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Abstract

The application of latent class (LC) analysis involves evaluating the
LC model using goodness-of-fit statistics. To assess the misfit of a
specified model, say with the Pearson chi-squared statistic, a p-value
can be obtained using an asymptotic reference distribution. However,
asymptotic p-values are not valid when the sample size is not large
and/or the analysed contingency table is sparse. Another problem
is that for various other conceivable global and local fit measures,
asymptotic distributions are not readily available. An alternative way
to obtain the p-value for the statistic of interest is by constructing its
empirical reference distribution using resampling techniques such as
the parametric bootstrap or the posterior predictive check (PPC). In
the current paper, we show how to apply the parametric bootstrap and
two versions of the PPC to obtain empirical p-values for a number of
commonly used global and local fit statistics within the context of LC
analysis. The main difference between the PPC using test statistics
and the parametric bootstrap is that the former takes into account
parameter uncertainty. The PPC using discrepancies has the advan-
tage that it is computationally much less intensive than the other two
resampling methods.

In a Monte Carlo study we evaluated Type I error rates and power
of these resampling methods when used for global and local goodness-
of-fit testing in LC analysis. Results show that both the bootstrap
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and the PPC using test statistics are generally good alternatives to
asymptotic p-values and can also be used when (asymptotic) distri-
butions are not known. Nominal Type I error rates were not met
when sample size was small and the contingency table has many cells.
Overall the PPC using test statistics was somewhat more conservative
than the parametric bootstrap. We have also replicated previous re-
search suggesting that the Pearson X2 statistic should in many cases
be preferred over the likelihood-ratio G2 statistic. Power to reject a
model for which the number of LCs was 1 less than in the population
was very high, unless sample size was small. When the contingency
tables are very sparse, the TBV R statistic, which is based on bivari-
ate relationships, still had very high power, signifying its usefulness in
assessing model fit.

Key words: Goodness-of-Fit, Posterior Predictive Check, Parametric
Bootstrap, Latent Class Analysis
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1 Introduction

The use of latent class (LC) models is becoming more and more widespread

in a broad range of fields, such as in biomedical sciences (Rindskopf, 2002),

psychiatry (Roedelof, Bongers, & van Nieuwenhuizen, 2013), abnormal psy-

chology (Crow et al., 2012) developmental psychology (Laudy et al., 2005),

gambling studies (Dufour, Brunelle, & Roy, 2013) and marketing (Okazaki,

Campo, Andreu, & Romero, 2014). This makes the availability of reliable

methods to assess the goodness-of-fit of LC models increasingly important

(Lanza, Flaherty, & Collins, 2004).

The global or overall goodness-of-fit of a LC model is typically assessed

using the Pearson or the likelihood-ratio chi-squared statistic (Goodman,

1974). For local fit assessment, which involves checking whether the specified

LC model describes specific aspects of the data well, various types of statistics

have been proposed, such as residual log-odds-ratios and Pearson statistics

computed in two-way tables (Hagenaars, 1988; Magidson & Vermunt, 2004).

A convenient way to determine the extent of global or local misfit is to

obtain p-values for the goodness-of-fit statistics of interest. Typically, we

would get the p-values from the asymptotic distributions of the statistics,

but these are not always readily available. Moreover, even when these are

available, asymptotic p-values are not useful when the analysed contingency

table is too sparse because the sample size is small or the number of cells in

the table is large (Haberman, 1988; Langeheine, Pannekoek, & Van de Pol,
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1996; Maydeu-Olivares & Joe, 2006; Reiser & Lin, 1999).

P-values can also be obtained using resampling techniques, such as the

parametric bootstrap (Efron & Tibshirani, 1993) or the posterior predictive

check (PPC) (Meng, 1994; Rubin, 1984). The major benefit of resampling

techniques over asymptotics is that we do not need any distributional as-

sumptions regarding the statistics. These methods generate replicated data

sets based on the parameter estimates for the specified model, and for each

data set they calculate the required statistics. P-values for the statistics

are then obtained from their resulting empirical distributions. The main

difference between the model-based PPC and the parametric bootstrap is

that the former takes into account parameter uncertainty. Another variant

of the PPC called the parameter-based PPC has the advantage that it is

computationally much less intensive than the other two resampling methods.

While bootstrap methods have been proposed in the context of LC anal-

ysis as a way to deal with sparseness when assessing global fit (Langeheine

et al., 1996; Von Davier, 1997), they have not been used so far to obtain

p-values for statistics for which the distributions are unknown, such as the

local fit measures proposed by Magidson and Vermunt (2004). In contrast,

PPCs have been used to assess LC model fit using a range of global and

local fit measures (Berkhof, Van Mechelen, & Gelman, 2003; Hoijtink, 1998;

Ligtvoet & Vermunt, 2012; Meulders, De Boeck, Kuppens, & Van Mechelen,

2002; Rubin & Stern, 1994), but the performance of this approach has not

been investigated in a systematic manner.
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The purpose of this paper is to discuss and investigate bootstrap and PPC

methods in a more integrated manner. This allows expanding the bootstrap-

ping approach to obtain p-values not only in case of sparseness, but also with

measures for which the asymptotic distribution is unknown. This allows an-

swering the question as to whether the PPC can be an improvement over the

bootstrap when the latter works less well (Von Davier, 1997). More specif-

ically, does taking parameter uncertainty into account yield more reliable

p-values when tables are extremely sparse?

The remainder of this paper is organised as follows. Section 2 reviews the

LC model and describes a number of commonly used statistics to asses global

and local LC model fit. In Section 3 we discuss the various methods to obtain

p-values in more detail. Section 4 presents a simulation experiment in which

the performance of the investigated methods to obtain p-values is compared.

In Section 5 we present an empirical example and finally in Section 6 we

discuss the main findings and issues in need of further research.

2 Latent Class Analysis

2.1 The Model

Suppose we have N observations on J categorical items with Rj categories

for item number j (j = 1, . . . , J). There are then S =
∏J

j=1Rj possible

response patterns, which can be denoted as ys = (ys1, . . . , ysJ), s = 1, . . . , S.

Letting ns denote the observed frequency for pattern ys, the observed data
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can be summarised as pattern frequencies in n = (n1, . . . , nS).

The LC model assumes that the N observations can be partitioned into

C latent classes, which form the categories of the discrete latent variable

ξ (Goodman, 1974). The LCs differ from one another with respect to the

conditional response probabilities to the items. Moreover, within each LC

the responses to the observed variables are assumed to be independent of one

another (i.e., the local independence assumption).

Let ρc be the class size (proportion) of LC c and let πrjc be the conditional

response probability that a respondent gives response r to item j, given that

he or she belongs to LC c. The probability of observing response pattern s is

then a mixture of multinomial distributions with weights equal to the class

proportion ρc. It is given by:

P (ys) =
C∑
c=1

ρc

J∏
j=1

Rj∏
r=1

π
y∗sjr
rjc , (1)

where y∗sjr is 1 if ysj = r and 0 otherwise.

Several methods exist to estimate the LC model parameters ψ = (ρ,π).

One might be interested in obtaining point estimates, interval estimates

or posterior probability distributions for the unknown parameters. To ob-

tain their maximum likelihood estimates we typically use the expectation-

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). We may

obtain estimates of their posterior distribution by means of an MCMC algo-

rithm (Tanner & Wong, 1987).
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2.2 Goodness-of-Fit Measures

An important part of the model selection procedure in LC modeling involves

checking whether a model is in agreement with the data. The discrepancies

between observed data and expectations under the model can be assessed us-

ing goodness-of-fit (GoF) statistics (Agresti, 2002). We will discuss statistics

for the assessment of global and local fit.

