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Abstract 

In longitudinal studies it is important to test whether measurements are equivalent over time, because 

it needs to be known if observed changes are true change or caused by a change in the measurement 

of the construct of interest. However, in the application of latent Markov (LM) models, measurement 

nonequivalence is typically neglected and not tested for. In this paper two analytic strategies for such 

tests are investigated in the context of LM models: An approach that is common in structural equation 

modeling (SEM) by starting from a free baseline model and progressively restricting parameters, and 

an approach that is common in item response theory (IRT) modeling by starting from a fully 

constrained baseline model and progressively freeing parameters. Using a simulation study, we 

determine the true and false positive rates in detecting nonequivalent items for different model fit 

statistics. The results indicate that, regardless of the analytic strategy, the power to detect 

measurement nonequivalence in LM models is high as long as there is a sufficiently large 

measurement variance, or a sufficiently strong measurement. Out of the different model fit statistics 

considered the AIC and likelihood-ratio tests are most promising, whereas the BIC lacks power to 

detect nonequivalence. 
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Arguably the most central topic in the social and behavioral sciences is individual change over time, 

which can be studied by data collected from the same individual at multiple time points. To adequately 

deal with measurement error, longitudinal studies often use latent variable techniques such as item 

response theory (IRT) and structural equation modeling (SEM). A popular tool in cases where the data 

is categorical is the latent Markov (LM) model, also referred to as the latent transition, hidden Markov, 

or regime switching model4 that can be considered to be a longitudinal version of the latent class (LC) 

model (see Collins & Lanza, 2010; Goodman, 1974; Vermunt & Magidson, 2002). Similar to the LC 

model, the LM model classifies subjects based on their responses, but the LM model simultaneously 

estimates the probabilities of transitioning from one class to another between measurement occasions. 

Parallel with the development in statistical packages such as Latent GOLD (Vermunt & Magidson, 

2013), Mplus (Muthen & Muthen, 1998-2007), PROC LTA (Lanza & Collins, 2008), and the LMest R-

package (Bartolucci & Pandolfi, 2018) there is a growing body of research using LM models for the 

analysis of change in a wide range of applied areas.  Examples include studies on substance misuse 

(Lanza & Bray, 2010), delinquency (Bright, et al., 2017), eating behavior (Sotrez-Alvarez, Herring, & 

Siega-Riz, 2013), abnormal psychology (Connell et al., 2008), quality of life (Bartolucci, Lupparelli, & 

Montanari, 2009), work psychology (Bujacz, Bernhard-Oettel, Rigotti, Magnussen Hanson, & Lindfors, 

2018), and health psychology (Williams et al., 2015).  

Most longitudinal studies assume that the instruments lead to identical measurement of the 

same constructs over time. That is, the meaning of the instrument does not change and the scores 

that result from it indicate an identical presence or level of the measured concept. This is referred to 

as measurement equivalence or invariance. The importance of testing for measurement equivalence 

in longitudinal data has been stressed (Millsap, 2010; Millsap & Cham, 2012), and methods have been 

proposed to investigate longitudinal measurement equivalence using latent variable models such as 

IRT (Meade, Lautenschlager, & Hecht, 2005; Millsap, 2010) and latent growth models (Olivera-Aguliar, 

2013; Widaman, Ferrer, & Conger, 2010; Wirth, 2008). Yet, despite the growing body of literature on 

 
4 These terms are frequently used interchangeably, despite all these models having a particular definition. 
For an overview see Bartolucci, Farcomeni, & Pennoni (2014). 
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longitudinal measurement (non)equivalence, researchers using LM models still tend to fully neglect 

this problem. On the one hand, this is somewhat surprising because it seems to be rather 

straightforward to investigate measurement equivalence in LM models by comparing nested models 

using statistics such as AIC, BIC, likelihood-ratio, Wald, and score statistics. On the other hand, it is 

understandable because there is no generally accepted strategy for investigating measurement 

equivalence.  

