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1. Introduction 

Latent class (LC) and mixture models are nowadays part of the standard statistical 

toolbox of researchers in applied fields such as sociology, psychology, marketing, 

biology, and medicine. In most of their applications, the aim is to cluster units into a 

small number of latent classes or mixture components (McLachlan and Peel, 2000). This 

clustering can be based on a set of categorical response variables as in the traditional LC 

model (Goodman, 1974), on a set of continuous items as in a latent profile model 

(Lazarsfeld and Henry, 1968; Vermunt and Magidson, 2002) and mixture factor analysis 

(McLachlan and Peel, 2000; Yung, 1997), on a set of repeated measures as is mixture 

growth models (Nagin, 1999; Muthén, 2004; Vermunt, 2007b) and mixture (latent) 

Markov models (Van der Pol and Langeheine, 1990; Vermunt, Tran, and Magidson, 

2008), or on other types of two-level data sets, such as from experiments in which 

individuals are confronted with multiple experimental conditions (Wedel and DeSarbo, 

1994) and from studies in which multiple individuals are nested within higher-level units 

(Aitkin, 1999; Vermunt and Van Dijk, 2001; Kalmijn and Vermunt, 2007). Whereas the 

main application of LC models is clustering, restricted LC models and LC models with 
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multiple latent variables can be also used for scaling type of applications similar to IRT 

and factor analysis (Heinen, 1996; Vermunt, 2001; Magidson and Vermunt, 2001). 

 Recently, a multilevel extension of the LC model was proposed (Vermunt, 2003, 

2008a). It can, for example, be used when individuals with multiple item responses or 

repeated measurements are nested within groups (Vermunt, 2003, 2005, 2008a; Bijmolt, 

Paas, Vermunt, 2004), when multivariate repeated responses are nested within 

individuals (Vermunt, Tran, and Magidson, 2008), as well as with three-mode data sets 

on individuals observed with different measures in different situations (Vermunt, 2007; 

Bouwmeester, Vermunt, and Sijtsma, 2007) and three-level data sets (Vermunt, 2004, 

2008a). As in standard LC models, for the lower level units, the main goal will usually be 

to build a meaningful cluster model. One variant of this hierarchical LC model yields also 

a clustering of higher-level units by assuming that these belong to higher-level latent 

classes which differ in either lower-level responses or lower-level class membership 

probabilities. Another variant makes use of random effects to capture higher-level 

variation in LC model parameters, especially in lower-level class membership 

probabilities. 

 The aim of this chapter is threefold. The first is to explain the relationship 

between LC analysis and multilevel regression analysis techniques. It will be shown that 

LC models can be conceptualized as models for two-level data sets in which parameters 

vary randomly across level-2 units. Whereas in multilevel regression analysis this 

variation is modeled by assuming that parameters come from a particular continuous 

distribution (typically normal), which is equivalent to introducing one or more continuous 
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latent variables in the model, in LC analysis variation is modeled using discrete latent 

variables (Aitkin, 1999; Vermunt and Van Dijk, 2001).  

 Our second aim is to introduce the multilevel extension of the LC model proposed 

by Vermunt (2003, 2008a), which is a model for univariate three-level data sets and 

multivariate two-level data sets. The multilevel LC model uses either continuous or 

discrete latent variables at the higher level.  

 Third, we discuss other kinds of mixture models for these types of multilevel data 

sets by connecting multilevel LC analysis to the general latent variable modeling 

framework described by Skrondal and Rabe-Hesketh (2004). This framework integrates 

factor analytic and random effects models, as well as models with continuous and 

discrete latent variables (see also Asparouhov and Muthén, 2008, and Vermunt, 2008b). 

We present a nine-fold classification of latent variable models, where eight types can be 

labeled multilevel mixture models. Most of these models are implemented in software 

packages such as GLLAMM (Rabe-Hesketh, Skrondal, and Pickles, 2004), Mplus 

(Muthén and Muthén, 2008), and Latent GOLD (Vermunt and Magidson, 2008). 

2. Two-level data sets: the standard latent class model 

Whereas the traditional LC model was developed for the analysis multivariate response 

data sets (Goodman, 1974; Lazarsfeld and Henry, 1968), LC analysis can also been used 

for the analysis of two-level data sets (Aitkin, 1999; Vermunt and Van Dijk, 2001; Wedel 

and DeSarbo, 1994), such as from students nested within schools and from longitudinal 

studies in which repeated measurement are nested within persons. However, when the 

responses are of the same type – for example, all binary or all continuous – we can also 

conceptualize the traditional LC model as a model two-level data; that is, by treating the 
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single-level multivariate responses (say on questionnaire or test items) as two-level 

univariate responses, as item responses nested within individuals. Note that this is similar 

to IRT modeling using multilevel techniques by treating multiple item responses as 

multiple observations nested within individuals (see De Boeck and Wilson, 2004). A 

similar connection has also been established between factor analysis and multilevel linear 

regression analysis (Hox, 2002). 

 Using the typical multilevel analysis notation, let ijy  denote the response of level-

1 unit i belonging to level-2 unit j, jn the total the number of level-1 units within level-2 

unit j, and jY  the complete response vector of unit j. This could thus also be the jn  item 

responses of person j, where i refers to a particular item and where jn  takes on the same 

for all persons. We refer to a particular latent class by the symbol c and to the number of 

latent classes by C. To stress the similarity between the discrete latent variable in a LC 

model and random effects in a multilevel regression model, we use the symbol u to refer 

to the latent class membership of unit j. More specifically, jcu  is one of C indicator 

variables, which take on the value 1 if level-2 unit j belongs to latent class c and 0 

otherwise. Because classes are exhaustive and mutually exclusive, exactly one of the C 

class indicators jcu equals 1 and the others equal 0. The vector of class indicators is 

denoted by jU . Using this notation, a standard LC model can be defined as follows: 
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As can be seen, the LC model is a model for jY , the full response vector of level-2 unit j. 

The model equation shows the two basic assumptions of a LC model. The first one is that 

the density of jY ,  )( jYf , is a weighted sum of class specific densities )1|( =jcj uYf , 

where the class proportion )1( =jcuP  serve as weights. In other words, a level-2 unit has 

a certain prior probability of belonging to class c, and conditional on belonging to class c 

it has a certain probability of giving responses jY . The second basic assumption is that 

the level-1 responses are independent of one another given a level-2 unit’s class 

membership. This assumption is typically referred as the local independence assumption. 

