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High fruit and vegetable intake is associated with decreased cancer risk. However, dietary recall data from national surveys suggest that,
on any given day, intake falls below the recommended minima of three daily servings of vegetables and two daily servings of fruit. There
is no single widely accepted measure of “usual” intake. One approach is to regard the distribution of intake as a mixture of “regular”
(relatively frequent) and “nonregular” (relatively infrequent) consumers, using an indicator of whether an individual consumed the food
of interest on the recall day. We use a new approach to summarizing dietary data, latent class analysis (LCA), to estimate “usual” intake
of vegetables. The data consist of four 24-hour dietary recalls from the 1985 Continuing Survey of Intakes by Individuals collected from
1,028 women. Traditional LCA based on simple random sampling was extended to complex survey data by introducing sample weights
into the latent class estimation algorithm and by accounting for the complex sample design through the use of jackknife standard errors.
A two-class model showed that 18% do not regularly consume vegetables, compared to an unweighted estimate of 33%. Simulations
showed that ignoring sample weights resulted in biased parameter estimates and that jackknife variances were slightly conservative
but provided satisfactory confidence interval coverage. Using a survey-wide estimate of the design effect for variance estimation is not
accurate for LCA. The methods proposed in this article are readily implemented for the analysis of complex sample survey data.

KEY WORDS: Categorical data; Cluster sample; Design effect; Dietary propensity scores; Jackknife; Latent class model; Sample
weight.

1. INTRODUCTION

Frequent consumption of fruit and vegetables has been
linked to reduced cancer incidence. For many cancer sites,
persons with low intake of these foods experience about twice
the cancer risk as do those with high intake (Block, Patterson,
and Subar 1992). Dietary surveillance is used to monitor the
intake of foods that are important risk factors for cancer and
heart disease. A major goal of dietary surveillance is to esti-
mate the distribution of intake of nutrients and foods in the
population. At a policy level, information on dietary intake is
important for shaping dietary guidance and for the evaluation
of dietary intervention programs, such as the national Five A
Day program, that encourages the consumption of five or more
servings of fruits and vegetables daily (Subar et al. 1994). In
this article we focus on vegetable consumption alone.
Twenty-four–hour dietary recall data from national sur-

veys suggest that, on any given day, consumption falls below
the recommended three or more daily servings of vegeta-
bles (Patterson, Block, Rosenberger, Pee, and Kahle 1990;
Patterson, Harlan, Block, and Kahle 1995; Krebs-Smith, Cook,
Subar, Cleveland, and Friday 1995). The mean of two non-
consecutive recall days from the 1994–1996 Continuing Sur-
vey of Food Intakes by Individuals (CSFII) showed that 55%
of the population age 20 years and older consumed three or
more servings of vegetables (U. S. Department of Agricul-
ture 1998). A goal of Tracking Healthy People 2010 (U. S.
Department of Health and Human Services 2000) is increas-
ing consumption to 75%. New dietary assessment methods
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that include estimation of the regularity of consumption are
critical to measure progress toward this goal.
Although there is no clear definition of “usual” dietary

intake (Guenther 1997), it can be regarded as intake over
some long period. Methods currently used for measuring usual
intake have been described by Thompson and Byers (1994).
One method, the focus of this study, requires the collection
of two or more 24-hour recalls or daily food diaries. Sev-
eral methods for combining dietary records have appeared in
the literature. The 1977–1978 Nationwide Food Consumption
Survey (Human Nutrition Information Service 1983) estimated
the percentage of individuals using a particular food as the
number reporting consuming that food at least once in the
3-day survey period, divided by the group size. Hartman et al.
(1990) reported mean daily intake for several food groups
based on 12 two-day diaries. Popkin, Siega-Riz, and Haines
(1996) summarized information on consumption of various
foods from a single 24-hour recall into a dietary score for each
respondent.
Analyses of dietary data have focused primarily on nutrient

intake (e.g., fat, vitamin A) rather than on the intake of par-
ticular foods (e.g., butter, carrots). Nutrients are typically con-
sumed daily in some quantity, with the result that zero intake
rarely occurs. In contrast, specific foods are consumed less
frequently, and zero counts are expected to occur. In the 1985
CSFII dataset, the intake of each food consumed by a respon-
dent was reported in grams based on portion-sized estimates
(U. S. Department of Agriculture 1987). Thus, for a given
food, either an amount in grams or a 0 is associated with each
respondent for each recall day. The distribution of intake for
a given food consists of a continuous component that can be
modeled by, for example, a lognormal distribution with a point
mass at 0. Alternatively, the nonzero values can be classified
into a set of ordered categories. The data also can be treated as
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counts or “mentions” of a food or foods in a food group, where
a mention is any nonzero quantity. The distribution of intake
can then be modeled by, for example, a Poisson distribution
with overdispersion at 0 (Smith, Graubard, and Midthune —)
or by other mixture models. In all of these cases, the distri-
bution can be regarded as arising from a mixture of “regular,”
that is, relatively frequent consumers and “nonregular,” that is,
relatively infrequent consumers.
Dietary data also have been analyzed separating consumers

and nonconsumers (Subar et al. 1993; Patterson et al. 1995).
Such data can be further simplified by identifying a consumer
of a given food (or food in a food group) with a 1 and a non-
consumer with a 0. These two approaches have the advantage
of mitigating the measurement error inherent in dietary data
based on portion size (Smith 1991; Young and Nestle 1995).
Reporting the fact of consumption is simpler and likely to be
more accurate than the quantity consumed. In fact, such mea-
surement error may be a reason for dichotomizing the data.
Latent class analysis (LCA) is a method of grouping indi-

viduals with respect to some underlying, unobservable vari-
able based on data from polytomous indicators or items. This
method can be useful in the analysis of the intake of foods, for
example, in estimating the regularity of vegetable consump-
tion. Individuals in a sample can be classified into two or more
latent classes based on binary data reflecting their consump-
tion/nonconsumption of vegetables.
National dietary data are typically collected in surveys that

have complex sample designs involving multistage sampling
with sample weighting. The analysis of such designs has
been described for mixture models (Wedel, ter Hofstede, and
Steenkamp 1998; Patterson 1998). The focus of this study
was to fit a population latent class model (LCM) to data from
the 1985 CSFII and to develop appropriate LCA methods for
complex sample surveys (see Patterson 1998). In Section 2 the
CSFII is summarized. In Section 3 the LCM is introduced,
and the jackknife is presented as a method of estimating stan-
dard errors for the LCM parameters. The CSFII data are ana-
lyzed in Section 4, and a simulation is presented in Section 5.
Finally, the method and results are discussed in Section 6.

2. THE CONTINUING SURVEY OF FOOD
INTAKES BY INDIVIDUALS

The 1985 CSFII comprised a multistage stratified area prob-
ability sample of women age 19–50 living in private house-
holds in the 48 conterminous states. The conterminous United
States was divided into 60 “relatively homogeneous” strata,
and 2 primary sampling units (PSUs) were sampled per stra-
tum. Although the survey was designed to be self-weighting,
differential sample weights were computed to reflect various
levels of nonresponse at the household and individual levels.
(For more details see U. S. Department of Agriculture 1987.)
In an attempt to estimate usual intake, six dietary recalls of

foods consumed during the previous 24 hours were collected
at about 2-month intervals. The first recall was collected in a
face-to-face interview; the next five recalls were done by tele-
phone. The public-use CSFII data tape includes all women
who participated in the face-to-face interview and completed
at least three phone recall interviews. For women who com-
pleted the face-to-face interview and four or five phone recall

Table 1. Distribution of Days on Which Respondents a Respondents
Reported Eating a Vegetable

Number Weighted Cumulative
of Days Percent Weighted Percent

0 3�1 3�1
1 9�4 12�5
2 22�4 34�9
3 37�7 72�6
4 27�4 100�0

interviews, three phone recalls were randomly selected. Thus
recalls 2–4 do not represent the same recall occasions for all
of the women. Those women who were lost because of insuffi-
cient numbers of interviews were accounted for in the sample
weights.
This dataset has been used as an exemplar to test var-

ious methods of analysis because it consists of four inde-
pendent food records on each respondent (Krebs-Smith et al.
1990; Haines, Hungerford, Popkin, and Guilkey 1992; Nusser,
Carriquiry, Dodd, and Fuller 1996). The dataset used in this
analysis consists of 1,028 women who had nonzero food
intake on all of the recall days. (Four women who had zero
food intake on a least one of the recall days were eliminated.)
Five of the strata in the dataset had a single PSU. For the pur-
poses of variance estimation, these were paired/combined in
such a way that the resulting 56 strata each contained 2 PSUs
and 1 stratum contained 3 PSUs.
For each interview, a respondent was assigned a value of 1

if she reported consuming any vegetable on the recall day (i.e.,
one or more mentions) and a 0 otherwise. This broad group
of vegetables includes salad, legumes, and such foods as peas,
carrots, corn, and other green and deep-yellow vegetables, but
not potatoes; this group of vegetables is of special interest
because of its nutrient content.
The weighted relative distribution for the number of recall

days on which sampled women reported consuming at least
one vegetable is shown in Table 1. On average, respondents
reported consuming at least one vegetable on 2.8 days out
of 4. Approximately 73% of respondents did not consume a
vegetable on at least 1 of the 4 recall days and 12.5% did so
on at most 1 of the 4 days.

3. LATENT CLASS MODEL FOR SURVEY DATA

An LCM is used to explain underlying, unobservable cate-
gorical relationships, or latent structures, that characterize dis-
crete multivariate data (Lazarsfeld and Henry 1968; Goodman
1974; Dayton and Macready 1976; Haberman 1979). When
food intake is dichotomized, LCA is a technique uniquely
suited to combining dietary information from several food
records or 24-hour recalls to characterize the regularity of veg-
etable consumption of a population (as here) or population
subgroup for a food or food group of interest. Here, regu-
larity of vegetable consumption is the underlying structure of
interest.
Methods for LCA that take into account sample design

features, such as sample weighting, clustering, and stratifica-
tion used in complex surveys like the CSFII, have not been
described in the literature. However, results from regression
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analysis have shown that if data are collected under a com-
plex sampling design and simple random sampling (SRS)
is assumed in the analysis, then parameter estimates can be
biased and standard errors underestimated (Korn and Graubard
1999, pp. 159–172).
Let Yi = �yij� be the vector-valued response for J survey

items, j = 1� � � � � J , for the ith respondent drawn from a finite
population of size N . The polytomous response options take
on discrete values r = 1� � � � Rj for the jth item. The probabili-
ties, �l, for the unobserved LCs, cl� l= 1� � � � �L, are called LC
proportions. Item-conditional probabilities, �lj1� � � �ljRj

, rep-
resent the probabilities of response r to item j given member-
ship in LC l. Thus for each item j there is an Rj-vector of con-
ditional probabilities. To illustrate the notation, consider data
based on four polytomous variables with, say, R1 = 2�R2 =
4�R3 = 3, and R4 = 2 denoting the number of discrete values
taken on by each item. Yi = �yi1� yi2� yi3� yi4�

′ = �1�3�2�2�′

might represent the responses for the ith respondent.
The traditional LCM can be defined as

Pr�Yi � cl�=
J∏

j=1

Rj∏
r=1

�
�ijr
ljr (1)

and

Pr�Yi�=
L∑

l=1

�l Pr�Yi � cl�� (2)

where the Kronecker delta is defined as

�ijr =
{
1 iff yij = r� r = 1� � � � �Rj

0 otherwise.

