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1 Introduction

The aim of event history analysis is to explain why certain individuals are
at a higher risk than others of experiencing the event(s) of interest. This
can be accomplished by using special types of methods which, depending on
the field in which they are applied, are called failure-time models, life-time
models, survival models, transition-rate models, response-time models, event
history models, duration models, or hazard models. Examples of textbooks
discussing this class of techniques are Allison (1984), Blossfeld & Rohwer
(1995), Kalbfleisch & Prentice (1980), Lancaster (1990), Singer & Willett
(2003), Tuma & Hannan (1984), Vermunt (1997), and Yamaguchi (1991).
Here, I will use the terms event history, survival, and hazard models inter-
changeably.

A hazard model is a regression model in which the “risk” of experienc-
ing an event at a certain time point is predicted with a set of covariates.
Two special features distinguish hazard models from other types of regres-
sion models. The first is that they make it possible to deal with censored
observations, which are observations containing only partial information on
the timing of the event of interest. Another special feature is that they can
deal with covariates that change their values during the observation period,
which makes it possible to perform a truly dynamic analysis.

Below I will first explain what is actually analyzed in an event history
analysis. Then, I introduce the basic statistical concepts for both continuous-
and discrete-time analysis. As far as analysis tools themselves is concerned,
I will discuss the Kaplan-Meier estimator, which is a method for describing
event history data, as well as regression models for continuous- and discrete-
time event history data. I will show that after organizing the data in the ap-
propriate manner, an event history analysis can be performed using standard
tools for Poisson and logistic regression analysis. Moreover, I will discuss how
multilevel and mixture modeling tools can be used to deal with unobserved
heterogeneity.
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2 State, event, duration, risk period, and cen-

soring

In order to understand the nature of event history data and the purpose
of event history analysis, it is important to understand the following five
elementary concepts: state, event, duration, risk period, and censoring (Ya-
maguchi, 1991). These concepts are illustrated below using an example from
the analyzes of marital histories.

The first step in the analysis of event histories is to define the discrete
states that one wishes to distinguish. States are the categories of the “de-
pendent” variable, the dynamics of which one wishes to explain. At every
particular point in time, each person occupies exactly one state. In the anal-
ysis of marital histories, four states are generally distinguished: never mar-
ried, married, divorced, and widowed. The set of possible states is sometimes
called the state space.

An event is a transition from one state to another, that is, from an origin
state to a destination state. In the marital history context, a possible event is
“first marriage”, which can be defined as the transition from the origin state
never married to the destination state married. Other possible events are di-
vorce, becoming a widow(er), and non-first marriage. It is important to note
that the states which are distinguished determine the definition of possible
events. If only the states married and not married were distinguished, none
of the above-mentioned events could have been defined. In that case, the only
events that could be defined would be marriage and marriage dissolution.

Another important concept is the risk period. Clearly, not all persons can
experience each of the events under study at every point in time. To be able
to experience a particular event, one must occupy the origin state defining
the event, that is, one must be at risk of the event concerned. The period
that someone is at risk of a particular event – or exposed to a particular
risk – is called the risk period. For example, someone can only experience a
divorce when he or she is married. Thus, only married persons are at risk
of a divorce. Furthermore, the risk period(s) for a divorce are the period(s)
that a subject is married. A strongly related concept is the risk set. The risk
set at a particular point in time is formed by all subjects who are at risk of
experiencing the event concerned at that point in time.

Using these concepts, event history analysis can be defined as the analysis
of the duration of the nonoccurrence of an event during the risk period.
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When the event of interest is “first marriage”, the analysis concerns the
duration of nonoccurrence of a first marriage, in other words, the time that
individuals remained in the state of never being married. In practice, as
will be demonstrated below, the dependent variable in event history models
is not duration or time itself but a transition rate. Therefore, event history
analysis can also be defined as the analysis of rates of occurrence of the event
during the risk period. In the first marriage example, an event history model
concerns a person’s marriage rate during the period that he/she is in the
state of never having been married.

An issue that always receives a great amount of attention in discussions
on event history analysis is censoring. An observation is called censored if
it is known that it did not experience the event of interest during a certain
amount of time, but the exact time at which it experienced the event is
unknown. In fact, censoring is a form of missing data. In the first marriage
example, a censored case could be a woman who is 30 years of age at the
time of interview (and has no follow-up interview) and is not married. For
such a woman, it is known that she did not marry until age 30, but it is
not known whether or when she will marry. This is, actually, an example
of what is called right censoring. Another type of censoring that is more
difficult to deal with is left censoring. Left censoring means that there is no
information on the duration of nonoccurrence of the event before the start
of the observation period.

3 Why event history analysis?

Why is it necessary to use a special type of technique for analyzing event
history data? Why is it impossible to relate the incidence of an event within
the period of the study to a set of covariates simply by means of, for instance,
a logistic regression model, in which the binary dependent variable indicates
whether a particular event occurred within the observation period or not?
This is, in fact, what is generally done in the analysis of transition data col-
lected by means of a two-wave panel study. If using such a logistic regression
modeling approach were a good strategy, it would not be necessary to use
special types of methods for analyzing event history data. However, as will
be demonstrated below, such an approach has some significant drawbacks.

Suppose there are data on intra-firm job changes of the employees working
at company ‘C’ which have to be used to explain individual differences with
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regards to the timing of the first promotion. In other words, the aim of
the study is to explain why certain individuals in company ‘C’ remained
in their first job longer than others. A single binary dependent variable
could be defined indicating whether a given individual received a promotion
within, for instance, the first five years after gaining employment in the
company concerned. This dependent variable could be related to a set of
covariates, such as age, work experience, job level, educational level, family
characteristics, and work-related attitudes by means of a logistic regression
model.