Note that this assumption is also made in factor analytic and random effects models, in 

which responses are assumed to be independent conditional on a unit’s latent factor 

scores and random effects values, respectively. 

 The specific form chosen for the conditional density )1|( =jcij uyf  depends on the 

scale type of the response variable. Examples are Bernoulli for binary responses, normal 

for continuous responses, and Poisson for counts. What we are typically interested in are 

the expected values of these conditional distributions, denoted by |( ijyE 1=jcu ), which 

can be binomial proportions, normal means, Poisson rates, etc. These class-specific 

expected values can be parameterized using a generalized linear model; i.e., using a linear 

model after applying the appropriate link function ][⋅g . Let us assume that we are dealing 

with a traditional LC model, which means that the level-1 observations are jn  

questionnaire items. A regression model for the Cn j ⋅ conditional means |( ijyE 1=jcu ) 

can be formulated as follows: 

iccijcij uyEg λλββ +++== 00)]1|([ . 
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This (unrestricted) model contains an intercept ( 0β ), item effects ( iβ ), main effects for 

the classes ( c0λ ), and item-class interactions ( icλ ). Note that this model contains 

CnCn jj ⋅+++1  unknown parameters, which means that Cn j ++1  identification 

restrictions should be imposed on the regression coefficients, for example, by using 

dummy coding where the parameters for the first item and the first class are fixed to zero, 

or by fixing the 0β , iβ , and c0λ  parameters to zero.  

 To show how the same regression model for the jn  item responses can be 

formulated in the more typical multilevel analysis notation, let jX  and jZ  be two 

(identical) design matrices with jn  rows and 1+jn columns: 
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The first column of jX  and jZ  contains the 1s for the intercept term and the remaining 

columns contain dummies for the item effects. Using these design matrices and 

conditioning on the vector jU  rather than on 1=jcu , the regression model for ijy  can 

also be written as follows: 
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This equation shows that a LC model can be seen as a model with random effects *
qju . A 

difference compared to a standard random-effects model is that rather than assuming that 

the random effects come from a Q-dimensional multivariate normal distribution, here we 

assume that these take on only C different values, where each value qcλ occurs with 

probability )1( =jcuP . Both the values of the random effects (the locations) and the 

associated probabilities are free parameters to be estimated. The mean of *
qju and 

covariance between *
qju  and *

'jqu  can be obtained as � =
== C

c jcqcq uPu
1

* )1(λ  and 

*
'

*
1 ' )1(

' qq

C

c jccqqcuu uuuP
qq

−==� =
λλσ  (Aitkin, 1999; Vermunt and Van Dijk, 2001). 

 In the above example, we used design matrices jX  and jZ  with a very specific 

structure, with an intercept and a set of item effects. However, as in two-level regression 

models, these two matrices may also contain the values of other types of predictors. More 

specifically jX  may contain level-1 predictors, level-2 predictors, and cross-level 

interactions, and jZ  may contain level-2 predictors and cross-level interactions. This 

yields what is often referred to as a LC or mixture regression model (Aitkin, 1999; 

Vermunt and Van Dijk, 2001; Wedel and Kamakura, 1994), which is a regression model 

for two-level data sets.  

 

In LC models, level-2 predictors cannot only be used in the regression model for the 

response variable ijy , but can also be used to predict the class membership probabilities. 

Typically a multinomial logit model is used for this purpose: 
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where the first column of )2(
jX  (r = 0) defines the constant term. For identification, one 

constraint has to be imposed on rcγ  for each r, for example, 01 =rγ .   

 It is important to note that also in standard two-level regression models one may 

define regression models for the latent variables representing the random effects, as is 

usually done in the hierarchical model specification of the multilevel model. However, it 

is always possible to substitute the random effects in the model for the response variable 

by their regression equations, yielding the well-known mixed model formulation of the 

multilevel model. Such a substitution is not possible in LC regression analysis.   

 

Whereas the standard LC model is a latent variable model with a nominal latent variable, 

it is also possible to defined LC models with a latent variable with ordered categories. 

Such an ordinal specification is obtained by using a single ju with numeric scores instead 

of C class indicators jcu  ((Heinen, 1996; Vermunt, 2001), which implies replacing the 

term � =

C

c jcqcu1
λ  in equation (2) by jquλ . In a three-class model, the class locations ju  

could, for example be -1, 0, and 1 or 0, 0.5, and 1.  

 The above model formulations can easily be adapted for LC models with more 

than one nominal or ordinal latent variable. For example, the LC model with multiple 

ordinal latent variables proposed by Magidson an Vermunt (2001) can be defined by 

including a term � =

L

jq u
1� ��
λ in equation (2), where ju

�
 is one of L ordinal latent variables. 

Similarly, a model with L nominal latent variables can be defined by setting up a series of 

dummies for each latent variable and using the term � �= =

L C

c jccq u
1 1� ��

� λ in equation (2). In 

models with multiple latent variables, one will typically restrict the joint probability 
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density of the L latent variables, for example, using a log-linear (path) model (Hagenaars, 

1993; Vermunt 1997) or a latent Markov structure (Van de Pol and Langeheine, 1990). 

3. Three-level data sets: the multilevel latent class model 

Let us now expand the LC model for the situation in which we have either a three-level 

univariate response or a two-level multivariate response data set. Note that by 

conceptualizing multivariate responses as nested univariate responses, the latter can also 

be seen as three-level data sets, which is what we will do here. The extension of the LC 

model discussed here yields what Vermunt (2003, 2008a) called multilevel LC analysis. 

 To accommodate the additional hierarchical level, two modification of the 

notation introduced in the previous sections are needed: an index k is used to refer to a 

particular level-3 unit and, whenever necessary, a superscript (1),  (2), or (3) is used to 

denote whether we are referring to a level-1, level-2, or level-3 quantity. For example, 

level-1 responses are now denoted by ijky , a level-2 response vector by jkY , level-2 class 

indicators by )2(
jkcu , and a level-2 vector of class indicators by )2(

jkU . 

