0.0258 0.8573};

As can be seen a regression model is de�ned for X, and the entries of matrix D are
used as \cell weights". It is also possible to use the non-rescaled classi�cation table
as cell weights.

[Insert Table 7 and 8 about here]

Table 7 reports the estimates for the covariate e�ects on the class membership
and their SEs found with the investigated methods. Class 1 (class showing both
forms of citizenship) serves as the baseline, and moreover Republican, young, and
non white are the reference categories for party preference, age, and ethnicity, re-
spectively. Table 8 reports the Wald tests for the covariates e�ects, again for all
investigated methods. Note that these test the signi�cance of all parameters corre-
sponding to a covariate simultaneously.
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The parameter estimates in Table 7 show that the three-step methods without
corrections yield estimates which are smaller than the ones of the one-step ML
approach, though in this application the attenuation is not very extreme. To give
an impression of the amount of attenuation, I computed the di�erence in estimated
class membership probabilities between old and young among white Republicans.
These are 0.057, -0.013, -0.021, and -0.023 for the standard three-step proportional
approach, and 0.081, -0.014, -0.035, and -0.033 for the one-step ML approach.

The parameters estimates in Table 7 show that the three-step approaches with
corrections yield estimates which are close to those obtained with one-step ML
estimation. Overall it seems that proportional assignment is closer to one-step ML
than modal assignment. These results are in agreement with what was found in the
simulation study.

The SE estimates are also in agreement with what could be expected based on the
simulation results. The standard and BCH three-step methods yield SE estimates
which are too small (smaller than of the one-step approach). The sandwich SE for
the BCH method and the SE of the three-step modal ML approach are close to
the ones of the one-step approach. The three-step proportional ML approach yields
somewhat larger SEs.

The Wald tests show that only the e�ect of ethnicity is signi�cant. The BCH
methods with sandwich variance estimates and the modal ML approach yield p
values which are close to the ones of the one-step approach. The proportional ML
approach yields somewhat larger p values, and is thus somewhat too conservative.
It can also be seen that the BCH three-step methods without corrected variances
yield p values which are much too small, which in this application would lead to
wrong conclusions regarding the statistical signi�cance of the party preference and
age e�ects.
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Having a closer look at the estimated covariates e�ects, as well as the ratio be-
tween the parameter estimates and their SEs, shows that compared to Republicans,
Democrats are more likely to be in class 3 instead of 1, and others are more likely
to be in classes 3 and 4 instead of 1. Moreover, compared to the young, the old are
less likely to be in classes 3 and 4 instead of class 1, and compared to non whites,
whites are less likely to be in class 4 instead of class 1.

7 Discussion

This article proposed two improvements of the three-step method of Bolck et al.
(2004). First, it was demonstrated how it can be used with non-grouped data, which
makes it possible to use the method also with continuous explanatory variables.
Second, because parameter estimation involves maximizing a weighted log-likelihood
for clustered data, it was proposed to estimate the SEs using complex sampling
methods. In addition, a new ML-based correction method was proposed, which is
based on the same logic but which is more direct in the sense that it does not require
analyzing weighted data. This three-step ML method can be easily implemented in
software for LC analysis.

The reported simulation study showed that both correction methods perform
very well in the sense that their parameter estimates and their SEs can be trusted,
except for situations with very poorly separated classes. Before applying the correc-
tion methods, it is therefore important to check whether class separation is not too
low. The main advantage of the ML method compared to the BCH approach is that
it is much more e�cient, and almost as e�cient as the one-step ML approach. A
minor disadvantage of the new method is that software for LC analysis is needed for
step three, whereas with the BCH approach standard software for multinomial lo-
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gistic regression with complex sampling features (and allowing for negative weights)
su�ces. On the other hand, given that step one also requires LC analysis software,
this does not seem to be a big issue.

Whereas in this paper I focussed on simple LC models for discrete responses,
the two correction methods can also be applied with other types of mixture models,
for example, with mixture models for continuous variables, factor mixture models,
and mixture growth models. These are all models in which it may be attractive to
introduce covariates in a next step after the mixture model itself was constructed.
It can be expected that similar types of conditions will determine the performance
of the three-step methods, but of course this needs to investigated.