Global fit statistics aggregate the disagreement between the observed fre-

quencies ns and the expected frequencies under the model es = N · P (ys)

into a single value. Well-known chi-squared statistics are the Pearson X2,

X2(n) =
S∑
s=1

(ns − es)2

es
, (2)

and the likelihood ratio statistic G2,

G2(n) = 2
S∑
s=1

ns ln(ns/es). (3)

These two chi-squared statistics belong to the more general family of power

divergence statistics which take the form

PD(n) =
2

λ(λ+ 1)

S∑
s=1

ns

{(
ns
es

)λ
− 1

}
. (4)

TheX2 andG2 statistics are obtained by setting λ = 1 and letting λ approach

0, respectively. These two statistics have been shown to be inappropriate
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when contingency tables are sparse; that is, when a portion of the expected

frequencies is small. In such cases, the X2 statistic tends to become very

large, yielding a p-value of 0, while the G2 statistic tends to be small, yielding

a p-value of 1. It has been argued that a good trade-off is found by setting

λ equal to 2/3, through which we obtain the Cressie-Read (CR) statistic

(Cressie & Read, 1984).

Another global fit measure indicative of how much the observed and es-

timated cell frequencies differ is the Dissimilarity Index (DI):

DI(n) =

∑S
s=1 |ns − es|

2N
. (5)

The DI indicates which proportion of the sample should be moved to another

cell to obtain a perfect fit (Vermunt & Magidson, 2013). Though this statistic

is appealing due to the information it provides, its asymptotic distribution is

unknown. Therefore, to obtain a p-value for this statistics, we need to resort

to resampling techniques.

In LC modeling, local fit is typically assessed by computing statistics

for lower-order marginals of the analysed J-way contingency table. A popu-

lar and very useful measure is the bivariate residual (BV R) statistic, which

can be used to determine violations of the local independence assumption

(Magidson & Vermunt, 2004; Vermunt & Magidson, 2013). The BV R quan-

tifies the residual association between pairs of items using a Pearson-like

chi-squared statistics. To show how the BV R is calculated, let the subscript
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r indicate a given response to item j and subscript r
′

a response to item j
′
.

Then nrr′ indicates an observed frequency in the two-way cross-tabulation

of variables j and j
′
. The expected frequency for this pattern, err′ , can be

calculated from the LC model parameters as follows:

err′ = N
C∑
c=1

ρcπrjcπr′j′c.

The BV R for the item pair j-j
′

is then:

BV Rjj′ (n) =

Rj∑
r=1

R
j
′∑

r′=1

(nrr′ − err′ )2

err′
. (6)

Similar Pearson-like local fit measures may be computed for higher-order

tables, for example, for cross-tabulations of three instead of two variables.

An important advantage of theBV R statistic compared to global fit measures

is that it is much less sensitive to sparseness (Maydeu-Olivares & Joe, 2006).

A disadvantage is, however, that its asymptotic distribution is not known,

implying that asymptotic p-values are not available.

Based on the BV R, we can derive a global fit measure that may be used

as an alternative to the standard GoF chi-squared statistics. This total BVR

(TBV R) statistic is obtained by summing the BV R statistics across all item

pairs, that is,

TBV R(n) =
J−1∑
j=1

J∑
j′=j+1

BV Rjj′ (n). (7)
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The main advantage of the TBV R is that is much less affected by sparseness

than other global fit measures. However, as for the BV Rs themselves, also for

the TBV R the asymptotic distribution is unknown. And although knowledge

on lower-order fit is very useful, we cannot rule out higher-order misfit, due

to multivariate interactions, based on lower-order statistics (Reiser & Lin,

1999).

3 Determining P-values for GoF Measures

3.1 Asymptotic P-values

To test whether a model deviates from the data, most often a p-value is

calculated based on an asymptotic reference distribution. If a C-class model

is true, the power-divergence statistics asymptotically (as N goes to infinity)

follow a chi-squared (χ2
df ) distribution with degrees of freedom (df) equal to

df =
J∏
j=1

Rj − C(1 +
J∑
j=1

(Rj − 1)) (8)

(Haberman, 1979; Magidson & Vermunt, 2004). The p-value is then equal to

the tail-area probability that a value from the χ2
df distribution is equal to or

greater than the computed statistic. If the p-value is less than some a priori

set threshold (e.g., .05), the researcher concludes that there is significant

misfit between the model and the data (Fisher, 1925).

An important issue related to the use of asymptotic reference distributions
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is that it is not accurate when the corresponding frequency table is sparse.

This occurs when the sample size is not large enough for the contingency table

at hand. For example, 10 dichotomous items create a table with 210 = 1024

cells, which would be considered sparse even with 1000 observations). Sparse

tables result in untrustworthy asymptotic p-values (see e.g., Collins, Fidler,

Wugalter, & Long, 1993; Langeheine et al., 1996; Magidson & Vermunt, 2004;

Von Davier, 1997).

For statistics such as the DI, BV R, and TBV R, asymptotic distributions

are not known. In some cases rules of thumb are used, but these may not

always be accurate. For instance, one rule of thumb says that for dichoto-

mous items BV R values greater than 3.84 indicate significant misfit (3.84

being the 95th percentile of the χ2
1 distribution). Others take BV R values

greater than 1 to indicate misfit. It appears that each cut-off has its down-

sides and can result in too conservative or too liberal conclusions, depending

on the situation (Oberski, van Kollenburg, & Vermunt, 2013). Resampling

techniques are therefore required to obtain p-values.

3.2 Parametric Bootstrap

To overcome the problems associated with asymptotic p-values it is possible

to obtain empirical reference distributions through resampling methods like

the parametric bootstrap (Efron & Tibshirani, 1993), which is used in LC

analysis regularly (see e.g., Formann, 2003; Jansen & van der Maas, 1997;

Lin, McCulloch, Turnbull, Slate, & Clark, 2000). The parametric bootstrap
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simulates the probability of finding a value for a statistic T , greater than

or equal to the observed value of the statistic T (n), conditional on the ML

estimates for the C-class model being the population parameters. The para-

metric bootstrap p-value for a statistic T is obtained as follows:

Step 1: Find the ML estimates ψ̂ for the C-class model (for instance using

EM) and calculate the observed fit-statistic T (nobs). For example, one

could use the Pearson X2 statistic, in which case T (nobs) = X2(nobs).

Step 2: Calculate the estimated pattern probabilities P̂ (ys) from the ML

estimates ψ̂. Draw B random replicated samples, nrep, of size N from

a multinomial distribution with parameters P̂ (ys):

nrep,(b) ∼ Multin(N, P̂ (y1), . . . , P̂ (yS)), b = 1, . . . , B (9)

Step 3: Determine the empirical reference distribution of the statistic T (n).

That is, find the ML estimates for each data set nrep,(b) and calculate

T (nrep,(b)). For instance, calculate X2(nrep,(b)) (and/or other statistics

of interest).

Step 4: Estimate the bootstrap p-value by the proportion of T (nrep,(b)) which

are greater than, or equal to T (n) (which was calculated in Step 1):

p̂boot = B−1

B∑
b=1

I(T (nrep,(b)) ≥ T (nobs)), (10)
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where the indicator function I equals 1 if T (nrep,(b)) ≥ T (nobs) and 0

otherwise. If p̂boot is less than a predefined value (for instance, .05)

we conclude that the model does not fit the data properly.

Langeheine et al. (1996) showed that the parametric bootstrap method

works well with global chi-squared statistics for small well-filled contingency

tables. However, Von Davier (1997) showed that in sparse contingency tables

with many cells, different conclusions about LC model fit might be obtained

depending on which statistic is used. Bootstrap p-values for the G2 statistics

were shown to lead to conservative results, while p-values for the Pearson’s

X2 and CR statistics did not fail systematically. Thus, although we can

obtain empirical distributions for any statistic, sparseness can still have an

effect on how reliable the resulting p-values are, depending on the statistic

that is used.

The bootstrap has not been used so far to obtain p-values for GoF mea-

sures for which asymptotic p-values are not available, such as the DI, BV R,

and TBV R statistics. Whether the bootstrap is suitable for use with these

measures has yet to be determined.