 The main difference compared to the two-level case discussed in the previous 

section is that a multilevel LC model contains either continuous random effects or a 

discrete latent variable (=discrete random effects) at level three. These random effects 

pick up variation in LC model parameters across level-3 units. Below, we first discuss the 

situation in which level-3 heterogeneity is modeled using discrete random effects, as well 

as two important special cases of this specification. Then we discuss the multilevel LC 

model with continuous random effects. The third part of this section introduces other 
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types of multilevel mixture models; that is, models with discrete random effects at level 3 

but which are not necessarily LC models at level 2.  

3.1 Models with discrete random effects at level three 

Let us first look at the situation in which the heterogeneity at the highest level is modeled 

by assuming that level-3 units belong to one of D latent classes. The level-3 class 

membership is denoted using indicator variables )3(
kdu , which take on the value 1 if unit k 

belongs to class d and 0 otherwise. The vector of level-3 class indicators is denoted by 

)3(
kU . The corresponding multilevel extension of the LC model is as follows:  
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As can be seen, the “only” modification compared to the standard LC model described in 

equation (1) is that both the level-2 class proportions )1|1( )3()2( == kdjkc uuP  and the class-

specific densities )1,1|( )3()2( == kdjkcijk uuyf  may depend on )3(
kU . It is important to note that 

a multilevel LC model is actually a model for kY , the full response vector of higher-level 

unit k; that is,  
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where )1|( )3( =kdjk uYf  was defined in equation (4). It can easily be seen that equation (5) 

defines a LC model for the higher level units, which is very similar to equation (1), the 

equation for a standard latent model. Equation (5) shows that groups are assumed to 

belong to one of D latent classes, as well as that level-2 observations are assumed to be 

independent of one another conditional on the level-3 class membership.  
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 The fact that )1|1( )3()2( == kdjkc uuP  and )1,1|( )3()2( == kdjkcijk uuyf  depend on )3(
kdu  can 

also be expressed via the regression models for )2(
jkcu  and ijky . These will differ from the 

ones in equations (2) and (3) in that they may now contain terms for )3(
kdu . In addition, a 

logistic regression model may be specified for )3(
kdu  itself. We use (sometimes double) 

superscripts to distinguish the different parameters sets and design matrices, where the 

first index refers to the level of the dependent variable in the equation concerned and the 

second, if present, to the level of the random effect. The three regression equations 

defining the multilevel LC model are: 
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)3()3,2(λ  have a similar (discrete) 

random effects interpretation as was explained in the previous section. As can be seen, as 

in the 2-level model, the level-2 classes may capture variation in the parameters of the 

model for the response variable. The level-3 classes may capture variation in the 

parameters of the response model, as well as in the parameters of the regression model 

for the level-2 classes. 

 When the model does not contain predictors and when, as in the example used in 

the previous section, the design matrices are setup to yield intercepts and item 

parameters, the three regression equations can be written in a simpler form; that is,  
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which yields the more typical LC analysis notation. 

 Let us look at two more restricted special cases of the model defined in equations 

(4) to (8). The first special case is obtained by assuming that groups differ in the lower-

level class membership probabilities but have the same response variable densities. This 

implies that )1|()1,1|( )2()3()2( ==== jkcijkkdjkcijk uyfuuyf  or, equivalently, that the term 

containing the )3,1(
qdλ parameters is excluded from equation (6). This is the special case 

used by Vermunt (2003, 2007). The basic idea is that the model part linking the lower-

level class memberships to the responses is the same for all groups, which is conceptually 

similar to saying that there is measurement equivalence across higher-level units. Groups 

may, however, differ with respect to the lower-level class membership probabilities of 

their members, as well as with respect to covariate effects on these class membership 

probabilities. These differences across group-level classes are defined with the second 

term in equation (7). 

The second special case is the opposite from the first. It assumes that response 

densities depend on the group-level class membership, but lower-level class membership 

not. This implies that )1()1|1( )2()3()2( ==== jkckdjkc uPuuP or that the term containing the )3,2(
scdλ  

parameters is omitted from equation (7). This model is very similar to a standard   

regression model in which the variation in the responses is decomposed into independent 

parts (Goldstein, 2003). The model is also similar to the multilevel factor analysis model 
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proposed by Muthén (1994) and described by Hox (2002), in which the variation in a 

multivariate response vector is attributed to common latent factors at two levels of a 

hierarchical structure. 

It should be noted that in three-level regression modeling with continuous random 

effects these two special cases yield equivalent models: regressing a lower-level random 

effect on a higher-level random effect is the same as a using the terms concerned in the 

model for the response variables (Goldstein, 2003; Hox, 2002). In the case of a multilevel 

factor analysis, the first specification is a restricted special case of the second one, which 

is obtained by equating the factor loadings across levels. In other words, indicating that 

the lower-level factor means vary randomly across higher-level units is equivalent to 

having a set of higher-level factors with the same loadings as the lower-level factors. 

Despite of the conceptual similarities of these models with the multilevel LC model, 

these equivalences do not apply to the latter. 

The full model is conceptually similar to a three-level model in which level-2 and 

level-3 random effects are correlated, which is a specification that is seldom used in 

multilevel regression analysis. Another specific aspect of the multilevel LC model is that 

also level-1 variances (which are free parameters in linear models with normally 

distributed residuals) can be allowed to differ across lower- and/or higher-level classes. 

In other words, level-2 and level-3 units may randomly differ with respect to their level-1 

variances. There exists no equivalent specification for this in standard three-level 

regression analysis. A last specific feature I would like to mention is that interactions 

between level-2 and level-3 class effects can easily be included in the model; that is, by 

adding terms containing the product )3()2(
kdjkc uu ⋅  to equation (6). Also for such interactions 
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there is no equivalence in standard three-level regression analysis. Though this seems to 

be a somewhat exotic option, this is clearly not the case. A possible application is the 

investigation of item bias, where not only item intercepts but also lower-level class 

effects on items may differ across higher-level classes. The latter would be similar to 

allowing that factor loadings differ randomly across groups, which is not possible in 

(standard) multilevel factor analysis. 

