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Abstract:  

A statistical model can be called a latent class (LC) or mixture model if it assumes 

that some of its parameters differ across unobserved subgroups, latent classes, or 

mixture components. This rather general idea has several seemingly unrelated 

applications, the most important of which are clustering, scaling, density 

estimation, and random-effects modeling. This article describes simple LC 

models for clustering, restricted LC models for scaling, and mixture regression 

models for nonparametric random-effects modeling, as well as gives an overview 

of recent developments in the field of LC analysis. Moreover, attention is paid to 

topics such as maximum likelihood estimation, identification issues, model 

selection, and software. 
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Latent Class Analysis 

Jeroen K. Vermunt, Tilburg University, Tilburg, The Netherlands 

 

Introduction 

A statistical model can be called a latent class (LC) or mixture model if it assumes 

that some of its parameters differ across unobserved subgroups, latent classes, or 

mixture components. This rather general idea has several seemingly unrelated 

applications, the most important of which are clustering, scaling, density 

estimation, and random-effects modeling. It should be noted that in applied fields 

the terms LC model and mixture model are often used interchangeably, which is 

also what I will do here. In the more technical statistical literature on mixture 

modeling, the term LC analysis is reserved for a specific type of mixture model, 

that is, a mixture model for a set of categorical items (for the classical LC model). 

 LC analysis was introduced in 1950 by Lazarsfeld as a tool for building 

typologies (or clustering) based on dichotomous observed variables. More than 20 

years later, Goodman (1974) made this model applicable in practice by 

developing an algorithm for obtaining maximum likelihood estimates of the 

model parameters, as well as proposed extensions for polytomous manifest 

variables and did important work on the issue of model identification. Many 

important extensions of this classical LC model have been proposed since then, 
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such as models containing explanatory variables (Dayton and Macready, 1988), 

models that relax the local independence assumption (Hagenaars, 1988), 

constrained models similar to IRT models (Lindsay, Clogg and Grego, 1991; 

Heinen, 1996), models with multiple latent variables (Magidson and Vermunt, 

2001), models for longitudinal data (Van de Pol and Langeheine, 1990; Collins 

and Lanza, 2010), models for multilevel data (Vermunt, 2003, 2010b), three-step 

LC analysis (Bolck, Croon, and Hagenaars, 2004; Vermunt, 2010a), and LC tree 

models (Van den Bergh, van Kollenburg, and Vermunt, 2018). 

 Whereas the classical LC model and its extensions are conceived primarily 

as a clustering and scaling tool for categorical data analysis, LC and finite mixture 

models can be useful in several other areas as well. One of these is as a 

probabilistic cluster analysis tool for continuous observed variables, an approach 

that offers many advantages over traditional cluster techniques such as K-means 

clustering (Wolfe, 1970; McLachlan and Peel, 2000; Vermunt and Magidson, 

2002). Another application area is dealing with unobserved heterogeneity, as 

happens in mixture regression analysis of multilevel or repeated measurement 

data (Wedel and De Sarbo, 1994; Vermunt and Van Dijk, 2001). 

 The remainder of this article is organized as follows. After introducing the 

simplest type of LC models, I discuss various restricted LC models as well as 

models with explanatory variables. Next, I give an overview of other types of LC 

and mixture models, which includes various recently proposed extensions. The 
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remaining sections focus on parameter estimation, model selection, and software. 

An annotated list of further reading is provided at the end of the chapter.  

Simple LC and mixture models 

LC analysis is typically used as a tool for analyzing multivariate response data; 

that is, data consisting of several dependent variables, response variables, or 

items. We will denote the response of subject i on dependent variable j by yij, and 

the number of dependent variables by J. The full response vector of a subject is 

denoted by yi. To make things more concrete, Table 1 presents a small illustrative 

data set consisting of three dichotomous responses, yi1, yi2, and yi3 (0=incorrect; 

1=correct). This is a subset of items from a mathematics test administered to 2156 

children; that is, the first three items (out of a total of 18) from the Latent GOLD 

demo data file “cito.dat”. The column “Frequency’ contains the observed 

frequency count for each of the eight possible answer patterns.  