3.3 PPC using Test Statistics

In the parametric bootstrap, each of the B replicated data sets is generated

using the same ML estimates as if it were population parameter values, im-

plying that the uncertainty about these estimates is not taken into account.
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Within the Bayesian framework, parameter uncertainty is incorporated in the

posterior distribution. The PPC can be seen as the Bayesian counterpart of

the parametric bootstrap which makes use of this posterior distribution.

Two versions of the PPC exist. A PPC using test statistics and a PPC

using discrepancies. The PPC using test statistics which was used in LC

analysis by Rubin and Stern (1994), is very similar to the parametric boot-

strap. It generates a large number of replicated data sets, reestimates the LC

model for each data set, and calculates the statistics of interest. The only

difference is that the PPC using test statistics uses parameter draws from

their posterior distributions as population values to sample the replicated

data sets, rather than fixing the parameters to their ML estimates. The

PPC using discrepancies (Gelman, Meng, & Stern, 1996) does not require

reestimating the LC model for each replicated data set. Instead, it compares

both the observed and replicated data directly to the parameter values sam-

pled from their posterior distribution. The PPC using discrepancies will be

discussed in detail in the next subsection.

In LC analysis, the PPC using test statistics to obtain a p-value for a

statistic T (n) (which is based on ML estimates) proceeds as follows:

Step 1: Find the ML estimates ψ̂ for the C-class model (for instance using

EM) and calculate the observed fit-statistic T (nobs). For example, one

could use the Pearson X2 statistic, in which case T (nobs) = X2(nobs).

Step 2: Obtain K draws ψ(k) from the posterior distribution for the C-class
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model:

ψ(k) ∼ p(ψ|nobs), k = 1, . . . , K. (11)

This can be done using an MCMC algorithm (Rubin & Stern, 1994).

Step 3: Calculate the estimated pattern probabilities P̂ (ys)
(k) from ψ(k).

Draw K random samples of size N from a multinomial distribution

with parameters P̂ (ys)
(k)

nrep,(k) ∼ Multin(N, P̂ (y1)
(k), . . . , P̂ (yS)(k)) (12)

Step 4: Obtain the ML estimates (e.g., using the EM algorithm) for each

data set nrep,(k) and calculate T (nrep,(k)) to determine the empirical ref-

erence distribution of the statistic T . For instance, calculate T (nrep,(k)) =

X2(nrep,(k)) (and/or other statistics of interest).

Step 5: Estimate the posterior predictive p-value for a test statistic by the

proportion of T (nrep,(k)) which are greater than, or equal to T (n):

p̂test = K−1

K∑
k=1

I(T (nrep,(k)) ≥ T (nobs)). (13)

If p̂test is less than a predefined value (for instance, .05) we conclude

that the model does not fit the data properly.

PPCs are generally used to check whether specific aspects of the observed

data are correctly picked up by the model (Gelman, Carlin, Stern, & Rubin,
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2004). The BV R statistic is a good example of this, as it indicates one

specific aspect of the model, rather than GoF at the aggregate level. However,

whether the X2, G2 or the BV R are suitable for use as test statistics in the

PPC has yet to be determined.

An issue with the PPC using test statistics, which also holds for the

parametric bootstrap, is that ML estimates have to be obtained for each of

the replicated data sets. This makes both procedures rather time consuming,

because the model has to be estimated for each replicated data set.

3.4 PPC using discrepancies

The added value of the PPC using discrepancies (Gelman et al., 1996) over

the PPC using test statistics and parametric bootstrap is that it not only

incorporates uncertainty about the model parameters, but it also eliminates

the need for model estimation for each replicated data set because we can

define discrepancies D(nobs,ψ) which not only depend the data n but also

on the model parameters phi. This makes the PPC using discrepancies com-

putationally much faster than the other resampling methods.

Using the index k for a specific draw for the parameters obtained through

the data augmentation algorithm, the PPC using discrepancies proceeds as

follows:

Step 1: Obtain K draws ψ(k) from the posterior distribution for the C-class
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model:

ψ(k) ∼ p(ψ|nobs), k = 1, . . . , K.

Step 2: Calculate the estimated pattern probabilities P̂ (ys)
(k) from ψ(k).

Draw K random samples of size N from a multinomial distribution

with parameters P̂ (ys)
(k)

nrep,(k) ∼ Multin(N, P̂ (y1)
(k), . . . , P̂ (yS)(k))

Step 3: Calculate, for each data set nrep,(k) the realised discrepanciesD(nobs,ψ(k))

and replicated discrepancies D(nrep,(k),ψ(k)). For instance, when using

the Pearson X2:

D(nobs,ψ(k)) = X2(nobs,ψ(k)) =
S∑
s=1

(ns − e(k)s )2

e
(k)
s

(14)

and

D(nrep,(k),ψ(k)) = X2(nrep,(k),ψ(k)) =
S∑
s=1

(n
(k)
s − e(k)s )2

e
(k)
s

, (15)

where the expected frequencies e
(k)
s = NP (ys|ψ(k)) (see Equation 1).

The n
(k)
s are the pattern frequencies in the replicated data set nrep,(k).

Step 4: Estimate the posterior predictive p-value for a discrepancy by the

proportion of replications for which D(nrep,(k),ψ(k)) is greater than or
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equal to D(nobs,ψ(k)):

p̂disc = K−1

K∑
k=1

I(D(nrep,(k),ψ(k)) ≥ D(nobs,ψ(k))), (16)

(where the indicator function I equals 1 ifD(nrep,(k),ψ(k)) ≥ D(nobs,ψ(k))

and 0 otherwise). If p̂disc is close to 0 or 1, depending on what discrep-

ancy is used, we conclude that the model does not fit the data properly

(Gelman et al., 1996, 2004).

Note that Steps 1 and 2 for PPC using test statistics are exactly the same

as Steps 2 and 3 for PPC using discrepancies. But rather than compar-

ing replicated statistics to a single observed value based on the ML esti-

mates, the PPC using discrepancies compares K pairs of discrepancies; that

is, K realised discrepancies, D(nobs,ψ(k)), with K predictive discrepancies,

D(nrep,(k),ψ(k)).

It is important to note that pdisc-values are different from the other p-

values in the sense that their distribution under the null-hypothesis is gen-

erally non-uniform (Meng, 1994) Rather its distribution tends to be peaked

around .5 (Robins, van der Vaart, & Ventura, 2000). Because of this, the

PPC using discrepancies will usually provide more conservative results and

have lower power to reject a false model (Gelman, 2013).
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4 Simulation Study

The quality of bootstrap and PPC p-values for global and local GoF testing

in LC analysis was investigated using two Monte Carlo studies. The first

study evaluated the Type I error rates. The second study investigated the

power of the different methods and statistics. In both studies, p-values were

then obtained by either comparing the statistics to

1. a χ2 distribution with given df,

2. the empirical distribution from the parametric bootstrap,

3. the empirical distribution from the PPC using test statistics, or

4. the empirical distributions from the PPC using discrepancies.

We used the software package R 2.15.1 (R Core Team, 2012) to generate

data sets, to perform the PPC using discrepancies, and to collect the results.

For ML estimation, asymptotic p-value calculation, and the parametric boot-

strap, we used LatentGOLD 5.0 (Vermunt & Magidson, 2013). The MCMC

algorithm for the Bayesian LC analysis was implemented in a routine written

in C. We used a burn-in of 1000 iterations and subsequently intervals of 10

iterations of the data augmentation algorithm between draws of ψ(k).1

1Inspection of the parameter estimates indicated that a burn-in of 1000 iterations was
sufficient for our models, providing estimates comparable to the population parameters.
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4.1 Study 1. Type I errors

4.1.1 Design

To check Type I error rates of the different p-values, we fully crossed the

following design factors:

• Sample size N = 100, 1000, or 5000.

• Number of LCs C = 2, or 3.

• Number of dichotomous items J = 6, or 10.