3.2 Models with continuous random effects at level three 

Rather than using discrete random effects, it is also possible to use a more standard 

specification with continuous random effects. Vermunt (2003, 2005) proposed a 

multilevel LC model in which the class-membership probabilities of lower-level units 

vary randomly across level-3 units. Using as much as possible the same notation as 

above, but now with )3(
sku  representing the sth random effect and )3(

kU  the vector of 

random effects, we can write the model as follows: 
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Note that this specification assumes measurement equivalence; that is, the parameters in 

the LC model for the response variable(s) do not vary across groups. Groups differ with 
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respect of their level-2 class membership probabilities, which is specified using a random 

effects multinomial logistic regression model of the type proposed by Hedeker (2003) for 

the discrete unobserved variable )2(
jkU . This model uses a lower-dimensional 

representation of the S+1 random effects for each of the C latent classes; that is, it uses 

the “factor analytic” constraint )3()2()3*(
skscsck uu λ= , which actually implies that the random 

effects for a particular s are perfectly correlated across latent classes (across values of c). 

Without covariates, equation (12) reduces to a variance decomposition of the class 

membership logits. A more detailed description of this type of multilevel LC model is 

provided by Vermunt (2005). 

3.3 Other types of multilevel mixture models 

The term multilevel LC or mixture model was used so far for the situation in which we 

have a LC model for level-2 observations combined with an additional hierarchical level, 

where this third level is dealt with using either continuous or discrete random effects. 

However, looking at equation (5) which defines a mixture model for level-3 units, one 

can think of other types of multilevel mixture models; that is, models with latent classes 

at level three and continuous latent variables (or random effects) at level two. An 

example is a variant of the mixture factor analysis model where mixture components are 

not formed by individuals but by groups (Varriale, 2008). Moreover, there is nothing that 

prevents applying the same logic of hierarchically structured mixture models to situations 

with more than three hierarchical levels. 

{INSERT TABLE 1 ABOUT HERE} 
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 Using such a more general perspective, we get into a general latent variable 

modeling framework described by Skrondal and Rabe-Hesketh (2004) and expanded in 

certain ways by Vermunt (2008b) and Muthén (this volume). Table 1 shows the nine-fold 

classification of latent variable models for three-level data sets based on the scale types of 

the latent variables at level 2 and level 3. At each level one may have continuous latent 

variables (or random effects), discrete latent variables, or a combination of these. All 

models except type A1 could be called multilevel mixture models; that is, models with 

latent classes at either one or at two levels.  

 Multilevel factor and IRT models (Fox and Glas, 2001; Goldstein and Brown, 

2002; Grilli and Rampichini, 2007; Muthén, 1994), as well as three-level random effects 

regression models belong to category A1. The multilevel latent models described above 

belong, depending on whether the level-3 random effects are treated as continuous or 

discrete, to either the B1 or B2 type. By introduction a continuous latent variable at level 

two, which is a method for dealing with local dependencies between items in LC 

analysis, one would obtain a model of type C1 or C2. An example of a model of type C1 

is the multilevel variant of the factor mixture model (Allua, 2007). Vermunt (2008b and 

Varriale (2008) used type A2 models to define multilevel mixture IRT and factor analytic 

models, respectively. Palardy and Vermunt (2008) used type A2 and A3 models in the 

context of multilevel mixture growth modeling.  

4. Estimation, model selection, and sample size issues 

Vermunt (2003, 2004, 2005) demonstrated how to obtain maximum likelihood (ML) 

estimates of the parameters of multilevel LC models by means the EM algorithm. For this 

purpose, a (necessary) modification of the E step of the EM algorithm was developed 
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which was called an upward-downward algorithm. This procedure, as well as a Newton-

Raphson algorithm with numerical second derivatives based on analytical first 

derivatives, is implemented in the Latent GOLD software package (Vermunt and 

Magidson, 2008). The appendix provides various examples of Latent GOLD syntax files. 

Also Mplus (Muthén and Muthén, 2008) can be used to estimate (most of) the models 

described in this chapter. The Mplus manual is not very explicit about the estimation 

methods and algorithms which are used, but it seems to use similar procedures as Latent 

GOLD. The GLLAMM program (Rabe-Hesketh, Skrondal, and Pickles, 2004) can deal 

with the situation in which the latent variables at both levels are discrete (or both 

continuous) and in which only the responses depend on the higher-level class 

membership (special case number two described in section 3.1). Optimization of the log-

likelihood is performed using the Stata ML routines. Each of these three packages has 

options for obtaining robust standard errors as well as for dealing with missing values and 

complex sampling designs. 

 Model selection is already a rather complicated issue in standard LC analysis, but 

becomes even more complex in multilevel LC models, especially when the level-3 

heterogeneity is modeled using level-3 latent classes. We then not only need to decide 

about the required number of latent classes at level 2 (the value of C), but also about the 

number of classes at level 3 (the value of D). In principle, in multilevel LC analysis the 

same types of model selection measures can be used as the ones that are used in standard 

LC analysis, with information criteria such as AIC, BIC, and AIC3 as the most popular 

ones. However, the use of BIC is somewhat problematic because it contains the sample 

size in its formula, and is not fully clear what sample size to use in the BIC formula in a 
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multilevel analysis. Note that this is a problem for multilevel analysis in general, and thus 

not specific for multilevel LC analysis. A recent simulation study by Lukociene and 

Vermunt (2008) has shed some light on this issue: when deciding about the number of 

classes at the higher-level it is better to use the higher-level sample size in the BIC 

formula instead of the lower-level sample size.  

 Multilevel LC models have been applied with very different level-1, level-2, and 

level-3 sample sizes. Although little research has been done on this topic so far, some 

guidelines can be provided on sample size requirement. What should be understood is 

that in these types of models the sample size at a particular level may affect not only 

sampling fluctuation but also the separation of the classes at higher levels, which is 

similar to the reliability of the measurement of a continuous latent variable. The total 

level-2 sample size and the level-3 sample size affect the sampling fluctuation in the 

level-2 and level-3 parameters, respectively. The required level-2 and level-3 sample size 

depends strongly on the separation of the level-2 and level-3 classes, respectively. But 

this separation is itself affected by the level-1 sample size for the level-2 classes (the 

longer a test the more certain we can be about a person’s class membership), and by the 

level-2 sample size for the level-3 classes (the more level-2 units, the more certain we can 

be about a level-3 unit’s class membership). This shows that sample size requirements for 

one level may depend on the sample size at another level; for example, because of a 

better separation between level-3 classes, the required level-3 sample size is smaller with 

larger level-2 and level-1 sample sizes. It should be noted that there are other factors 

affecting the separation between classes, and thus the required sample size. One of these 

is how different latent classes are (the size of the λ  parameters appearing in the above 
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formulae): smaller samples are need with more dissimilar classes. Another factor is the 

scale type of the response variable: with continuous normal responses or Poisson counts 

smaller samples are needed than with the same number of dichotomous responses 

because the former are more informative about differences between classes. 

