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Introduction

Skrondal and Rabe-Hesketh (2004) proposed a generalized latent variable modeling framework
integrating 1) factor analytic and random coe�cient models, 2) models with discrete and continuous
unobserved variables, and 3) hierarchical models with unobserved variables at di�erent levels. This
framework is implemented in their GLLAMM software package. In this paper I describe a strongly
related framework that is implemented in the syntax version of the Latent GOLD software (Vermunt
and Magidson, 2007). The most important extension compared to the GLLAMM approach is that it
allows de�ning models with any combination of discrete and continuous latent variables at each level
of the hierarchy. The approach is illustrated with a multilevel application in educational testing; that
is, using a set of mathematics test items taken from pupils nested within schools. An item response
theory model is constructed for the responses on the test items and the between-school di�erences
in pupils' abilities and item di�culties is modeled using a discrete mixture distribution at the school
level.
The generalized latent variable model

The generalized latent variable model contains four elements: 1) multivariate responses or depen-
dent variables (y), which may be binary, nominal, ordinal, continuous, counts, or any combination of
these; 2) latent variables (�), which may be discrete (nominal or ordinal), continuous, or combinations
of these; 3) predictors or independent variables (Z andW); and 4) nested or multilevel observations at
L levels. Using the index k to denote an independent observation corresponding to the highest level
of the hierarchy, the model can be formulated with the following two equations:

g[E(yk)] = Z(1)k � +W(1)k �(1)�k(1)
h[E(�(`)k )] = Z(`)k 
` +W(`)k �(`)�(`+)k for ` = 2; :::; L:(2)

Here, g[�] and h[�] are link functions (identity, logit, log, etc.) which may di�er across dependent
variables and across latent variables and which typically depend on the scale type of the left hand
variable. The free model parameters are the regression coe�cients �, �, and 
, as well as the residual
(co)variances (or associations) between latent variables and between dependent variables. Note that
�k denotes the vector of latent variables of observation k at all levels, whereas �(`)k and �(`+)k refer to
the latent variables at level ` and ` and higher, respectively. Details on maximum likelihood estimation
of these types of models using the EM algorithm can be found in Vermunt (2004).

In one aspect, the framework implemented in Latent GOLD is slightly less general than suggested
by the two model equations: the structural equation model for the latent variables at level ` is only
partially implemented. But in other aspects it is even more general than expressed in the above two
equations, including that it allows speci�cation of a Markovian structure for discrete latent variables
at the lowest level, of interaction e�ects between latent variables, and of many di�erent models for
the residual (co)variances and associations.



It is important to note that the product term W(1)k �(1) in equation (1) is what yields the
generalization of both the factor analytic and the random coe�cient model. �(1) is the factor loadings
matrix of a factor analysis and W(1)k is the design matrix of a random coe�cient model. This implies
that by setting W(1)k = 1 
 I we obtain a factor analytic model and by setting �(1) = I we obtain a
random coe�cient model. The product W(1)k �(1) { which Skrondal and Rabe-Hesketh (2004) refer to
as the structure matrix �(1)k { de�nes the generalized latent variable framework in which the e�ects
of latent variables on responses may contain parameters, �xed terms, or products of these.

It should be noted that the latent variables �k can be common factors in a factor analysis,
random coe�cients in a multilevel model, classes in a latent class model, or mixture components in
a �nite mixture model. In other words, the latent variables may be either discrete or continuous and
may be used either to reveal structure (meaningful factors or clusters) or to correct for unobserved
heterogeneity.
Overview of the special cases
Table 1. Nine-fold classi�cation of possible models with latent variables at two levels

Higher-level �'s
Lower-level �'s Continuous Discrete Combination
Continuous A1 A2 A3
Discrete B1 B2 B3
Combination C1 C2 C3
Assuming two levels of latent variables and taking into account that the latent variables at each

level may be continuous, discrete, or a combination of these, we obtain the nine-fold classi�cation
provided in Table 1. One of the special cases, in which both the lower- and higher-level latent variables
are discrete (B2), is the hierarchical variant of the latent class model proposed by Vermunt (2003).
Here, lower-level units (cases) are clustered based on their observed responses as in a standard latent
class model, whereas higher-level units (groups) are clustered based on the likelihood of their members
to be in one of the case-level clusters. Vermunt (2003) also proposed a multilevel latent class model
with continuous random e�ects at the group level which belongs to category B1.

A1 contains both three-level regression models with continuous random e�ects and two-level
factor analytic and item response theory (IRT) models, such as the multilevel IRT model proposed
by Fox and Glas (2001). In a recent paper, Palardy and Vermunt (2007) used speci�cation A3 for
de�ning a multilevel extension of the mixture growth model. In the application described below, we
use a type A2 model.