 In order to develop a more comprehensive testing framework we will here focus on the 

comparison of the SEM- and IRT-like analytic strategies in LM modeling. Our aim is to provide an 

advice to applied researchers using LM models on which strategy is more effective: the approach 

more common to SEM of starting with a free baseline model and progressively testing more 

constrained models, or the approach more common to IRT of starting with a constrained baseline 

model and testing progressively freed parameters. Moreover, different model fit statistics and 

information criteria will be compared to see whether the strategies align with certain statistics to further 

aid the testing for measurement equivalence in applied research. 

 In the following section the LM model and the two approaches to constraining and freeing 

parameters will be introduced. Next the simulation design and its results will be presented. The final 

section provides a discussion, recommendations for researchers, and suggestions for further 

research. 

 

The Latent Markov Model 

The LM model is mostly applied to measure a latent phenomenon based on categorical data, and 

model the change in that latent phenomenon over time. To achieve this, the model classifies 

respondents into latent states based on their responses, and estimates the probabilities of moving 

between states from one measurement occasion to the next. 

Let 𝑌𝑡𝑗 be one of 𝐽 observed variables or items measured at 𝑇 occasions, where 𝑗 = 1, 2, … , 𝐽 

and 𝑡 = 1, 2, … , 𝑇, and let 𝑆𝑡 be a latent variable of which the value 𝑠𝑡 represents the latent state 

occupied at time point 𝑡. The response of an individual to item 𝑗 at time 𝑡 can then be denoted as 𝑦𝑖𝑡𝑗, 
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with 𝑖 being one out of 𝑁 individuals. In the case of categorical data, denoting the response category 

as 𝑟𝑡𝑗 out of 𝑅𝑗 responses allows some technical efficiency, as the possible responses are finite. Then, 

finally, the responses of an individual to all items at one occasion can be denoted 𝒚𝑖𝑡 and 𝒓𝑖𝑡, and 

further concatenating those vectors for all measurement occasions gives all responses by one 

individual as 𝒚𝑖 and 𝒓𝑖. 

As an illustration the LM model is depicted in Figure 1, which shows the two central 

assumptions of the LM model: The local independence assumption and (first order) Markov 

assumption. The former implies that the observed responses are independent of one another, 

conditional on the latent states occupied at the 𝑇 time points. That is, no covariance exists between 

the observed variables conditional on the latent variable. The latter implies that the state at time point 

𝑡 only depends on the state occupied at the previous time point 𝑡 − 1, and only indirect relations exist 

between the latent variables that are not adjacent. It thus holds that 𝑃(𝑆3 = 𝑠3|𝑆2 = 𝑠2, 𝑆1 = 𝑠1) =

𝑃(𝑆3 = 𝑠3|𝑆2 = 𝑠2) (Vermunt, Langeheine, & Böckenholt, 1999). These are signified by the product 

terms in the equation for the LM model: 

 

[FIGURE ONE ABOUT HERE] 

 

𝑃(𝒚𝑖 = 𝒓𝑖) = ∑ …

𝑆

𝑠1=1

∑ 𝑃(𝑆1 = 𝑠1) [∏ 𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1)

𝑇

𝑡=2

] [∏ ∏ 𝑃(𝑦𝑖𝑡𝑗 = 𝑟𝑡𝑗|𝑆𝑡 = 𝑠𝑡)

𝐽
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𝑇
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𝑆
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 (1) 

 

 LM models can be thought of as a series of LC models that make up the measurement part of 

the model. The longitudinal structural part of the model comprises the initial state and transition 

probabilities. In terms of Equation 1, the first element 𝑃(𝑆1 = 𝑠1) are the initial state probabilities, or 

proportions, indicating the prevalence of each state at the first measurement occasion, here denoted 

as 𝑡 = 1. The transition probabilities 𝑃(𝑆𝑡 = 𝑠𝑡|𝑆𝑡−1 = 𝑠𝑡−1) make the Markov assumption apparent, 

where the current state 𝑠𝑡 depends on state membership at the previous measurement 𝑠𝑡−1. The last 
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elements form the measurement of the states, where the probability of a certain response is conditional 

on the current state occupied 𝑃(𝑦𝑖𝑡𝑗 = 𝑟𝑡𝑗|𝑆𝑡 = 𝑠𝑡). 