5. Applications 

This section presents two applications of the multilevel LC models described in the 

previous section. The first is a typical three-level regression application, and concerns a 

data set containing repeated measurements from a longitudinal survey with individuals 

nested within regions. The second example uses a data set as is typically analyzed using  

cluster analysis or factor analysis, with the complicating factor that individuals (children) 

are nested within groups (families); that is, this is an example of an analysis of a two-

level data set with multiple continuous items.  

 For our analysis we used version 4.5 of the Latent GOLD program (Vermunt and 

Magidson, 2008). The Appendix presents examples of Latent GOLD syntax files. For 

model selection, we used two versions of BIC: BIC(2) based on the level-2 sample size 

and BIC(3) based on the level-3 sample size. When the two fit measures disagree with 

respect to the required number of level-2 classes, we select the model with the lowest 

BIC(2). Similarly, when disagreement concerns the number of level-3 classes, we select 

the model that is preferred by BIC(3).  

5.1 Three-level mixture regression analysis 

The first application uses a data set from the data library of the Centre of Multilevel 

Modelling, University of Bristol (http://www.cmm.bristol.ac.uk/learning-
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training/multilevel-m-support/datasets.shtml). The data consist of 264 participants in the 

1983 to 1986 yearly waves from the British Social Attitudes Survey (McGrath and 

Waterton, 1986). It is a three-level data set: Individuals are nested within districts and 

time points are nested within individuals. The total number of level-3 units (districts) is 

54. 

 The dependent variable is the number of yes responses on seven yes/no questions 

as to whether it is a woman’s right to have an abortion under a specific circumstance. 

Because this variable is a count with a fixed total, it is most natural to work with a 

binomial error function and a logit link. Individual-level predictors in the data set are 

religion, political preference, gender, age, and self-assessed social class. In accordance 

with the results of Goldstein (2003), we found no significant effects of gender, age, self-

assessed social class, and political preference. Therefore, we did not use these predictors 

in the further analysis. The predictors that were used are the level-1 predictor year of 

measurement (1983, 1984, 1985, and 1986) and the level-2 predictor religion (Roman 

Catholic, Protestant, Other, and No religion). Because there was no evidence for a linear 

time effect, we used time as a categorical predictor in the regression model. 

 Vermunt (2004) used this data set to illustrate the similarity between three-level 

mixture regression models with intercept variation across latent classes and standard 

three-level random-intercept models. Here, I present a more extended analysis in which 

among others slopes are allowed to vary across level-2 and level-3 classes. 

 Our baseline model is a three-level mixture regression model of the form 

described in equations (4)-(8). More specifically, we specified models with a fixed 

intercept and 6 fixed slopes (three for time and three for religion), a random intercept and 



 21 

random slopes for the time effects at level 2, and a random intercept and random slopes 

for the religion effects religion at level 3. This implies that )1(
ijkX , )2,1(

ijkZ , and )3,1(
ijkZ  contain 

7, 4, and 4 columns, respectively. Furthermore, we assume that the level-2 class 

membership does not depend on the level-3 class membership (this is the second special 

case discussed in section 3.1) nor on covariates. This means that equation (7) contains 

only an intercept. Also equation (8) contains only an intercept since we have no level-3 

predictors.  

{INSERT TABLE 2 ABOUT HERE} 

 Table 2 reports the log-likelihood (LL) value, the number of parameters (Npar), 

the BIC(2) value, and the BIC(3) value for models with 1 to 5 level-2 classes and 1 to 3 

level-3 classes. The fact that models with C>1 (for constant D) have lower BIC values  

than models with C=1 shows that there is evidence for level-2 variation in intercept 

and/or time slopes. A similar conclusion can be drawn for the level-3 variation in 

intercept and/or religion slopes since models with D>1 perform better according to the 

BIC statistics than the ones with D=1. BIC(2) and BIC(3) select the same model as the 

best one, namely the model with C=4 and D=2. 

 As a next step, we defined five alternative models to test specific aspects of our 

baseline model with C=4 and D=2. Two more restricted models omit the random time 

and religion slopes, respectively. Three more extended models are estimated which add a 

level-3 random time effects, a direct effect of level-3 class on level-2 class, and an 

interaction effect between level-2 and level-3 class in the model for the response variable. 

The fits measures in Table 2 indicate that the two more restricted models perform worse 

than the baseline model, which means that the level-2 and level-3 variation in the time 
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and religion slopes are significant. The models with level-3 variation in the time effects 

and with an association between level-2 and level-3 class membership do not perform 

better than the baseline model, which indicates that there is no need to include these 

effects. However, the last model has lower BIC values than the baseline model, which 

indicates that there is evidence that the level-2 class intercept differences vary across 

level-3 classes. This model will serve as our final model. 

{INSERT FIGURES 1a, 1b AND 1c ABOUT HERE} 

 Figure 1a depicts the estimated value of the intercept for each level-2 and level-3 

class combination (these are obtained by adding up the fixed and the random intercept 

terms, including the interaction), Figure 1b the time effects per level-2 class (these sum to 

0 across time points and are obtained by adding up the fixed and the random time 

effects), and Figure 1c the religion effects per level-3 class (these sum to 0 across religion 

categories and are obtained by adding up the fixed and the random religion effects). 

Figure 1a and 1b show that level-2 class one contains the respondents who are most 

against abortion, irrespective of the level-3 (region) class, and whose opinion is most 

stable across the four measurement occasions. Depending on the region class, class 2 

respondents are very much in favor or somewhat against abortion, and they become less 

in favor during the observation period. Class 3 is (moderately) against, and shows a 

decrease and subsequently a return to the initial position during the four years of the 

study. Class 4 is (moderately) in favor of abortion, but much less at the first two 

occasions than at the last two occasions. 

