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Abstract 

The technological developments of the last decades have created opportunities to efficiently 
collect data of many individuals over time. While these technologies provide exciting research 
opportunities, they also provide challenges: datasets collected using these technologies grow 
increasingly large, or be continuously augmented with new observations. These data streams 
make the standard computation of well-known estimators inefficient, as computations are 
repeated each time new data enter. This chapter details online learning, an analysis method that 
updates parameter estimates instead of re-estimating them to analyze large and/or streaming 
data. The chapter presents several simple (and exact) examples of the online estimation for 
independent observations.  
 Additionally, social scientists are often faced with nested data: pupils are nested within 
schools, or repeated measurements are nested within individuals. Nested data are typically 
analyzed using multilevel models. Estimating multilevel models, however, can be challenging in 
data streams: the standard algorithms used to fit these models repeatedly revisit all data points, 
which becomes infeasible in a data stream context. We present a solution to this problem by 
introducing the Streaming Expectation Maximization Approximation (SEMA) algorithm for fitting 
multilevel models online. We end this chapter with a discussion of the methodological challenges 
that remain. 
  



 

 

 
 
 

1. Introduction 
 

One of the new challenges of our current digital age is processing and analyzing of the vast 

amounts of data (Gaber, 2012; Gaber et al., 2005; L’Heureux et al., 2017). Data are collected via 

many different devices, e.g., smartphones or wearables, and in various contexts like at home, 

while navigating, or in a hospital. The common characteristic of these data is that the data is often 

too large to process at once, and/or has an accumulative nature where new data points continue 

to augment the dataset. Even though computational power is increasing exponentially, the 

storage, processing, and analysis of such data remains challenging (Ippel et al., 2019, 2016a; 

Yang et al., 2017). Storing all data might be expensive and computations of complex models can 

be time consuming. Even the computations of ‘simple’ models like linear regressions can become 

too time consuming when using large, or even worse growing, datasets. Moreover, methods 

typically used to analyze such large datasets are often black boxes, making it difficult to explain 

the results of these methods (Rudin, 2019). 

In this chapter, we address several approaches to analyzing large datasets or even data 

streams using methods frequently used by social scientists, which are both computationally 

feasible to analyze large data and maintain their explain-able character. In the next section, we 

identify four approaches to analyzing large data. We continue this chapter with some examples 

of models for independent observations illustrating one of these approaches in particular, namely 

online learning (Bifet et al., 2010; Shalev-Shwartz, 2011). After these examples, we introduce 

SEMA, an algorithm to estimate Generalized Linear Models for analyzing dependent 

observations using online learning. This chapter ends with a discussion of future developments 

and further readings. 

 

2. Approaches to analyze large volumes of data 
 

In this section, we detail four approaches to analyzing large and/or streaming data. We start with 

two techniques, which are especially beneficial for analyzing large data: subsampling and parallel 

computing. We end this section with two techniques, which are tailored to analyzing streams of 

data namely sliding windows and online learning. 



 

 

 
2.1 Processing large data 

 
Given that the data is either large and/or computational time is lengthy, one can choose to select 

only a smaller number of observations to analyze. This process is called subsampling, where one 

randomly samples observations (i.e., the rows) from the entire dataset and uses this subsample 

of observations for their analysis (Wang et al., 2019, 2018). This is an appropriate method when 

the aim of the analysis is to obtain insights of the associations between a set of variables. 

Repeating the process of subsampling several times will in addition provide insights in the stability 

of the parameter estimates. However, when using this technique for prediction purposes, much 

information about the unit of analysis is lost due to subsampling. This is likely to negatively affect 

prediction performances and at the very least increases standard errors (due to smaller number 

of observations). 

An alternative method for dealing with lengthy computations is dividing the data over 

several machines. The computations, which would previously be done sequentially are now done 

in parallel (Böse and Högqvist, 2010; Chu et al., 2007). The result of the computations of each of 

the separate machines are combined afterwards. Parallel computing is an efficient method to 

deal with large data, when the methods used allow for parallel computing, i.e., the computations 

of one part of the data should not depend on other parts of the data. In addition, when data are 

streaming in, the demand for more or more powerful machines remains and the overhead caused 

by combining the results from several machines will grow. 