 Although identified when there are three or more consecutive observations, assuming more 

manifest than latent elements (Kasahara & Shimotsu, 2008), this model is hardly ever applied in 

practice. Generally, the assumption of measurement invariance is applied to fix the state definitions, 

and the transition probabilities are (partially) fixed over time. Not doing so largely negates one of the 

advantages of the model, namely its parsimony. That is, when transition probabilities vary over time, 

each pair of adjacent measurement occasions has its own set of probabilities and thus interpretations 

in terms of the transitions from and to states that also change definition at each occasion. 

 

Testing for Measurement Equivalence 

Measurement equivalence implies that the latent structure, that is the number of latent states and their 

definition, is the same across all time points and leads to identical scores. If true equivalence holds it 

is valid to impose across-time equality constraints on item response probabilities 𝑃(𝑌𝑡𝑗 | 𝑆𝑡). In 

contrast, measurement nonequivalence occurs when estimated item response probabilities turn out 

to be different across occasions for one or more of the items. If some, but not all items have different 

response probabilities at different measurement occasions this is referred to as partial equivalence, 

and the extreme situation where all items are time specific corresponds to complete nonequivalence. 

The latter situation requires a fully unconstrained LM model, also referred to as the basic LM model 

(Bartolucci, Farcomeni, & Pennoni, 2013), in which the definition of latent states may fully change over 

time. This makes the interpretation of state membership and state transitions extremely challenging, 

as respondents are moving in and out of states that themselves change in substantive meaning. 

 Important to note is that a necessary requirement for measurement equivalence in LM models 

is that the number of latent states is equal across time points. However, when such a model does not 

hold, equivalence can still be tested by increasing the number of states, where some states are 

assumed to not occur at some of the measurement occasions. An example of this is a study 

investigating non-suicidal self-injury (NSSI) behaviors. At older ages four states may be encountered, 
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namely experimental, mild, and multiple NSSI and self-cutting. The latter state, self-cutting behavior, 

generally does not yet exist at younger ages (Somer, et al., 2015). Such situations can be modeled 

with measurement equivalence by estimating a four state LM model in which the self-cutting state 

membership probability is fixed to zero for the first measurement occasions. This would still allow 

response probabilities to be equivalent across time points. 

 After deciding on the number of latent states needed, overall measurement equivalence can 

be tested by comparing two models. One constrained model where all item response probabilities are 

identical for each occasion, and one free model where the item response probabilities are allowed to 

be different for all the different measurement occasions (Collins & Lanza, 2010). When the fully 

constrained model does not fit significantly worse than the fully free model it gives credence to the 

assumption that item response parameters are equivalent across occasions. However, this 

comparison alone does not provide information on partial equivalence where some, or only one of the 

items is nonequivalent over time. Generally, researchers aim to find the most parsimonious and best 

interpretable model that is still theoretically relevant and statistically sound. Therefore, when the 

constrained model is rejected in favor of the unconstrained model, the partially equivalent models in 

between these two extremes become important, because it may be the case that a large number of 

parameters can still be considered equivalent over time. In LM models this is of extra importance, 

because the item response probabilities determine the definition of a latent state. This implies that in 

situations where a large number of parameters is still equivalent, class definitions may remain broadly 

comparable over time while allowing for partial equivalence. In turn this allows state membership and 

transitions between states to still be interpreted, without violations related to equivalence assumptions. 

 A practical problem in the search for an adequate partially equivalent model is that there is a 

large number of possible model comparisons that can be made. For example, for a three-state LM 

model, with three measurement occasions and six dichotomous items there are 54 measurement 

parameters that can be constrained. Moreover, nonequivalence may occur for each combination of 

items, time points, and states. In practice this inhibits the theoretical option of estimating and 
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comparing all possible models as even for a very limited study there are thousands of alternative 

model specifications. 

 To make investigation of item-level (non)equivalence feasible, we will next consider two 

strategies that both involve testing nested models to one another. One by progressively moving from 

the fully unconstrained model to constraining more parameters, and one in the other direction. 