 As far as the level-3 classes is concerned, Figure 1a shows that level-3 classes of 

regions differ in opinion concerning abortion only among class two respondents. 
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Moreover, the religion effects (Figure 1c) are small in class 2, with “other religion” 

slightly more against and “no religion” slightly more in favor of abortion. In class 1 

regions, the religion effects are huge: here, Catholics are much more against abortion that 

the other religion categories. The latter ones show similar mutual differences as in the 

other latent class.  

 This example showed that complex but interesting level-2 and level-3 variability 

in intercepts and slopes can be detected using model specifications which are rather 

straightforward within the multilevel LC analysis framework. The most similar 

specification using a “standard” three-level logistic regression model would be a model 

with 4 normally distributed random effects at level-2 and 4 at level-3. Interpretation of 

the results of such an analysis would probably have been more difficult than the results 

presented above. 

5.2 Multilevel mixture modeling with a set of continuous 

responses 

The data for this example were collected by Van Peet (1992) and used by Hox (2002) to 

illustrate multilevel factor analysis (FA). Six continuous measures supposed to be 

connected to intelligence – “word list”, “cards”, “matrices”, “figures”, “animals”, and 

“occupations” – are available for 269 children belonging to 49 families. For 82 children, 

there is partially missing information, but these observations can be retained in the 

analysis using standard ML estimation methodology with missing data.  

 Hox (2002) analyzed this data set (excluding cases with missing values) using 

multilevel FA, which basically involves performing separate analyses of the within- and 

between-family covariance matrices. At the within level, his final model contained a 
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“numeric” factor (loading on word list, cards, and matrices) and a “perception” factor 

(loading on figures, animals, and occupations), whereas at the between level a single 

factor sufficed. His aim was to determine whether the six measures relate to similar 

aspects of intelligence at the within- and between-family level, as well as to detect 

possible family effects, which may be explained by genetic and/or common environment 

factors.  

 To illustrate various types of multilevel mixture models, we will analyze this data 

set in three different ways, in each of which level-3 variation is modeled by assuming that 

families belong to a small number of level-3 classes. The first analysis uses a model 

corresponding to the first special case discussed in section 3.1; i.e., a model in which 

level-2 classes affect the item responses and level-3 classes the level-2 class 

memberships, but not directly the responses. Between-family differences in responses are 

thus explained by between-family differences in the likelihood of belonging to the child-

level intelligence clusters. This is also the specification Vermunt (2008a) used in an 

earlier analysis of this data set. 

The second analysis is conceptually similar to Hox’s analysis, but with discrete 

instead of continuous latent variables. In this analysis, both latent variables are assumed 

to affect the responses directly. The role a particular item plays in the clustering of 

children and the clustering of families may be fully different. Moreover, the clustering of 

children is conditional on the family clustering, which means that it is based on within-

family differences which remain after taking into account the differences between family 

classes.  
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The third analysis uses continuous latent variables at level two. The model is a 

multilevel mixture factor model, a model with a mixture distribution at level three to 

capture between-family differences in the parameters of the child-level factor model. This 

can be seen as a kind of multiple group factor analysis with a large number of groups. 

The aim is to investigate whether the factor model parameters can be assumed to be 

invariant across groups.  

 Preliminary analysis showed that simple univariate normal within-class 

distributions with homogeneous residual variances across lower- and higher-level classes 

can be assumed for the six response variables. More specifically, inspection or pairwise 

residuals showed that there is no need to allow for within-class correlations across 

responses, and comparison of models with equal and unequal variances showed that it is 

correct to assume that residual variances are homogeneous across lower- and higher-level 

classes.  

Analysis 1: indirect effect of family classes 

In this first analysis, the six intelligence measures were used to cluster children into 

intelligence classes and it was investigated whether (classes of) families differ in the 

distribution of (their) children over these “intelligence” clusters. Table 3 provides the fit 

measures for the estimated multilevel LC models. As can be seen, a model with four 

child-level classes and three family-level classes performed best according to both 

BIC(2) and BIC(3).  

{INSERT TABLE 3 ABOUT HERE} 

{INSERT FIGURES 2a AND 2b ABOUT HERE} 
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Figures 2a displays the estimated )2,1(
qcλ  parameters appearing in equation (6) for 

the model with C=4 and D=3. These parameters (which sum to 0 over classes) show that 

the means of the six intelligence indicators are nicely ordered across child-level classes 1 

to 3. These can therefore be labeled high, middle, and low. Children in class 4 show a 

somewhat mixed pattern: they perform better than the middle class on cards and figures, 

better than the low class on word list and matrices and worse than the low class on 

animals and occupations.  

 Figure 2b displays the estimated level-2 class membership probabilities for the 

level-3 classes. As can be seen, in family-level class 3 almost all children belong to the 

mixed child-level class. Children from families belonging to family-level class 1 are 

more likely to be in the high intelligence class and children from family-level class 2 are 

more often in the middle and low intelligence classes. These results show that there is a 

very strong family effect on the performance of children on these six intelligence 

subtests. 

Analysis 2: direct effect of family classes 

In this second analysis, the six intelligence measures are used to simultaneously find 

child-level and family-level intelligence classes based on the children’s responses. Table 

4 provides the fit measures for the estimated multilevel LC models. As can be seen, the 

model with C=3 and D=3 performs best according to BIC(2), whereas the model with 

C=3 and D=4 performs best according to BIC(3). Because the discrepancy is in the 

number of level-3 classes, we decided to keep the model selected by BIC(3) as the final 

model. Note that the BIC values of this model are lower than the once found in the 

previous analysis, which indicates that the assumption we made earlier – that differences 



 27 

in responses across family classes are fully mediated by differences in child-level class 

membership – is not fully correct. 

{INSERT TABLE 4 ABOUT HERE} 

{INSERT FIGURES 3a AND 3b ABOUT HERE} 

Figures 3a and 3b display the estimates for the )2,1(
qcλ  and )3,1(

qdλ  parameters from equation 

(6), which can be used to label the level-2 and level-3 classes. The parameters for the 

level-2 classes show that class 1 scores higher on all measures than classes 2 and 3. Class 

2 scores higher than class 3 on the first four measures (with a large difference on cards), 

but lower than class 3 on animals and occupations. This pattern reveals that there is a 

kind of two-dimensional structure. 