 

2.2 Processing data (as) streams 
 

Instead of processing all data at once, whether it is a subsample or divided across several 

machines, data might also be analyzed sequentially, either out of necessity for the data is arriving 

over time or because data are stored in a cloud solution, and are processed sequentially. A sliding 

window comes down to a subsample of data of either a certain time interval or a certain number 

of data points, i.e., the window (Gaber, 2012). As new data are streaming in a sliding window 

‘moves’ forward excluding the oldest data points and including the new or yet unseen data points. 

While this method has several strong advantages such as user control about exactly how many 

resources are used for the analysis and temporal fluctuations are well accommodated, this 

method also comes with an important downside. It requires domain knowledge to determine the 

appropriate size of the window. While large windows will increase the chances of capturing 

enough significant events, it will also increase the demand on the resources. Especially in a 



 

 

situation with re-occurring fluctuations of events, a sliding window approach can easily miss these 

patterns due to a too narrow window. 

The last approach we discuss is called online learning. This approach updates parameter 

estimates with information from the most recent data points, instead of computing the parameter 

estimates again every time new data enters. In doing so, this approach never returns to historical 

data, thereby speeding up computations vastly and lowering the burden of data storage. 

Obviously, also online learning does not go without domain knowledge. First, one has to ensure 

all required variables are included in the analysis as additional information will be ‘forgotten’, and 

hence, lost. Secondly, deciding how much weight the new information is given is not always 

straightforward. Especially in situations with concept drift (Elwell and Polikar, 2011), one needs 

to make a decision in the bias-variance trade off (Belkin et al., 2019) in terms of how close to 

follow changes in the data. Following the changes too closely, i.e., relatively much weight is on 

the most recent data points, or not close enough both will negatively affect the prediction 

performances as well as the estimates of the associations between variables. 

 

3. Online estimation with independent observations 
 

In this section, we will go into more detail of online learning for independent observations by 

illustrating the estimation of several parameters. Some of these online estimated parameters are 

identical to their offline (i.e., computed using all data at once) counterparts (more examples can 

be found here, Ippel et al., 2016a). Other parameters have to be estimated iteratively, e.g., the 

regression coefficients of logistic regression. For these kinds of parameters, the online approach 

might not always result in the exact same result. This might be due to the order in which the data 

entered, the weight given to new observations and the number of iterations set in the offline 

setting. First, we discuss some of the identical estimators, followed by an online learning 

approach, which is an approximate solution to estimate logistic regression coefficients. 

 
3.1 Exact estimators 
 

One of the keystone statistics used in most models used by social scientists is the   covariance 

between two variables. We now illustrate how to compute this parameter online. Let X and Y be 

data vectors with n entries. Now, the covariance between X and Y is denoted by: 

𝑠𝑥𝑦 =
σ ቆ𝑋𝑖−𝑋

¯
ቇ𝑛

𝑖=1 ቆ𝑌𝑖−𝑌
¯
ቇ

𝑛−1
    (1) 

 



 

 

where 𝑖 is the index of an entry of the data vector and 𝑋
¯

 and 𝑌
¯

 are respectively the averages of 

𝑋 and 𝑌. The first step, however plain perhaps, is keeping the count, 𝑛. In online learning, we 

often use the following notation 

 

new state := previous state + new information, 

 

where ‘:=’ is an assignment sign, replacing the previous state with a new state. Hence, writing an 

online counter, 𝑛, using this online learning formulation, we write 

𝑛:= 𝑛 + 1 

Secondly, we compute the average of the variable. Assuming that the number of observations is 

already updated, we write the online estimation of the mean as follows:  

𝑋
¯
≔ 𝑋

¯
+
𝑋𝑖 −𝑋

¯

𝑛
 

Here, the weight of the new observation is given by  
1

𝑛
 , i.e., each data point receives an equal 

weight. However, when one chooses to alter this weight, for instance 
1

min⁡(𝑛,1000)
 more recent data 

points receive relatively a higher weight and will therefore influence the parameter estimates more 

than the older data points. The last part for the online computation of the covariance is more 

complicated and exist of multiple steps. Assuming 𝑛 is already updated: 

𝑋
¯
≔ 𝑋

¯
+

𝑋𝑖−𝑋
¯

𝑛
, 

                                  σ𝑥𝑦 ≔ σ𝑥𝑦 + ൬𝑋𝑛 − 𝑋
¯
൰ ൬𝑌𝑛 − 𝑌

¯
൰,      (3) 

𝑌
¯
≔ 𝑌

¯
+

𝑌𝑖−𝑌
¯

𝑛
, 

𝑠𝑥𝑦 ≔
σ𝑥𝑦

𝑛−1
, 

where subscript 𝑛 denotes the most recent data point and σ𝑥𝑦 is the sum of cross products. 