• Conditional response probabilities π1j1 = π2j2 = .7, .8, or .9, for all j,

and πrj3 = πrj1, for j = 1, . . . , J/2 and πrj3 = πrj2 for j = J/2+1, . . . , J

Table 1 provides the population parameters for each LC when π1j1 = .8. Ad-

ditionally, we analysed conditions with J=6 trichotomous items (Rj = 3 for

all j) and sample sizes N = 100, 1000, or 5000. The population parameters

are shown also in Table 1. In all conditions we generated 2000 data sets.

Each data set was analysed using a LC model in which the number of classes

was equal to the number of classes in the population model (i.e., the null-

hypothesis was true). The parametric bootstrap was performed with B = 500

replications conditional on ψ̂. The PPC using test statistics and PPC using

discrepancies were performed based on K = 500 replications/draws.

We chose the simulation conditions such that the parameter values in-

fluence the level of sparseness but are also practically relevant. The chosen

sample sizes of 100, 1000 and 5000 correspond typically to small, medium
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Table 1: Example of Population Parameters for the LCs, c, for conditions
with J = 6 items.

Rj = 2 Rj = 3
c = 1 c = 2 c = 3 c = 4 c = 1 c = 2 c = 3 c = 4

πc .25 .25 .25 .25 πc .25 .25 .25 .25
π11c .8 .2 .8 .2 π11c .7 .1 .7 .1
π12c .8 .2 .8 .2 π21c .2 .2 .2 .2
π13c .8 .2 .8 .2 π12c .7 .1 .7 .1
π14c .8 .2 .2 .8 π22c .2 .2 .2 .2
π15c .8 .2 .2 .8 π13c .7 .1 .7 .1
π16c .8 .2 .2 .8 π23c .2 .2 .2 .2

π14c .7 .1 .1 .7
π24c .2 .2 .2 .2
π15c .7 .1 .1 .7
π25c .2 .2 .2 .2
π16c .7 .1 .1 .7
π26c .2 .2 .2 .2

Note. For all conditions, including those with fewer than C = 4 LCs,
the parameters for the class sizes always equal 1/c.

and large data sets, respectively. The sample size influences the degree of

sparseness in the contingency table: The fewer respondents, the sparser the

contingency table becomes.

The number of items (6 or 10) and number of response categories affects

the degree of sparseness. The number of possible patterns (i.e., cells in the

table) was either 26 = 64, 36 = 729 or 210 = 1024. Note that in the J = 10

item conditions, sparseness may be a problem even with a sample size of

5000.

Conditional response probabilities of .7, .8, and .9, respectively, indicate

a weak, medium and strong associations of the items with the LCs. Note
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that these probabilities also influence the degree of sparseness besides sample

size and the number of items. When the conditional response probabilities

of a particular response to an item gets closer to 1, the number of patterns

decreases, leading to an increase in sparseness.

Increasing the number of classes, on the other hand, decreases the sparse-

ness of the contingency table, since the response preferences of each class lead

to different response patterns. However, because this decrease in sparseness

comes with an increased model complexity, it will be interesting to see any

trade-off between model complexity and sparseness in determining the fit of

a LC model.

Under the null-hypothesis, p-values should be uniformly distributed (Sackrowitz

& Samuel-Cahn, 1999). This also means that (approximately) 5% of the p-

values should have values less than .05. We will therefore investigate the

performance of the methods by checking whether the proportion of the sim-

ulation data sets yielding a p-value less than .05 is close to .05.

4.1.2 Results

Results from study 1 on Type I error rates can be found in Tables 2 through

5 for the dichotomous conditions and in Table 6 for the trichotomous con-

ditions. The tables for the dichotomous conditions are arranged such that

the least sparse condition is located top-left, meaning that by going down-

ward or to the right, sparseness increases. For each combination of condition,

fit-statistic and type of p-value, we provide the proportion of simulations in
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which the obtained p-value was less than .05. Due to expected fluctuations in

2000 replications per condition, we expect 99% of the p-values to lie within

the ”expected interval” .05 ± 2.58
√
.05(1− .05)/2000 (i.e., between 0.037

and 0.063). In the traditional context of null-hypothesis testing this interval

would signify close-to-nominal Type I error rates. Proportions outside the

interval may indicate problems with a given method, statistic, or combina-

tion of both and these proportions are underlined in the table. Note that for

the BV R statistic, the asymptotic p-values are based on a χ2
1 distribution

for the dichotomous and χ2
4 for the trichotomous conditions, even though

it has been shown to be incorrect. We include them to assess the practical

implications of this common usage. No asymptotic p-values are provided for

the TBV R and DI.

The standard GoF chi-squared statistics

Tables 2 and 3 provide the simulation results for the standard chi-squared

GoF statistics for the dichotomous two-class and three-class conditions, re-

spectively.

As expected, the asymptotic p-values only provided close to nominal Type

I error rates for the situations where sparseness was not an issue. For J = 6

items and N = 5000 or N = 1000 observations, the asymptotic p-values may

be useful, except when using the G2. Asymptotic p-values forG2 only reached

close-to-nominal Type I error rates when there were 5000 observations.

The bootstrap and PPC using test statistics did considerably better than
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the asymptotic p-values and performed comparably well, where serious prob-

lems only occurred in the most sparse condition of J = 10 and N = 100.

The differences between parametric bootstrap and PPC using test statistics

are generally small and mostly involve the G2 statistic. For the G2, the PPC

using test statistics provides more conservative results than the parametric

bootstrap in the J = 10 conditions for N = 1000 and N = 100.

Looking at the PPC using discrepancies, we see that the proportions of

p-values less than .05 lie in the expected interval only in the π1j1 = .7, J = 6,

and N = 5000 or 1000 conditions. For the G2 this also holds for the π1j1 = .8

and π1j1 = .9 conditions when N = 5000 and for the X2 when π1j1 = .9 and

N = 5000 . For all other conditions the proportion of p-values less than .05

was (much) less than .05, confirming the non-uniformity of the pdisc-value.

For the trichotomous conditions, the results found in Table 6 make it clear

that the parametric bootstrap provides close-to-nominal Type I-error rates

in nearly all conditions and for all global fit statistics. Only in the N = 100

conditions were the Type I error rates outside of the expected interval. The

PPC using test statistics was overall a bit more conservative, even in the

least sparse case. The PPC using discrepancies was much too in practically

all conditions. Again it is shown that asymptotic p-values are very unreliable,

unless when used for the X2 statistic in the N = 5000 conditions.

The results for the two- and three-class model are similar, albeit that the

PPCs tend to get more conservative when model complexity increases. This

effect is especially noticeable in the trichotomous conditions.
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Statistics without a known asymptotic distribution

Tables 4 and 5 provide the simulation results for the BV R, TBV R, and DI

for the dichotomous two-class and three-class conditions, respectively. These

are all measures for which asymptotic p-values are not available.

First of all, it can be observed that using the χ2
1 distribution as the

asymptotic reference distribution for the BV R is inadequate. The highest

Type I error rate was .0110, but generally these were much smaller still.

The parametric bootstrap generally works very well for the BV R, TBV R,

and DI, with most proportions inside or very close to the expected interval,

although it seems to work less well for the DI in the most extreme sparseness

condition. The PPC using test statistics had more proportions outside the

expected interval, which generally resulted in somewhat more conservative

conclusions. Overall, resampling techniques seem to work well when there is

no reference distribution available.

For the PPC using discrepancies, only in 1 condition, for the DI, a pro-

portion of p-values was found inside the expected interval. It can be seen

that here, too, the pdisc-values are not uniformly distributed.

For the trichotomous conditions, the results found in Table 6 again show

that the parametric bootstrap works very well when applied to the BV R,

TBV R and DI. It was only too conservative in the sparsest case of N = 100

and C = 2 in combination with the DI. The PPCs were too conservative,

except for the PPC using the local fit measures as fit statistics in non-sparse

conditions with two LCs. The BV R clearly did not follow a χ2
4 distribution
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as the Type I error rate for the pasymp was 0 in all conditions.