 Although the fit measures indicated that there are significant differences between 

families, it is not easy to give a simple interpretation to the encountered differences 

between the level-3 classes. Contrary to the results by Hox, we do not find a one 

dimensional structure, which would imply that classes should be (almost) ordered. Class-

1 families score high on all measures, except for occupations on which they have a 

medium level score. Families belonging to class 2 score high on figures, medium on 

cards, and low on the remaining four 4 items. Class 3 scores low on three items and 

medium on the remaining items. Class-4 families score extremely high on occupations, 

high on word list, figures and matrices, medium on cards, and somewhat low on animals. 

Analysis 3: multilevel mixture factor analysis 

In the third analysis, we used a factor analytic model at level-2. Similar to Hox’s analysis, 

it is a two factor model, but with the difference that “figure” loads on both factors. 

Seemingly, the factor structure changes somewhat when retaining cases with missing 
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values in the analysis. Our baseline multilevel mixture factor analysis model is a model in 

which factor (co)variances, means, and loadings, as well as item intercepts are allowed to 

differ across family classes. Measurement equivalence across families is achieved when 

factor loadings and item intercepts turn out to be the same across family clusters. 

 We fitted models with 1 to 4 family-level latent classes. Both BIC(2) and BIC(3) 

indicated that a model with 3 classes is the one that should be preferred. Restricting the 

factor (co)variances and loadings to be equal across classes did not deteriorate the fit of 

the model. However, assuming that also item intercepts are equal across classes yields a 

worse model fit. Actually, except for the two reference items (the two items for which 

intercepts were fixed to 0 to be able to identify the factor means), none of the item 

intercepts can be assumed to be equal across classes. This confirms the results we found 

in the models with a discrete level-2 latent variables, namely that it is not correct to 

assume that family effects on item responses can be assumed to be fully mediated by the 

child-level latent variable(s). 

6. Discussion 

Whereas typical applications of LC analysis concern single-level multivariate response 

data sets, in this chapter, I demonstrated how LC and mixture models can be used for 

analyzing univariate two-level data sets, univariate three-level data sets, and multivariate 

two-level data sets.  I also discussed how multilevel LC models fit into a more general 

latent variable modeling framework, which allows defining models with discrete and 

continuous latent variables at the multiple levels of a hierarchical structure. 

 The multilevel LC models were illustrated using two empirical examples. The 

first example showed how to use a multilevel mixture models for three-level regression 
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analysis. Complex but interesting level-2 and level-3 variability in intercepts and slopes 

were detected using model specification which are rather straightforward with the 

presented framework.  

A second empirical data set was analyzed in three different ways. Which of the 

three is most appropriate depends on the exact aim of the research concerned. It is, of 

course, also possibly that none of the three is appropriate that another type of analysis 

should be used, e.g., the multilevel factor analysis used by Hox (2002). Our second 

analysis, as well as Hox’s multilevel factor model are more suited for exploration, 

whereas our first and third analysis are more suited when the items can be assumed to be 

meaningful indicators for clustering or measuring one or more underlying factors at the 

lower level. 

 Other types of illustrations of multilevel mixture models than the ones presented 

here can be found in the literature. Vermunt (2003, 2005, 2007, and 2008a) gave 

examples of multilevel variants of standard LC models for categorical response variables. 

A type of model that was not illustrated with an example is the model containing 

continuous random effects at level 3 discussed in Section 3.2. Applications of this model 

are provided by Vermunt (2003, 2005). Other applications, which similarly to our third 

analysis of the intelligence data, use continuous variables at level 2 and discrete latent 

variables at level 3 are the multilevel mixture growth models proposed by Palardy and 

Vermunt (2008), the multilevel mixture IRT models used by Vermunt (2008b), and the 

multilevel mixture factor models by Varriale (2008).  

 Since multilevel mixture modeling is a rather new area statistical methodology, it 

is not surprising that many issues have not yet been fully resolved. Future research should 
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deal with issues such as sample size requirements, model selection strategies, model 

diagnostics, and effects of model misspecification. Possible extensions of the models 

presented in this chapter are multilevel LC models with ordinal latent variables and 

multilevel variants of latent Markov models. 

Appendix  

The models in Table 2 can be estimated with either the Latent GOLD Regression or 

Syntax module. To illustrate the Latent GOLD Syntax language, these are possible 

“variables” and “equations” sections of a setup for the baseline models appearing in 

Table 2:  

variables 
   groupid District_ID; 
   caseid Case_ID; 
   dependent Response binomial exposure=7; 
   independent Year nominal, Religion nominal; 
   latent U3 group nominal 2, U2 nominal 4; 
equations 
   Response <- 1 + Year + Religion + U2 + U2 Year  
               + U3 + U3 Religion; 
   U2 <- 1; 
   U3 <- 1; 

The “variables” section defines the level-3 (group) and level-2 (case) identifiers, the 

dependent variable, the predictors (independent), and the latent variables in the model.  

Note that both latent variables are nominal, with 2 and 4 categories, respectively. 

Moreover, for U3, the keyword “group” indicates that it is a level-3 latent variable. The 

“equations” section contains, in fact, the regression equations (6)-(8), where “1” defines 

an intercept term and where dummies/effects are automatically set up for nominal 

variables. 

The two restricted models appearing in Table 2 can be obtained by eliminating 

either “+ U2 Year” or “+ U3 Religion” from the model for the response variable. The 
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more extended models are obtained by adding “+ U3 Year” to the model for the response 

variable, “+ U3” to the model for the level-2 classes, and “+ U2 U3” to the model for the 

response variable. 

 The setup used for the second example differs from the one above in that the 

model is defined as a two-level model for multivariate responses. In other words, we have 

a model for six dependent variables rather than for one, but no case identifier needs to be 

specified since we have only one record per case. Another difference is that “equations” 

need to be specified for the residual variances of the response variables, because these are 

assumed to be normally distributed. The setup used for the models in Table 3 is:  

variables 
   groupid family; 
   dependent wordlist continuous, cards continuous, figures 

continuous, matrices continuous, animals continuous,  
occupations continuous; 

   latent U3 group nominal 4, U2 nominal 3; 
equations 
   cards <- 1 + U2; 
   figures <- 1 + U2; 
   matrices <- 1 + U2; 
   animals <- 1 + U2; 
   occupations <- 1 + U2; 
   wordlist; 
   cards; 
   figures; 
   matrices; 
   animals; 
   occupations; 
   U2 <- 1 + U3; 
   U3 <- 1; 