While 𝑋
¯

 is updated first in Eq. 3, the result is the same whether one chooses to update 𝑌
¯

 first 

(Pébay, 2008). This equation can also be used to compute the variance of a variable, however 

with a minor adjustment. Line 2 of Eq. 3 in words is, ‘new sum of cross products is the previous 

sum of cross products plus the difference between the last data point and a mean that includes 

this last data point multiplied by the differences between the last data point and a mean that 

excludes this last data point’. Now, if one wants to compute the variance, one has to resort to an 



 

 

auxiliary variable to temporarily store that difference between the last data point and the mean 

excluding the most recent data point, i.e, 

𝑑 = 𝑋𝑖 − 𝑋
¯
, 

       𝑋
¯
≔ 𝑋

¯
+

𝑋𝑖−𝑋
¯

𝑛
, 

        σ𝑥𝑥 ≔ σ𝑥𝑥 + 𝑑 ൬𝑋𝑛 − 𝑋
¯
൰,                  (4) 

𝑠𝑥
2 ≔

σ𝑥𝑥

𝑛−1
,  

where 𝑑 is an auxiliary variable, σ𝑥𝑥 the sum of squares, and 𝑠𝑥2 the sample variance. In 

combining Eq. 3 and Eq. 4 one can also compute correlation estimates in an online manner. Now 

let us move to an analysis often used by social scientists: linear regression. 

This analysis, like covariance estimates, yields identical parameter estimates in both the 

traditional offline, using all data at once, approach as in an online learning approach. To briefly 

remind the reader, linear regression coefficients are computed as follows: 

𝛽
^

= ൫𝑋′𝑋൯
−1
𝑋′𝑌                                 (5) 

where 𝑿 is a 𝑛 × 𝑝 data matrix, where 𝑝 is the number of variables, including a column of 1’s for 

the intercept. Once there are enough observations available for 𝑿′𝑿 to be invertible (i.e, 𝑿′𝑿 

should be positive definite), one only needs to invert this 𝑋′𝑋 matrix once, and afterwards directly 

update the inverted matrix as follows, using the formulation of Sherman-Morrison: 

(𝑋′𝑋)−1 ≔ (𝑋′𝑋)−1 −
(𝑋′𝑋)−1𝑥𝑛𝑥′𝑛(𝑋′𝑋)

−1

1+𝑥𝑛(𝑋′𝑋)−1𝑥′𝑛
                                    (6) 

where 𝑥𝑛 is the most recent data point or vector with 𝑝 entries. Second part of Eq. 5 is computed 

online similar to Eq. 3 line 2, 

𝑋′𝑌 ≔ 𝑋′𝑌+𝑋𝑛𝑌𝑛                           (7) 

Next, multiplying the results of Eq. 6 and Eq. 7 yields identical regression coefficient estimates to 

the offline estimated coefficients. Unfortunately, not all parameters can be estimated using a 

closed form expression, and therefore not all parameters estimates are identical in their online 

and offline estimation approach. We now continue with the discussion of Stochastic Gradient 

Descent, an online estimation approach to fit, for instance, logistic regression models. 

 

3.2 Approximating estimators 
 

While data scientists often use logistic regression as a classification method, social scientists are 

often more interested in the regression coefficients of the logistic regression. Now, even fitting a 



 

 

logistic regression using all data at once is an optimization problem, since there is no closed form 

expression. This even amplifies the demand for an online estimation procedure as iterative 

procedures for model fitting quickly become infeasible when data are streaming in. The iterations 

required to obtain a stable solution for the regression coefficients will require more time as more 

data are entering and with the new data entering, one has to redo the analysis to remain up to 

date. 