Other possible applications of the proposed three-step methods are in LC analy-
sis for longitudinal or multilevel data; that is, as alternative to one-step approaches
such as latent Markov modeling (Collins and Wugalter 1992; Van de Pol and Lange-
heine 1990; Vermunt, Langeheine, and B�ockenholt 1999) and multilevel LC modeling
(Vermunt 2003, 2008). A latent class model could �rst be built without taking into
account the longitudinal or multilevel data structure, and the classi�cations with
known errors could subsequently be used in step three. In a multilevel context, the
model estimated in step three could have the form of a random-e�ect logistic regres-
sion model, which could serve as an alternative to the (one-step) model proposed
by Vermunt (2005).

Another issue that deserves further investigation is the e�ect of violations of the
assumptions underlying the correction methods as well as one-step LC models with
covariates. The most important of these is the assumption that covariates have
no direct e�ects on the responses after controlling for a person's class membership
(Hagenaars 1990, 1993). It could very well be that three-step methods are more
robust for violations of this assumption than one-step methods.
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Recently, Bayesian estimation procedures for LC models have been proposed
(Chung, Flaherty, and Schafer 2006; Garrett, Eaton, and Zeger 2002; Garrett and
Zeger 2000). It would be worthwhile investigating how to apply the three-step
methods proposed in this paper with Bayesian estimation. For example, in step three
one could estimate the covariate e�ects using the random class assignments and the
corresponding measurement error estimates from an MCMC sampler. This could be
repeated several times, yielding a procedure similar to multiple imputation (Rubin
1987; Schafer 1997). Such a procedure would make it possible to take into account
the uncertainty about the class assignments and the classi�cation errors. It may
be that such a Bayesian three-step procedure performs better than the three-step
procedures discussed here, especially with small sample sizes and badly separated
classes.
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Notes

1Note that these classi�cation error proportions pertain to models without co-
variates. Including the covariates in the model reduces the errors to .19, .10, and
.03, respectively.

2Note that results are reported for three of the six covariate e�ect parameters,
that is, the parameters for class 2. The results for the other three parameters are
very similar.

3It should be noted that this is also an explanation for why the covariate e�ects
are slightly overestimated by the one-step ML approach when classes are weakly
separated and the sample size is small.
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Table 3: True and estimated proportion of classi�cation errors for all nine conditions
R2entr=.36 R2entr=.65 R2entr=.90

true 0.31 0.15 0.04
N=500 0.22 0.14 0.04
N=1000 0.26 0.15 0.04
N=10000 0.31 0.15 0.04

Table 4: Average of the estimated SE of 
21 and SD of 
21 for the three conditions
with R2entr=.65

N=500 N=1000 N=10000
Method SE SD SE SD SE SD
One-step ML 0.29 0.32 0.19 0.19 0.06 0.06
Modal BCH & sandwich 0.61 0.67 0.38 0.47 0.10 0.10
Modal ML 0.31 0.36 0.22 0.22 0.07 0.08
Proportional BCH & sandwich 0.45 0.47 0.30 0.35 0.09 0.09
Proportional ML 0.39 0.34 0.27 0.20 0.09 0.07
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Table 5: Parameters of 4-class model estimated with the 2005 Citizenship, Involve-
ment and Democracy survey data set: class proportions, and class-speci�c proba-
bilities of �nding the item concerned important

Class
1=both 2=duty-based 3=engaged 4=neither

Class proportion 0.42 0.39 0.11 0.07
Report a crime 0.99 0.99 0.51 0.32
Always obay the law 1.00 0.93 0.68 0.51
Serve in the military 0.85 0.66 0.38 0.08
Serve on a jury 0.96 0.83 0.50 0.19
Vote in elections 0.98 0.80 0.68 0.11
Form own opinion 0.97 0.79 0.86 0.32
Support worse o� 0.88 0.49 0.89 0.10
Be active in politics 0.75 0.07 0.43 0.00
Active in voluntary groups 0.90 0.09 0.53 0.04
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Table 6: Matrix with classi�cation errors D and its inverse D�1 for modal and
proportional assigment

D modal assignment D proportional assignment
W W

X 1 2 3 4 X 1 2 3 4
1 0.9426 0.0471 0.0104 0.0000 1 0.8818 0.0826 0.0356 0.0000
2 0.0704 0.8968 0.0220 0.0108 2 0.0890 0.8334 0.0557 0.0220
3 0.1469 0.1560 0.6675 0.0296 3 0.1340 0.1949 0.6337 0.0374
4 0.0000 0.1169 0.0258 0.8573 4 0.0002 0.1228 0.0598 0.8172