[INSERT TABLES 1 AND 2 ABOUT HERE] 

In addition to the J observed dependent variables, a LC model contains a 

discrete latent variable. We will denote a subject’s unobserved score on this latent 

variable by νi, the number of LCs by C, and a particular class by c, where c = 1, 

2, . . ., C. The aim of a LC analysis of the data set in Table 1 could be to classify 

pupils into two groups, masters and non-masters, which differ with respect to the 
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probability of answering the test items correctly. The results obtained with a 2-

class model will be used to illustrate the various components of a LC model. 

 LC analysis defines a model for )( if y , the probability density of the 

multivariate response vector yi. In the above example this is the probability of 

answering the items according to one of the eight possible response patterns, for 

example, of answering the first two items correctly and the last one incorrectly 

(𝑦𝑖1 = 1, 𝑦𝑖2 = 1, 𝑦𝑖3 = 0), which as can be seen in Table 1 equals 0.161 for the 

estimated 2-class model. The assumption underlying any type of LC or mixture 

model is that the density )( if y  is a weighted average (or mixture) of the C class-

specific densities )|( cf ii =y . This is expressed mathematically as follows: 

 
=

===
C

c

iiii cfcPf
1

)|()()(  yy       (1) 

Here, )( cP i =  denotes the probability that a subject belongs to LC c. For our 

small empirical example, the estimates of these (prior) class membership 

probabilities are .601 and .399 for class 1 and 2, respectively (see Table 2). The 

assumed mechanism by equation (1) is that each individual belongs to one of C 

exhaustive and mutually exclusive classes with probability )( cP i =  and that 

given membership of LC c an individual provides responses according to the 

probability density associated to this class. Table 1 shows the estimated values of 

)1|( =iif y  and )2|( =iif y  for our data sets. As can be seen, LC 1 has higher 
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probabilities for the response patterns with 2 or 3 correctly answered items, 

whereas LC 2 has higher probabilities for the response patterns with 0 or 1 item 

correct. 

 The classical LC model combines the assumption of equation (1) shared 

by all mixture models with the assumption of local independence. Local 

independence means that the J responses are mutually independent given a 

subject’s class membership. It can be expressed as follows: 

 
=

===
J

j

iijii cyfcf
1

)|()|( y .      (2) 

Independence implies that the joint density )|( cf ii =y  is obtained as a product 

of the J item-specific densities )|( cyf iij = . In our example, )|1( cyf iij ==  , is 

the class-specific probability of giving a correct answer to item j. As reported in 

Table 2, for a subject belonging to the first LC, these equal .844, .912, and .730 

for items 1, 2 and 3, respectively. The local independence assumption implies, for 

example, that the probability of answering the first two items correctly and the 

last one incorrectly for someone in LC 1 equals .844 .912 (1-.730) = 0.208. 

Note that the local independence assumption is also used in other types of latent 

variables models, such as in factor analysis and IRT modeling, and is thus not 

specific for LC analysis. 

 Combining the two basic equations (1) and (2) yields the following model 

for )( if y : 
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  
= =

===
C

c

J

j

iijii cyfcPf
1 1

)|()()( y  .    (3) 

To complete the model specification, we need to define the form of the 

conditional densities )|( cyf iij = . In the classical LC model for categorical items 

these are multinomial probability densities; that is,  

 
−

=

==

1

0

*

)|(
j

ijr

R

r

y

jrciij cyf  , 

where Rj is the number of categories of item j, 10 − jij Ry , and 1* =ijry  if 

ryij =  and 0 otherwise. Note this is a slightly complicated, but mathematically 

elegant, way to express that someone in LC c has a probability equal to 

)|( cryP iijjrc ===   of giving response r to item j. In the special case of a 

dichotomous response, the multinomial distribution reduces to the Bernoulli 

distribution with success probability )|1(1 cyP iijcjjc ====  . Table 2 

presents these probabilities for our small example. 

 It is important to note that LC models can not only be used with 

categorical responses, but also with continuous responses and counts. The density

)|( cyf iij =  could be a binomial, Poisson, or negative binomial distribution for 

counts, and a normal or gamma distribution for continuous responses. The 

mixture model for continuous response variables is sometimes referred to as the 
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latent profile model. The parameters of this model are the class proportions and 

class-specific item means and variances ( jc  and 2

jc ). 

 By comparing the J sets of item parameters across classes, one can name 

the classes. The parameter estimates presented in Table 2 show that the first class 

can be named the masters because pupils belonging to that class have much 

higher probabilities of answering the test items correctly than pupils belonging to 

the second non-masters class. 