There are various estimation methods and algorithms to estimate a logistic regression 

model (Hilbe, 2009; Heinze, 2006) and for the purpose of this chapter we look into the Maximum 

Likelihood framework and use the (Stochastic) Gradient Descent algorithm (Bottou, 2010). In 

general, Gradient Descent entails the following: derive the first order derivative of the log-

likelihood function and set it equal to zero. Then, iteratively update the parameter estimates until 

convergence is reached. To illustrate Gradient Descent, we provide the example of logistic 

regression. The log-likelihood function of logistic regression is 

ℓ = σ 𝑌𝑖log ቀ
exp⁡(𝑋𝑖𝛽)

1+exp⁡(𝑋𝑖𝛽)
ቁ𝑛

𝑖=1 + (1 − 𝑌𝑖)log ቀ1 −
exp⁡(𝑋𝑖𝛽)

1+exp⁡(𝑋𝑖𝛽)
ቁ     (8) 

with the first order derivative, 

𝛿ℓ

𝛿𝛽
= σ ቀ𝑌𝑖 −

exp⁡(𝑋𝑖𝛽)

1+exp⁡(𝑋𝑖𝛽)
ቁ𝑋𝑖

𝑛
𝑖=1            (9) 

Eq. 9 is a summation of the contributions of each of the rows in the dataset to the derivative. This 

summative nature can be exploited by instead of summing over the entire dataset at once, take 

intermediate steps towards a more likely solution after adding the contribution of each data point: 

𝛽
^

≔ 𝛽
^

+ 𝜆 ቀ𝑌𝑛 −
exp⁡(𝑋𝑖𝛽)

1+exp⁡(𝑋𝑖𝛽)
ቁ𝑋𝑛         (10) 

where 𝜆 is the learning rate giving weight to new observations. Similar to the Eq. 2, the learning 

rate can be decided upon by the researcher. 

The parameters estimated in this section, whether they are obtained through 

approximations or in closed form solution, all have in common that the parameters are estimated 

using data from which we assume the data rows are independent of each other. This implies that 

there is no correlation between data points. However, in social science practice, we often deal 

with situations where this assumption is violated due to the fact that we have repeated 

observations of individuals or other kinds of groupings such as employees nested within 

companies, children in classrooms within schools or citizens in countries. In the next section, we 

detail how to fit a multilevel model using online learning. 

 



 

 

4. Streaming Expectation Maximization Approximation 
 

In this section, we focus on the online estimation with dependent observations. Commonly, 

dependent observations are analyzed with multilevel models. For the online estimation of these 

models, we introduce the Streaming Expectation Maximization Approximation (SEMA) algorithm, 

an online learning algorithm based on the EM algorithm (Ippel et al., 2019, 2016b). Multilevel 

models have several advantages such as better out-of-sample predictions than models which 

assume a fixed effect, they are also easier to interpret as the model only exist of three types of 

parameters (i.e., regression coefficients, variance parameters, and residual variance) 

(Raudenbush and Bryk, 2002; Skrondal and Rabe-Hesketh, 2004). However, the downside of 

these models is that they rely on iterations to fit the model, similar to the logistic regression. When 

data are either large (i.e., long) or augmented with new observations, the estimation time of such 

a multilevel model quickly becomes infeasible, as well as the required computational power to do 

the series of matrix inversions which are necessary to estimate the model parameters. While we 

assume data to enter over time, using SEMA for model estimation can still be beneficial in the 

case of stationary data. While in a data stream, SEMA will not revisit previously seen observations 

that is not to say that it is impossible. In a stationary dataset, SEMA can be used to iterate over 

the dataset more efficiently than the offline method, using less iterations in order to converge 

(Ippel et al., 2016b). In this section, we first detail the multilevel model and highlight one of the 

commonly used estimation algorithms to fit the model, i.e., EM algorithm. We, then, continue with 

the discussion of SEMA. 

 

4.1 Multilevel model 
 

When the assumption of independent observations is violated, social scientists often resort to 

multilevel models to account for these dependencies (Raudenbush and Bryk, 2002; Skrondal and 

Rabe-Hesketh, 2004). For instance, assuming that a school effect on student performance is 

normally distributed and within a school the children’s performances are also normally distributed, 

we can estimated a ’normal × normal’ model, however other distributions that fall within the 

framework of the exponential family (e.g., beta binomial or negative binomial) can be accounted 

for similarly. In multilevel modeling, we refer to level 1 as the lower level, e.g., observations, and 

level 2 to the higher level, e.g., individuals. Instead of assuming a fixed effect, which is the same 

for each individual, in this model we estimate individual effects. These individual effects are not 

directly observable as these are coming from (a) latent variable(s). Assuming normally distributed 

individual effects, and normally distributed errors; the model formulation is then as follows: 