 

[FIGURE 2 ABOUT HERE] 

 

 Model A in Figure 2 represents the free baseline model where item response probabilities are 

free to vary over time (indicated by using different subscripts for the state-item relationship). In the free 

strategy models are specified with a single item restricted to be equivalent over time. If that constraint 

does not deteriorate fit, the item concerned can be assumed to be equivalent over time. In contrast, if 

the restricted model (e.g. Model 2B) is rejected in favor of the unconstrained model, the item 

concerned should be flagged as being nonequivalent. A statistical advantage of using the 

unconstrained model as a baseline is that the alternative model in the test is always a model that fits 

the data. However, this advantage comes at the expense of parsimony and interpretability of the initial 

baseline model. 

 Alternatively, the model constrained to full equivalence may be used as a starting point (Model 

2E). Subsequently across-time restrictions on the item response probabilities can be removed (Models 

2F, G, and H). Now, when the constrained model is rejected for a partially unrestricted alternative the 

item concerned should be flagged as nonequivalent. Vice versa, accepting the constrained model 

would signify measurement equivalence for the tested item. Statistically the disadvantage of this 

approach is that the alternative model does not by definition fit the data. That is, if items other than the 

item being tested are nonequivalent the tested model may indicate that freeing up parameters is not 

warranted, but this does not mean that other, untested parameters do not need to be freed. 

 Regardless of the choice between these two starting points, with a 𝐽 item scale, 𝐽 + 1 models 

should be estimated, namely the one-by-one restriction of all the items, and the comparison between 



8 
 

the fully constrained and fully unconstrained models. In practice this is feasible in the vast majority of 

situations, and allows identifying nonequivalent items. After identifying these items, the model with 

freely estimated nonequivalent items and restricted equivalent items can be estimated, which can be 

treated as the selected model that is at least close to the most parsimonious partially equivalent model. 

 Now, in addition to the strategy, the statistics that may be used for the model comparisons 

also require consideration. As nested models are compared, one of the most obvious choices in this 

respect is the likelihood-ratio (LR) test. The LR test uses either the minus two log-likelihood (−2𝐿𝐿) or 

likelihood-ratio chi-squared (𝐿2) difference between the null and alternative model. For example, using 

the unconstrained model as a starting point and comparing models A and B from Figure 2 the LR test 

value would equal: 

𝐿𝑅 = 𝐿𝑏
2 − 𝐿𝑎

2 ,      (2) 

where 𝐿𝑎
2  represents the likelihood ratio chi-squared value for the unconstrained model, and 

𝐿𝑏
2  represents the model with one item constrained over time. Similarly, models with one free item and 

the constrained baseline model can be compared. Because these models are nested the LR test 

follows a known central chi-square distribution when the alternative model fits to the data with degrees 

of freedom equal to the difference in the number of parameters between the two models.  

 Information criteria form one of the alternatives for model selection, the most commonly used 

of which are the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). Using 

the general notation of 𝑁 for sample size and 𝑑𝑓 for degrees of freedom these criteria are defined as: 

𝐴𝐼𝐶 = 𝐿2 − 2𝑑𝑓                 (3) 

𝐵𝐼𝐶 = 𝐿2 − ln (𝑁) ⋅ 𝑑𝑓     (4) 

As can be seen from Equation 4F the BIC penalizes the model for the number of free parameters 

weighted by sample size, whereas the AIC only penalizes free parameters with a constant. As a result 

the BIC is often preferred when sample sizes are large. When comparing models the lowest value 

indicates the preferred model for both criteria. 

 Other alternatives for model testing are specific to the baseline model used. The Wald test can 

be used as an alternative to the LR test when starting with the unconstrained model. Asymptotically 
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the LR and Wald test are equivalent, but the Wald test has the advantage that it does not require 

estimating the 𝐽 restricted models. More specifically, it can be obtained for each item using the 

estimated parameter values and the estimated parameter variances from the unconstrained model. 

This does imply that the quality of the test statistic is dependent on the variance estimates, which may 

be biased or subject to large sampling error when the sample size is small (Agresti, 1990).  

 When using the constrained model as the baseline model the Score or Lagrange multiplier test 

can be used as an alternative to the LR test. The Score test, similar to the Wald test, is asymptotically 

equivalent to the LR test, with the same advantage of not having to estimate the 𝐽 unrestricted models 

by using the estimated parameter variance. More specifically, it tests whether a parameter of interest 

is equal to a particular value. Here that allows a test of whether the inclusion of an additional set of 

parameters that would relax the equivalence assumption leads to a significant improvement of the 

model. The major disadvantage of the Score test is that it is powerful when the estimated parameter 

values are close to their true value, but suffers from increasing bias the further the alternative model 

is from the truth. That is, the test statistics and p-values become biased when the less restricted model 

is still a bad fitting model. 