 Similar to cluster analysis, one of the purposes of LC analysis might be to 

assign individuals to LCs. The probability of belonging to LC c given responses 

iy  – often referred to as posterior membership probability – can be obtained by 

the Bayes rule: 

 
)(

)|()(
)|(

i

iii
ii

f

cfcP
cP

y

y
y

==
==


 .    (4) 

Table 1 reports )|( ii cP y= for each answer pattern. For example, )|1( iiP y=  

equals 0.774 for the (1,1,0) pattern, which is obtained as 0.601 · 0.208 / 0.161. 

The most common classification rule is modal assignment, which amounts to 

assigning each individual to the LC with the highest )|( ii cf y= . The last 

column of Table 1 reporting the modal assignments shows that pupils with at least 

2 correct answers are assigned to class 1 and the others to class 2. 
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 In the introduction we stated that mixture models are statistical models in 

which parameters are assumed to differ across LCs. But what is the statistical 

model used in the simple LC models discussed so far? It is the independence 

model: we assume responses to be independent, with different parameter values 

for each class. Depending on the scale type of the response variables, these 

parameters are Bernoulli probabilities, multinomial probabilities, normal means 

and variances, Poisson rates, etc. 

Generalized linear models for item probabilities/means 

Haberman (1979) showed that the LC model for categorical response variables 

can also be specified as a log-linear model for an expanded table, including the 

latent variable i  as an additional dimension. Using such a log-linear 

specification is equivalent to parameterizing the response probability for item j as 

follows: 

 jcrjr

iij

iij

cj

jrc

cyP

cryP









+=















==

==
=















)|0(

)|(
loglog

0

,   (5) 

for 11 − jRr ; that is, as a multinomial logistic regression model with 

intercepts jr and slopes jcr  (note that we use the first item category, r=0, as 

baseline). One identification constraint needs to be imposed, for example, 
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01 =rj  (the parameters for class 1 are fixed to 0) or 0=jr  (intercepts are fixed 

to 0). 

 For dichotomous responses and binomial counts, the regression model 

could be a binary logit or probit model, for Poisson counts a log-linear model, and 

for continuous responses a standard linear model. These are generalized linear 

models (GLMs) of the form 

   jcjiij cyEg  +== )|( ,      (6) 

where  g  is the link function transforming the expected value of ijy  to the linear 

term. For ordinal polytomous variables, one may use an ordinal regression model, 

such as an adjacent-category or cumulative logit model. These are models that 

restrict the item response probabilities jrc . 

Some restricted models for categorical items  

Many interesting types of restricted LC models for categorical items have been 

proposed which involve imposing (linear) constraints on either the conditional 

probabilities jrc  or the logit coefficients of equation (5). One of these are 

probabilistic Guttman scaling models for dichotomous responses, which are LC 

models with C=J+1 classes, one for each possible total score. The idea is that 

apart from measurement error, class c should provide a positive (correct) answer 

to the c-1 easiest items and a negative (incorrect) answer to the remaining J-(c-1) 



 

 12 

items. The various types of probabilistic Guttman models differ in constraints 

they impose on the measurement error. The simplest and most restricted model is 

the Proctor (1970) model. Table 3 presents the parameter estimates obtained when 

fitting the Proctor model to the data set in Table 1. As can be seen, the probability 

of a correct response is either 0.833 or 0.167=1-0.833. The measurement error – 

or the probability of giving a response which is not in agreement with the class – 

is estimated to be equal to 0.167.  Whereas the Proctor model assumes that the 

measurement error is constant across items and classes, less restricted models can 

be defined which allow the error probabilities to differ across items, classes, or 

both (see, e.g., Dayton, 1999). Note that these equality constraints on the error 

probabilities can also be defined using linear constraints on the logit parameters: 

01 =j  and *

1  −=cj  for c ≤ j and * =jc  otherwise. 