Although such a simple approach can be quite valuable, it has four im-
portant drawbacks (Yamaguchi, 1991). All of them result from the fact that
the choice of the period in which the event may have occurred or not is arbi-
trary. The first problem is that it leads to a severe loss of information since
the information on the timing of a promotion within the five-year period, on
the promotions that occur after the five-year period, and on the duration of
the nonoccurrence of promotions after the five-year period is not used.

The second problem of the approach with a single binary dependent vari-
able is that it does not allow the covariate effects to vary with time; in other
words, it cannot contain covariate-time interactions. Suppose that the effect
of the variable educational level changes with time, or more precisely, that
highly-educated employees have a higher probability of being promoted in
the first three years that they work at company ‘C’, while less educated indi-
viduals have a higher probability after three years. In that case, the results
will heavily depend on the choice of the length of the time interval. If a short
time interval is used, a strong positive effect of the educational level will be
found, while longer intervals will lead to a smaller positive effect or perhaps
even to a negative effect of the same explanatory variable.

The third disadvantage to the logistic regression approach is that it cannot
deal with time-varying covariates. An example of a covariate that can change
its value during the five-year period is the number of children that someone
has. It may be of interest to test whether the number of children a woman
has influences the probability of getting promoted. It is clear that in a real
dynamic analysis, it must be possible to use covariates which change their
value over time.

The last problem of this simple approach is that is cannot deal with ob-
servations which are censored within the five-year period. In this case, there
may be two types of censored observations: individuals who leave before
working five years at the company concerned and before getting a first pro-
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motion, and individuals who had worked less than five years at company ‘C’
and had not yet been promoted at the time that the data were collected.
These two types of observations have in common that they provide the in-
formation that the event of interest did not occur during a given period of
time, but they do not provide information on whether the event does occur
during the remaining part of the five-year period. When using the logistic
regression approach, it is not clear what should be done with such censored
observations. Ignoring the censored observations implies that the informa-
tion on non-promotion during a given period of time is not used. On the
other hand, incorporating the censored observations in the analysis as ob-
servations on individuals that did not experience an event adds information,
namely, that they would not have experienced an event if they had worked
for at least five years at company ‘C’.

4 Basic statistical concepts

The manner in which the basic statistical concepts of event history models
are defined depends on whether the time variable T , indicating the duration
of nonoccurrence of an event, is assumed to be continuous or discrete. Of
course, it seems logical to assume T to be a continuous variable. However,
in many situations this assumption is not realistic for two reasons. Firstly,
in many cases, T is not measured accurately enough to be treated as strictly
continuous. An example of this is measuring the duration variable age of
the mother in completed years instead of months or days in a study on the
timing of the first birth. This will result in many women having the same
score on T , which is sometimes also called grouped ‘survival’ times.

Secondly, the events of interest can sometimes only occur at particular
points in time. Such an intrinsically discrete T occurs, for example, in stud-
ies on voting behavior. Since elections take place at particular points in
time, changes in voting behavior can only occur at particular points in time.
Therefore, when analyzing individual changes in voting behavior, the time
variable must be treated as a discrete variable. However, if one wishes to
explain changes in political preference rather than in voting behavior, one
again has a continuous time variable since political preference may change
at any point in time.

5



4.1 Continuous time

Suppose T is a continuous non-negative random variable indicating the du-
ration of nonoccurrence of the event under study, or, equivalently, the time
at which the event under study occurred. Let f(t) and F (t) be the density
and cumulative distribution function of T , respectively. As always, these are
defined as follows,

f(t) = lim
∆t→0

P (t ≤ T < t + ∆t)

∆t
=

∂F (t)

∂t
,

F (t) = P (T ≤ t) =
∫ t

0
f(u)d(u).

Rather than working with f(t) and F (t), event history analysis typically
works with two other quantities: the survival probability S(t) and the hazard
rate h(t). The survival function, indicating the probability of nonoccurrence
of an event until time t, is defined as

S(t) = P (T > t) = 1− F (t) = 1−
∫ t

0
f(u)d(u).

The hazard rate or hazard function, expressing the instantaneous risk of
experiencing an event at T = t given that the event did not occur before t,
is defined as

h(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)

∆t
=

f(t)

S(t)
, (1)

where P (t ≤ T < t + ∆t|T ≥ t) indicates the probability that the event will
occur during [t, t + ∆t) given that it did not occur before t. The hazard rate
is equal to the unconditional instantaneous probability of having an event
at T = t, f(t), divided by the probability of not having an event before
T = t, S(t) or 1−F (t). It should be noted that the hazard rate itself cannot
be interpreted as a conditional probability. Even though its value is always
non-negative, it can take on values greater than one. However, for small
∆t, the quantity h(t)∆t can be interpreted as the approximate conditional
probability that the event will occur between t and t + ∆t.

Because the functions f(t), F (t), S(t), and h(t) give mathematically
equivalent specifications of the distributions of T , it is possible to express
both S(t) and f(t) in terms of h(t). Since f(t) = −∂S(t)/∂t, equation (1)
implies that

h(t) =
−∂ log S(t)

∂t
.
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By integrating and using S(0) = 1, that is, no individual experienced an
event before T = 0, the important relationship

S(t) = exp
[
−
∫ t

0
h(u)d(u)

]
= exp [−H(t)] , (2)

is obtained. The term H(t) =
∫ t
0 h(u)d(u) is usually referred to as the cumu-

lative hazard function. Note also that H(t) = − log S(t).
From equation 1 it can be seen that f(t) = h(t)S(t), which shows that

also f(t) is a function of the hazard rate. The fact that both the survival and
the density function of T can be formulated in terms of the hazard function
is used in the maximum likelihood estimation of hazard models.