The results for the two- and three-class model are similar, but again the

PPCs become more conservative when model complexity increases.
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Table 2: Type I Error Rates (the Proportion of P-Values which were Less Than α = .05) for the Global Fit
Statistics based on 2000 MC Simulation Replications for the Conditions with 2 LCs.

J=6 J=10
π111 pasymp pboot ptest pdisc π111 pasymp pboot ptest pdisc

N=5000 G2 .7 .056 .056 .058 .035 G2 .7 .623 .053 .055 .054
.8 .048 .044 .045 .026 .8 .591 .046 .047 .042
.9 .063 .044 .046 .027 .9 .000 .054 .045 .043

X2 .7 .055 .057 .057 .031 X2 .7 .057 .059 .057 .052
.8 .043 .044 .043 .027 .8 .062 .049 .049 .027
.9 .047 .048 .045 .023 .9 .252 .065 .065 .037

CR .7 .057 .057 .059 .031 CR .7 .055 .058 .056 .054
.8 .043 .044 .045 .027 .8 .012 .050 .049 .031
.9 .044 .048 .048 .024 .9 .000 .064 .064 .035

N=1000 G2 .7 .052 .046 .042 .025 G2 .7 .509 .051 .055 .048
.8 .082 .059 .057 .032 .8 .000 .048 .033 .030
.9 .098 .054 .056 .028 .9 .000 .038 .017 .017

X2 .7 .041 .044 .043 .028 X2 .7 .126 .056 .054 .043
.8 .055 .058 .057 .027 .8 .185 .058 .057 .016
.9 .064 .051 .051 .021 .9 .357 .038 .038 .023

CR .7 .041 .042 .044 .026 CR .7 .005 .055 .059 .045
.8 .051 .056 .053 .026 .8 .000 .059 .057 .015
.9 .039 .053 .053 .021 .9 .000 .040 .040 .019

N=100 G2 .7 .167 .072 .082 .033 G2 .7 1.000 .096 .044 .022
.8 .035 .069 .059 .021 .8 1.000 .026 .002 .002
.9 .000 .073 .025 .011 .9 .905 .051 .000 .000

X2 .7 .041 .051 .054 .029 X2 .7 1.000 .033 .021 .037
.8 .042 .041 .044 .010 .8 1.000 .016 .016 .003
.9 .140 .031 .048 .001 .9 1.000 .061 .076 .008

CR .7 .032 .060 .065 .032 CR .7 1.000 .118 .118 .034
.8 .017 .050 .052 .015 .8 1.000 .054 .045 .001
.9 .011 .054 .055 .003 .9 .999 .074 .074 .005
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Table 3: Type I Error Rates (the Proportion of P-Values which were Less Than α = .05) for the Global Fit
Statistics based on 2000 MC Simulation Replications for the Conditions with 3 LCs.

J=6 J=10
π111 pasymp pboot ptest pdisc π111 pasymp pboot ptest pdisc

N=5000 G2 .7 .056 .058 .057 .023 G2 .7 .702 .053 .052 .049
.8 .044 .042 .044 .016 .8 .490 .052 .054 .051
.9 .056 .043 .043 .017 .9 .000 .055 .050 .044

X2 .7 .055 .054 .057 .022 X2 .7 .054 .059 .053 .048
.8 .041 .044 .045 .014 .8 .060 .048 .048 .028
.9 .040 .045 .041 .012 .9 .175 .057 .052 .029

CR .7 .053 .055 .057 .021 CR .7 .051 .057 .056 .052
.8 .044 .046 .046 .015 .8 .015 .049 .052 .035
.9 .040 .045 .042 .012 .9 .001 .057 .057 .028

N=1000 G2 .7 .068 .059 .055 .021 G2 .7 .128 .067 .064 .055
.8 .067 .045 .044 .015 .8 .000 .057 .035 .026
.9 .097 .055 .056 .020 .9 .000 .047 .024 .019

X2 .7 .054 .060 .057 .019 X2 .7 .133 .057 .055 .044
.8 .043 .044 .043 .014 .8 .188 .058 .052 .012
.9 .059 .052 .054 .014 .9 .319 .041 .042 .021

CR .7 .053 .061 .056 .020 CR .7 .001 .065 .068 .048
.8 .042 .045 .044 .014 .8 .000 .059 .057 .012
.9 .048 .054 .055 .017 .9 .000 .048 .043 .015

N=100 G2 .7 .097 .055 .056 .020 G2 .7 1.000 .252 .028 .008
.8 .029 .053 .063 .011 .8 1.000 .113 .001 .000
.9 .003 .072 .034 .012 .9 1.000 .089 .000 .000

X2 .7 .059 .052 .054 .014 X2 .7 1.000 .019 .024 .013
.8 .029 .031 .061 .005 .8 1.000 .031 .052 .000
.9 .083 .046 .078 .002 .9 1.000 .055 .076 .002

CR .7 .048 .054 .055 .017 CR .7 1.000 .134 .118 .010
.8 .008 .040 .073 .007 .8 1.000 .105 .087 .000
.9 .015 .060 .073 .006 .9 1.000 .078 .071 .000
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Table 4: Type I Error Rates (the Proportion of P-Values which were Less Than α = .05) for the BV R, the
total BV R and the DI based on 2000 MC Simulation Replications for the Conditions with 2 LCs.

J=6 J=10
π111 pasymp pboot ptest pdisc π111 pasymp pboot ptest pdisc

N=5000 BV R .7 .006 .065 .059 .000 BV R .7 .011 .059 .057 .001
.8 .002 .052 .050 .001 .8 .002 .060 .059 .001
.9 .000 .045 .043 .001 .9 .000 .048 .049 .000

TBV R .7 NA .051 .052 .000 TBV R .7 NA .051 .049 .001
.8 NA .053 .052 .001 .8 NA .043 .043 .001
.9 NA .047 .048 .001 .9 NA .049 .047 .000

DI .7 NA .057 .055 .015 DI .7 NA .047 .044 .038
.8 NA .049 .050 .006 .8 NA .049 .042 .028
.9 NA .052 .053 .001 .9 NA .047 .039 .003

N=1000 BV R .7 .002 .043 .039 .001 BV R .7 .010 .049 .046 .001
.8 .001 .061 .059 .000 .8 .003 .048 .044 .000
.9 .000 .061 .061 .001 .9 .000 .048 .046 .000

TBV R .7 NA .046 .042 .001 TBV R .7 NA .055 .058 .000
.8 NA .051 .045 .000 .8 NA .047 .042 .000
.9 NA .051 .044 .001 .9 NA .045 .034 .000

DI .7 NA .053 .052 .016 DI .7 NA .058 .057 .041
.8 NA .053 .052 .006 .8 NA .031 .009 .016
.9 NA .060 .051 .001 .9 NA .046 .021 .004

N=100 BV R .7 .007 .038 .037 .001 BV R .7 .010 .042 .040 .001
.8 .001 .052 .039 .000 .8 .004 .053 .044 .000
.9 .000 .047 .036 .001 .9 .001 .059 .045 .000

TBV R .7 NA .033 .033 .001 TBV R .7 NA .047 .031 .000
.8 NA .042 .021 .001 .8 NA .053 .025 .000
.9 NA .048 .018 .001 .9 NA .044 .007 .000

DI .7 NA .071 .072 .018 DI .7 NA .045 .010 .015
.8 NA .062 .033 .003 .8 NA .017 .000 .008
.9 NA .046 .007 .002 .9 NA .027 .000 .006

29



Table 5: Type I Error Rates (the Proportion of P-Values which were Less Than α = .05) for the BV R, the
total BV R, and the DI based on 2000 MC Simulation Replications for the Conditions with 3 LCs.