 

 

𝑦𝑖𝑗 = 𝑥𝑖𝑗𝛽+ 𝑧𝑖𝑗𝑏𝑗+𝜀𝑖𝑗         

(11) 

where 𝑦𝑖𝑗 is observation 𝑖 of person 𝑗, 𝑥𝑖𝑗 is a vector of 𝑝 fixed effect covariates, 𝑧𝑖𝑗 is a vector of 

𝑟 random or individual effect covariates, 𝛽 is the fixed effect regression coefficient, 𝑏𝑗 are 

individual effects and 𝑏𝑗 ∼ 𝑁(0, 𝜏2), 𝜀𝑖𝑗is the error term per observation and 𝜀𝑖𝑗 ∼ 𝑁(0, 𝜎2), 

where 𝑏𝑗 ⊥ 𝜀𝑖𝑗. Additionally, let 𝐽 be the number of individuals, 𝑛 the number of observations, and 

𝑛𝑗 the number of observations from one individual. 

 

4.2 Model estimation using EM algorithm 
 

An option to estimate the coefficients of Eq. 11 is using the ‘Expectation-Maximization’ algorithm. 

In short, the algorithm works as follows: In the first step, the Expectation step, the unobserved 

values (of the latent variable) are predicted, given the current set of parameter estimates. The 

second step, the Maximization step, then maximizes the (log-)likelihood given these predictions, 

thereby updating the estimates of the parameters. Alternating between these two steps, EM 

algorithm will obtain the maximum likelihood estimates. 

4.2.1 E step 

 

The E step consists of three equations, one for each type of parameter: 𝛽, 𝜏2, and 𝜎2 to compute 

the Complete Data Sufficient Statistics, CDSS. We use the term complete data because we treat 

the predicted values as if they were observed. We refer to the CDSS as 𝑇1, 𝑇2, and 𝑇3, for 

respectively 𝛽, 𝜏2, and 𝜎2. Each will be discussed in turn, starting with  𝑇1: 

𝑇1(𝑘) = σ 𝑋′𝑗𝑍𝑗𝑏
^

𝑗(𝑘)
𝐽
𝑗=1                        (12) 

where 𝑋𝑗 is an 𝑛𝑗×𝑝 matrix, 𝑍𝑗 is an 𝑛𝑗×𝑟 matrix, 𝑘 indexes the current iteration, 𝑇1(𝑘) is an 

𝑝 × 1 vector, 𝑏
^

𝑗(𝑘) is an 𝑟 × 1 vector and defined as,  

𝑏
^

𝑗(𝑘) = 𝐶𝑗(𝑘)
−1 (𝑍′𝑗𝑦𝑗 −𝑍′𝑗𝑋𝑗𝛽

^

(𝑘−1)),          (13) 

where 𝐶𝑗(𝑘) is an 𝑟 × 𝑟 matrix which quantifies the uncertainty of 𝑏
^

𝑗, and is given by: 

𝐶𝑗(𝑘) = 𝑍′𝑗𝑍𝑗 + 𝜎
^
(𝑘−1)

2

𝜏
^
(𝑘−1)

−1

                      (14) 



 

 

Second, 𝑇2(𝑘) is computed as follows  

𝑇2(𝑘) = σ 𝑏
^

𝑗(𝑘)𝑏
^

′𝑗(𝑘) +
𝐽
𝑗=1 𝜎

^
(𝑘−1)

2

σ 𝐶𝑗(𝑘)
−1𝐽

𝑗=1 ,                      

(15) 

where, 𝑇2(𝑘) is an 𝑟 × 𝑟 matrix. Lastly, 𝑇3(𝑘) is given by  

𝑇3(𝑘) = σ 𝑢′𝑢+ 𝜎
^
(𝑘−1)

2

𝑡𝑟 ቀσ 𝐶𝑗(𝑘)
−1 𝑍′𝑗𝑍𝑗

𝐽
𝑗=1 ቁ

𝐽
𝑗=1                      (16) 

where 𝑢 = 𝑦𝑗 − 𝑋𝑗𝛽
^

− 𝑍𝑗𝑏
^

, is the residual.  