The usual restrictions for item-conditional probabilities apply
(i.e.,

∑Rj

r=1�ljr = 1 ∀ j� and, in addition, the LC proportions
sum to 1 (i.e.,

∑L
l=1 �l = 1�. Note that, unlike models proposed

by Clogg and Goodman (1984, 1985), the model in (1) and (2)
does not directly reflect grouping of respondents, for example,
males and females.
In the context of the CSFII dataset, the response variables,

yij , are (dichotomous) indicators of consumption of some food
of interest on each of 4 recall days. For a two-class model, the
LC proportions refer to the proportions in “regular” and “non-
regular” vegetable consumption groups. Each item-conditional
probability refers to the probability or “propensity” for con-
suming at least one vegetable on the corresponding recall day,
given membership in a specific consumption group.
Assuming SRS with a sample of size n, the log-likelihood

is

�=
n∑

i=1

ln
L∑

l=1

�l Pr�Yi � cl�=
n∑

i=1

ln

{
L∑

l=1

�l

J∏
j=1

Rj∏
r=1

�
�ijr
ljr

}
� (3)

Fundamental to classical LCA is the assumption that the
observed variables are independent within LCs. Parameter
estimation can be accomplished by means of maximum likeli-
hood methods using conventional iterative algorithms such as
Newton–Raphson or the EM algorithm (Dempster, Laird, and
Rubin 1977; Heinen 1996).

In the case of non-SRS, where sample weights,wi, are avail-
able for each respondent (e.g., from a public-use data tape),
these weights are usually the product of the reciprocal of the
sample inclusion probability, a factor that adjusts for nonre-
sponse, and a factor that reflects poststratification adjustment.
These weights may be expansion weights that sum to the total
population size or relative weights that are scaled to sum to the
sample size. A sample-weighted pseudo–log-likelihood can be
defined as

�w =
n∑

i=1

wi ln
L∑

l=1

�l Pr�Yi � cl�

=
n∑

i=1

wi ln

{
L∑

l=1

�l

J∏
j=1

Rj∏
r=1

�
�ijr
ljr

}
� (4)

Maximizing the pseudo–log-likelihood simultaneously with
respect to �l and �ljr provides design-consistent estimates of
the underlying population parameters (Pfeffermann 1993).
The LC model used in this article can be expressed as a

log-linear model, using either a Poisson or binomial distribu-
tion for the cell counts in the finite population. In the survey
setting, the weighted pseudo-likelihood is obtained by replac-
ing the unweighted cell counts with the sample-weighted cell
counts in the likelihood, as implied by (4). An alternative
method for log-linear analysis of sample weighted contingency
tables (Clogg and Eliason 1987; Agresti 1990, p. 199) uses
the unweighted cell counts with an offset, consisting of the
log of the inverse of the average cell sample weight, in each
cell of the contingency table. Under a correctly specified log-
linear model for the population, this method will produce con-
sistent estimates of model parameters, that is, estimates that
are asymptotically equal to the values that would have been
obtained had they been computed using the entire finite pop-
ulation. However, if the log-linear model for the population
is misspecified, then the two methods will not agree asymp-
totically. We prefer the weighted pseudolikelihood method
because its estimates will be approximately unbiased for val-
ues of the population model parameters, regardless of whether
the model was correctly specified.
Although not explicit in the models as written, clustering

is taken into account when estimating standard errors. Cluster
sampling, such as that in the CSFII, induces correlation among
responses and typically results in sampling variances that are
larger than would be the case under SRS. Further, standard
test statistics (such as the Pearson chi-squared) used in LCA
are no longer asymptotically distributed as chi-squared random
variables when the data arise from a survey with clustered
sampling (Hidiroglou and Rao 1987; Roberts, Rao, and Kumar
1987).
Two methods of calculating standard errors for complex

sample survey data are adjustment using a design effect (deff),
and the use of a replication method such as the jackknife.
The first method was used in LCA by Haertel (1984a, 1984b,
1989). The jackknife is applicable to virtually any type of
complex sample design (Wolter 1985) and is known to provide
reasonable standard errors for many statistics that are smooth
(differentiable) functions of the data (Efron 1982). The appli-
cability of the jackknife to the estimation of LC parameters
under SRS has been studied empirically by Bolesta (1998).
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In complex sample surveys, sample weights and clustering
usually inflate the variance, whereas stratification may result
in variance reduction. The deff, the ratio of the variance under
the full design to the variance assuming SRS, is usually greater
than 1. Kish (1965, pp. 258–259) described this “comprehen-
sive factor” as attempting to summarize the effects of “various
complexities in the sample design, especially those of cluster-
ing and stratification� � � (and) may include effects of� � � var-
ied sampling fractions.” He noted that the design effect can be
used to obtain an effective sample size, n′ = n

deff
, to be used in

place of n, the actual sample size, in the calculation of stan-
dard errors. The size of the deff depends on the variable being
estimated and may vary among subsets of the population. If a
surveywide estimate of the deff is available and applied to all
estimates, then the adjustment may be too large or too small
and also may give misleading results for population subgroups
(Korn and Graubard 1995). Haertel (1984a, 1984b, 1989) took
the sample design into account in the calculation of standard
errors in LCA by using an external estimate of the overall deff
to estimate an effective sample size, which he then used in the
calculation of standard errors.
The jackknife was introduced as a method of bias reduc-

tion by Quenouille (1949), and the procedure was subse-
quently used to estimate the variance of a parameter esti-
mate (Mosteller and Tukey 1968; Miller 1968, 1974). Frankel
(1971) made an early application of this technique to complex
sample survey data. The method proceeds as follows. Let �̂
be the sample-weighted estimate of a population parameter of
interest, �, for a sample of size n. In a complex sample sur-
vey with stratification and clustering, the PSUs are randomly
grouped within strata, where each random group has approxi-
mately the same number of PSUs. Let kh denote the number of
random groups in stratum h�h = 1� � � � �H . A random group
of PSUs in stratum h is omitted, and the remaining observa-
tions in that stratum are reweighted by a multiplicative factor
kh/�kh−1�. The usual parameter estimates, called jackknife
estimates, are derived from the reduced sample. This process
is repeated sequentially for the entire sample of PSUs. A vari-
ance estimator based on the jackknife is (Wolter 1985)

v̂arJ ��̂�=
H∑

h=1

[
kh∑
s=1

kh−1
kh

��̂�sh�− �̂�2

]
� (5)

where �̂�sh� is the jackknife estimate of � omitting group s in
stratum h. Alternatively, �̂ may be replaced by the mean of
the jackknife estimates, �̂J = ∑H

h=1

∑kh
s=1 �̂�sh�/

∑H
h=1 kh. The

foregoing procedure also can be used without grouping the
PSUs, treating each PSU as a group of size 1.
In general, resampling methods are applied to PSUs without

attention to the form of subsampling within the PSUs. This
convenient feature is justified by the fact that when the first-
stage sampling fraction remains low (<10% for practical pur-
poses), the standard error may be accurately estimated from
the variation between PSU totals. The contribution from sec-
ond and later stage variances is reflected in the sampling error
estimated from the PSUs (Lee, Forthofer, and Lorimor 1986).
In addition, jackknife variance estimation correctly estimates
the component of variance due to sample weighting.

We are unaware of any commercial LC software appropri-
ate for analyzing complex sample survey data. Weighted esti-
mates of LC parameters are provided by the computer pack-
ages LEM (Vermunt 1997) and Latent Gold (Vermunt and
Magidson 2000); however, these programs do not provide cor-
rect estimates for the standard errors for surveys with stratifi-
cation and clustering. For the current study, GAUSS (version
3.5) (Aptech Systems, Inc. 1997) programming code was writ-
ten to perform the LCA and the jackknife and verified for tra-
ditional LCMs before being applied to complex survey data.

4. ANALYSIS OF DATA FROM THE CONTINUING
SURVEY OF FOOD INTAKES BY INDIVIDUALS

We fit a two-class LCM to the CSFII data taking sample
weights into account. Three-class models were not assessed
for these data, because the unrestricted three-class model is
not identified for four variables (Lindsay, Clogg, and Grego
1991). As shown in Table 2, �̂, the proportion in the first latent
class (LC1) is estimated to comprise 18% of the population.
LC1 can be interpreted as consisting of “nonregular,” or infre-
quent, vegetable eaters, that is, those who do not consume
vegetables on a regular (daily) basis. The second latent class
(LC2), comprising 82% of the population, can be interpreted
as consisting of those individuals who consume at least one
vegetable as more or less a regular (daily) practice. In LC1,
estimates of the item-conditional probabilities for vegetable
consumption on a given recall day, �̂1j , were variable, rang-
ing from .28 to .46 for vegetable consumption on the jth day,
whereas in LC2 these probabilities, �̂2j , were similar and con-
sistently higher, ranging from .73 to .78 (see Table 2). Note
that we drop the middle subscript (r) for the item conditional
probabilities because the responses have only two levels. The
jackknife standard error of the LC proportion, .13, was rel-
atively large, as were jackknife standard errors for the item-
conditional probabilities in LC1.
In general, the larger the LC, the more observations it rep-

resents and the smaller the variability in the estimates for
the item-conditional probabilities for that class. We calculated
estimates of standard errors based on SRS using a weighted
Fisher information based on the (weighted) pseudolikelihood,

Table 2. Latent Class Analysis of Vegetable Consumption Habits: 1985
Continuing Survey of Food Intakes by Individuals