 In the next section the strategy of equivalence testing and the different fit statistics will be 

compared using a simulation study containing various forms of longitudinal measurement 

nonequivalence.  

 

Methodology 

In the simulation study measurement equivalence is tested by relaxing or constraining item response 

probabilities as described. By varying several characteristics of the generated population data the goal 

is to answer the following research questions: 

1- Which of the two baseline strategies is more powerful when testing for longitudinal 

measurement equivalence in LM models? 

2- Do the different evaluation statistics (LR, AIC, BIC, Wald and Score) give different results? 
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3- Do sample size, measurement strength, the number of nonequivalent items, the number 

of equivalent items, the degree of nonequivalence, and the number of nonequivalent states 

have an effect on the power of detecting equivalence? 

 

Study design 

In the simulation study, a number of characteristics is kept fixed in order for the results to remain 

interpretable and to be able to focus the effect of the number of (non)equivalent items over design 

factors that may confound. All conditions use six dichotomous items (pass/fail, or agree/disagree), 

measured at three occasions, and classified into three states. The initial state probabilities were set to 

be equal, so all states at occasion one are the same size, and the transition probabilities are specified 

to be time-homogeneous with the following values: 

[
. 75 . 20 . 05
. 05 . 80 . 15
. 01 . 04 . 95

]. 

 The first latent state represents a non-mastery, or disagree, state where the probabilities of 

giving a positive response are low. The opposite is true for latent state three, where the positive 

responses are set to a high probability. The second state is an intermediate state with positive 

responses being likely for the first three items and negative responses get a high probability for the 

other three items. Nonequivalence was specified to occur between the second and third measurement 

occasion, yielding response probabilities at the third occasion that are different from occasions one 

and two, where occasion one and two are equivalent to one another. 

 Note that throughout the simulation study, because of the above, it is assumed that the correct 

number of latent states or too many states are specified. Determining the number of states is an 

extensive topic of study and is beyond the scope of this paper. However, when more than the true 

number of states is specified in a situation without nonequivalent items it would theoretically result in 

empty states, and in practice result in overfitting. In situations with nonequivalent items, part of the 

nonequivalence may be modeled through the transition and response probabilities if there are too 
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many states, which would make testing for it through model comparisons unreliable. Yet, this is a 

largely theoretical problem, because the variance would still be accounted for in the model parameters. 

 Five factors are varied when simulating the data: the sample size, the number of nonequivalent 

items, the strength of measurement, the degree of nonequivalence and the number of nonequivalent 

states. In the analyses of the generated data the approach is varied, that is the baseline model used 

as a starting point, and the different model fit statistics are compared. 

 The sample size is set to 100, 300 or 1000, consistent with the design of Collins and Wugalter 

(1992), but adding a small sample scenario. Sample size is kept equal over measurement occasions.  

 The number of nonequivalent items is set to zero, one, or three, corresponding to 0%, 17% 

and 50% of items. The first condition gives an indication of Type I error, or false positive rates. The 

items that are set to be nonequivalent are also varied, setting nonequivalence once for both the first 

and fourth item, and both items one through three and four through six. In combination with the 

specification of the intermediate second class this causes nonequivalence to be alternated between 

both the states with high positive and with high negative response probabilities. 

 The strength of measurement was varied between weak, moderate and strong by setting the 

dominant response probabilities (disagree for the negative state, agree for the positive state, and the 

respective items in the intermediate state) equal to either 0.7, 0.8, or 0.9. The response probabilities 

of the opposing response then become the complements 0.3, 0.2 or 0.1 given the dichotomous nature 

of the items. These probabilities can also be expressed in an explained variance statistic (𝑅2) based 

on the entropy or class separation, yielding values of .51, .78, and .91 respectively, which are often 

used as weak to strong state entropy values (e.g. Collins & Wugalter, 1992; Gudicha, Schmittmann, 

& Vermunt, 2015). 