4.2.2 M step 

 

Using the updated CDSS, in the M step the parameter estimates are updated. In iteration 𝑘, 𝛽,is 

computed as follows: 

𝛽
^

(𝑘) = ቀσ 𝑋′𝑗𝑋𝑗
𝐽
𝑗=1 ቁ

−1
σ 𝑋′𝑗𝑌𝑗−𝑇1(𝑘)
𝐽
𝑗=1                       

(17) 

The 𝜏
^

(𝑘)

2

 is equal to: 

𝜏
^
(𝑘)

2

=
𝑇2(𝑘)

𝐽
,                        (18) 

Lastly, 𝜎
^

(𝑘)

2

is given by: 

 𝜎
^
(𝑘)

2

= 
𝑇3(𝑘)

𝑛
                        (19) 

 

4.3 Online model estimation using SEMA 
 

There are several operations presented in the previous sections, which would make the online 

estimation of the multilevel model infeasible in a growing dataset. For instance, the matrix 

multiplication and inversion (൫𝑋′𝑋൯
−1

) is a costly operation, which would have to be computed 

again every time an up-date is desired. In this section, we will detail the adaptations which allow 

for online estimation. However, note that, the online estimation will not result in the exact same 

parameter estimates when only a few observations have been processed as the offline estimation 

procedure. When more (i.e., tens of thousands) of observations have been processed, the 

estimates of the parameters will be the same or at least highly similar. 

 



 

 

 
 
4.4 Online E step 
 

In this section we will use the ‘∼’ to differentiate between the offline and online estimated 

parameters. We refer to the individual which is generating the most recent data point as 𝑗𝑡, where 

𝑡 indexes the most recent data point. Since all three CDSS are sums over individuals, the online 

update for each of the CDSS follows this logic: 

 

CDSS := CDSS - previous contribution + updated contribution 

 

The online computation of 𝑇
~

1is as follows:  

𝑇
~

1 ≔ 𝑇
~

1 −𝑇1𝑗𝑡(𝑡−1) +𝑇1𝑗𝑡          (20) 

where 𝑇1𝑗𝑡is defined as,  

𝑇1𝑗𝑡 = 𝑋′𝑗𝑍𝑗𝑏
^

𝑗,            (21) 

where the online computation of 𝑋𝑗
′𝑍𝑗 equals 

𝑋𝑗
′𝑍𝑗 ≔𝑋𝑗

′𝑍𝑗+𝑋𝑖𝑗𝑍𝑖𝑗
′

.           (22) 

Second, the CDSS 𝑇
~

2 is computed as follows  

𝑇
~

2 ≔ 𝑇
~

2 −𝑇2𝑗𝑡(𝑡−1) +𝑇2𝑗𝑡          (23) 

where 𝑇2𝑗𝑡 is given by  

𝑇2𝑗𝑡 = 𝑏
^

𝑗𝑏
^

𝑗

′

+𝜎
^2

𝐶𝑗
−1

,           (24) 

where 𝑏
^

𝑗 is computed online exactly the same as offline (Eq. 13), where the product of 𝑍𝑗
′
𝑌𝑗is 

computed similar online to Eq. 22 and 𝑍𝑗
′𝑋𝑗 is the transpose of that same equation. The online 

computation of 𝐶𝑗 online requires the online matrix multiplication presented earlier in Eq. 22. 

Lastly, the computation of 𝑇
~

3, 

𝑇
~

3 ≔ 𝑇
~

3 −𝑇3𝑗𝑡(𝑡−1) +𝑇3𝑗𝑡          (25) 

where the individual contribution is given by  

 



 

 

𝑇3𝑗𝑡 = 𝑌𝑗
′𝑌𝑗 +𝛽

^ ′

𝑋𝑗
′𝑋𝑗𝛽

^

+𝑏
^

𝑗

′

𝑍𝑗
′𝑍𝑗𝑏

^

𝑗 −2𝑌𝑗
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For Equation 26, we have to store several components, to ensure we do not have to redo the 

computations when new observations come in. For instance, we have to store 𝑋𝑗
′𝑋𝑗 matrix, similar 

to 𝑍𝑗
′𝑍𝑗, 𝑌𝑗

′𝑋𝑗, 𝑌𝑗
′𝑍𝑗, and lastly 𝑋𝑗

′𝑍𝑗. All these matrix and vector products are updated like Eq. 

22. When the new contribution is computed, these matrices are multiplied with the relevant 

parameters. 