[INSERT TABLE 3 ABOUT HERE] 

 Croon (1990) proposed a restricted LC model that similar to non-

parametric IRT (Sijtsma and Molenaar, 2000) assumes monotonic item response 

functions; that is, 1,11 + cjcj  , or, equivalently, 1,11 + cjcj  . A more restricted 

version, in which not only classes but also items are ordered, is obtained by 

imposing the additional set of restriction cjcj 111  + ; that is, by assuming double 

monotony. Vermunt (2001) discussed various generalizations of these models.  
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 Various authors described the connection between restricted LC analysis 

and parametric IRT modeling (see, for example, Heinen, 1996; Lindsay, Clogg, 

and Grego, 1991); that is, IRT models with a discrete specification of the 

distribution of the underlying trait or ability can be defined as LC models with 

restrictions on the logistic parameters. The key restriction is cjrjrc  = * for 

nominal items and cjjrc r  = * for ordinal items, where the c are LC 

locations representing the C possible values of the discretized latent trait. These 

locations may be fixed a priori, for example, at -2, -1, 0, 1, and 2 in the case of 

C=5, but may also be treated as free parameters to be estimated. Depending on 

whether the items are dichotomous, ordinal, or nominal, this yields a 2-parameter 

logistic, generalized partial credit, or nominal response model. Further restrictions 

involve equating *

j  across items, yielding Rasch and partial credit models, and 

imposing across category and across item restrictions on jr  parameters as in 

rating scale models for ordinal items.  

Models with explanatory variables  

The most important extension of the LC models discussed so far is the possibility 

to include explanatory variables (covariates) affecting the responses (Wedel and 

DeSarbo, 1994) or the class memberships (Dayton and Macready, 1988). 
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Denoting the vector with explanatory variables for subject i by ix , the LC model 

of interest can be formulated as follows: 

  
= =

===
C

c

J

j

ijiijiiii

i

cyfcPf
1 1

),|()|()|( xxxy  .   (7) 

The main difference compared to the model defined in equation (3) is that now we 

have a model for )|( iif xy  − the conditional density of iy  given ix .  

 Similar to the regression models for the response variables introduced in 

equations (5) and (6), one can define a mixture regression model with explanatory 

variables; i.e., 

  
=

+==
P

p

ijppccijiij xcyEg
1

),|(  x .     (8) 

As before, ijy  may refer to the response on item j by pupil i, in which case the 

explanatory variables in a long (two-level) format data file will consist of a design 

matrix defining the item parameters. For our small example with 3 items, the data 

file will contain 3 records per person--one per item. Each record has 4 columns 

with the first column containing an identifier variable linking the records, the 

second column indicating the response to a single item, and 2 additional columns 

for dummy-coded predictors to indicate which item the response is for. Taking the 

third item as the reference item, the first predictor takes on the value 1 for a 

record containing the first item response and 0 for the other records, and the 
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second predictor equals 1 for the second response and 0 for the other two 

responses. 

However, the model in equation (8) can also be used for many other 

purposes. In fact, it is a model for analyzing two-level data sets, where regression 

parameters are allowed to differ across LCs (of higher-level units). For example,

ijy  could be the test score of pupil j belonging to school i, and ijx a set of pupil 

characteristics (e.g., IQ). A mixture regression model would identify LCs of 

schools with different intercepts and different effects of child characteristics on 

the test scores. Another possible application is in the analysis of longitudinal data, 

where j is a time point for subject i, and where vector ijx contains time variables. 

This yields a LC growth model in which subjects are grouped based on their 

developmental trajectories (Vermunt, 2007). A fourth possible application is in 

experiments in which subjects are observed in multiple conditions, such as in 

conjoint studies. The mixture regression model can be used to group subjects 

based on their reactions on the experimental conditions. In fact, in each of these 

application types, the LC model is used as a random-coefficient model without 

parametric assumptions about the distribution of the random effects (Aitkin, 1999; 

Vermunt and Van Dijk, 2001). 
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 As shown in equation (7), an individual’s class membership may also be 

predicted using covariates. This is achieved by defining a multinomial logistic 

regression model for )|( ii cP x= : 


=

+=
=

=
Q

q

iqpcr

ii

ii x
P

cP

1

0
)|1(

)|(
log 





x

x
. 

Strongly related are multiple-group LC models (Hagenaars and McCutcheon, 

2002; Magidson and Vermunt, 2004; Kankaraš, Moors, Vermunt, 2010). These 

can be defined by using the grouping variable as a nominal explanatory in the 

model. 