D�1 modal assignment D�1 proportional assignment
X X

W 1 2 3 4 W 1 2 3 4
1 1.0672 -0.0536 -0.0148 0.0012 1 1.1529 -0.1019 -0.0562 0.0053
2 -0.0787 1.1271 -0.0354 -0.0130 2 -0.1097 1.2384 -0.1000 -0.0287
3 -0.2172 -0.2451 1.5115 -0.0492 3 -0.2119 -0.3499 1.6268 -0.0651
4 0.0172 -0.1463 -0.0407 1.1698 4 0.0317 -0.1605 -0.1039 1.2327
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Table 7: Covariate e�ects and their standard errors obtained with the 2005 Citi-
zenship, Involvement and Democracy survey data set, where Class 1 (=both) is the
reference category

Parameter estimates

Class 2=duty-based Class 3=engaged Class 4=neiher

Method Dem. Other Old White Dem. Other Old White Dem. Other Old White

One-step ML 0.12 0.24 -0.21 0.26 0.85 0.75 -0.54 -0.28 -0.11 0.61 -0.50 -0.70

Modal standard 0.07 0.23 -0.20 0.26 0.68 0.54 -0.48 -0.05 -0.01 0.61 -0.47 -0.59

Modal ML 0.08 0.26 -0.22 0.34 0.87 0.66 -0.59 -0.02 -0.09 0.64 -0.52 -0.69

Modal BCH 0.08 0.25 -0.22 0.35 0.87 0.67 -0.59 -0.06 -0.02 0.67 -0.52 -0.66

Proportional standard 0.11 0.21 -0.17 0.17 0.51 0.48 -0.35 -0.15 -0.04 0.53 -0.48 -0.54

Proportional ML 0.14 0.25 -0.20 0.26 0.88 0.75 -0.52 -0.14 -0.19 0.56 -0.57 -0.72

Proportional BCH 0.12 0.24 -0.20 0.26 0.89 0.79 -0.53 -0.24 -0.09 0.61 -0.58 -0.66

Standard errors

Class 2=duty-based Class 3=engaged Class 4=neiher

Method Dem. Other Old White Dem. Other Old White Dem. Other Old White

One-step ML 0.20 0.21 0.17 0.20 0.37 0.39 0.32 0.31 0.40 0.36 0.33 0.32

Modal standard 0.17 0.18 0.15 0.17 0.31 0.33 0.26 0.26 0.36 0.34 0.30 0.28

Modal BCH 0.17 0.18 0.15 0.17 0.29 0.31 0.24 0.24 0.36 0.33 0.30 0.28

Modal BCH & sandwich 0.21 0.21 0.18 0.20 0.43 0.45 0.34 0.34 0.43 0.38 0.33 0.33

Modal ML 0.21 0.21 0.18 0.20 0.41 0.43 0.33 0.33 0.42 0.38 0.35 0.32

Proportional standard 0.17 0.18 0.15 0.17 0.28 0.29 0.24 0.24 0.35 0.33 0.30 0.28

Proportional BCH 0.17 0.18 0.15 0.17 0.30 0.31 0.24 0.23 0.35 0.33 0.31 0.28

Prop. BCH & sandwich 0.20 0.21 0.17 0.19 0.43 0.44 0.32 0.31 0.41 0.36 0.33 0.32

Proportional ML 0.23 0.23 0.20 0.23 0.54 0.55 0.40 0.40 0.45 0.40 0.38 0.35
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Table 8: Wald test for the covariate e�ects for the 2005 Citizenship, Involvement
and Democracy survey example

Party preference Age Ethnicity
Method Wald DF P value Wald DF P value Wald DF P value
One-step ML 11.15 6 0.084 5.08 3 0.166 9.40 3 0.024
Modal standard 10.67 6 0.099 5.50 3 0.138 9.69 3 0.021
Modal BCH 16.65 6 0.011 8.11 3 0.044 14.01 3 0.003
Modal BCH & sandwich 10.06 6 0.122 5.59 3 0.133 8.81 3 0.032
Modal ML 10.48 6 0.106 5.43 3 0.143 9.64 3 0.022
Proportional standard 8.04 6 0.235 4.38 3 0.224 7.07 3 0.070
Proportional BCH 15.77 6 0.015 7.46 3 0.059 12.72 3 0.005
Prop. BCH & sandwich 9.89 6 0.129 5.71 3 0.126 8.49 3 0.037
Proportional ML 7.58 6 0.270 4.25 3 0.236 7.01 3 0.072
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