J=6 J=10
π111 pasymp pboot ptest pdisc π111 pasymp pboot ptest pdisc

N=5000 BV R .7 .000 .043 .044 .001 BV R .7 .005 .053 .051 .000
.8 .000 .058 .057 .000 .8 .001 .052 .051 .000
.9 .000 .056 .056 .000 .9 .001 .051 .053 .000

TBV R .7 NA .052 .051 .001 TBV R .7 NA .054 .051 .000
.8 NA .061 .058 .000 .8 NA .047 .045 .000
.9 NA .047 .046 .000 .9 NA .058 .053 .000

DI .7 NA .051 .052 .007 DI .7 NA .053 .049 .035
.8 NA .050 .050 .002 .8 NA .049 .045 .023
.9 NA .043 .036 .000 .9 NA .055 .048 .004

N=1000 BV R .7 .000 .034 .023 .000 BV R .7 .004 .042 .039 .000
.8 .000 .047 .038 .000 .8 .001 .051 .050 .000
.9 .000 .046 .037 .000 .9 .000 .052 .048 .000

TBV R .7 NA .043 .033 .000 TBV R .7 NA .052 .048 .000
.8 NA .043 .033 .000 .8 NA .054 .046 .000
.9 NA .045 .037 .000 .9 NA .042 .038 .000

DI .7 NA .049 .049 .007 DI .7 NA .058 .043 .035
.8 NA .037 .034 .002 .8 NA .050 .029 .019
.9 NA .048 .044 .000 .9 NA .046 .014 .006

N=100 BV R .7 .000 .046 .037 .000 BV R .7 .012 .044 .046 .000
.8 .003 .016 .029 .000 .8 .003 .045 .037 .000
.9 .001 .033 .030 .000 .9 .001 .043 .037 .000

TBV R .7 NA .045 .037 .000 TBV R .7 NA .051 .048 .000
.8 NA .018 .025 .000 .8 NA .040 .021 .000
.9 NA .036 .039 .000 .9 NA .024 .012 .000

DI .7 NA .048 .044 .000 DI .7 NA .135 .007 .008
.8 NA .054 .041 .003 .8 NA .071 .000 .004
.9 NA .054 .005 .004 .9 NA .051 .000 .003
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Table 6: Type I Error Rates (the Proportion of P-Values which were Less Than α = .05) based on 2000
MC Simulation Replications for the Trichotomous Conditions, where J = 6 and πr11 = {.7, .2, .1}

C = 2 C = 3
pasymp pboot ptest pdisc pasymp pboot ptest pdisc

N=5000 G2 .585 .049 .021 .048 G2 .516 .057 .009 .049
X2 .054 .044 .023 .033 X2 .059 .052 .010 .029
CR .027 .049 .020 .038 CR .033 .055 .011 .038

BV R .000 .046 .045 .004 BV R .000 .055 .035 .001
TBV R NA .051 .049 .000 TBV R NA .046 .033 .000

DI NA .040 .010 .021 DI NA .059 .006 .024
N=1000 G2 .000 .055 .015 .039 G2 .000 .056 .005 .035

X2 .087 .053 .031 .024 X2 .083 .048 .017 .020
CR .000 .058 .029 .020 CR .001 .059 .011 .021

BV R .000 .046 .045 .002 BV R .000 .043 .022 .004
TBV R NA .054 .050 .001 TBV R NA .051 .026 .000

DI NA .045 .007 .022 DI NA .047 .002 .017
N=100 G2 1.000 .038 .000 .001 G2 1.000 .075 .000 .001

X2 1.000 .020 .008 .002 X2 1.000 .022 .021 .001
CR 1.000 .070 .017 .005 CR 1.000 .079 .023 .000

BV R .000 .040 .032 .004 BV R .001 .046 .026 .000
TBV R NA .036 .018 .000 TBV R NA .040 .010 .000

DI NA .021 .000 .006 DI NA .051 .000 .004
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4.2 Study 2. Power Analysis

Design

After evaluating Type I error rates, we also investigated power of the different

p-values. Power is the probability of rejecting a model when it is indeed

false. To do this, we estimated a two-class model on data sets generated

under a three-class population, and estimated a three-class model on data

sets generated under a four-class population. Population parameters for these

conditions were π1j1 = .8 with J = 6, or 10 items in the dichotomous cases,

and π1j1 = .7 with J = 6 items in the trichotomous cases (cf. Table 1). For

each condition 2000 data sets were generated and analysed.

Results

Results of the power analysis for the dichotomous conditions can be found

in Tables 7 and 8 and for the trichotomous conditions in Table 9. Power of

.8 or greater is generally regarded to be acceptable, and higher values are

better. It is immediately clear that the power to detect that a model has

too few LCs is very high in medium (N = 1000) to large (N = 5000) data

sets, as most of the power values are 1.0. For small data sets (N = 100) the

power was around .2, though it is noteworthy that the TBV R, when used in

the parametric bootstrap or as statistic in the PPC, has high power even in

the sparsest condition when C = 2. Also, the power to detect misfit using

the TBV R increases as the number of items increases.
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In order to draw conclusions about the usefulness of the methods and

statistics, we need to combine the results of Study 1 and 2. For example,

when a statistic has high power but also has large Type I error rates (larger

than the chosen level of significance α), the statistic will lead to too liberal

results and general use is not recommended. In such cases we would have a

high chance of rejecting a model, regardless of whether the model is actually

true or false. For the pboot and ptest, power was high and Type I error rates

were very accurate in most conditions as well. The ptest is overall somewhat

more conservative. The pdisc had very low Type I error rates but still had

high power to detect the misspecification of the models in our simulation

by means of the global chi-squared statistics. The pasymp also showed high

power, but also had very high Type I error rates when sparseness became an

issue (e.g. when J = 10). When assessing LC model fit using any particular

statistic, we advise researchers to use either the parametric bootstrap or

PPC using fit statistics. When tables are sparse due to small sample sizes,

researchers should resort to local fit statistics, which may be tailored to the

research question at hand.
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Table 7: Power (the Proportion of P-values which were Less Than α = .05) to Indicate Model Misfit when
a Model with C Classes is Estimated on Data Generated under Population with C + 1 LCs. Conditions
with J = 6 Dichotomous items where πr11 = {.8, .2}. Results are based on 2000 MC Simulations.

C = 2 C = 3
pasymp pboot ptest pdisc pasymp pboot ptest pdisc

N=5000 G2 1.000 1.000 1.000 1.000 G2 1.000 1.000 1.000 1.000
X2 1.000 1.000 1.000 1.000 X2 1.000 1.000 1.000 1.000
CR 1.000 1.000 1.000 1.000 CR 1.000 1.000 1.000 1.000

BV R 1.000 1.000 1.000 .973 BV R 1.000 1.000 1.000 .966
TBV R NA 1.000 1.000 1.000 TBV R NA 1.000 1.000 1.000

DI NA 1.000 1.000 1.000 DI NA 1.000 1.000 1.000
N=1000 G2 1.000 1.000 1.000 1.000 G2 1.000 1.000 1.000 1.000

X2 1.000 1.000 1.000 1.000 X2 1.000 1.000 1.000 1.000
CR 1.000 1.000 1.000 1.000 CR 1.000 1.000 1.000 1.000

BV R .711 .922 .914 .513 BV R .515 .980 .974 .088
TBV R NA 1.000 1.000 1.000 TBV R NA 1.000 1.000 .0110

DI NA 1.000 1.000 1.000 DI NA 1.000 1.000 1.000
N=100 G2 .456 .524 .497 .353 G2 .156 .163 .160 .056

X2 .413 .409 .428 .257 X2 .065 .093 .132 .023
CR .308 .488 .496 .313 CR .045 .125 .152 .036

BV R .228 .322 .321 .048 BV R .014 .110 .130 .000
TBV R NA .717 .690 .002 TBV R NA .133 .118 .000

DI NA .546 .492 .310 DI NA .217 .181 .039
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Table 8: Power (the Proportion of P-values which were Less Than α = .05) to Indicate Model Misfit when
a Model with C Classes is Estimated on Data Generated under Population with C + 1 LCs. Conditions
with J = 10 Dichotomous items where πr11 = {.8, .2}. Results are based on 2000 MC Simulations.