4.2 Discrete time

Suppose T is a discrete random variable indicating the time of occurrence of
an event, and tl is the lth discrete time point, where 0 < t1 < t2 < . . . < tL,
with L indicating the total number of time points. If the event occurs at tl,
this implies that the event did not occur before tl, or, in other words, that
the duration of nonoccurrence of an event equals tl−1. It should be noted
that this is different from the continuous-time situation in which T indicates
both the time that an event occurs and the duration of nonoccurrence of an
event.

The probability of experiencing an event at T = tl is given as

f(tl) = P (T = tl).

The survival function, which indicates the probability of having an event
neither before nor at T = tl,

1 is

S(tl) = P (T > tl) = 1− P (T ≤ tl) = 1−
l∑

k=1

f(tk).

An important quantity in the discrete-time situation is the conditional prob-
ability that the event occurs at T = tl, given that the event did not occur
prior to T = tl. It is defined as

λ(tl) = P (T = tl|T ≥ tl) =
f(tl)

S(tl−1)
.

1It should be noted that some authors define the survival probability in discrete-time
situations as the probability of not having an event before tl: S(tl) = P (T ≥ tl).
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Similar to the way f(t) and S(t) are expressed in terms of h(t) in con-
tinuous time, f(tl) and S(tl) can be expressed in terms of λ(tl). Since
f(tl) = S(tl−1)− S(tl),

λ(tl) =
S(tl−1)− S(tl)

S(tl−1)
= 1− S(tl)

S(tl−1)
. (3)

Rearrangement of this equation results in

S(tl) = S(tl−1) [1− λ(tl)] .

Using S(0) = 1 and f(tl) = λ(tl)S(tl−1) leads to the following expressions
for S(tl) and f(tl):

S(tl) =
l∏

k=1

[1− λ(tk)] , (4)

f(tl) = λ(tl)
l−1∏
k=1

[1− λ(tk)] =
λ(tl)

1− λ(tl)

l∏
k=1

[1− λ(tk)] . (5)

Because λ(tl) is defined in much the same way as the continuous-time hazard
rate h(t), it is sometimes called a hazard rate too, which is, however, not
correct. To illustrate this, let us have a closer look at the connection between
these two quantities. As can be seen from equation (3), the conditional
probability of experiencing an event at tl equals one minus the probability
of surviving between tl−1 and tl. Using h(t), this can also be expressed as
follows:

λ(tl) = 1− exp

[
−
∫ tl

tl−1

h(u)d(u)

]
. (6)

If the hazard rate is constant in time interval tl and the length of this time
interval equals 1, this expression can be simplified to

λ(tl) = 1− exp [−h(tl)] .

Rearranging this equation gives the following reversed relationship between
the hazard rate and the probability of experiencing the event in time interval
tl:

h(tl) = − log [1− λ(tl)] (7)
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The quantity h(tl) could be called a discrete-time hazard rate, or an ap-
proximation of the hazard rate in the lth discrete time interval. Note that
the relationship between h(t) and λ(tl) as expressed in equation (6) is only
meaningful if the event can occur at any point in time, that is, if time is a
continuous variable which is measured discretely.

5 Describing event history data

The most popular descriptive tool for event history data is the Kaplan-Meier
estimator of the survival function S(t). Kaplan & Meier (1958) provided
a method for obtaining a non-parametric estimate of this function when
censoring is present in the data. An alternative non-parametric estimator
proposed by Nelson (1972) and Aalen (1974) estimates the cumulative hazard
rate function H(t), which can however be transformed into an estimate of
S(t) using the relationship shown in equation (2).

Let 0 < t1 < t2 < tl < ... < tL be the ordered (continuous) time points at
which events occur, nl is the number of cases at the risk right after tl−1 and
dl the number of events at time point tl. Note that nl equals nl−1 minus the
number of events and the number of censored cases in time interval l. The
Kaplan-Meier estimator of the survival function is obtained as follows:

SKM(tl) =
l∏

k=1

(
1− dk

nk

)
.

Note that this formula is very similar to the definition of the discrete-time
survival function provided in equation (4), where dk/nk serves as an estimator
for λ(tl). Using the relation in equation (7) and assuming that the hazard
rate is constant in the time interval (tl−1, tl], hazard rate for this interval is
obtained by

hKM(tl) =
− log (1− dl/nl)

(tl − tl−1)
.

The Nelson-Aalen estimator for the cumulative hazard rate in time equals

HNA(tl) =
l∑

k=1

dk

nk

.

The corresponding estimator for the survival function is

SNA(tl) = exp

(
−

l∑
k=1

dk

nk

)
,
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and for the hazard rate in time interval (tl−1, tl] is

hNA(tl) =
dl/nl

(tl − tl−1)
.

The difference between the two estimators is thus that one estimates h(tl)(tl−
tl−1) as dl/nl and the other as − log (1− dl/nl).

[INSERT TABLE 1 ABOUT HERE]

[INSERT FIGURE 1 ABOUT HERE]

Table 1 gives an example of the Kaplan-Meier and Nelson-Aalen com-
putations for the situation in which there are 5 hypothetical observations.
Three persons experienced the event of interest at time points 3, 4 and 7,
and two were censored at time points 6 and 10. Typically the Kaplan-Meier
survival function will be plotted, possibly with its 95% confidence bound.
Moreover, one may depict the survival functions for different groups – for ex-
ample, a treatment and control group in an experiment – in the same graph
to see whether groups have different survival probabilities. Figure 1 depicts
the estimated survival function for our small example data set.