 

4.5 Online M step 
 

In the case of fitting a multilevel model where both the random effects as well as the error terms 

are assumed to be normally distributed, the M step of EM algorithm is computationally simple. 

Adapting this step to fit in an online learning algorithm is therefore rather straightforward: the 

maximization of 𝜏2 and 𝜎2 remain exactly the same. The estimation of the fixed effect regression 

coefficients, 𝛽, is altered slightly to fit the online framework. The main adaptation is in the matrix 

inversion of 𝑋′𝑋. While the inverse of 𝐶𝑗 matrix has to be computed for the most recent individual 

to update the model, the ൫𝑋′𝑋൯
−1

 can be updated directly (Ippel et al., 2016a, 2019; Sherman 

and Morrison, 1950; Plackett, 1950). The reason of this difference lies in the fact that the 

computation of 𝐶𝑗depends on continuously changing estimates of the model parameters and the 

values of the latent variables, while 𝑋′𝑋 only dependents on the values of the observed 

covariates. Once 𝑋′𝑋 is invertible, the inverse of this matrix can be updated using the formulation 

presented in Equation 6. You can find an R package with the SEMA algorithm https://github.com/ 

L-Ippel/SEMA 

 

5. Discussion 
 

This chapter introduces several approaches to analyzing data streams with independent and 

dependent observations. Four approaches were suggested in how to process large and/or 

streaming data. We introduced online learning estimation procedure for models commonly used 

by social scientists, such as correlations and linear regression. However, for many models online 



 

 

learning approaches have not yet been developed. For instance, commonly used Machine 

Learning algorithms, e.g., random forest, and Neural networks are challenging to estimate in an 

online learning manner. The research field of analyzing data streams is growing vastly. 

In addition to exploring new methods to analyze data streams, methodological issues 

regarding analyzing data streams is a pioneering research field. Currently, open questions are, 

for instance, the treatment of (temporarily) missing data. To illustrate, it is yet unclear how one 

should handle data streams where not all covariates are observed at once, resulting in missing 

values. While randomly missing values can cause an increase of the standard error, the problem 

becomes even more challenging when values are missing due to attrition: a particular subgroup 

of observations drops out of the stream. This will likely lead to biased estimates. 

Related to the issue of systematic dropout is concept drift (e.g., Zliobaite, 2009), where 

the data generating model fluctuates over the data collecting period. There are several 

approaches to handle such fluctuations over time. One branch of research is focused on the auto-

correlation models where previous observations are taken into account for new predictions (e.g., 

Cappé, 2011). Another branch of research focuses on forgetting factors also known as learning 

rates. This learning or forgetting parameter determines the weight of the newly observed data 

compared to the weight of the historical data. A simple example is the computation of the sample 

mean: 
1

min(n;1000)
σ 𝑥𝑖
𝑛
𝑖=1 . Computing the sample mean like this, gives equal weight to all 

observations, until 𝑛 = 1000. When additional observations augment the dataset, these 

observations will influence the sample mean more than the historic data allowing the mean to 

fluctuate more with the recent data. 

An additional complication in analyzing data streams with fluctuations over time arises 

when observations from an individual are collected at highly skewed time intervals. Observations 

closer in time are more strongly correlated than observations which are spread out over a longer 

time interval. These differences in time intervals might, therefore, cause bias in the individual 

predictions as dependencies between close-in-time observations compared to distance-in-time 

observations might not be picked up adequately by the model.  

Lastly, analyzing data streams, similar to analyzing static datasets, requires a well-

designed research plan. This plan should entail which method and model that will be used and 

which variables will be collected. Moreover, it should also contain which tests will be done at 

which point in time, to prevent type 1 error inflation. In data streams, this research plan is even 

more important than in the case of static data analysis, since data that was not stored, is lost. It 

also means that prior to the data collection, one has to consider the purpose of the study, e.g., 



 

 

different strategies apply for a prediction whether someone will click on an advertisement versus 

understanding the influence of sentiment after a match of a national soccer match on stock market 

behavior, and how long or how many observations will be collected. 

Using data streams for the understanding of social behavior is an exciting new research 

area. It allows novel research questions to be asked using innovative research methods. More 

and more tools are becoming available for the interested researcher such as Rapidminer 

(Hofmann and Klinkenberg, 2013) or Massive Online Analysis (Bifet et al., 2010) which allow 

mining and learning from these data streams. 
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