C = 2 C = 3
pasymp pboot ptest pdisc pasymp pboot ptest pdisc

N=5000 G2 1.000 1.000 1.000 1.000 G2 1.000 1.000 1.000 1.000
X2 1.000 1.000 1.000 1.000 X2 1.000 1.000 1.000 1.000
CR 1.000 1.000 1.000 1.000 CR 1.000 1.000 1.000 1.000

BV R .973 .993 .992 .861 BV R .959 1.000 1.000 .733
TBV R NA 1.000 1.000 1.000 TBV R NA 1.000 1.000 1.000

DI NA 1.000 1.000 1.000 DI NA 1.000 1.000 1.000
N=1000 G2 1.000 1.000 1.000 1.000 G2 1.000 1.000 1.000 1.000

X2 1.000 1.000 1.000 1.000 X2 1.000 1.000 1.000 1.000
CR 1.000 1.000 1.000 1.000 CR 1.000 1.000 1.000 1.000

BV R .614 .761 .759 .501 BV R .514 .976 .954 .453
TBV R NA 1.000 1.000 1.000 TBV R NA 1.000 1.000 .817

DI NA 1.000 1.000 1.000 DI NA 1.000 .999 1.000
N=100 G2 1.000 .485 .124 .100 G2 1.000 .355 .010 .006

X2 1.000 .116 .126 .056 X2 1.000 .012 .018 .002
CR 1.000 .286 .258 .055 CR 1.000 .117 .069 .002

BV R .237 .316 .320 .073 BV R .047 .167 .162 .003
TBV R NA .967 .957 .002 TBV R NA .567 .463 .001

DI NA .290 .092 .179 DI NA .262 .003 .029
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Table 9: Power (the Proportion of P-values which were Less Than α = .05) to Indicate Model Misfit when
a Model with C Classes is Estimated on Data Generated under Population with C + 1 LCs. Conditions
with J = 6 Trichotomous items where πr11 = {.7, .2, .1}. Results are based on 2000 MC Simulations.

C = 2 C = 3
pasymp pboot ptest pdisc pasymp pboot ptest pdisc

N=5000 G2 1.000 1.000 1.000 1.000 G2 1.000 1.000 1.000 1.000
X2 1.000 1.000 1.000 1.000 X2 1.000 1.000 1.000 1.000
CR 1.000 1.000 1.000 1.000 CR 1.000 1.000 1.000 1.000

BV R .838 1.000 1.000 .870 BV R .967 1.000 1.000 .992
TBV R NA 1.000 1.000 1.000 TBV R NA 1.000 1.000 1.000

DI NA 1.000 1.000 1.000 DI NA 1.000 1.000 1.000
N=1000 G2 1.000 1.000 1.000 1.000 G2 1.000 1.000 .996 1.000

X2 1.000 1.000 1.000 1.000 X2 .998 .996 .964 .984
CR 1.000 1.000 1.000 1.000 CR .980 1.000 .991 .996

BV R .600 .840 .813 .509 BV R .514 .976 .954 .453
TBV R NA 1.000 1.000 1.000 TBV R NA 1.000 1.000 .817

DI NA 1.000 1.000 1.000 DI NA 1.000 .999 1.000
N=100 G2 1.000 .338 .013 .062 G2 1.000 .221 .001 .006

X2 1.000 .071 .053 .014 X2 1.000 .022 .017 .002
CR 1.000 .215 .111 .018 CR 1.000 .096 .030 .002

BV R .140 .480 .463 .086 BV R .001 .295 .224 .003
TBV R NA .963 .932 .001 TBV R NA .614 .312 .000

DI NA .283 .006 .147 DI NA .187 .000 .019
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5 Empirical Data

We will illustrate the methods described in the paper with a data set taken

from Landis and Koch (1977) (see also, Holmquist, McMahan, and Williams

(1968)). It contains information on 118 slides which were evaluated on the

absence or presence of cervical cancer by seven pathologists. So, we have a

data set with 7 dichotomous item and a sample size of 118. Only 20 of the

possible 27 = 128 response patterns were observed, indicating that we are

dealing with a rather sparse contingency table. This sparse table has been

used by various authors who proposed using bootstrap p-values for global

fit testing with G2 (Agresti, 2002; Magidson & Vermunt, 2004; Vermunt &

Magidson, 2005) Here, we will also look at other measures and consider both

PPCs in addition to the bootstrap.

We estimated LC models with two or three LCs and assessed the GoF of

these two models based on the X2, G2, CR, BV R, TBV R, and DI statistics.

Results from these analyses can be found in Table 10.

37



Table 10: Fit Statistics and P-values for the Cervical Cancer Data. Model with 2 or 3 LCs.
Model with 2 LCs Model with 3 LCs

Value pasymp pboot ptest pdisc Value pasymp pboot ptest pdisc
G2 64.163 1.000 .000 .012 .020 G2 17.713 1.000 .500 .948 .662
X2 90.564 .800 .028 .144 .332 X2 21.120 1.000 .296 .870 .852
CR 74.851 .980 .006 .062 .212 CR 18.589 1.000 .360 .908 .828

TBV R 32.281 NA .000 .000 .656 TBV R 8.328 NA .026 .042 .586
DI .268 NA .000 .000 .010 DI .117 NA .146 .598 .298

BV R12 1.736 .188 .028 .022 .314 BV R12 .051 .822 .332 .442 .364
BV R13 .387 .534 .090 .188 .838 BV R13 .092 .762 .318 .370 .804
BV R14 .273 .601 .196 .360 .668 BV R14 .575 .448 .120 .124 .612
BV R15 .146 .702 .456 .422 .410 BV R15 .162 .687 .416 .290 .430
BV R16 .209 .648 .362 .438 .628 BV R16 .043 .836 .670 .668 .526
BV R17 .024 .878 .682 .542 .442 BV R17 .152 .697 .428 .338 .386
BV R23 .017 .896 .824 .852 .648 BV R23 .006 .939 .794 .838 .648
BV R24 .577 .447 .190 .228 .736 BV R24 .599 .439 .172 .172 .704
BV R25 8.443 .004 .000 .000 .204 BV R25 .036 .850 .290 .364 .336
BV R26 .445 .505 .302 .332 .618 BV R26 .477 .490 .256 .236 .548
BV R27 5.205 .023 .000 .000 .304 BV R27 .029 .866 .532 .442 .354
BV R34 .895 .344 .256 .240 .782 BV R34 .019 .890 .774 .726 .568
BV R35 1.106 .293 .042 .056 .786 BV R35 .134 .715 .114 .320 .788
BV R36 1.316 .251 .160 .158 .772 BV R36 .021 .886 .820 .758 .562
BV R37 .138 .711 .098 .278 .832 BV R37 .078 .780 .436 .376 .760
BV R45 .043 .836 .814 .746 .586 BV R45 .701 .403 .092 .112 .546
BV R46 7.228 .007 .006 .002 .950 BV R46 4.521 .033 .004 .004 .826
BV R47 .099 .753 .236 .418 .622 BV R47 .426 .514 .210 .194 .592
BV R56 .589 .443 .248 .204 .612 BV R56 .070 .792 .286 .550 .522
BV R57 3.331 .068 .000 .000 .328 BV R57 .101 .751 .356 .282 .372
BV R67 .075 .785 .286 .520 .584 BV R67 .038 .846 .664 .628 .526
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Asymptotic p-values are not appropriate here due to the sparseness of

the contingency table. Based on the simulation results of sparse tables, we

expect to see that, overall, the PPC using test statistics provides somewhat

more conservative p-values than the parametric bootstrap does.

Indeed, for the two-class model the parametric bootstrap provides p-

values of .028 for the X2, .000 for the G2 and .006 for the CR, indicating

that the model is inadequate. The ptest-values were .144, .012 and .062,

respectively, meaning only the G2 statistic suggests lack of fit for the two-

class model. The pdisc values were .332, .020 and .212 respectively. Here too,

only the G2 statistic indicated lack of fit.