6 Log-linear models for the hazard rate

When working within a continuous-time framework, the most appropriate
method for regressing the time variable T on a set of covariates is through
the hazard rate, the instantaneous probability (or “risk”) of experiencing the
event given that it did not occur before (or given that one belongs to the risk
set). This is not only meaningful from a substantive point of view, but it
also makes it straightforward to assess the effects of time-varying covariates
– including the time dependence itself and time-covariate interactions – and
to deal with censored observations.

Let h(t|xi) be the hazard rate at T = t for an individual with covariate
vector xi. Since the hazard rate can take on values between 0 and infinity,
most hazard models are based on a log transformation of the hazard rate,
which yields a regression model of the form

log h(t|xi) = log h0(t) +
∑
j

βj xij, (8)
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or, equivalently,

h(t|xi) = h0(t) exp

∑
j

βj xij

 .

Here h0(t) is the baseline hazard and βj is the parameter associated with
predictor xij. This model is not only log-linear but also a proportional hazard
model. In these models, the time-dependence is multiplicative (additive after
taking logs) and independent of an individual’s covariate values. As a result,
the estimated hazard rates of two individuals with different covariates are
in the same proportion for all time points. Below it will demonstrated that
non-proportional log-linear hazard models can be specified by including time-
covariate interactions.

The various types of continuous-time log-linear hazard models are defined
by the functional form that is chosen for the time dependence, that is, for
the term h0(t). In Cox’s semi-parametric model (Cox, 1972), the time depen-
dence is left unspecified. Exponential models assume the hazard rate to be
constant over time, while piecewise exponential models assume the hazard
rate to be a step function of T , that is, constant within time periods. Other
examples of parametric log-linear hazard models are Weibull, Gompertz, and
polynomial models.

As long as it can be assumed that the censoring mechanism is not re-
lated to the process under study, dealing with right censored observations
in maximum likelihood estimation of the parameters of hazard models is
straightforward. Let δi be a censoring indicator taking the value 0 if obser-
vation i is censored and 1 if it is not censored. The contribution of case i
to the likelihood function that must be maximized when there are censored
observations is

Li = h(ti|xi)
δiS(ti|xi) = h(ti|xi)

δi exp
[
−
∫ ti

0
h(u|xi)du

]
.

As can be seen, the likelihood contribution is the survival probability S(ti|xi)
(which is a function of the hazard rate between 0 and ti) for censored cases,
and the density f(ti|xi) [which equals h(ti|xi)S(ti|xi)] for non-censored cases.
This illustrates that it is rather easy to deal with censoring in the maximum
likelihood estimation of the parameters of hazard models.

As was demonstrated by several authors, the most important log-linear
hazard models can also be defined as log-linear Poisson regression models
because the likelihood functions of the two models are equivalent (Laird &
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Oliver, 1981; Vermunt, 1997). To illustrate this, assume that the time scale
is divided into L intervals in which the hazard rate is constant, which is
the typical set up for a piecewise exponential survival model (a piecewise
constant hazard model). The upper limit of the lth time interval equals tl.
Let Li be the time interval in which case i experienced the event or was
censored. For 1 ≤ l ≤ Li, let yil be equal to 1 if individual i experienced the
event in interval l – if l = Li and δi = 1 – and 0 otherwise, and let eil be
the total time that case i belonged to the risk set in this time interval, which
equals tl− tl−1 if l < Li and ti− tl otherwise. Using yil and eil, the likelihood
contribution of case i is

Li =
Li∏
l=1

{h(tl|xi)
yil exp [−h(tl|xi) · eil]} .

Assume now that instead of defining a hazard model, one defines a Poisson
regression model using a data file containing Li records for each case, where
yil serves as the dependent variable (number of events) and eil as the expo-
sure variable, and in which the xij’s and a set of time dummies are used as
predictors. The Poisson likelihood contribution of case i is the same as in
the above hazard likelihood expect for the multiplicative constant Ci,

Ci =
Li∏
l=1

(eil)
yil

yil!
,

which does not depend on the model parameters. This shows that a log-
linear hazard model with a constant hazard rate within time periods can be
estimated by means of standard Poisson regression tools. The only thing
required is that the survival information of each case is split into Li records.
This data handling operation is sometimes referred to as episode splitting.
Table 2 gives an example of two cases in an episode data file for L = 3 and
t1 = 6, t2 = 12, and t3 = 18. Person 1 experiences the event of interest at
time point 8 and person 2 is censored at time point 16.

[INSERT TABLE 2 ABOUT HERE]

The two extreme choices for L are L = 1 and L equal to the total number
of different observed survival times at which events occur. The former spec-
ification yields the exponential survival or constant hazard model; the latter
choice yields the well-known Cox regression model. Rather than including a
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set of dummy variables for the time categories, one can also model the time
dependence using a particular restricted functional model, for instance, with
a linear or quadratic function.

The assumption of proportional hazards is needed for the partial likeli-
hood estimation procedure proposed by Cox (1972), as well as for the max-
imum likelihood estimation of most parametric hazard models. In contrast,
when using the Poisson modeling set up presented above, there is no need
to make this assumption. Non-proportional hazard models can simply be
obtained by including time-predictor interactions in the Poisson regression
model; that is, by allowing the time effect to depend on predictors or predic-
tor effects to depend on time. This is one of the advantages of the log-linear
Poisson approach.

Models with time-varying covariates

One of the reasons for building a regression model for the hazard rate instead
of, for instance, the survival probability or the time variable T is that this
makes possible to relate the occurrence of the event of interest to predic-
tors that change their values over time. Examples of relevant time-varying
covariates in the first marriage example are work status and pregnancy. In
this context it should be noted that, in fact, the time variable itself and
time-covariate interactions are also time-varying predictors.