Weighted data Unweighted data

Mean of Jackknife Mean of Jackknife
jackknife standard jackknife standard

Estimate estimates error Estimate estimates error

.178 �179 �128 �331 �332 �137

.456 �456 �200 �604 �604 �078

.391 �390 �227 �510 �510 �094

.275 �276 �113 �396 �397 �082

.392 �392 �148 �464 �464 �074

.781 �781 �021 �800 �801 �019

.764 �764 �030 �818 �818 �034

.766 �766 �069 �810 �811 �065

.729 �730 �040 �787 �787 �046
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where the weights were normalized to the sample size. These
were about one-half the size of the jackknife standard errors.
For the LC proportion, the standard error from the Fisher
Information was .07, compared to .13 from the jackknife; this
translated into a deff of about 4. Deffs for the conditional
probabilities ranged from about 1 to 4 (data not shown).
The Akaike information criterion (AIC) has been used to

assess goodness of fit for LCMs (Lin and Dayton 1994), but
has not been modified for complex sample survey data. We
used a Wald test to test goodness of fit for our two-class
model, because this test can be adapted to sample survey
data by using a design-based estimate of the variance matrix.
The Wald test statistic is the quadratic form W = d′V−1d,
where d is a 15H1 vector of the differences between the
observed and expected cell proportions for 15 of the 16 pos-
sible outcome cells and V is the estimated variance matrix
for d. The jackknife was used to compute V . We compared
W ×�57−15+1�/�57×15�, where 57 is the number of PSUs
(114) minus the number of strata (57), to an F distribution
with 15 and 43 degrees of freedom. (See Korn and Graubard
1999, pp. 91–93, for a discussion of Wald tests.) For the two-
class model, the test statistic was �72 �p= �75�, indicating that
the model fits the data satisfactorily. To assess bias in param-
eter estimates incurred by ignoring sample weights, we fit an
unweighted two-class model to the data (see Table 2). For the
unweighted data, the estimated proportion falling in LC1 was
.33 as opposed to .18 for weighted data. Differences for the
conditional probabilities were smaller. Overall, the variances
tended to be greater when the weights were used than when
they were ignored.
We used Wald tests for the difference between the weighted

and unweighted estimates to assess whether the sample
weights were informative. Because weighted analyses tend to
increase the variance of estimated parameters, these tests are
known to have low power. Testing the 8 item-conditional prob-
abilities, the F value for the Wald test with 8 and 57 degrees
of freedom was 1�02 �p = �49�. Testing only the LC propor-
tion, the F value for the Wald test with 1 and 57 degrees of
freedom was 2�01 �p = �16�. The results of this analysis sug-
gest that the weights may not be informative.
The U. S. Department of Agriculture computed a single

estimated overall deff of 1.43 for analyzing the 4 days of
records for the 1985 CSFII. It was computed as 1+�cv�wts�2�
(Joseph Goldman, personal communication), where cv�wts� is
the coefficient of variation of the sampling weights. This deff
takes into account the variability associated with the weights,
but not the effects of clustering or stratification.
As we had decided to retain the weights, we were inter-

ested in obtaining an estimate of the deff due to clustering
and stratification alone, apart from that due to the weights.
For the sample of 1,028 women, we generated a vector of
1,028 uniform random numbers, each number associated with
an observation. Next, we randomly regrouped the response
vectors into clusters retaining the original cluster sizes. We
then fit the reordered data to a two-class model and used the
resulting variances to estimate the deff for each parameter esti-
mate. The deff was estimated as .97 for the LC proportion and
ranged from .98 to 1.17 for the item-conditional probabilities

Table 3. Latent Class Analysis of Vegetable Consumption Habits: 1985
Continuing Survey of Food Intakes by Individuals Weighted Data,

Clusters Broken by Random Reordering

Jackknife Jackknife
variance variance Ratio of

Mean of estimate, estimate, variances
jackknife without with with:without

Parameter Estimate estimates clusters clusters clusters

� �178 �179 �017 �016 �972

�11 �456 �455 �041 �040 �976
�12 �391 �390 �050 �052 1�027
�13 �275 �276 �011 �013 1�157
�14 �392 �391 �020 �022 1�111

�21 �781 �781 0 0 �980
�22 �764 �764 �001 �001 1�095
�23 �766 �766 �005 �005 1�012
�24 �729 �730 �001 �002 1�122

(Table 3). These effects were modest compared to the deffs
that incorporate weighting as well as clustering, indicating
that most of the increase in variance was due to the sample
weights.

5. SIMULATION

We performed a simulation to investigate the validity of the
methods used for taking weights and clustering into account
for the CSFII data and to assess the accuracy of the jack-
knife standard errors. This simulation was based on numbers
of strata (i.e., 60) and PSUs (i.e., 2 per stratum) similar to
those in the CSFII. The size of the PSUs in the simulation
was set at 8, the average PSU size in the CSFII. For simplic-
ity, all PSUs were of equal size and the sample size was set
at 960, a multiple of 8 and similar to the CSFII sample size.
A population with an underlying two-class structure was sim-
ulated. We drew the LC proportions for 30 of the strata were
drawn from a beta distribution '�1�9�, with mean .1, (i.e.,
�1 = �1), and drew the proportions for the remaining 30 strata
from a beta distribution '�3�7�, with mean .3 (i.e., �2 = �3),
so that the proportion in LC1 in the overall simulated popula-
tion, .2, was close to .18, as estimated in the two-class solution
for the CSFII data. We randomly generated values of the LC
proportions from these beta distributions, inducing intraclus-
ter correlations within PSUs. We selected the beta distribution
because it is a flexible two-parameter distribution (scale and
location parameters), has values lying in the [0, 1] interval,
and is the natural conjugate prior distribution for the binomial
distribution. In theory, the intraclass correlation coefficient for
a beta distribution with parameters �(�)� is �( +)+ 1�−1

(Brier 1980). We set the item-conditional probabilities at .2
for LC1 and .7 for LC2 to approximate the CSFII values.
A plot of the sample weights from the CSFII suggests that

they are approximately lognormal in distribution. We used
moments of the empirical distribution of the weights to define
a lognormal distribution with a median of .84 and a variance
of .616, and generated sample weights for the observations in
the simulation from this distribution. The simulation can be
viewed as a series of one-stage cluster samples where each
cluster consists of b observations and where the LC propor-
tions vary by cluster within each stratum.



6 Journal of the American Statistical Association, September 2002

Table 4. Estimated True and Jackknife Variances for Simulation

Estimated Jackknife Ratio of
true estimate of jackknife:true

Parameter variance variance variance

� �00202 �00217 1�074

�11 �00518 �00534 1�031
�12 �00507 �0054 1�065
�13 �00512 �00532 1�039
�14 �00499 �00532 1�066
Mean �00509 �00535 1�050

�21 �00076 �00078 1�026
�22 �00077 �00078 1�013
�23 �00075 �00077 1�027
�24 �00077 �00079 1�026
Mean �00076 �00078 1�023

To investigate the effect of clustering on the jackknifed vari-
ance, we generated clustered data from the aforementioned
population, and estimated the variance taking the clustering
into account. We then calculated the jackknife variance for
a sample from the same population constructed using the
reordering method described in the previous section in the dis-
cussion of the deff. We randomly regrouped observations into
clusters of the same size and, using these clusters as PSUs,
estimated jackknife variances.
The code for the simulations was written in the matrix lan-

guage, GAUSS, version 3.5, and the EM algorithm was used
to estimate model parameters. The programming criteria used
in the simulation were (1) 1,000 replications, (2) convergence
criterion of 10−6, and (3) maximum number of 500 iterations
allowed to achieve convergence in the LCA algorithm (non-
converging cases were replaced in the simulation).
To assess the validity of the jackknife variances from

the simulations, we generated proxy population variances by
calculating mean squared errors for the parameter estimates
based on 10,000 replications using the same parameter val-
ues as in the simulations. The ratio of the jackknife variance
estimate to the corresponding proxy variance was taken as a
measure of the accuracy of the jackknife estimate. A 95%
two-tailed confidence interval (CI) was calculated for the sim-
ulation parameter values as

CI =
{
�̂− t a

2 �df

√
v̂arJ � �̂+ t a

2 �df

√
v̂arJ

}
� (7)

where �̂ can be either the LC proportion or an item-conditional
probability, � is the type I error rate, df is the number of
(jackknifed) groups minus the number of strata, and v̂arJ is
the jackknife variance estimate.
As expected (Kish and Frankel 1974), for all parameters, the

jackknifed variances modestly overestimated the proxy vari-
ances (Table 4). Estimates for the item-conditional probabil-
ities were within 7% of the proxy variances for the smaller
LC and within 3% for the larger class. The jackknife overes-
timated the variance of the LC proportion by 7%. As shown
in Table 5, coverage was close to the nominal .95 level for all
parameters.

Table 5. 95% Confidence Interval Coverage for Simulation,
n= 960� �1 ∼ ��1� 9�, �2 ∼ ��3� 7�, Lognormal Weights

Proportion Proportion
in lower in upper

tail tail Coverage

� 0 �060 �940

�11 �025 �042 �933
�12 �023 �037 �940
�13 �034 �042 �924
�14 �024 �032 �944
Mean �027 �038 �935

�21 �014 �028 �958
�22 �017 �026 �957
�23 �016 �030 �954
�24 �028 �026 �946
Mean �019 �028 �954

6. DISCUSSION

Multiple dietary records of food intake typically have been
summarized by means and proportions. LCA is a new method
of combining records to group respondents into categories,
or classes, that define patterns of food consumption and pro-
vide estimates of class size. We fit an unconstrained model
because of the possibility that seasonality or other variables
might affect vegetable consumption over the course of the sur-
vey year. Fitting a two-class model, we found that about 18%
of the population of women age 19–50 consumed a diet defi-
cient in vegetables in that they did not make consumption of
these foods a regular practice. LCA also provides estimates
of the item-conditional probabilities (class-specific propensity
scores). There was a suggestion that respondents tended to be
more likely to report consuming at least one vegetable on the
first survey day than on later recall days. Because vegetable
consumption is advocated as part of a good diet, respondents
may have been more likely to report eating a vegetable in
the face-to-face interview than when queried by telephone.
Although the similarity of the item-conditional probabilities
for recalls 2–4, especially for LC2, suggested that a model
restricting these probabilities to be equal might be appropriate,
we rejected this course because it would have been a post hoc
analysis. The similarity of the item-conditional probabilities
over the 4 recall days for LC2 suggested a stable propensity
to consume vegetables. This was not true for LC1.
In this study, we used LCA to estimate the proportion of

women age 19–50 that consume vegetables on a regular basis,
a different objective than estimating the number of servings
per day as in some other types of analysis. LCA requires only
indicators of consumption and can lead to data reduction in
some datasets. Thus LCA can be readily performed on data
that otherwise may require a multiple-step, perhaps lengthy,
analysis involving transformations and distributional assump-
tions. For example, Nusser et al. (1996) proposed a complex
multistep procedure for estimating the distribution of nutrient
intake. Finally, LCA provides a new way to describe “usual”
dietary intake and to estimate the number and size of sub-
groups that display different food consumption patterns. Such
analyses may be useful in developing public health interven-
tion programs.
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There has been a long-standing debate in the statistical lit-
erature on whether to do weighted or unweighted analysis
(i.e., design-based or model-based analysis) of survey data
(Brewer and Mellor 1973; Smith 1976, 1984; Hansen, Madow,
and Tepping 1983; Fienberg 1989; Kalton 1989; Korn and
Graubard 1995a, 1995b). It is well known that using sample
weights will result in approximately unbiased or consistent
estimates for population parameter values, but may increase
the variances of these estimates, whereas an unweighted
analysis may result in biased or inconsistent estimates, but
smaller variances. We have described a weighted analysis that
uses weighted pseudolikelihood estimation, and applied this
method to the analysis of the CSFII data. Consistency of
weighted estimates is maintained regardless of whether the
posited model is correctly specified. In contrast, unweighted
estimates depend on the sample weighting of a particular sam-
ple design when the sample weights are informative for the
analysis of interest (Pfefferman 1993). Issues to be consid-
ered when choosing a weighted versus an unweighted analysis
are (1) the purpose of the analysis—analytical versus descrip-
tive; (2) the magnitude of the inefficiency that would result
from a weighted analysis if the weighting were unnecessary
to correct for bias and whether this inefficiency is small rela-
tive to the effect being estimated; (3) the expected bias from
an unweighted analysis; and (4) whether sufficient informa-
tion is known about the sample design and whether variables
are available to model the sample design in an unweighted
analysis (Korn and Graubard 1999, chap. 4).
For LC modeling, sample weighting can affect the esti-

mation of the item-conditional probabilities, the LC propor-
tions, or both when sampling rates differ across subgroups.
Consider an unstratified analysis of a population compris-
ing two subgroups (i.e., a single LC model be fitted to the
entire population), where both subgroups have the same num-
ber of underlying latent classes but are sampled at different
rates. If the LC proportions differ between subgroups, then
sample-weighted estimates of the LC proportions will differ
from unweighted estimates. If the item-conditional probabil-
ities are homogeneous across subgroups, then the weighted
and unweighted estimates of the item-conditional probabilities
should be approximately the same, whereas the LC propor-
tions could differ. If these probabilities differ between sub-
groups, then again weighted and unweighted estimates can
differ. If the analysis is stratified so that a separate LCM is fit-
ted to each subgroup, then weighting is no longer necessary.
However, stratifying among all population subgroups is rarely
feasible.
The CSFII data analysis was a descriptive analysis that used