 The degree of nonequivalence was set to be small, medium or large by raising the negative 

response probabilities of the third occasion to be different from occasion one and two. These 

differences are .10, .20, and .30 respectively. I.e. a low nonequivalence in strongly separated classes 

would lead to positive response probabilities of 0.1 – 0.9 – 0.9 in states 1, 2, and 3 respectively, except 

for occasion 3 where it would be 0.2 – 0.9 – 0.9. Medium would lead to 0.3 – 0.9 - 0.9 in state 3, etc.  
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 The number of states with nonequivalence changes as a result of the design. Given the state 

definitions, the first three items can be considered easy items, having a high positive response 

probability in the second and third state, the latter three items are difficult with only high positive 

response probabilities in the third state. Nonequivalence occurs in either one or all easy, or one or all 

difficult items. That is, for the one or three easy items the nonequivalence would occur only in state 

one, for the difficult items it would occur in states one and two due to the items having low positive 

response probabilities in those states. 

 The strategy to detect nonequivalence is varied between the two directions of constraining or 

freeing parameters as discussed. That is, either starting from the free baseline model, or the fully 

constrained baseline model. 

 The generally applicable model fit statistics, that is the AIC, BIC, and 𝐿2 are reported for all 

models. The Wald and Score tests are reported for all the items for the baseline model to which they 

apply, the free and constrained starting model respectively. 

 In summary, the varied factors and the number of conditions are: Sample size (3), the number 

of nonequivalent items (3), measurement strength or entropy (2), the degree of nonequivalence (3), 

and the number of nonequivalent states (2). In total 117 conditions are simulated for both approaches, 

and contain all relevant statistics. 

 

Data Analysis 

Data generation and analysis were conducted using Latent GOLD 5.0. The estimated model is always 

a 3-state LM model with homogeneous transition probabilities. In total 14 models are estimated for 

each population model, that is for each generated data set: The free baseline model, the constrained 

baseline model, and six models with either one item constrained or one item unconstrained compared 

to the baseline. For model selection four statistics are used: The LR test, AIC, BIC, and either a Wald 

test or a Score test for the unconstrained and constrained baseline model, respectively. Since the 

asymptotic distribution for the LR test is assumed to hold, the critical value for the chi-square test with 

six degrees of freedom equals 12.59, associated with a p-value of 0.05.  
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The true and false positive rates are evaluated across 100 replications per simulation 

condition. The true positive rate here represents the proportion of nonequivalent items that are 

correctly identified across the replications. For conditions with three nonequivalent items the reported 

rates are the averages over the three items. The false positive rate similarly indicates the average 

proportion, but of the items that are incorrectly flagged as nonequivalent. 

 

Results 

 

False Positive Rates 

Table 1 presents the detection rates of nonequivalent items that are generated to be equivalent for the 

two baseline models. For the conditions without nonequivalence the false positive rates for the AIC 

are between .03 and .11, and .03 and .08 for the LR statistic, being structurally higher in the 

constrained baseline model compared to the unconstrained baseline model. In conditions with 

adequate information, either through high state separation or large N, the rates for the LR statistic are 

close to nominal alpha levels. The most striking result is the high false positive rate of the Wald test 

that incorrectly has a high detection rate for nonequivalence regardless of the condition. The BIC in 

contrast has no false detections, but this will be returned to as the true positive rate is also very low. 

 

[TABLE 1 ABOUT HERE] 

 

 For the conditions with nonequivalence the false positive rates are largely similar. The AIC and 

LR test do well in medium to strong state entropy conditions, the BIC has low overall detection rates, 

and the Wald test is by far the worst.  

 

[TABLES 2, 3 and 4 ABOUT HERE (OR TOPPING SUBSEQUENT PAGES)] 
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True Positive Rates 

The true positive rates are presented for the different levels of measurement strength, with Tables 2, 

3, and 4 presenting 36 conditions for the strong, medium, and weak entropy conditions, respectively. 

The tables are ordered by degree of nonequivalence and sample size.  

 

Sample Size 

Regardless of other factors, decreasing the sample size results in lower detection rates. This effect 

becomes more severe for weaker nonequivalence, or when nonequivalence was located in one state. 