With time-varying predictors, a log-linear hazard model becomes

log h(t|xit) = log h0(t) +
∑
j

βj xijt.

As can be seen, the only change compared to the model in equation (8) is
that the predictors have an index t. But, how is such a model estimated in
practice? Within the Poisson modeling framework described above, inclusion
of time-varying covariates requires only some extra data handling, which is
another advantage to this approach. Recall that the time dependence was
dealt with by splitting the event history information of each case into Li

episodes, in each of which the categorical time variable is constant. The
same trick is used for the time-varying covariates. More specifically, one
has to create an episode data set in which the time-varying predictors are
constant within episodes. Once this additional episode splitting is done, the
same Poisson regression procedure can be used as for models without time-
varying covariates.
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Table 3 illustrates episode splitting for time-varying covariates by ex-
panding the example of Table 2. A second covariate is added which is time
varying: it changes its value at time point 2 for person 1 and at time point 7
for person 2. This means that for person 1 the first record in Table 2 is split
into two separate episodes and for person 2 the second record.

[INSERT TABLE 3 ABOUT HERE]

Competing-risk models

Thus far, only hazard rate models for situations in which there is only one
destination state were considered. In many applications it may, however,
prove necessary to distinguish between different types of events or risks. In
the analysis of the first-union formation, for instance, it may be relevant
to make a distinction between marriage and cohabitation. In the analysis
of death rates, one may want to distinguish different causes of death. And
in the analysis of the length of employment spells, it may be of interest to
make a distinction between the events voluntary job change, involuntary job
change, redundancy, and leaving the labor force.

The model that is usually used when individuals may leave the origin state
to different destination states is the competing-risk model. This multiple-risk
variant of the hazard rate model described in equation (8) can be defined as
follows:

log hd(t|xit) = log h0d(t) +
∑
j

βjd xijt.

Here, the index d indicates one of the D destination states or event types.
As can be seen, the only change in the hazard model compared to the single
type of event situation is that a separate set of time and covariate effects is
included for each type of event. As far as the maximum likelihood estimation
of the parameters of competing-risk models is concerned, it is important to
note that a person experiencing event d is treated as a censored case for the
other D − 1 risks.

Also the competing-risk models can be easily set up using the Poisson
modeling framework described earlier. The data sets should contain D sets of
episode records, one for each of the competing risks. The dependent variable
takes on the value one if the person experienced that event in the time interval
concerned, and is equal to zero otherwise. A variable “event type” can be
added to the data file to allow the time dependence and predictor effects
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to be risk specific. Again data restructuring and creating the right set of
predictors will do the full job. Table 4 modifies the example of Table 3 for
the situation in which D = 2 and person 1 experiences the second type of
event and person 2 is censored.

[INSERT TABLE 4 ABOUT HERE]

Models for multivariate event histories

Many events studied in the social and behavioral sciences are repeatable.
This is in contrast to biomedical research, where the event of greatest inter-
est is death. Examples of repeatable events are job changes, having children,
arrests, accidents, promotions, residential moves, curing from a mental ill-
ness, and moving to a next developmental stage.

Often events are not only repeatable but also of different types, yielding a
situation in which transitions may occur across multiple states. When people
can move through a sequence of states, events cannot only be characterized
by their destination state, as in competing risks models, but they may also
differ with respect to their origin state. An example is an individual’s em-
ployment history: an individual can move through the states of employment,
unemployment, and out of the labor force. In that case, six different kinds of
transitions can be distinguished which differ with regard to their origin and
destination states. Of course, all types of transitions can occur more than
once. Other examples are people’s union histories with the states living with
parents, living alone, unmarried cohabitation, and married cohabitation, or
people’s residential histories with different regions as states.

Hazard models for analyzing data on repeatable events and multiple-state
data are special cases of the general family of multivariate hazard rate models.
Another application of these multivariate hazard models is the simultaneous
analysis of different life-course events. For instance, it can be of interest
to investigate the relationships between women’s reproductive, relational,
and employment careers, not only by means of the inclusion of time-varying
covariates in the hazard model, but also by explicitly modeling their mutual
interdependence.

Another application of multivariate hazard models is the analysis of de-
pendent or clustered observations. Observations are clustered, or dependent,
when there are observations from individuals belonging to the same group or
when there are several similar observations per individual. Examples are the
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occupational careers of spouses, educational careers of brothers, child mor-
tality of children in the same family, or in medical experiments, measures of
the sense of sight of both eyes or measures of the presence of cancer cells in
different parts of the body. In fact, data on repeatable events can also be
classified under this type of multivariate event history data, since in that case
there is more than one observation of the same type for each observational
unit as well.

The hazard rate model can easily be generalized to situations in which
there are several origin and destination states and in which there may be
more than one event per observational unit. The only thing that changes is
that indices are needed for the origin state (o), the destination state (d), and
the rank number of the event (m). A log-linear hazard rate model for such
a situation is

log hm
od(t|xit) = log hm

0od(t) +
∑
j

βm
jod xijt.

Also this model can be specified as a Poisson regression model after orga-
nizing the data in the right way. The most important difference with the
previous specifications is that the dependent variable may be equal to 1
more that ones.

The various types of multivariate event history data have in common that
there are dependencies among the observed survival times. These dependen-
cies may take several forms: the occurrence of one event may influence the
occurrence of another event; events may be dependent as a result of com-
mon antecedents; and survival times may be correlated because they are the
result of the same causal process, with the same antecedents and the same
parameters determining the occurrence or nonoccurrence of an event. If these
common risk factors are not observed, the assumption of statistical indepen-
dence of observation is violated. Hence, unobserved heterogeneity should be
taken into account (see below).