LC modeling without covariates. The objective of the anal-
ysis was to obtain unbiased estimates of the LC proportions
and item-specific probabilities for the target population. Fol-
lowing the recommendations of Korn and Graubard (1999,
pp. 180–182) we used a weighted analysis for this descriptive
study. For an analytical study, the trade-off between variance
and bias must be carefully considered. An analyst choosing
to use unweighted analysis because of large inefficiency due
to the weighting should adjust for the sample weighting by
including in the analytic model those sample design variables
used in determining the sample weighting (Korn and Graubard

1999). Regardless of the type of analysis done, model ade-
quacy should be assessed using diagnostic methods, as we
have tried to do here.
Analyses of the CSFII data and the simulations done with

and without sample weights demonstrated both the possibil-
ity of incurring unacceptable bias by ignoring the weights
and the potential increase in variance arising from including
them unnecessarily. The CSFII design is described as self-
weighting, although weights were used to adjust for eligibility
within the household and for nonresponse. The self-weighting
aspect of the design might lend support to the notion that the
weights could be ignored, although this is not obvious for the
present analysis. The Wald test comparing the weighted esti-
mates to the unweighted estimates showed a larger, but not
significant, effect on the LC proportions than on the item-
conditional probabilities. This test has low power, however.
The jackknife is an easily applied method for obtaining

empirical variance estimates for an LCM applied to complex
sample survey data. Our simulation suggested that the jack-
knife standard errors slightly overestimate the actual standard
errors. Despite this overestimation, these estimates seem suf-
ficient for most practical applications. However, it may be
worthwhile to investigate other resampling methods, such as
the bootstrap or modifications to the jackknife. Another pro-
posed approach uses linearization variances based on Taylor
series approximations of the estimating equations from the
sample weighted pseudolikelihood (Wedel et al. 1998). This
approach is less flexible in that it requires developing new soft-
ware (e.g., for the calculation of second derivatives for each
term in the model for each model considered.)
Another approach to analyzing clustered sampled data is

using hierarchical modeling with random effects to model
the correlation at each stage of cluster sampling. The use of
random-effects models applied to survey data is an area of
current research with no well-established methods, even in
the case of linear models (Korn and Graubard 1998; Pfeffer-
mann, Skinner, Holmes, Goldstein, and Rasbash 1998). This
approach is difficult to implement because it requires knowl-
edge of all levels of clustering, which is often unavailable
on public use files because of confidentiality concerns. The
approach that we have taken, (weighted) pseudolikelihood
with design-based jackknife variance estimation, is commonly
used to analyze survey data with complex sample designs
(Skinner, Holt, and Smith 1989; Korn and Graubard 1999,
p. 101).
We do not recommend inflating the variance by an overall

survey deff, as done by Haertel (1984a, 1984b, 1989). First,
we found that the jackknife standard errors, which take the
sample design fully into account, were about twice as large
as standard errors based on Fisher information for a sample-
weighted likelihood; this difference translates into deffs of
approximately 4. These very large deffs were due primarily to
the effects of sample weights, with only modest effects due to
clustering and stratification. These deffs varied by parameter
and were larger than the overall deff of 1.43 estimated by the
U. S. Department of Agriculture.
National surveys such as the CSFII, the National Health

and Nutrition Examination Survey, and the National Health
Interview Surveys are major sources of information on dietary
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practices in the general population and in demographic sub-
groups. In the past, LCA has not been applied to these data.
With the development of methods to accommodate weighted
and clustered data, LCA can be used to describe food con-
sumption patterns in the whole population, as well as in sub-
sets of interest.
The 1994–1996 CSFII collected only two 24-hour recalls.

LCA can be applied to surveys such as this by introducing
two or more latent variables, such as separate latent indicators
of fruit and of vegetable intake, and fitting models with two
or more classes. These may be independent or correlated, as
discussed by Hagennars (1990). Alternatively, multiple group
analyses can be performed, where the groups relate, to say,
sex, to race, or to some other classification variable (Dayton
1999).
An area of future research is the development of goodness-

of-fit test statistics for LC models for survey data. Although
sample weights might be readily incorporated into statistics
based on the log-likelihood, the distribution of test statistics
such as the AIC must be modified to take into account clus-
tering or stratification.

[Received Xxxxx xxxx. Revised Xxxxx xxxx.]
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Comment
Alicia L. Carriquiry and Sarah M. Nusser

It is well known that collecting and analyzing dietary intake
data can be challenging (e.g., Beaton et al. 1979; Basiotis,
Welsh, Cronin, Kelsay, and Mertz 1987; Dwyer and Coleman
1997). Yet despite the difficulties inherent in accurately mea-
suring food intakes and in drawing useful inferences from
those measurements, the U. S. government relies on com-
plex dietary intake surveys to guide nutrition and health pol-
icy, monitor the performance of food assistance programs,
and design interventions such as national food fortification
programs. In this light, the work of Patterson, Dayton, and
Grauband is welcome in that it seeks to capitalize on the rich
data available for dietary assessment.
In this discussion we focus on the subject matter interpreta-

tion and the statistical aspects of the variable used to indicate
dietary intake as well as the latent class model used to make
inferences using this variable. In the next section we discuss
the importance of informative dietary intake measures with
respect to policy development. In Section 2 we focus on the
model itself. Finally, in Section 3 we provide some conclu-
sions and thoughts.

Alicia L. Carriquiry is Associate Provost Professor, and Sarah M. Nusser
is Associate Professor, Department of Statistics, Iowa State University, IA,
50011 (E-mail: alicia@iastate.edu and nusser@iastate.edu).

1. VARIABLES OF INTEREST
TO POLICY MAKERS

In nationwide surveys such as the Continuing Survey of
Food Intakes by Individuals (CSFII), respondents are asked
to report on the amounts of food consumed during the previ-
ous 24 hours. The amounts of the various foods consumed are
expressed in such units as glasses, cups, grams, slices, table-
spoons, and so forth. Even though the interviewer arrives at
a respondent’s home armed with two- and three-dimensional
models that are meant to help the respondent to accurately
quantify the amount of each food consumed, it is still well
known that correctly gauging portion sizes can be difficult
(Hartman et al. 1994; Haraldsdottir, Tjonneland, and Overvad
1994; Dwyer and Coleman 1997). When interviews are con-
ducted over the phone, measurements are likely to be even
more inaccurate. In this sense, the authors correctly argue that
the measurement error in dietary intake data can be signifi-
cant. They believe that the presence of this measurement error,
compounded by the fact that respondents tend to underreport
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the amount of food eaten, sometimes by omitting foods alto-
gether, justifies discretizing the amounts of foods consumed to
a binary 0–1 indicator of whether the individual reported con-
sumption of at least one fruit or vegetable during each survey
day.
One could argue that the presence of measurement error

does not imply complete lack of information, and that
discretizing continuous variables results in loss of information
that can be useful in drawing inferences about food con-
sumption patterns in the population. Indeed, the binary vari-
able indicating consumption of vegetables is not immune to
under reporting or over reporting of the amounts of food con-
sumed, because it has been shown that respondents tend to
omit “sinful” foods such as candy and alcohol and to report
consumption of fruits and vegetables that did not take place
(e.g., Hebert et al. 1997; Kristal, Feng, Coates, Oberman, and
George 1997). These reporting biases may depend on indi-
vidual characteristics such as body mass index (Tarasuk and
Beaton 1991; Hebert et al. 1997; Kristal et al. 1997; Johnson,
Soultanakis, and Matthews 1998).
A second motivation to use a dichotomous indicator of con-

sumption is the authors’ perception that usual intake is not
really defined in the dietary assessment community. However,
the concept of usual intake of a food or a nutrient is typically
defined as the long-run average intake of the food or nutri-
ent. Formally, if Yij denotes the observed intake of a food or
a nutrient by individual i on day j of the survey, then usual
intake is defined as

yi = E�Yij � i��
the conditional (on individual) expectation of daily intake.
This definition is widely used by researchers (including
Guenther et al. 1997 cited by the authors) and policy makers,
and was proposed by the National Research Council (1986)
in its report (on nutrient adequacy 1986). More recently, the
same definition has appeared in various reports by the Insti-
tutes of Medicine (1998, 2000, 2001) that discuss (among
other topics) the use of nationwide food consumption surveys
to assess the intakes of individuals. In some applications, the
usual intake of a food is expressed in terms of grams of the
food consumed, whereas in some others, intake is expressed
as the number of portions of the food consumed.
The approach taken by Patterson et al. assumes that two

classes of individuals are present in the population: those that
consume vegetables on a “regular” basis and those that do not.
This term is not defined operationally, making it difficult to
understand how to interpret results from the analyses. In par-
ticular, it is not completely clear how regularity of consump-
tion relates to a concise concept of usual intake, and indeed
seems to be more descriptive of consumption patterns. We
return to this point later.
The loss of information in a dichotomized consumption

variable comes from ignoring the amounts of a food con-
sumed, which may be problematic when intake amounts are
associated with health outcomes such as cancer. An individual
who consumes a small portion of vegetables on most survey
days is likely to be classified as a “regular” consumer by the
approach proposed by Patterson et al. but so is another indi-
vidual who consumes the recommended amounts of fruits and

vegetables each day. The breadth of this class may make it dif-
ficult to draw meaningful inferences about the impact of diet
on such diseases.