Inspection of the bivariate residuals for the two-class model shows that

some association remains between the item pairs {2,5}, {2,7}, {5,7} and

{4,6}. Asymptotic p-values based on the χ2
1 distribution indicate significant

remaining associations, except perhaps for the BV R of items 5 and 7 (pasymp

= .058). The parametric bootstrap and PPC using test statistics both indi-

cate that these remaining associations are significantly different from 0. The

PPC using discrepancies did not provide p-values close to zero. However,

the most extreme pdisc-values are generally found for the largest BV R. For

BV R46 the p-value was .950, which also indicates misfit.

The parametric bootstrap and PPC using test statistics both indicate

model misfit with regard to the TBV R and DI, with p-values of .000. The

PPC using discrepancies only indicated lack of fit for the DI and not for the

TBV R.
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For the three-class model, all methods indicate that the global fit of the

model is adequate, based on the X2, G2 and CR and DI. As we expected

from the simulation results, the ptest-values for these statistics were larger

than those from the bootstrap.

Inspection of the bivariate residuals reveals that the association between

the item pair {4,6} is not picked up by the three-class model (BV R46 =

4.521). The parametric bootstrap and PPC using test statistics both indicate

that this remaining association is significantly different from 0. The PPC

using discrepancies did not provide extreme p-values here. This agrees with

the simulation in which we virtually never saw pdisc-values for the BV R less

than .05.

The parametric bootstrap and PPC using test statistics are able to pick

up that there is remaining bivariate association through the TBV R statistic,

as both techniques provided small p-values for this statistic.

In summary, the analyses show that a three-class model has adequate

overall fit, but lacks in local fit, as indicated by the p-values for BV R46 and

for the TBV R. Also, the empirical data analysis was in agreement with our

expectations from the simulation study that the PPC using test statistics

yields somewhat more conservative p-values than the parametric bootstrap

does.
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6 Discussion

To assess the fit of a LC model when contingency tables are sparse or when

asymptotic reference distributions are not available, resampling techniques

can be used to obtain empirical reference distributions for any goodness-of-fit

statistics. In the current paper we evaluated a number of statistics which are

commonly used in the assessment of model fit, some of which are specific to

LC models. We conducted a simulation study to investigate whether reliable

p-values could be obtained with the parametric bootstrap, the PPC using

test statistics, and the PPC using discrepancies.

The simulation study involved calculating different p-values when analysing

sparse and non-sparse contingency tables both for fit statistics that have no

known asymptotic distribution, as well as for statistics for which the asymp-

totic distributions do not hold in sparse situations. In agreement with previ-

ous studies we found that the use of asymptotic p-values resulted in (severely)

distorted Type I error rates when contingency tables were sparse. Both the

parametric bootstrap and PPC using test statistics performed much better

in this regard than the asymptotic method. Von Davier (1997) showed that

the likelihood-ratio G2 is not suitable for use in the parametric bootstrap

when contingency tables are sparse, as it will generally lead to too liberal

conclusions. We have replicated this finding and have additionally shown

that using the G2 as a statistic in the PPC resulted in too conservative re-

sults. Because the G2 had high Type I error rates and high power, we cannot
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be sure what a small pasymp-value indicates. The Pearson X2 and CR how-

ever, did generally provide close-to-nominal Type I error rates and had high

power. These latter should therefore in many situations be preferred over

the likelihood-ratio statistic G2.

The DI statistic worked very well in combination with the parametric

bootstrap and with the PPC using test statistics. The PPC using test statis-

tics provides somewhat more conservative p-values. Only in the most sparse

condition did the parametric bootstrap show severe problems. The DI ap-

pears therefore be a good statistic to assess global model fit, even when con-

tingency tables are sparse. However, when sample size is small (N = 100),

it lacks power like the other global chi-squared statistics.

Sparseness has little effect on the BV R statistics, especially for dichoto-

mous items, as it only involves the second order marginals of the contingency

tables. Therefore, it may be hypothesised that the use of asymptotics is jus-

tified. However, we have shown in line with Oberski et al. (2013) that the

common distributional assumption for the BV R does not hold for LC mod-

els. Use of the χ2
1-distribution produced too conservative results (i.e., low

Type I error rates). We would like to stress that the poor results ascribed to

the asymptotic p-values for the BV R statistics are due to the choice for this

reference distribution. Future research should indicate which, if any, asymp-

totic reference distribution should be used for the BV R in LC analysis.

For the BV R, both the parametric bootstrap and PPC using test statis-

tics resulted in close-to-nominal Type I error rates, even when the tables
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were very sparse. The latter method provided somewhat more conservative

results than the former. The BV R statistic failed completely in combination

with the PPC using discrepancies.

The parametric bootstrap yielded close-to-nominal Type I error rates

when using the TBV R. In combination with the PPC using test statistics,

the TBV R resulted in somewhat below-nominal Type I error rates. The

power of the TBV R was very high, however, and it shows that taking all

bivariate associations into account provides very good information on model

fit, even when tables are very sparse. Note that the findings of the BV R

and TBV R, the latter being the sum of all BV Rs, should not be seen as

independent.

Our power study suggested that all methods and statistics are useful to

detect misfit when the number of LCs is misspecified. When sample sizes

become very small, however, the results have shown that we should resort to

the local fit measures. Especially the TBV R has very high power, since it is

not greatly affected by sparseness and still uses information on all item pairs

to indicate whether misfit is present. Since no asymptotic distribution is

known for this statistic, its use in the parametric bootstrap and as a statistic

in the PPC will show to be of great value, even when data is sparse.

To illustrate our findings we analysed an empirical data set where, due

to sparseness, the use of asymptotic p-values was inadequate. We obtained

alternative p-values by means of the parametric bootstrap, the PPC using

test statistics and PPC using discrepancies. In line with the results from
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the simulation study, we found that the PPC using test statistics provided

somewhat more conservative results than the parametric bootstrap. Boot-

strapping the global fit statistics strongly suggested that a two-class model

did not fit the data adequately. However, when incorporating the uncer-

tainty about the parameter estimates in the analysis, the PPC using test

statistics did not provide very strong evidence to suggest model misfit. No

disagreement was found between the parametric bootstrap and PPC using

test statistics with regard to the BV R, TBV R and DI statistics. In the

better fitting three-class model, all methods indicated no lack of global fit.

A nice result was that the parametric bootstrap and PPC using test statistics

were well able to pick up violations in the local fit through the BV R and

TBV R statistics, even though the global fit measures indicated no problems.

Overall, the computationally less intensive PPC using discrepancies pro-

vided more conservative results than the other resampling techniques. This

was, to an extent, expected from the fact that the distribution of pdisc under

the null-hypothesis is peaked around .5. A number of methods have been pro-

posed to adjust the pdisc value so that it provides uniform p-values (Bayarri

& Berger, 2000; Hjort, Dahl, & Steinbakk, 2006; Robins et al., 2000). Future

research should indicate whether extra computational burden of calibrating

pdisc-values outweighs the benefits, compared to the properly working PPC

using test statistics.

Given the established results, researchers should be weary of using asymp-

totic reference distributions when the sample sizes are not very large and/or
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when there are many variable, leading to a sparse contingency table. Resort-

ing to lower-order statistics, like the BV R, and statistics which are specif-

ically tailored to a certain application or research question, like the DI, is

good practice, even if their distributions are unknown. Though developing

new statistics was not our aim here, many others can be conceived of. For

dichotomous data, one could use a bivariate Pearson correlation to assess lo-

cal dependencies. When interest lies in a specific second-order relationship,

trivariate residuals could be used. If one response pattern is of particular in-

terest, one could use the observed frequency of that pattern as a statistic. In

each of these cases, resampling methods can provide reliable p-values. Also,

in the very sparse cases, using resampling techniques to assess combinations

of the lower level associations, like the TBV R proved to be very useful.

On a final note, this paper addressed the question of assessing model

fit and not model comparison. Interpretation of, for instance, information

criteria like the AIC and BIC does not change when the sample size is small

or when contingency tables are sparse.
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