7 Discrete time models

When the time variable is measured rather crudely, which typically leads to
many ties in the recorded event times, or when the process under study is in-
trinsically discrete, it is more appropriate to use a discrete-time event history
model. These models involve regressing the conditional probability of occur-
rence of an event in the lth time interval given that the event did not occur
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before this period, denoted by λ(tl), on a set of covariates. It must be noted
that when these probabilities are relatively small for all time and covariate
combinations, the parameters of discrete-time models and continuous-time
models are very similar. The reason for this is that the hazard rate h(t) and
λ(tl) have almost the same value if the hazard rate is small. On the basis of
the relationship between h(t) and λ(tl) given in equation (7), it can be derived
that values of .1, .2, and .5 for λ(tl) correspond with values of .105, .223, and
.693 for h(t). This means that if all λ(tl) are about .1 or smaller, discrete-time
methods provide good approximations of continuous-time methods.

There are several ways to parameterize the dependence of the conditional
probability of experiencing an event on time and on covariates. The most
popular choice is the logistic regression function (Cox, 1972; Allison, 1982;
Singer & Willett, 2003)

λ(tl|xitl) =
exp

(
αl +

∑
j βj xijtl

)
1 + exp

(
αl +

∑
j βj xijtl

) ,

which leads to the well-known discrete-time logit model

log

[
λ(tl|xitl)

1− λ(tl|xitl)

]
= αl +

∑
j

βj xijtl .

Although the logistic regression model is a somewhat arbitrary choice, it has
the advantages that it constrains λ(tl|x) to between 0 and 1 and that it can
be estimated with generally available software (as is shown below).

On the other hand, if one assumes that the data are generated by a
continuous-time proportional hazard model, it is more appropriate to use
the complementary log-log transformation for λ(tl) (Allison, 1982). As can
be derived from equation (6), the conditional probability of experiencing an
event in time interval l can be written in terms of the hazard rate as

λ(tl|xitl) = 1− exp

(
−
∫ tl

tl−1

h(u|xitl)d(u)

)
.

If there is no information on the variation of the hazard rate within time
intervals, it seems reasonable to assume that the hazard rate is constant
within intervals, or that

λ(tl|xitl) = 1− exp (−h(tl|xitl) · el) , (9)
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in which el denotes the length of the lth time interval. This amounts to
assuming exponential survival within every particular time interval. Suppose
the following log-linear and proportional hazard model is postulated:

h(tl|xitl) · el = exp

αl +
∑
j

βj xijtl

 . (10)

Substitution of equation (10) into equation 9 yields

λ(tl|xitl) = 1− exp

− exp

αl +
∑
j

βj xijtl

 .

Rearrangement of this equation yields what is known as the complementary
log-log transformation of the conditional probability of experiencing an event
at tl,

log {− log [1− λ(tl|xitl)]} = αl +
∑
j

βj xijtl .

The β parameters can now be interpreted as the covariate effects on the
hazard rate under the assumption that h(tl) is constant within each of the
L time intervals. Since h(tl|xitl)ėl appears at the left-hand side of equation
(10) instead of h(tl|xitl), the estimates for the baseline hazard rates or the
time parameters must be corrected for the interval lengths el: log h0(tl) =
αl − ln(el).

If the model is a proportional hazard model, that is, if there are no time-
covariate interactions, the β parameters of a complementary log-log model
are not affected by the choice of the interval lengths since el is completely
absorbed into αl. This is the main advantage of this approach compared to
the discrete-time logit model, which is not only sensitive to the choice of the
length of the intervals, but also requires that the intervals be of equal length
(Allison, 1982). The reason for this is that the interval length influences the
probability that an event will occur in the interval concerned, and therefore
also the logit of λ(tl). Although the complementary log-log model can handle
unequal interval lengths in proportional hazard models with one parameter
for each time interval, unequal time intervals are problematic when the time
dependence is parameterized or when the model is nonproportional (Allison,
1982).
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Discrete-time models are typically estimated by means of maximum like-
lihood methods. Just as in continuous-time models, f(tl|xi) is the contribu-
tion to the likelihood function for an individual who experienced an event
and S(tl|xi) for an individual who was censored. Letting li denote the time
interval in which the ith person experienced an event or was censored and
using the definitions in equations (4) and (5), its likelihood contribution is

Li =

(
λ(tli|xitl)

1− λ(tli|xitl)

)δi li∏
k=1

(1− λ(tk|xitk)) .

Let yil, for 1 ≤ l ≤ li, be a variable taking on the value 1 if person i
experienced an event in tl – that is, if li = l and δi = 1 – and 0 otherwise.
Using this vector of indicator variables, the likelihood contribution of case i
becomes

Li =
li∏

k=1

{
λ(tk|xitk)

yik [1− λ(tk|xitk)]
(1−yik)

}
,

which is, in fact, the likelihood contribution of li observations in a regression
model for a binary response variable. This shows that a discrete-time logit
model can be estimated by means of standard software for logistic regression
analysis. The data file should contain one record for every time unit that
an individual belongs to the risk set. Such a file is sometimes called person-
period records. The complementary log-log model is available in generalized
linear modeling (GLM) routines.

8 Unobserved heterogeneity

In the context of the analysis of survival and event history data, the prob-
lem of unobserved heterogeneity, or the bias caused by not being able to
include particular important explanatory variables in the regression model,
has received a great deal of attention. This is not surprising because this phe-
nomenon, which is also referred to as selectivity or frailty, may have a much
larger impact in hazard models than in other types of regression models.