What is clear from the above table is that the presented framework yields a large number of
options. With latent variables at three instead of two levels, the number of possible speci�cations
increases from 9 to 27. It depends on the speci�c application which of the speci�cations should be
selected; that is, whether it is more meaningful and/or practical to de�ne the latent variables at a
particular level to be continuous, discrete, or a combination of the two.
An illustrative application: a multilevel mixture IRT model

The application uses a data set collected by Doolaard (1999), and which was also used by Fox
and Glas (2001) to illustrate their multilevel IRT model. More speci�cally, information is available
on a 18-item math test taken from 2156 pupils belonging to 97 schools in the Netherlands. The aim
of the analysis is twofold: measuring pupils' math abilities and assessing di�erences between school.
The �rst aim involves building a single factor or IRT model for the 18 math items, while the second



aim involves introducing school-level random coe�cients in the IRT model.
As far as the IRT model is concerned, two di�erent models are considered: the two-parameter

logistic (2-PL) model and the Rasch model, which is also referred to as the one-parameter logistic
(1-PL) model. As in Fox and Glas's multilevel IRT model, we are interested in school di�erences in
ability. Unlike Fox and Glas, we also want to know whether the items' functioning is the same across
schools; that is, we want to perform what is usually referred to as an item bias analysis. This is
feasible using a discrete �nite mixture speci�cation for the relevant school di�erences. The proposed
multilevel mixture IRT model can, therefore, be seen as a practical method for detecting item bias in
situations in which the number of groups is too large for a standard item bias analysis.

Let yijk denote the binary response on item i of pupil j in school k. Note that i, j, and k refer
to a level-1, level-2, and level-3 unit, respectively. Denoting the latent ability of pupil j in school k by
�(2)jk , we can de�ne the 2-PL model as follows:

logit[P (yijk = 1)] = �i + �(1)i �(2)jk for i = 1; :::; I;(3)
where �(1)i is the factor loading or discrimination for item i and ��i=�(1)i is what is usually referred
to as the item di�cult. For identi�cation purposes, we will typically restrict one �(1)i , say �(1)1 , to be
equal to 1. The latent ability is assumed to come from a normal distribution with a mean equal to 0
and a free variance. With the restriction �(1)i = 1 for all i, we obtain the Rasch model.

Suppose we wish to take into account the multilevel structure assuming that that schools belong
to one of M latent classes or mixture components with di�erent mean abilities and possibly also
di�erent item di�culties. This can be formulated as follows:

logit[P (yijk = 1)] = �i + �(1)i1 �(2)jk +
M�1X
m=1

�(1)i;m+1�(3)km for i = 1; :::; I(4)

E(�(2)jk ) =
M�1X
m=1

�(2)m �(3)km(5)

logit[P (�(3)km = 1)] = 
(3)m for m = 1; :::;M � 1;(6)
where �(3)km represents one of M � 1 indicator variables taking the value 1 if school k belongs to latent
class m and otherwise 0 (with e�ect coding �(3)km equals -1 if school k belongs to class M). The �(1)i;m+1
parameters capture di�erences between school-level classes in item di�culties and �(2)im in average
abilities. In the full model we have to impose identifying constraints on the �(1)i;m+1 parameters; for
example, �(1)1;m+1 = 0 for m = 1; :::;M � 1.

The multilevel mixture IRT model described in equations (4)-(6) can be extended in various
ways. The most obvious and interesting extension is inclusion of pupil-level covariates in equation (5)
for the latent ability and school-level covariates in equation (6) for the school-level class membership.

The following Latent GOLD 4.5 (Vermunt and Magidson, 2007) syntax �le de�nes the model
described in equations (4)-(6):

variables

groupid schoolid;

caseid childid

dependent y coding=first;

independent itemnr nominal;

latent nu2 continuous, nu3 nominal group 3 coding=last;

equations

y <- 1 | itemnr + (lambda1) nu2 | itemnr + (lambda2) nu3 | itemnr; // equation for y

nu2 <- nu3; // equation for nu2

nu3 <- 1; // equation for nu3



nu2; // variance of nu2

lambda1[1] = 1; // discrimination of first item fixed to 1

lambda2[1] = 0; // item bias of first item fixed to 0

This syntax �le is rather self explaining: the �rst part de�nes the dependent, independent, and
latent variables which are in the model, as well as the id variables indicating the three-level data
structure. The second part contains the regression equations which are rather similar to equation
(4)-(6). The term "| itemnr" indicates that a separate constant �i { denoted by "1" { and a separate
item discrimination �(1)i1 should be estimated for each item. The equations section also contains the
speci�cation for the variance of the latent ability and the identifying �xed-value constraint on the
discrimination parameter (loading) and item bias of the �rst item.
Table 2. BIC values obtained with the estimated multilevel mixture 2-PL and Rasch
models (N=2156)

number of 2-PL Rasch
classes without item bias with item bias without item bias with item bias
1 40701 40701 40750 40750
2 40502 40545 40562 40517
3 40449 40514 40515 40513
4 40455 40502 40524 40485
5 40469 40540 40538 40538
Table 2 reports the �t measures obtained with the estimated 1- to 5-class models. As can be seen,

the 2-PL models perform better than their Rasch counterparts, indicating that the Rasch assumption of
equal discrimination across items is too strict for this data set. For the 2-PL speci�cation, comparison
of the models with and without item bias indicates that there is no evidence for item bias. In this
speci�cation the 3-class model without item bias is selected as the best according to the BIC criterion.
In the Rasch speci�cation, the 4-class model with item bias is the best model. This application shows
that using the too restricted Rasch model may lead to the erroneous conclusion that items function
di�erentially across groups.
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