Three-step latent class analysis 

Rather than including covariates directly within the estimated LC model, one may 

also use the following type of three-step approach: 

1. Perform model selection and estimation in the usual way, thus without the 

inclusion of covariates; 

2. Obtain class assignments w using the selected model from step 1, as 

explained in equation (4); 

3. Perform subsequent analyses with covariates or other types of external 

variables using the class assignments w of step 2. 

Although this stepwise approach of separating the LC analysis from the analyses 

one would like to do after the latent classes are constructed is very practical and 

intuitive, it is also problematic. More specifically, as a result of the classification 

errors introduced in step 2, it yields underestimated associations between external 
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variables and latent classes. The larger the classification errors, the larger the bias 

in the estimates of these associations. 

 However, building upon the work by Bolck, Croon, and Hagenaars 

(BCH, 2004), Vermunt (2010a) proposed a solution to this problem. He showed 

how to perform a valid step-3 analysis by adjusting for the classification errors 

introduced in step 2. Basically, a new LC model is estimated in which the class 

assignments w are used as the single indicator with known conditional response 

probabilities ( | )iP w c =  . This adjusted step-3 analysis can not only be used 

with covariates predicting class membership (via a logistic model), but also for 

investigating how classes differ with respect to a distal outcome variable (Bakk, 

Tekle, and Vermunt, 2013). Bakk and Vermunt (2016) recommended using the 

more robust BCH adjustment method for continuous distal outcomes (dependent 

variables), while for covariates and categorical distal outcomes the maximum 

likelihood (ML) approach is preferred. 

Extensions 

The most common model-fitting strategy in LC analysis is to increase the number 

of classes until the local independence assumption holds. This may, however, 

yield solutions which are difficult to interpret. One alternative approach is to relax 

the local independence assumption by allowing for associations between 

particular item pairs. Hagenaars (1988) showed how to define LC models with 

local dependencies for categorical responses. With continuous responses this is 

easily achieved by using multivariate instead of univariate normal distributions 

for locally dependent items (see, e.g., McLachlan and Peel, 2000, and Vermunt 

and Magidson, 2002). 
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 Another alternative strategy involves increasing the number of discrete 

latent variables instead of the number of LCs, which is especially useful if the 

items measure several dimensions, such as different math subskills. This so-called 

discrete factor modeling approach (Magidson & Vermunt, 2001) is a special case 

of the path modeling approach for discrete latent variables developed by 

Hagenaars (1990) and Vermunt (1997). Many other interesting models can be 

defined within this framework, such as latent Markov (or transition) models for 

the analysis of longitudinal data (Collins and Lanza, 2010; Van de Pol and 

Langeheine, 1990; Vermunt, Tran, and Magidson, 2008) and LC models for 

cognitive diagnosis (De la Torre and Douglas 2004). 

Another interesting extension is the LC tree approach (van den Bergh, van 

Kollenburg, Vermunt, 2018), in which after starting with a small number of 

classes at the root of the tree, a hierarchical structure of mutually linked classes is 

obtained by sequentially splitting classes into two subclasses as long as the model 

fit improves. This approach, which is similar to (divisive) hierarchical clustering, 

can also be combined with mixture growth modeling and three-step LC analysis. 

Various types of models have been developed that contain both discrete 

and continuous latent variables, examples of which include mixture factor models 

(Yung, 1997; McLachlan and Peel, 2000), mixture structural equation models 

(Dolan and Van der Maas, 1997), and mixture IRT models (Rost, 1990). 

Recently, extensions of mixture factor modeling have been proposed for detecting 
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sources of measurement non-invariance in intensive longitudinal data, multiple-

group data for many groups, and multilevel data (De Roover et al. 2017; De 

Roover, Vermunt, and Ceulemans, 2022; Vogelsmeier et al., 2019). 

 Another important extension is the multilevel LC model (Vermunt, 2003, 

2010b). One of its variants is a model with discrete latent variables at multiple 

levels of a hierarchical structure: e.g., children belong to LCs with different 

performances on a set of test items, and schools belong to LCs with different 

distributions of children across the child-level performance classes. Multilevel LC 

models can be used for the analysis of two-level multivariate and three-level 

univariate response data.  