2. THE LATENT CLASS MODEL
FOR DIETARY ANALYSIS

Mixture models, and in particular latent class (LC) models,
can be useful to represent observations hypothesized as com-
ing from different subgroups in the population. Sometimes the
investigator has a strong scientific argument to decide a priori
on a number L of classes. In those cases, the analyst would
typically fit an L class model to the data, and then would test
whether models with more than L classes might fit the data
better (in some predetermined sense). If the data are consistent
with the investigator’s hypothesis, then it is to be expected that
the L class model will fit the data at least as well as models
with a larger number of classes.
Patterson et al. do a very nice job of presenting the method-

ology for fitting a two-class LC model to data collected in
a complex survey. However, they do not offer convincing
evidence for the choice of the two-class model. Indeed, the
choice of model appears to be due to data limitations rather
than scientific or statistical arguments. The modified Wald test
for goodness of fit presented in the article does not indicate
whether the two-class model fits the data at least as well as a
model with a different number of classes.
The authors correctly point out that the unrestricted model

is not identified for L > 2. In fact, identifiability problems
arise even if we place “reasonable” restrictions on the model.
Consider, for example, the case where we assume that dietary
intake information, collected in person during the first survey
day is more accurate than that collected via phone interviews
and on later sample days. The validity of this assumption has
been demonstrated. In fact, a more realistic model, from a
nutrition standpoint, would be one where the first day is con-
sidered to be different from the rest of the days. Using the
author’s notation, we would then define

�ij = 1 iff yij = 1

= 0 otherwise

(for the case where Rj = 1 used in this article) and

xij =
J∑

j=2

�ij �

The new variable x would then take on the values
�0�1�2� � � � � J − 1�, depending on how many days after the
first the respondent reported eating at least one fruit or veg-
etable. The likelihood function in expression (4) in Patterson
et al. would then be rewritten as

�w =
n∑

i=1

wi ln
L∑

l=1

�l�
�ij
l1

J∏
j=2

�
xij
l2 �

where now �l1 and �l2 represent the frequency of consump-
tion of fruits or vegetables in the first survey day or in later
survey days, given latent class l.
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Notice that in the two-class LC model for this restricted
case, the number of parameters to be estimated is smaller than
in the unrestricted model. Here, we must estimate four item
probabilities and one mixing parameter. However, the number
of degrees of freedom available for estimation is also smaller,
because now we have only 7 �8− 1� degrees of freedom to
work with. The three-class model, with the same number of
degrees of freedom, has eight unknown parameters to be esti-
mated; therefore, any model with more than two classes is
unidentified even after restrictions.
This is typical for binary data. The dimensionality of the

table with which we can work decreases as we collapse
the model; thus we would be limited to fitting a two-class
model to these dichotomized data even under strong model
restrictions. This perhaps could be seen as another reason to
avoid discretizing continuous data into binary categories. With
intake data expressed as either number of servings or even
amounts consumed, it would have been possible to fit a richer
class of models and to test whether the two-class model LC
is reasonable for these data.

3. AN ALTERNATIVE APPROACH

Are there different “classes” of individuals in the popula-
tion when it comes to consumption of fruits and vegetables?
Perhaps, but determining just how many will require a differ-
ent type of analysis. Nusser et al. (1997) proposed an alter-
native approach to assessing intakes of foods from complex
survey data. In their work, the underlying assumption is that
there exists a distribution of probabilities of consumption in
the population. In fact, Nusser et al. (1997) take the analysis
one step further and estimate the distribution of usual food
intake (for a given food) by combining the distribution of
probability of consumption with the distribution of amounts
consumed. Although it is true that the procedure is consider-
ably more complex, it is also true that the outcome from the
analysis provides a richer assessment of the intake of a food
(both in terms of frequency and of amounts) in the popula-
tion of interest. The Nusser et al. (1997) procedure accounts
for differential weights resulting from the design of the sur-
vey or from nonresponse, but assumes that the probability of
consuming a food is independent of the amount consumed.
This assumption may not hold for foods such as milk and soft
drinks, however.
We thank the authors for bringing to the fore the importance

of correctly analyzing and interpreting dietary intake data, and

for presenting a new modeling approach for food consumption
patterns.
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Comment
Michael R. Elliott and Mary D. Sammel

Latent class analysis (LCA) has been an increasingly pop-
ular useful data reduction and analysis tool, used not only
in the analysis of categorical data, as Patterson, Dayton, and
Graubard (PDG) do here, but also to classify count or con-
tinuous longitudinal data or mixed continuous and categorical
data as well (see e.g., Roeder, Lynch, and Nagin 1999; Muthen
and Shedden 1999). Despite dozens of journal articles appear-
ing each year using LCA in areas as diverse as epidemiology,
psychology, and economics, PDG are correct that virtually no
attempts have been made to use LCAs in a manner that takes
into account complex sample design schemes. This makes
their contribution particularly timely and useful.
We discuss several features of LCA that we believe will

enhance the understanding of their use in this context. These
features include the choice of model (i.e., data reduction) of
the observed data, the probabilities of individual class mem-
bership and the effect of weighting on these probabilities, the
view of the effect of weights as an interaction between the
LCA structure and the probability of inclusion, and some addi-
tional model-checking procedures.
In the context of nutrition research, PDG’s model addresses

a somewhat different perspective, that of summarizing events
with low prevalence and categorizing subjects with little or no
consumption. LC and trait models are very useful for summa-
rizing multiple outcomes and has the potential to increase the
power to identify effects (Sammel and Ryan 1996; Holmes
et al. 1987). PDG mention that LC methods are useful tools
for data reduction; however, they do not use this attribute to
the fullest extent. Before any modeling, the data for each inter-
view are reduced to a single Bernoulli outcome, any vegetable
consumption (yes/no). LCA models have already been devel-
oped to handle any number and type of outcome (Bernoulli,
count, measured), and we encourage PDG to extend their
method. The reduction method that they use carries with it the
strong assumption that any versus none is all that is relevant,
whereas additional data concerning low consumption would
enhance the model’s ability to discriminate among subjects of
different consumption classes. A simple extension would be
to model the number of vegetables reported at each time point
as a Poisson count. Alternatively, an additional level could
be incorporated into the model for subject responses to each
individual item of the recall at each time point. This would
add the potential for evaluating more than two classes and
would increase the power of the analysis by increasing the
effective sample size unless the correlation among the items is
extreme [(Legler, Lefkopoulou, and Ryan 1995).] Extending
the model in this direction would allow PDG to evaluate the
contribution of each item and search for clustering of items.

Michael R. Elliott and Mary D. Sammel are Assistant Professors, Depart-
ment of Biostatistics and Epidemiology, University of Pennsylvania School
of Medicine, Philadelphia, PA 19104 (E-mail: melliott@cceb.upenn.edu and
msammel@cceb.upenn.edu).

In addition, given estimates for the item parameters (�) and
jackknife estimates of the covariance matrix, hypotheses about
these parameters can be tested. For example, formal testing of
the hypothesis “sporadic vegetable eaters (those in class 1) are
more likely to report consumption in a face-to-face interview”
could be formulated with a contrast statement and an F test.
In their model, PDG focus on estimation of population

parameters for the proposed LC model. Although they are
not concerned with a predictive model for individual class
membership, determining the probability of class membership
for each subject conditional on the observed data is useful
for several reasons. First, as a model-checking procedure, we
would prefer LC models that sharply delineate individuals into
the L distinct classes over those that assign a probability of
approximately 1/L to all subjects. Using the notation of PDG,
it is straightforward to show that the probability of subject i
being a member of class l is given by

Pr�cl � yi�= pli/
∑
l

pli� pli = �l

J∏
j=1

R∏
r=1

�
�ijr
ljr � (1)

where �ijr is the Kronecker delta equal to 1 iff yij = r . Com-
paring the histogram of these posterior probabilities computed
from (1) using the unweighted and weighted maximum like-
lihood estimates from PDG’s Table 2, Figure 1 shows that
the weighted posterior probabilities (a) delineate the poste-
rior class probabilities more sharply than the unweighted esti-
mates (b). In particular, if we assign those with Pr�cl =
1 � yi� > �5 to class 1, the “sporadic vegetable eaters,” we see
a nice alignment with the observed data: The 12% of subjects
that reported eating vegetables on a maximum of 1 day are
assigned to class 1.
Moreover, these posterior probabilities can themselves be

used as outcomes for further analyses that relate the latent
class assignments to observed covariates. Table 1 considers
the log-odds of being classified as a “sporadic” vegetable
eater relative to age, region of residence, income, and race,
where subjects are classed as sporadic or consistent vegetable
eaters depending on whether their posterior probability of
being in one class or the other is > �5. By considering the
unweighted and weighted classification schemes, we obtain
insight into the informative nature of the weighting. Both
models are similar with respect to region (no association)
and income (those with income < 130% of the poverty level
are much more likely to be sporadic vegetable eaters than
those with higher incomes), whereas the weighted classifica-
tion shows a somewhat stronger positive association between
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Figure 1. Histogram of Posterior Probability of Class Membership
Pr�cl = 1 � yi� (“sporadic vegetable eating class”), using Weighted
(a) and Unweighted (b) Estimates.

youth and sporadic vegetable eating and a much stronger
positive association between race and sporadic vegetable eat-
ing, with African-Americans being more likely than Cau-
casians to be classified as sporadic vegetable eaters. A polyto-
mous logistic regression relating the number of days on which
vegetables were consumed to the predictors in Table 1 would
be an alternative analysis. This is more complex to interpret,
however, particularly if the proportional odds assumption is
violated.

Table 1. Log-Odds Ratios for Odds of Being in the “Sporadic”
Vegetable Eater Class, using Weighted and Unweighted Maximum
Likelihood Estimates of �l and �ljr to Determine Posterior Probability

of Classification Given by (1)

Covariate Weighted Unweighted

Age (years) −�036 (.015) −�028 (.010)
Region (vs. Northeast)
Midwest .24 (.32) −�07 (.20)
South .21 (.34) −�21 (.23)
West −�42 (.46) −�09 (.23)
Income (vs. 300+%

of poverty level)
130%–300% 1.07 (.30) 1.00 (.21)
<130% −�04 (.26) .26 (.20)
African-American (vs.) .77 (.35) .14 (.29)

NOTE: Standard errors (estimated by jackknifing) are in parentheses.