[INSERT TABLE 5 ABOUT HERE]

With a small hypothetical example, I will illustrate some of the biasing
effects that unobserved heterogeneity may have on the parameter estimates
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of hazard models. Suppose that in the population under study there are two
dichotomous factors, X1 and X2, that affect the hazard rate. The baseline
hazard h0(t) for the group with X1 = 0 and X2 = 0 is 0.01 (constant over
time). Controlling for X2, the hazard rate for X1 = 1 is two times larger than
for X1 = 0, and controlling for X1, the hazard rate for X2 = 1 is five times
larger for than X2 = 0. In addition, assume that at T = 0 each combination
of X1 and X2 contains 25% of the population. Table 5 shows the resulting
hazard rates for each of the possible combinations of X1 and X2 at four time
points. As can be seen, the true hazard rates are constant over time within
levels of X1 and X2. The hazard rates in the columns labeled “marginal”
show what happens when X2 is not observed; that is, after marginalizing over
X2. The first thing that can be seen is that despite of the true rates being
time constant for both X1 = 0 and X1 = 1 the marginal hazard rates decline
over time. This is an illustration of the fact that unobserved heterogeneity
biases the estimated time dependence in a negative direction. Furthermore,
whereas the marginal hazard ratio between X1 = 1 and X1 = 0 equals the
true value 2.00 at t = 0, it declines over time (see last column). Thus, when
estimating a hazard model with these marginal hazard rates, a smaller effect
of X1 than the true value of (log) 2.00 will be found. Finally, modeling
the changing (declining) effect X1 over time or, equivalently, the smaller
(negative) time effect for X1 = 0 than for X1 = 1 requires the inclusion of a
time-X1 interaction in the hazard model.

Unobserved heterogeneity may have different types of consequences in
hazard modeling. The best-known phenomenon is the downwards bias of the
duration dependence illustrated with the hypothetical example. In addition,
as could also be seen, it may bias covariate effects and time-covariate interac-
tions. Other possible consequences are dependent or informative censoring,
dependent competing risks, and dependent multivariate observations (Ver-
munt, 1997). The common way to deal with unobserved heterogeneity is to
include random effects in the hazard model of interest (Heckman & Singer,
1982; Vaupel, Manton, & Stallard, 1979).

Specification of a random-effects hazard model involves the introduction
of a time-constant latent covariate in the model. The latent variable is typi-
cally assumed to have a multiplicative and proportional effect on the hazard
rate, i.e.,

log h(t|xit, θi) = log h(t) +
∑
j

βj xijt + θi,
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where θi denotes the value of the latent variable for subject i. In the para-
metric random-effects approach, the latent variable is postulated to have a
particular distributional form. The amount of unobserved heterogeneity is
determined by the size of the standard deviation of this distribution: The
larger the standard deviation of θ, the more unobserved heterogeneity there
is. When working with the Poisson modeling set up, these types of models
can be estimated with random-effects Poisson regression software.

Heckman & Singer (1982) showed that the results obtained from a random-
effects continuous-time hazard model can be sensitive to the choice of the
functional form of the mixture distribution. They, therefore, proposed using
a non-parametric characterization of the mixing distribution by means of a
finite set of so-called mass points, or latent classes, whose number, locations,
and weights are empirically determined. For a more extended discussion,
see Vermunt (1997) and Vermunt (2002). This non-parametric approach, as
well as the parametric approach with normally distributed random effects, is
implemented in the Latent GOLD software (Vermunt & Magidson, 2005).

9 An empirical example

A small example of hazard modeling is now presented in which a data set
is used from the 1975 Social Stratification and Mobility Survey in Japan
reported in Yamaguchi’s textbook on event history analysis (Yamaguchi,
1991). The event of interest is the first interfirm job separation experienced
by the sample subjects. In other words, one is interested in explaining the
duration of stay with the first employer, where duration is measured in years.2

The time-constant categorical predictor that is used in the analysis is “firm
size”. The first five categories of this predictor range from small firm (1) to
large firm (5), and the sixth category refers to government. The two main
questions to be answered are: 1) what is the time-dependence of the job
separation rate – are individuals more likely to leave during the first years or
after say five years – and 2) does the job separation rate depend on the size
of the firm in which an individual is employed.

Let us recall the main advantages of using a hazard regression model

2In the analysis, the last 18 of the 31 one-year time intervals are grouped together in
the same way as Yamaguchi did, which results in 19 time intervals. It should be noted
that contrary to Yamaguchi, I do not apply a special formula for the computation of the
exposure times for the first time interval.
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instead of a simple binary logistic regression model for the occurrence of the
event within a predefined time period, for example, within a period of 5 years.
By taking into account that a job change may occur at any of the 19 time
intervals, no information is lost and the time dependence of the event can be
studied. Two other advantages are that it is possible to deal with censored
observations and to investigate whether the covariate effect changes over
time. The last advantage – the possibility to include time-varying covariates
in the model – is not exploited in the presented application.

[INSERT TABLE 6 ABOUT HERE]

[INSERT Figure 2 ABOUT HERE]

The log-likelihood values, the number of parameters, as well as the BIC3

values for the estimated hazard models are reported in Table 6.4 Model 1
postulates that the hazard rate does neither depend on time nor firm size
and Model 2 is an exponential survival model with firm size as a categorical
predictor. The large difference in the log-likelihood values of these two models
shows that the effect of firm size on the rate of job change is significant. A
Cox proportional hazard model is obtained by adding an unrestricted time
effect (Model 3). This model performs much better than Model 2, which
indicates that there is a strong time dependence. Inspection of the estimated
time dependence of Model 3 shows that the hazard rate rises in the first time
periods and subsequently starts decreasing slowly (see Figure 2). Models
4 and 5 were estimated to test whether it is possible to simplify the time
dependence of the hazard rate on the basis of this information. Model 4
contains only time parameters for the first and second time point, which
means that the hazard rate is assumed to be constant from time point 3 to
19. Model 5 is the same as Model 4 except for that it contains a linear term
to describe the negative time dependence after the second time point. The
comparison between Models 4 and 5 shows that this linear time dependence
of the log hazard rate is extremely important: The log-likelihood increases 97
points using only one additional parameter. Comparison of Model 5 with the
less restricted Model 3 and the more restricted Model 2 shows that Model 5

3BIC is defined as minus twice the log-likelihood plus ln(N) times the number of pa-
rameters, where N is the sample size (here 1782).