 Lanza, Coffman, and Xu (2013) and Clouth et al. (2022) showed how to 

combine LC analysis with tools for causal inference in observational (non-

experimental) studies. More specifically, Lanza et al. (2013) illustrated the use of 

inverse propensity weighting and matching based on propensity scores to 

determine the effect of a treatment on class membership. As an alternative, Clouth 

et al. (2022) proposed using a three-step LC approach with inverse propensity 

weighting.  
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Maximum likelihood estimation 

The parameters of LC models are typically estimated by means of maximum 

likelihood (ML). The log-likelihood function that is maximized is based on the 

probability densities defined in equations (1), (2), and (3); that is,  


=

=
N

i

ifL
1

)(lnln y . 

With categorical responses one will typically group the data and construct a 

frequency table as we did in Table 1. The log-likelihood function for grouped data 

equals 


=

=
K

k

kk fnL
1

)(lnln y ,  

where k is a data pattern, K the number of different data patterns. and kn the cell 

count corresponding to data pattern k. Notice that only nonzero observed cell 

entries contribute to the log-likelihood function, a feature that is exploited by 

several more efficient LC software packages that have been developed within the 

past few years (see the “Software” section for more discussion of these packages).  

 One of the problems in the estimation of LC models for discrete ijy  is that 

model parameters may be nonidentified, even if the number of degrees of freedom 

– the number of independent cells in the J-way cross-tabulation minus the number 

of free parameters –  is larger or equal to zero. Nonidentification means that 

different sets of parameter values yield the same maximum of the log-likelihood 
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function or, worded differently, that there is no unique set of parameter estimates. 

The formal identification check is via the Jacobian matrix (matrix of first 

derivatives of )( if y ), which should be column full rank. Another option is to 

estimate the model of interest with different sets of starting values. Except for 

local solutions (see below), an identified model gives the same final estimates for 

each set of the starting values. 

 Although there are no general rules with respect to the identification of LC 

models, it is possible to provide certain minimal requirements and point to 

possible pitfalls. For an unrestricted LC analysis, one needs at least three 

responses ( ijy ’s) per individual, but if these are dichotomous, no more than two 

LCs can be identified. One has to be careful with four dichotomous response 

variables, in which case the unrestricted three-class model is not identified, even 

though it has a positive number of degrees of freedom. With five dichotomous 

items, however, even a five-class model is identified. Usually, it is possible to 

achieve identification by constraining certain model parameters. 

 A second problem associated with the estimation of LC models is the 

presence of local maxima. The log-likelihood function of a LC model is not 

always concave, which means that hill-climbing algorithms may converge to a 

different maximum depending on the starting values. Usually, we are looking for 

the global maximum. The best way to proceed is, therefore, to estimate the model 

with different sets of random starting values. Typically, several sets converge to 
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the same highest log-likelihood value, which can then be assumed to be the ML 

solution. Current LC analysis software packages have automated the use of 

multiple sets of random starting values to reduce the probability of getting a local 

solution. 

 Another problem in LC modeling is the occurrence of boundary solutions, 

which are probabilities equal to 0 (or 1) or logit parameters equal to minus (or 

plus) infinity. These may cause numerical problems in the estimation algorithms, 

occurrence of local solutions, and complications in the computation of standard 

errors and number of degrees of freedom of the goodness-of-fit tests. Boundary 

solutions can be prevented by imposing constraints or by taking into account other 

kinds of prior information on the model parameters. 

 The most popular methods for solving the ML estimation problem are the 

expectation-maximization (EM) and Newton-Raphson (NR) algorithms. EM is a 

very stable iterative method for ML estimation with incomplete data. NR is a 

faster procedure that, however, needs good starting values to converge. The latter 

method makes use of the matrix of second-order derivatives of the log-likelihood 

function, which is also needed for obtaining standard errors of the model 

parameters. 
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Model selection issues 

The goodness-of-fit of LC models for categorical responses can be tested using 

Pearson and likelihood-ratio chi-squared tests. The latter is defined as  

 
= 

=
K

k k

k
k

fN

n
nL

1

2

)(
ln2

y
. 

As in log-linear analysis, the number of degrees of freedom (df) equals the 

number of cells in the frequency table minus 1, minus the number of independent 

parameters. In an unrestricted LC model, 
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Although it is no problem to estimate LC models with 10, 20, or 50 indicators, in 

such cases, the frequency table may become very sparse and, as a result, 

asymptotic p-values can no longer be trusted. An elegant but somewhat time-

consuming solution to this problem is to estimate the p-values by parametric 

bootstrapping. Another option is to assess model fit in lower-order marginal tables 

(e.g., in the two-way marginal tables). Magidson and Vermunt (2004) refer to 

Pearson chi-squared statistics in two-way tables as bivariate residuals (or BVRs). 