This result leads to the next point, which PDG also allude
to in their discussion—namely, that the effect of the weighting
can be thought of as an interaction between sampling selection
probability and LC structure. Hence noninformative weighting
is equivalent to no interaction between the LC structure and
the probability of inclusion, and using the weights in such a
circumstance is equivalent to estimating an interaction from a
sample when none is present in the population and using this
estimated interaction together with known population values
to determine marginal main effect estimates; the resulting esti-
mators will remain consistent (assuming that the interaction
estimate itself is consistent) but will be less efficient. Con-
versely, ignoring informative weighting is equivalent to esti-
mating a nonzero population interaction from a sample and
determining marginal main effects using incorrect population
estimates; the resulting estimates will be biased to the extent
that the interaction is large and the population estimates mis-
specified. As PDG note, for the weighting to be noninforma-
tive in LCA, the LC structure must be unrelated to selection
inclusion with respect to both the class probabilities and the
conditional probabilities of the observed variables; if the for-
mer holds but not the latter, then weighted estimation of both
will be inconsistent. Evidence of such informative weighting
can be seen in a somewhat crude fashion by stratifying the
data into “low,” “medium,” and “high” probability-of-inclusion
strata (as defined by the weights), and then performing an
LCA analysis within each stratum. (We report a weighted anal-
ysis, but the effect of the weighting is greatly reduced within
each weight stratum.) Table 2 shows that sporadic and con-
sistent vegetable eating classes exist in each weight stratum,
but that the “sporadic” class is larger and less distinct in the
medium and high probability of inclusion strata than in the low
probability of inclusion stratum. Consequently, the weighted
analysis leads to a smaller and better-defined “sporadic” class
than the unweighted analysis.
Thinking of the weights in this manner also suggests an

alternative to the “all-or-nothing” approach of analyzing fully
weighted or unweighted data. For example, to estimate a pop-
ulation mean 
Y = N−1∑

i yi in a population of size N based
on a sample s of size n, one could could stratify the data into
H design-based strata where the proportion of the population
Ph within each stratum is (assumed) known, and assume that
the location parameter 2h =E�yhi �2h� has a prior distribution

Table 2. LCA Analysis, Stratified by Probability of Inclusion

Probability of inclusion

Parameter Low Medium High

� �10 �34 �28
�11 0 �62 �64
�12 �26 �34 �53
�13 �25 �40 �41
�14 �30 �47 �35
�21 �75 �76 �82
�22 �69 �88 �82
�23 �76 �77 �79
�24 �68 �79 �82

Estimated % of
population in stratum �33 �33 �34
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with common mean 2 and variance 32 within each stratum
(Holt and Smith 1979). When 32 =�, each 2h is treated as
a fixed and independent quantity with no sharing of informa-
tion across the design strata, and the posterior mean of the
population mean E�
Y � y ∈ s� is given by the fully weighted
mean estimator ȳw =∑

i∈s wiyi/
∑

i wi, where wi is the weight
associated with the ith element in the sample. Similarly, when
32 = 0, 2h ≡ 2 for all h, and E�
Y � y� is given by the
unweighted estimator ȳ = n−1∑

i yi that pools the data across
the strata. However, for 0< 32 <�, E�
Y � y� is given by esti-
mators that can reduce mean squared error by modulating a
bias–variance trade-off between unbiasedness (fully weighted)
and minimum variance (unweighted). By adding structure to
the location prior mean and variance, this bias-variance trade-
off can be tuned to the design and data structure in question
(Elliott and Little 2000).
Extending this approach, one could stratify the data into H

design-based strata where the proportion of the population Ph

within each stratum is assumed known and consider a hierar-
chical model for the latent class assignment and conditional
probabilities of the multinomial observed data. Assuming that
the Yij are dichotomous, one could consider a model of the
form

Yhij � cl��hlj

ind∼ BERNOULLI��hlj��

�hlj � cl ind∼ BETA�alj� blj��

cl � �hl

ind∼MULTINOMIAL�1� �hl�L�� (2)

and
�hl

ind∼ DIRICHLET�d1� � � � � dL�

with weak or noninformative hyperpriors for the beta and
Dirichlet prior parameters. Alternatively, one could apply logit
transformations to the probability parameters 4 = ����� and
use normal priors. The population values of 4 could then be
estimated from the population score equation, by solving for
4 in (3),

H∑
h=1

Ph

nh∑
i=1

5�i�4�

54
=

H∑
h=1

Ph

nh∑
i=1

5�i�4h�

54
� (3)

Here �i is the log-likelihood contribution of the ith subject
from (3) of PDG and the 4h in the right side of (3) are the
posterior (mean) estimates of 4h from the model given by (2).
Such an analysis would permit pooling or shrinkage of the
estimators across the strata, allowing compromise between a
fully weighted analysis (in which the �hlj and �hl would be

estimated separately in each stratum) and an unweighted anal-
ysis (in which it is assumed that �hlj ≡ �lj and �hl ≡ �l).

Because two classes are the maximum that can be iden-
tified from four elements of Yi, PDG focus on a confirma-
tory rather than an exploratory LCA. Nonetheless, additional
model checking can be performed to determine whether two
classes are sufficient to maintain the conditional independence
assumption among the elements of Yi. Although PDG do not
take a Bayesian approach, an ad hoc “posterior predictive
check” similar to that described by Garrett and Zeger (1999)
can be obtained by generating yij from �lj independently for
the jth day, where the ith subject is assigned to class cl with
probability Pr�cl � yi� given by (1). Replicated values of the
(weighted) 16 cells counts can then be compared against the
observed cell counts to detect discrepancies between the data
and the model assumption of latent/conditional independence.
Uncertainty in the estimation of Pr�cl � yi� can be taken into
account by drawing � and �jl from beta distributions whose
parameters are estimated by method of moments, using the
means and standard errors given by the weighted data columns
of PDG’s Table 2. The resulting “p values” range between
.22 and .90, with the exception of cell 0110 (vegetable use
on reporting days 2 and 3 only), where the 95% of the repli-
cated cell counts lay between 22 and 50, as compared with
the observed cell count of 22. Hence the conditional indepen-
dence assumption appears largely reasonable with the possible
exception of the vegetable use on reporting days 2 and 3 only.
(For a similar, yet less structured test of this assumption, see
Bandeen-Roche, Miglioretti, Zeger, and Rathouz 1997).
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Comment
Marilyn M. Seastrom

In their article, Patterson, Graubard, and Dayton explore
new territory on three separate fronts: nutritional measure-
ment, the application of a new technique to measurement in
the field of nutrition, and the application of methods for ana-
lyzing complex sample survey data to LCs models. I would
like to focus my comments on the last of these contribu-
tions. Much of the data disseminated by federal statistical
agencies are derived from complex sample surveys. Although
descriptive secondary analysis of these data requires the use of
weights and variance estimation programs equipped to handle
the complex sample designs, all too often the design features
of survey data are ignored and the data are instead treated
as though based on a simple random sample. In this work,
the authors demonstrate the potential problems resulting from
such oversights.
Patterson, Graubard, and Dayton are to be commended for

the detailed and thorough job they did exploring, operational-
izing, and confirming the extension of complex sample sur-
vey techniques for variance estimation to LCA. They estab-
lish the utility of LCA to the measurement of the underlying
classes of regular and infrequent vegetable eaters. They care-
fully explicate both the substantive application and the theoret-
ical aspects of their model, stopping along the way to describe
other possible alternatives and to explain their choice at each
step. The authors use data from the 1985 CSFII because it
allows them to analyze data from 1,028 women with food
recall records for 4 separate days. The CFSII is based on a
multistage stratified probability sample of U.S. women age
19–50. Although the survey was originally designed to be self-
weighting, weight adjustments were incorporated to reflect
nonresponse at the household and individual levels.
Having selected LCA as their preferred approach, the

authors acknowledge that methods that take into account
such sample design features as weighting, clustering, and
stratification in LCA have not been described in the literature.
Given the documented effects of ignoring complex sample
survey design elements with other statistical techniques, this
poses a problem. In particular, the authors note that sam-
ple weights and clustering usually inflate the variance, and
stratification may reduce the variance when the complex sam-
ple design is not taken into account. Thus estimates of vari-
ance computed ignoring the sample design tend to be under-
estimated; similarly, parameter estimates can be biased. The
authors demonstrate many of these outcomes in the course of
their analysis.
The authors note that there are two approaches to cal-

culating standard errors for complex sample survey data:
making adjustments using design effects and the using of
approximation techniques to estimate variances. Although the
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first of these two approaches was previously used by Haer-
tel to calculate standard errors in LCA (Haertel 1984a, 1984b,
1989, the authors use their data to demonstrate the fact that
size of the deff changes across variables or subgroups of the
population. Thus using deffs may yield adjustments that are
too large or too small and yield incorrect results.
By comparison, approximation techniques use the data in

specific analyses and thus tend to be more accurate than the
deff approach. Because the jackknife was previously used
to estimate LC parameters under simple random sampling
(Bolesta 1988), the authors choose the jackknife version of
the sample replication techniques for their analysis. However,
to apply these techniques, the authors first had to develop the
necessary computer programs and test them against existing
software under assumptions of SRS.
The authors report that a two-class model fits the data satis-

factorily. The authors use a simulation to investigate the valid-
ity of the methods that they used to account for weighting and
clustering and to assess the accuracy of the jackknife standard
errors. Suffice it to say that the underlying assumptions and
the programming criteria that are used in the simulation are
reasonable. Consistent with expectations, the jackknifed vari-
ances modestly overestimate the proxy variances. Despite this,
they find that coverage was close to the nominal .95 level for
all parameters.
Given the success of this work, the logical next step is to

consider possible applications to other disciplines. Recall that
the LCA model developed in the article allows an analyst to
take a set of related measures and identify underlying LCs.
In their example, the authors used four separate 24-hour food
recall records to create a vegetable/no vegetable consumption
variable with scores on each of the 4 days. The model allowed
the authors to determine the proportions of the respondents
who were regular vegetable eaters and infrequent vegetable
eaters. The model also yielded probabilities of vegetable con-
sumption in each class on each of the 4 days.
Another possible application that occurs in a number of

fields of social science might be to identify LCs for respon-
dents who are at risk or not at risk for a particular outcome,
say, a negative education or health outcome. In the case of
the education example, a number of dichotomized variables
are frequently used to study children at-risk of an adverse
educational experience (West, Denton, and Germino-Hausken
2000). These variables include single-parent household, wel-
fare recipient, mother with less than a high school diploma,
and primary language other than English. In this case, instead
of having repeated measures of the same phenomena, there are
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four separate measures that are each assumed to be related to
the possibility of being at risk for a negative outcome. These
measures could be used in an LCA to identify the class of
children who are at risk and the class of children not at risk
and to determine the probability that members in each class
have each of the four characteristics that were used to identify
the LCs.
In the case of health, the phenomena could be any one

of a number of illnesses (e.g., hypertension, heart attack,
stroke); and the variables would be the related physical traits
or behaviors associated with the illness. Take the example of
hypertension in adults. The risk factors might include obesity,
sedentary lifestyle, high salt intake, and excessive alcohol con-
sumption. The LCA would then identify the class of adults
who are at risk of hypertension and the class who are not, and
it would yield estimates of the probabilities that members of
each class would have each of the four characteristics.

As a next step, in any of these examples the respondent’s
class could be assigned to each respondent to create a new
variable that could be used in analysis. In the education
example, the analyst could then examine both the outcomes
and additional characteristics associated with membership in
each class.
This technique has many possible applications in a num-

ber of fields. Hopefully, the work of Patterson, Graubard, and
Dayton will encourage others to adopt these techniques in
LCA and to take care to incorporate the design element of
complex sample surveys in other statistical analyses as well.
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Comment
Jeroen K. Vermunt

Patterson, Graubard, and Dayton (PGD) have shown how
to take into account complex sampling designs in LC mod-
eling. Sampling weights are dealt with by pseudo–maximum
likelihood (PML) estimation, a method also used by Wedel,
ter Hofstede, and Steenkamp (1998) for mixture modeling
and implemented in some LC software packages, including
Latent Gold (Vermunt and Magidson 2000). Because standard
asymptotic theory is no longer valid, PGD propose estimat-
ing standard errors by means of a simple but computationally
intensive jackknife procedure that simultaneously corrects for
stratification, clustering, and weighting.
In this comment I focus on the question of whether to use

sampling weights in LC modeling. I advocate the lineariza-
tion variance estimator, present a maximum likelihood (ML)
estimator, propose a random-effects LC model, and give an
alternative analysis of the dietary data that takes into account
the data’s longitudinal nature.