4A more extended analysis in which also models with unobserved heterogeneity are
estimated is presented in Vermunt (2002).
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captures the most important part of the time dependence. Though according
to the likelihood-ratio statistic the difference between Models 3 and 5 is
significant, Model 5 is the preferred model according to the BIC criterion.
Figure 2 shows how Model 5 smooths the time dependence compared to
Model 3.

The log-linear hazard parameter estimates for firm size obtained with
Model 5 are 0.51, 0.28, 0.03, -0.01, -0.48, and -0.34, respectively.5 These
show that there is a strong effect of firm size on the rate of a first job change:
The smaller the firm the more likely an employee is to leave the firm or, in
other words, the shorter he will stay. The hazard ratio comparing a small firm
(category 1) with a large firm (category 5) equals exp[0.51− (−0.34)] = 2.34,
which means that the hazard rate is more than two times larger for the
former category. Government employees (category 6) have a slightly higher
(less low) hazard rate than employees of large firm (category 5).

10 Final remarks

This chapter discussed the most important concepts and statistical methods
for event history analysis in continuous and discrete time. It was stressed
that these methods have important advantages compared to alternative ap-
proaches when the aim of a study is to determine the factors affecting the
duration of non-occurrence of a particular event. I also demonstrated that –
after some restructuring of the data – the most important regression models
for event history data can be estimated using standard Poisson or logistic
regression analysis software.

Two topics that were not discussed in detail are left censoring, which is
somewhat more difficult to deal with than right censoring, and more extended
models for discrete-time data, such as models for competing risks and multi-
ple events, which can be estimated using multinomial and multilevel logistic
regression analysis software, respectively. Other more advanced topics that
have received attention in the recent statistical literature on event history
analysis are models for unobserved heterogeneity that is correlated with the
observed covariates, for missing data on covariates, for covariates containing
measurement error, for states measured with errors, and for the simultaneous
analysis of event and covariate processes.

5Very similar estimates are obtained with Model 3. Moreover, note that I used effect
coding (these parameters sum to 0).
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Table 1: Example of Kaplan-Meier and Nelson-Aalen computations
l tl nl dl dl/nl SKM (tl) HKM (tl) hKM (tl) SNA(tl) HNA(tl) hNA(tl)
1 3 5 1 0.20 0.80 0.22 0.07 0.82 0.20 0.07
2 4 4 1 0.25 0.60 0.51 0.29 0.64 0.45 0.25
3 7 2 1 0.50 0.30 1.20 0.23 0.39 0.95 0.17

Table 2: Illustration of data organization in Poisson regression based hazard
modeling
id ti δi tl−1 tl yil el l xi

1 8 1 0 6 0 6 1 0
1 8 1 6 12 1 2 2 0
2 16 0 0 6 0 6 1 1
2 16 0 6 12 0 6 2 1
2 16 0 12 18 0 4 3 1

Table 3: Illustration of data organization in Poisson regression based hazard
modeling with time-varying covariates
id ti δi tl−1 tl yil el l x1i x2it

1 8 1 0 2 0 2 1 0 0
1 8 1 2 6 0 4 1 0 1
1 8 1 6 12 1 2 2 0 1
2 16 0 0 6 0 6 1 1 1
2 16 0 6 7 0 1 2 1 1
2 16 0 7 12 0 5 2 1 0
2 16 0 12 18 0 4 3 1 0
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Table 4: Illustration of data organization in Poisson regression based hazard
modeling with time-varying covariates and competing risks
id ti δi tl−1 tl yil el l d x1i x2it

1 8 0 0 2 0 2 1 1 0 0
1 8 0 2 6 0 4 1 1 0 1
1 8 0 6 12 0 2 2 1 0 1
1 8 1 0 2 0 2 1 2 0 0
1 8 1 2 6 0 4 1 2 0 1
1 8 1 6 12 1 2 2 2 0 1
2 16 0 0 6 0 6 1 1 1 1
2 16 0 6 7 0 1 2 1 1 1
2 16 0 7 12 0 5 2 1 1 0
2 16 0 12 18 0 4 3 1 1 0
2 16 0 0 6 0 6 1 2 1 1
2 16 0 6 7 0 1 2 2 1 1
2 16 0 7 12 0 5 2 2 1 0
2 16 0 12 18 0 4 3 2 1 0

Table 5: Hazard rates illustrating the effect of unobserved heterogeneity
time X1 = 0 X1 = 1 ratio between
point X2 = 0 X2 = 1 marginal X2 = 0 X2 = 1 marginal X1 = 1 and X1 = 0

0 .010 .050 .030 .020 .100 .060 2.00
10 .010 .050 .026 .020 .100 .045 1.73
20 .010 .050 .023 .020 .100 .034 1.50
30 .010 .050 .019 .020 .100 .027 1.39

Table 6: Test results for the job change example (T=time and F=firm size)
Model log-likelihood # parameters BIC
1. {} -3284 1 6576
2. {F} -3205 6 6456
3. {T, F} -3024 24 6249
4. {T1, T2, F} -3205 8 6471
5. {T1, T2, Tlin, F} -3053 9 6174
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Figure 1: Kaplan-Meier survival function
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Figure 2: Time dependence according to Model 3 and Model 5
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