 Even though models with C and C + 1 are nested, one cannot test them 

against each other using a standard likelihood-ratio (-2 ln L difference) test 

because it does not have an asymptotic chi-squared distribution. A solution to this 

problem is to approximate its sampling distribution using bootstrapping. But since 
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this method is computationally demanding, usually alternative methods are 

required for comparing models with different numbers of classes. One popular 

method is the use of information criteria, such as the Bayesian Information 

Criterion (BIC), the Akaike Information Criterion (AIC), and the AIC3 (a variant 

of the AIC which uses a penalty of 3 instead of 2 per parameter), where smaller 

values indicate better model fit.  

Usually, we are not only interested in goodness-of-fit but also in the 

performance of the modal classification rule (see equation 4). The estimated 

proportion of classification errors under modal classification equals 

  )|(max1
1

1

ii

N

i

cP
N

E y=−=
=

 . 

This number can be compared to the proportion of classification errors based on 

the unconditional probabilities )( cP i = , yielding a reduction of errors measure  

 
1

1 max ( )i

E

P c



= −

− =
. 

The closer this nominal R2-type measure is to 1, the better the classification 

performance of a model. Other types of classification error reduction measures 

have been proposed based on entropy or qualitative variance (Collins and Lanza, 

2010; Vermunt and Magidson, 2016). 

[INSERT TABLE 4 ABOUT HERE] 
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 To illustrate the use of model selection statistics for deciding about the 

number of classes, Table 4 presents the results for 1- to 6-class models estimated 

with the “cito.dat” data set using all 18 items, where p-values for the goodness-of-

test and the likelihood-ratio test were obtained using bootstrapping (with 500 

replications). The simplest model with a non-significant L2 goodness-of-fit value 

and moreover with the lowest BIC is the 3-class model, and should thus be 

selected according to these two statistics. The 4-class model would be selected 

based on the AIC3, the bootstrap likelihood-ratio (-2 ln L difference) test, and the 

BVR: the AIC3 is lowest, the likelihood-ratio test shows it is significantly better 

than the 3-class model and non-significantly worse than the 5-class model, and 

the largest BVR drops quite a bit when going from 3 to 4 classes, but not anymore 

afterwards. The AIC indicates that at least 6 classes are needed, but simulation 

studies have shown that it tends to overestimate the number of classes.  

As also happens in this example application, different criteria typically 

point at different “best” models, meaning that either preference for parsimony 

and/or content knowledge should determine the final decision, in this example, on 

whether to retain the 3- or 4-class model. The last column of Table 4 reports the 

entropy-based R2 value indicating how well one can predict the individuals’ class 

memberships based on their observed responses. As in our example, this measure  

typically decreases with the number of classes. It should be noted that it should 

not be used for model selection, but only as a measure indicating how well the 
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selected model performs in terms of classification (similar to a reliability 

coefficient of a scale).  

Software 

One of the first LC analysis programs, MLLSA, made available by Clifford Clogg 

in 1977, was limited to a relatively small number of nominal variables. Today’s 

programs can handle many more variables, as well as other scale types. For 

example, the LEM program (Vermunt, 1997) provides a command language that 

can be used to specify a large variety of models for categorical data, including LC 

models. Mplus is a command language–based structural equation modeling 

package that implements many types of LC and mixture models. In addition, 

routines and packages for the estimation of specific types of LC models are 

available for SAS, R, and Stata (see, for example, Lanza et al., 2007; Linzer and 

Lewis, 2011; and Skrondal and Rabe-Hesketh, 2004). Haughton, Legrand, and 

Woolford (2009) reviewed the Latent GOLD program and the R packages poLCA 

and MCLUST. 

 Latent GOLD (Vermunt and Magidson, 2016, 2021) is a stand-alone 

program that was especially developed for LC analysis, and which contains both 

an SPSS-like point and click user interface and a syntax language. It implements 

all important types of LC models, such as models for response variables of 

different scale types, restricted LC models, models with predictors, models with 
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local dependencies, models with multiple discrete latent variables, path models 

with discrete latent variables, latent Markov/transition models, mixture regression 

and mixture growth models, mixture factor analysis and IRT, multilevel LC 

models, three-step LC modeling, and LC tree models, as well as features for 

dealing with partially missing data, performing bootstrapping, generating multiple 

imputed data sets, performing simulation studies, and providing correct inference 

with complex sampling designs. 
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Cambridge University Press. 
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the main researchers involved in the 

development of LC models before 2000. It can 

be seen as the state-of-art of the field around 

2000. 