WEIGHTING: YES OR NO?

I am not convinced that in the presented application the
weighted solution is better than the unweighted solution. To
clarify this point, it is important to make a distinction between
the two types of parameters in the LC model, the LC propor-
tions �l and the item-conditional probabilities �ljr . It is clear
that the unweighted estimates of �l will be biased if character-
istics correlated with the sampling weights are also correlated
with class membership. However, it is important to note that
the results obtained with a standard LC analysis are valid only
if the population is homogenous with respect to the �ljr . If

Jeroen K. Vermunt is Senior University Lecturer, Department of Method-
ology and Statistics, Faculty of Social and Behavioral Sciences, Tilburg Uni-
versity, The Netherlands (E-mail: J.K.Vermunt@KuB.NL)

this assumption holds, then there is no need to use sampling
weights for estimation of the �ljr , and if it does not hold, then
using sampling weights does not solve the problem. Hetero-
geneity in �ljr should be dealt with by introducing the relevant
grouping variables in a multiple-group LC analysis.
Taking into account the much larger standard errors in the

weighted analysis, I prefer the unweighted �̂ljr . Possible biases
in the unweighted �̂l can be corrected by reestimating the LC
probabilities by, say, PML, fixing the �ljr at their unweighted
ML estimates. This two-step estimator yields an estimated LC
proportion of .35, which is quite close to the unweighted esti-
mate of .33. Such a small upward correction of the number of
low consumers is what could be expected from the fact that
weighting increases the observed proportion of nonconsumers.
A weighted analysis with the PML method, however, yields
a downward correction of the proportion of low consumers
(�̂1 = �18).

LINEARIZATION ESTIMATOR

Wedel et al. (1998) proposed using a linearization or robust
variance estimator in mixture modeling with complex samples.
This method was described in detail by Skinner, Holt, and
Smith (1989). PGD state that this approach is less flexible in
that it requires developing new software. I do not agree with
this statement, because the method is easily implemented in
any LC software that already computes first and second deriva-
tives of the pseudolikelihood function. It should be noted that
in contrast to PGD’s jackknife method, the additional compu-
tation time is negligible.
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The standard errors that I obtained with the linearization
estimator are very close to the jackknife standard errors. Actu-
ally, they are slightly smaller, which indicates that they are
not only easier and faster to obtain, but also somewhat better
given that PGD’s simulation study showed that the jackknife
slightly overestimates the standard errors.

MAXIMUM LIKELIHOOD ESTIMATION OF LATENT
CLASS MODELS WITH SAMPLING WEIGHTS

Clogg and Eliason (1987) and Magidson (1987) proposed
a ML estimator for log-linear models with sampling weights
under Poisson sampling. Let k denote a particular response
pattern, and let �ik be 1 if case i has response pattern k
and 0 otherwise. The unweighted frequency in cell k, nk,
equals

∑
i �ik, and the weighted frequency, n�w�

k , is obtained
by

∑
i �ikwi. The inverse of the cell-specific sampling weight,

zk, equals nk/n
�w�
k . The log-linear model used in a weighted

analysis has the form

mk = exp�xk'� zk�

The term exp�xk'� defines an expected cell entry in the pop-
ulation, whereas the corresponding expected cell entry in the
“biased population,” mk, is obtained by multiplying it by zk.

Under Poisson sampling, ML estimation of the unknown '
parameters involves maximizing logL =∑

k8nk ln�mk�−mk9.
This function correctly reflects the data-generating process
as far as the unequal selection (or nonresponse) probabili-
ties are concerned. Note that the PML method maximizes
logPL =∑

k8n
�w�
k �xk'�− exp�xk'�9, which is clearly not the

same.
The foregoing method can be easily generalized to LC mod-

els if we write the LC model as a log-linear model for an
incomplete table. Using l as the index for the latent classes,
the model for mk is now

mk =
[∑

l

exp�xlk'�
]
zk�

where the linear term xlk' defines the LC model (see
Haberman l979). The Newton (Haberman 1988) and LEM
(Vermunt 1997) programs for log-linear modeling with incom-
plete tables can be used to implement this method.
Application of this ML method to the dietary data yields

results similar to PGD’s PML results. But an advantage is that
standard goodness of-fit measures can be used to assess model
fit. The likelihood ratio statistic L2 equals 18.32 (df = 6 and
p = �01), indicating that the two-class model does not fit the
data.

RANDOM-EFFECTS LATENT MODELS

A standard method for dealing with clustering effects is
random-effects modeling. In the application, a cluster is a PSU
within a stratum, say PSU h in stratum s, denoted by sh.
Let us assume that the LC proportions are coefficients that
vary between PSUs. A simple random-effects two-class model
is obtained by assuming that ln��1�sh�/�2�sh�� ∼ N�2�:2�.
The contribution of cluster sh to the log-likelihood function

equals

lnLsh = ln
∫ { ∏

all i in cluster sh

( L∑
l=1

�l�sh�P�Yi�cl�
)}

×f ���sh��2�:2�d��sh��

The integral can be solved by, for instance, Gauss–Hermite
quadrature.
Application of this random-effects LC model to the

(unweighted) dietary data revealed no evidence for variation
of the LC proportions between clusters. This is in agreement
with PGD’s results.

MEASUREMENT ERROR OR CHANGE?

As indicated by PGD, the four dietary recalls were obtained
at six time points; that is, recalls 2–4 do not represent the same
recall occasions for all of the women. To be able to take the
longitudinal nature of the data into account, I reanalyzed the
(unweighted) data using six occasions instead of four, where
each woman has two missing values. It should be noted that
as long as the missing data can be assumed to be missing
at random, it does not cause special problems within a ML
framework.
First, I estimated standard LC models with different num-

bers of classes. The two-class model turned out to be the
best in terms of fit �L2 = 52�07� df = 50� p = �39�. Equating
all time-specific intake probabilities for the high-consumption
class and the ones of the first three time points for the
low-consumption class did not cause the fit to deteriorate
�L2 = 55�82� df = 57� p = �52�. The estimated intake proba-
bility was .80 for the high- and stable-consumption class. The
low-consumption class had .57 at the first three time points,
dropped to .38 and .20, and increased to .46 at the last time
point.
PGD do not pay attention to the fact that there is not only

measurement error in the reported intake, but also changes in
the intake over time. The LC model, however, cannot make a
distinction between measurement error and change, however;
a better-suited model for this purpose is a hidden or latent
Markov model. A simple hidden Markov with two latent states
and time-invariant measurement errors fits almost as good as
the two-class LC model �L2 = 54�37� df = 50� p = �31�, but
tells a more interesting story about the same dataset. The high-
intake class has an intake probability of .83 at each time point
and the low-intake class of .36. Note that these measurement
errors (.17 and .36) are smaller than those in the standard LC
model. Between occasions 1 and 3 are similar numbers of
moves from high to low intake as from low to high, between
time points 3 and 5 are much more moves from high to low,
and between time points 5 and 6 are much more moves from
low to high. This indicates that besides measurement error,
there is a seasonal effect in the consumption of vegetables; the
proportion of low consumers depends on the time of year.
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Rejoinder
Blossom H. Patterson, C. Mitchell Dayton, and Barry I. Graubard

We wish to thank the discussants for their thoughtful and
provocative comments. In our article we have presented a new
approach to modeling dietary consumption patterns, as well as
methodology permitting the application of LCA to sample sur-
vey data. We had two goals. First, extending a long-standing
interest in vegetable consumption, we were interested in using
LCA to find some overall (if crude) measure of the proportion
of the population falling into a “regular” vegetable consump-
tion class and the proportion falling into a less regular, or
infrequent, consumption class. This type of information could
be useful in formulating public health programs. A national
dataset comprising 4 (independent) days of dietary intake data
sampled from women age 19–50 from the CSFII offered this
opportunity. Second, because these data were not from a sim-
ple random sample, we had to develop methodology to apply
sample weights to the data and to estimate standard errors that
take into account the complex sample design. In our “first cut”
at achieving these goals, we sought to fit a simple, straightfor-
ward LC model. We recognize that there are many different
and more complex approaches than our simple model, and we
encourage others to pursue them. A major contribution, both
in our eyes and in the eyes of the discussants, was to develop
LCA methods that can be used to analyze sample survey data.
The discussions cover a broad range of topics. We begin our

rejoinder by returning to our motivating problem, characteriz-
ing “usual” vegetable consumption in the United States. Cen-
tral to this problem is the need to measure intake over some
time period. We explain our approach to this problem, which
involves a new definition of usual consumption that uses LC
modeling with the consequent data reduction to binary obser-
vations. Some of the discussants questioned our data reduction
and suggested alternative methods of analysis, both frequen-
tist and Bayesian. We review and comment on some of these.
The question of how (and whether) to use sample weights was
of special interest to our discussants, as was the estimation
of standard errors. The question of model fit arose in several
of the discussions. We make the point that no adequate mea-
sure of goodness of fit for latent class models has yet been
developed for sample survey data; such measures need to be
developed. We address these three topics (weights, variance
estimation, and goodness of fit) under the broad heading of
accounting for the sample design. Finally, some of the dis-
cussants proposed new uses of our techniques, and we briefly
review these.

1. CHARACTERIZING DIETARY INTAKE

As pointed out by Carriquiry and Nusser, the U. S. govern-
ment relies on dietary intake data from national surveys for
the development of nutritional and health policies. For exam-
ple, in presenting a revised baseline for the Healthy People
2000 objectives, Krebs-Smith et al. (1995) showed that 8.2%
of the population age 20 years and older consumed less than

a single serving of a vegetable per day based on 3 days of
dietary intake data for 3 consecutive years. Because of the
inverse association between vegetable consumption and sev-
eral cancers, we were interested in using national survey data
to estimate the proportion of the population that does and that
does not consume vegetables on a “regular” basis, where regu-
lar can be regarded as a way of defining “usual.” The National
Cancer Institute is currently investigating other approaches to
estimating regularity.
As Carriquiry and Nusser note, the definition of “usual”

intake as the “long-run average intake of a food” is widely
used, although there are other methods in the literature, some
of which we cite in our article. However, there is no consen-
sus on how to define “long run”. Furthermore, average intake
may not be a measure of the regularity of intake. We took a
new approach to this problem, considering “regularity” of veg-
etable consumption to be an unobservable or latent variable.
This definition is conceptual but can be operationalized via
latent class modeling. We fitted a two-class model to the data.
In this context, the item-conditional probabilities, measures of
the probability of consuming a vegetables on each recall day
given membership in a specific class, are dietary propensity
scores (Sue Krebs-Smith and Kevin Dodd, personal commu-
nication). These were remarkably consistent for the class of
“regular” vegetable consumers but appeared to vary for the
infrequent consumers.
Concerns were raised about our dichotomization of the

data, which consisted of the number of grams of each indi-
vidual food consumed by each respondent. We agree that
dichotomization of the data does not necessarily reduce mea-
surement error. Carriquiry and Nusser contend that the amount
of food consumed on most of the survey days, which is lost in
dichotomization, may be crucial in making inferences about
the impact of diet on cancer. In our method, an individual
consuming small amounts of food on most of the intake days
would be classified differently than an individual consuming
a large amount on a single recall day, yet the average intake
for both individuals could be the same. Whether frequency of
consumption of vegetables or the quantity consumed is criti-
cal in disease prevention is an open question. Kant, Schatzkin,
Graubard, and Schairer (2000) developed a recommended
foods score (RFS) that summarizes food frequency question-
naire replies for 23 items, using the report of consumption
but not the quantity consumed. They found that dietary diver-
sity as reflected in the RFS was inversely related to can-
cer and other diseases as well as to all-cause mortality. Our
method could be used to examine the relationship between
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disease and diet. In a study similar to that described here, but
with a larger sample size, respondents would be followed for
morbidity or mortality, as is being done with respondents from
the second National Health and Nutrition Study. A LC model
could be fitted to the data, each subject assigned to a LC, and
the eventual outcomes compared to these assignments. Our
method could be extended to look at amounts consumed.
Elliott and Sammel suggest that a count of vegetable serv-

ings on each occasion of measurement represents a better
modeling opportunity than the simpler 0–1 representation that
we used. In general, we agree that this is both desirable and
possible, using, for example, a Poisson representation for the
counts. In the present case our judgment was that the reliabil-
ity of the measurements better supported the simpler coding,
but it would be interesting to compare these models.