 
A more compact specification of the equations using variable lists is 

equations 
   cards - occupations <- 1 + U2; 
   cards - occupations; 
   U2 <- 1 + U3; 
   U3 <- 1; 
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For the second analysis (models in Table 4), we remove “+ U3” from model for “U2” and 

include it in the equations for the dependent variables. The multilevel mixture factor 

model can be defined as follows:  

variables 
   groupid ... 
   dependent ... 
   latent U3 nominal group 3, F1 continuous, F2 continuous; 
equations 
   wordlist <- (1) F1; 
   cards <- 1 | U3 + F1 | U3; 
   figures <- 1 | U3 + F1 | U3 + F2 | U3; 
   matrices <- 1 | U3 + F1 | U3; 
   animals <- (1) F2; 
   occupations <- 1 | U3 + F2 | U3; 
   wordlist - occupations; 
   F1 <- 1 | U3; 
   F2 <- 1 | U3; 
   F1 | U3; 
   F2 | U3; 
   F1 <-> F2 | U3; 
   U3 <- 1; 

 

This setup illustrates various additional syntax options: two continuous latent variables 

are defined in “latent”,  “equations” are included for the factor means and 

(co)variances, the statement “| U3”  is used to indicate that a parameter varies across 

level-3 clusters, and “(1)”  is used to fix the parameter concerned to 1. 
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Table 1: Nine-fold classification of latent variable models for three-level data sets 

Level-3 latent variables )3(
kU  Level-2 latent 

variables )2(
jkU  Continuous Discrete Combination 

Continuous A1 A2 A3 
Discrete B1 B2 B3 
Combination C1 C2 C3 
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 Table 2. Fit measures for the models estimated with the abortion data 

Model  LL Npar BIC(2) BIC(3) 
C=1 D=1 baseline -2188 7 4416 4405 
C=2 D=1 baseline -1745 12 3558 3539 
C=3 D=1 baseline -1683 17 3460 3433 
C=4 D=1 baseline -1657 22 3436 3401 
C=5 D=1 baseline -1645 27 3441 3398 
C=1 D=2 baseline -2073 12 4212 4193 
C=2 D=2 baseline -1712 17 3519 3492 
C=3 D=2 baseline -1671 22 3465 3431 
C=4 D=2 baseline -1644 27 3438 3396 
C=5 D=2 baseline -1636 32 3450 3399 
C=1 D=3 baseline -1999 17 4092 4065 
C=2 D=3 baseline -1699 22 3520 3485 
C=3 D=3 baseline -1663 27 3477 3434 
C=4 D=3 baseline -1638 32 3455 3404 
C=5 D=3 baseline -1629 37 3465 3406 
C=4 D=2 religion not random -1651 24 3435 3397 
C=4 D=2 time not random -1683 18 3467 3439 
C=4 D=2 time also random at level-3 -1639 30 3444 3397 
C=4 D=2 association between U2 and U3 -1640 30 3448 3400 
C=4 D=2 interaction between U2 and U3 -1632 30 3432 3384 
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Table 3. Fit measures for the models estimated with the intelligence data (first analysis) 

Model LL Npar BIC(2) BIC(3) 
C=1 D=1 -4238 12 8543 8522 
C=2 D=1 -4149 19 8404 8372 
C=3 D=1 -4127 26 8400 8356 
C=4 D=1 -4113 33 8411 8355 
C=5 D=1 -4104 40 8432 8364 
C=2 D=2 -4130 21 8378 8342 
C=3 D=2 -4108 29 8379 8330 
C=4 D=2 -4087 37 8381 8318 
C=5 D=2 -4075 45 8402 8326 
C=2 D=3 -4130 23 8388 8349 
C=3 D=3 -4098 32 8374 8320 
C=4 D=3 -4072 41 8374 8304 
C=5 D=3 -4060 50 8400 8315 
C=2 D=4 -4130 25 8399 8357 
C=3 D=4 -4096 35 8388 8328 
C=4 D=4 -4070 45 8391 8315 
C=5 D=4 -4052 55 8412 8318 
C=2 D=5 -4130 27 8410 8364 
C=3 D=5 -4096 38 8405 8340 
C=4 D=5 -4069 49 8412 8329 
C=5 D=5 -4050 60 8436 8334 
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Table 4. Fit measures for the models estimated with the intelligence data (second 

analysis) 

Model LL Npar BIC(2) BIC(3) 
C=1 D=1 -4238 12 8543 8522 
C=2 D=1 -4149 19 8404 8372 
C=3 D=1 -4127 26 8400 8356 
C=4 D=1 -4113 33 8411 8355 
C=5 D=1 -4104 40 8432 8364 
C=1 D=2 -4155 19 8417 8385 
C=2 D=2 -4104 26 8354 8310 
C=3 D=2 -4086 33 8356 8300 
C=4 D=2 -4070 40 8364 8296 
C=5 D=2 -4061 47 8385 8305 
C=1 D=3 -4132 26 8410 8366 
C=2 D=3 -4081 33 8346 8290 
C=3 D=3 -4059 40 8342 8274 
C=4 D=3 -4045 47 8354 8274 
C=5 D=3 -4034 54 8370 8278 
C=1 D=4 -4114 33 8413 8357 
C=2 D=4 -4068 40 8361 8293 
C=3 D=4 -4045 47 8352 8272 
C=4 D=4 -4033 54 8368 8276 
C=5 D=4 -4025 61 8391 8287 
C=1 D=5 -4101 40 8425 8357 
C=2 D=5 -4058 47 8379 8299 
C=3 D=5 -4036 54 8374 8282 
C=4 D=5 -4021 61 8384 8280 
C=5 D=5 -4015 68 8410 8294 
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Figure 1a. Intercept for all combinations of level-2 and level-3 classes obtained with 

abortion data  
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Figure 1b. Time effects for level-2 classes obtained with abortion data  
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Figure 1c. Religion effects for level-3 classes obtained with abortion data 
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Figure 2a. Intercept differences between child-level classes obtained with intelligence 

data (first analysis) 
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Figure 2b. Child-level class proportions for family-level classes obtained with 

intelligence data (first analysis) 
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Figure 3a. Intercept differences between child-level classes obtained with intelligence 

data (second analysis) 
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Figure 3b. Intercept differences between family-level classes obtained with intelligence 

data (second analysis) 
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