Magidson, J., and Vermunt, J. K. ( 2004). Latent class 

models. D. Kaplan (ed.), The Sage handbook of 

quantitative methodology for the social sciences, 

(pp. 175-198). Thousand Oakes: Sage 
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This handbook chapter gives more detailed 

explanation on the practical application of 

latent class models. An updated version from 

2016 and accompanying links to video can be 

found at www.jeroenvermunt.nl. 

Vermunt, J. K. (2010b). Mixture models for multilevel 

data sets. J. Hox & J. K. Roberts (eds.). The 

handbook of advanced multilevel analysis (pp. 

59-81). New York: Routledge.  

This handbook chapter discusses the most 

important types of LC models for multilevel 

data sets. These include mixture regression 

models for 2-level and 3-level data sets and LC 

models with discrete mixtures at multiple 

levels. 
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Table 1: Small data set with three dichotomous responses 

yi1 yi2 yi3 Frequency )( if y  )1|( =iif y  )2|( =iif y  )|1( iif y=  )|2( iif y=  Modal 

0 0 0 239 0.111 0.004 0.272 0.020 0.980 2 

0 0 1 101 0.047 0.010 0.102 0.128 0.872 2 

0 1 0 283 0.131 0.038 0.271 0.175 0.825 2 

0 1 1 222 0.103 0.104 0.102 0.605 0.395 1 

1 0 0 105 0.049 0.020 0.092 0.248 0.753 2 

1 0 1 100 0.046 0.054 0.035 0.703 0.297 1 

1 1 0 348 0.161 0.208 0.091 0.774 0.226 1 

1 1 1 758 0.352 0.562 0.034 0.961 0.039 1 

Note: These are the first three items (out of a total of 18) from the Latent GOLD 

demo data file called “cito.dat”. 
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Table 2: Parameters (class proportions and probability of a correct answer) 

obtained with a 2-class model for data in Table 1 

 c=1 c=2 

)( cP i =  0.601 0.399 

)|1( 111 cyP iic ===   0.844 0.252 

)|1( 221 cyP iic ===   0.912 0.499 

)|1( 331 cyP iic ===   0.730 0.273 

 

Table 3: Parameters (class proportions and probability of a correct answer) 

obtained with Proctor model for data in Table 1 

 c=1 c=2 c=3 c=4 

)( cP i =  0.160 0.155 0.126 0.559 

)|1( 221 cyP iic ===   0.167 0.833 0.833 0.833 

)|1( 111 cyP iic ===   0.167 0.167 0.833 0.833 

)|1( 331 cyP iic ===   0.167 0.167 0.167 0.833 
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Table 4: Fit measures for the LC models estimated using all 18 items of the 

“cito.dat” data set. 

Model BIC AIC AIC3 L² 

Bootstrap 

p-value 

L² 

Largest 

BVR 

-2 ln L 

Difference 

Bootstrap 

p-value    

-2 ln L 

Difference 

Entropy 

R² 

1 Class 44667.15 44564.98 44582.98 15115.33 0.00 213.86    

2 Classes 41055.03 40845.02 40882.02 11357.36 0.01 43.34 3757.96 0.00 0.80 

3 Classes 40779.08 40461.22 40517.22 10935.57 0.38 11.89 421.79 0.00 0.69 

4 Classes 40830.76 40405.06 40480.06 10841.40 0.41 6.35 94.17 0.00 0.61 

5 Classes 40929.23 40395.69 40489.69 10794.04 0.37 5.74 47.37 0.07 0.60 

6 Classes 41029.75 40388.36 40501.36 10748.70 0.34 5.92 45.33 0.12 0.59 

Note: The selected model is underlined. BIC, AIC, and AIC3 select the model 

with the lowest value, L² the simplest model with a non-significant value, largest 

BVR the simplest model showing a large drop compared to the previous model, 

and -2 ln L difference the most complex model with a significant value. Entropy 

R² should not be used for model selection. 