2. MODEL CHOICE

2.1 Latent Class and Alternative Models

As discussed earlier, our choice of a two-class model was
based on our interest in the proportion of the population that
does and that does not consume vegetables on a regular basis.
Our data constrained us to a two-class model, as noted by Car-
riquiry and Nusser. But this was not a problem, because the
two-class model was the model of interest to us. Carriquiry
and Nusser suggest an approach that would distinguish day 1
from the other recall days. In fact, a LC constrained to equate
recalls for days 2–4 for each class would accomplish this
objective. The similarity seen in the item-conditional probabil-
ities for class 2 (but not class 1) suggests such a constrained
model, especially for class 2. However, because this was a
post hoc finding, we did not pursue this particular model.
Elliott and Sammel suggest extending our method to take

into account all the various vegetables reported by all respon-
dents on all 4 recall days, to create the potential for eval-
uating more than two classes. The resulting cross-tabulation
would likely result in a very sparse table, with the accompa-
nying problems of numerical instability and lack of conver-
gence. An alternative method, grouping vegetables by their
characteristics (e.g., deep yellow, dark-green leafy), may be a
feasible extension of our model. Yet another approach would
be to apply definitions of servings to grams reported by each
subject, and to use mixture analysis on these variables. Mea-
surement error in reporting portion size is a problem with this
approach, as we noted in our article, and it adds a level of
difficulty to the analysis.
We agree with Carriquiry and Nusser that it would be pos-

sible to fit a richer class of models using the continuous data.
They summarize a method of obtaining the distribution of con-
sumption of foods. However, their method makes the assump-
tion that the probability of consuming a food in independent
of the amount consumed, an assumption likely to be untrue for
vegetables, and also requires strong distributional assumptions.
Similarly, the random-effects model and the hidden Markov
model suggested by Vermunt require heavy model assump-
tions. An assessment of the robustness of these methods to
model specification is recommended.
Vermunt suggests alternative analyses that take advantage

of the fact that the data were collected on six occasions. Here,

as in many large surveys, the data cannot all be collected at
a single time point, even when the time of interest might be
as long as a season. The six data points do not represent the
same time intervals during the year, and each occasion actu-
ally represents a period of several overlapping weeks (e.g.,
observation three for one respondent many be collected in the
same month as observation four for a different respondent).
Further, the two missing time points may represent occasions
deleted randomly by the U.S. Department of Agriculture for
subjects with five or six responses or actually may be missing
data, so that the mechanism of missingness differs between
respondents and is not known to the analyst. For this rea-
son, we chose not to analyze data for all six occasions and
cannot agree with Vermunt’s interpretation that in these data,
“consumption of vegetables� � � depends on the time of year.”
Pairwise z tests using jackknifed standard errors (our Table 2)
among the four conditional probabilities within each LC result
in no absolute z value greater than 1.13, suggesting, on a post
hoc basis, that homogeneity is not an unreasonable assump-
tion for the rates of vegetable consumption.
Elliott and Sammel propose a post hoc Bayesian approach,

using Bayes’s theorem to calculate a predicted LC member-
ship for each sample member. Given these classifications, odds
ratios can be computed for outside variables such as age and
region. Because of concerns about the validity of the two-stage
procedure, we did not report analyses of this type. However, a
recently completed simulation study (Kuo 2001) suggests that,
at least for simple random samples, the two-stage procedure
for logistic covariate models performs quite well in estimat-
ing the parameters for the covariate function for cases with
well-defined latent structures (i.e., cases where the conditional
probabilities for the two classes are distinctly different). The
vegetable data seem to satisfy this requirement.
From a theoretical perspective, the best strategy would be

to use the outside variables as covariates directly within the
latent class model (Dayton and Macready 1988). In brief, for
a two-class model, the latent class proportion for class 1, say,
is modeled by a function of the form

;X
1�Z = g�Z�'��

where Z is in general a vector-valued covariate, ' is a vector
of parameters, and g��� is a monotone function with a 0�1
range over the domain of Z. For example, a logistic covariate
model with J covariates could be defined as

;X
1�Z = 1/81+ e−'0−

∑J
j=1 'jZj 9�

where ;X
1�Z is the proportion of cases in the first latent class

(X) conditional on the covariate vector, Z.
Conditional probabilities for the manifest variables and the

parameters of the covariate function are estimated simultane-
ously. Programs such as Latent Gold (Vermunt and Magidson
2000) and LEM (Vermunt 1997) provide estimates for logis-
tic covariate models with case weights but do not take into
account clustering. In the context of a complex survey design,
one is faced with assessing the contribution of a covariate. The
jackknife is recommended as an easily applicable and valid
method for generating standard errors of the regression coef-
ficients of the covariates for complex samples.
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2.2 Goodness of Fit

Model fit is mentioned in several of the discussions. As
we state in our article, we are unaware of any good measure
of fit that is appropriate for LCA of complex sample survey
data. We also note that for data from a simple random sample,
the likelihood ratio statistic cannot be used for comparison
of models with differing numbers of classes. Vermunt fits a
weighted model based on a Poisson sampling model and con-
cludes that a two-class model “does not fit the data.” Although
his analysis takes into account sampling weights, it ignores
the role of stratification and clustering of the sample selec-
tion in survey design. Our analysis, based on a Wald test that
took into account both stratification and clustering, suggested
satisfactory fit for a two-class model.

3. ACCOUNTING FOR THE SAMPLE DESIGN

3.1 Sample Weights

The CSFII has a complex sample design involving stratified
multistage cluster sampling with sample weighting for non-
response and postratification adjustment. Vermunt argues that
weighting should be used for estimation of the LC proportions
but not for estimation of the item-conditional probabilities. He
prefers a two-stage approach, in which the unweighted data
are used to estimate the conditional probabilities and these are
then held constant during a weighted analysis that estimates
the LC proportions. He argues that if the sample weights are
informative for estimating the items conditional probabilities,
then these probabilities are not homogenous across subgroups
of the population, and the LC model is misspecified for the
population. We address these issues in Section 6 of our arti-
cle and also address the bias and efficiency trade-off between
weighted and unweighted analyses. Vermunt also proposes
using a method described by Clogg and Eliason (1987); how-
ever, this method does not adjust for clustering in the data
and also assumes that the model is correctly specified. It is
important to note that in general, it is not possible to know
whether a model is “correctly” specified, and even if this were
possible, the “correct” model would likely be unduly com-
plex and difficult to interpret. When the posited LC model
is misspecified, Vermunt’s two-stage approach does not esti-
mate the “census” model, that is, the model that would have
been obtained if the entire population had been sampled. In
contrast, the weighted pseudolikelihood approach that we use
does estimate the census model. This approach has the advan-
tage that if the model is misspecified, estimates from different
probability sample designs on average will be approximately
the same. Vermunt’s suggestion of dealing with heterogene-
ity of the item-conditional probabilities by identifying homo-
geneous groups and then using multiple-group LC analysis
seems impractical and difficult to carry out.
As shown in Figure 1, the impact of weighting is to lower

the magnitude of the conditional probabilities, although The
effect is much greater in the low-consumption class than in
the high-consumption class.
Elliott and Sammel report a more elaborate analysis based

on stratification of the sample by the magnitude of the weights
themselves. This appears to show that the estimated item-
conditional probabilities differ between the low weight stratum
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Figure 1. Impact of Sampling Weights on Conditional Probabilities.

and the medium and high weight stratum. They did not test
whether these differences are statistically significant. Based
on our null results for a Wald test comparing weighted to
unweighted estimates, we doubt that theirs would be statisti-
cally significant. As pointed out in our article, the Wald test
for informativeness of the weights has low power. Based on
our results and those of Elliott and Sammel, we are inclined
to believe that the weighted estimate is the more reasonable
estimate for the population.
Elliott and Sammel also propose an interesting alternative

to the “all-or-nothing” approach to weighting. They divide
the data into design strata and use an estimator that is
a combination of weighted and unweighted estimates. The
weighted estimate has more influence on the overall estimates
if there is evidence of substantial variability across the strata
in the parameter of interest and the unweighted estimate has
less influence if there is little evidence of variability. Because,
as this approach requires a prior distribution over the strata-
specific parameters, its robustness to the distribution of the
assumed prior should be investigated before using it. Elliott
and Sammel also propose an extension to this model, a hier-
archical model that requires both hyperpriors and priors. Such
a model would require substantial robustness testing.

3.2 Variance Estimation

Vermunt recommends using linearization variance estima-
tion rather than the jackknife variance estimation that we used.
We agree that linearization variances will be faster to compute
and can be programmed for various LCAs. We chose to use a
jackknife method because of its ease of use; that is, it does not
requiring extensive programming. In addition, jackknife vari-
ance estimation, through the use of jackknife replicate weights
(Rust and Rao 1996), is more flexible than linearization in
that it is able to account for variation inherent in commonly
used adjustments to the sample weights, such as nonresponse
adjustments and postratification. Similar types of replicate
weights can be formed from other variance replication meth-
ods, such as balanced half-sample replication. National sur-
veys such as the third National Health and Nutrition Survey
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(Ezzati, Massey, Waksberg, Chu, and Maurer 1995) are now
routinely providing replicate weights for variance estimation.

4. ALTERNATIVE APPLICATIONS

Seastrom suggests other applications of our LC model.
Especially useful is her idea of modeling LCs that reflect level
of risk for an adverse health, behavioral, or social outcome. It
is reasonable to hypothesize that a population may have risk
patterns that can be classified into discrete unobservable cate-
gories. Also, by identifying these LCs and their relative sizes
in the population, intervention programs can be constructed
that could be directed at the highest risk classes of nontrivial
size. Because complex surveys are used extensively in behav-
ioral and social research, our results for using design-based

analyses are potentially of great value for carrying out such
analyses with survey data.
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