As the BIC controls for sample size in model selection, it is most affected by the changes. State 

separation, or measurement strength acts as a confounding factor, whereby a decrease in sample 

size results in a sharp decrease in detection rates for conditions with weaker separation of states. The 

latter result is sensible in terms of the information available in the population data, where weakly 

separated states and low N allow for a redistribution of dependence throughout the model. That is, the 

nonequivalence over time can be accommodated by the model in the parameter estimates without 

leading to large misfit in terms of the response and transition probabilities, because these are unstable 

and weakly defined to begin with.  

 Note that the differences between conditions are relatively limited when the sample size is 

100, and generally detection rates are unacceptably small. Only when there is strong nonequivalence 

in two well defined states are detection rates in the range of 0.90. Because of this, the results 

discussed for the following factors are those for the sample sizes of 300 and 1000. 

 

Measurement Strength 

In conditions where the states are well-defined, presented in Table 2, the strategy of starting from a 

fully constrained or unconstrained model are both viable when there is a high amount of 

nonequivalence. As the measurement strength of the states decreases, the rate of detection also 

decreases, illustrated by the drop in detection rates between Tables 2 and 3. Nonetheless, detection 

rates for the LR test and AIC remain relatively high except in the least favorable conditions. From the 



15 
 

results in Table 4 it becomes apparent that detection of equivalence in weakly separated states is only 

reliably achieved when other factors are most favorable, thus in high N conditions with a large 

nonequivalence, where that nonequivalence occurs in two states rather than one. 

 

Degree of Nonequivalence and Nonequivalent States 

As can be expected, the degree of nonequivalence is the most important factor in affecting its detection 

rate. Additionally, the conditions are such that either one or two states are affected by nonequivalence, 

whereby fewer affected states make detection harder. This does imply that it is valuable to know, or 

have theoretical reasons as to whether one or more states are affected by nonequivalence.  

 When nonequivalence occurs in two latent states, true detection rates are high, especially in 

favorable conditions such as those with a large nonequivalence or high N. However, when only one 

state is affected the detection rates drop quite dramatically, even when nonequivalence is large. This 

again is largely due to the nature of the model and its dependence structure. Nonequivalence in two 

states results in far more parameters being affected, and the resulting model misfit, or decrease in 

model fit is substantially higher than when only one state is affected. 

 Related to this it also seems that easy and difficult items show different detection rates. An 

easy item, one with high response probabilities in two of the states, shows far lower detection rates 

and is practically not detected when nonequivalence is small. Conversely, detection rates are 

practically one for all statistics and both strategies when large enough nonequivalence occurs in a 

difficult item with low response probabilities in two of the states. This, however, is an artifact of the 

setup of the simulation study whereby difficult items show nonequivalence in states one and two at 

the third occasion, whereas easy items only show nonequivalence in state one at the third occasion. 

 

Model Fit Statistics 

As noted, the AIC and LR test are most promising in terms of detection rates. Because the BIC strongly 

favors model parsimony given its penalty term for added parameters, its detection rates are low. This 

is not surprising as the nonequivalence in this study affects a relatively small part of the model. Only 
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a part of the indicator items and classes are affected in one measurement occasion. According to the 

BIC the decrease in model fit that this causes does not warrant additional parameters. Although not 

surprising, it is worrisome that the BIC fares so badly as it is the most used model selection criterion, 

and of the better known criteria also performs well on other issues such as detecting the number of 

classes (Tein, Coxe, & Cham, 2013). The Wald and Score test are on par with the AIC and LR test in 

most conditions, although they do show a tendency to perform slightly worse in favorable conditions 

(good class separation, high N, large nonequivalence, multiple states, difficult items) and slightly better 

in unfavorable conditions (limited class separation, low N, small nonequivalence, one state, easy 

items). It must also be noted that in this study, the Wald and score tests are not obtained per freed up 

or constrained item and they may fare better when obtained stepwise. 

 

Number of Nonequivalent Items 

In the conditions with well separated classes power was similar for both conditions and depended 

mainly on the degree of nonequivalence and the type of item. When the measurement strength 

decreases, the free baseline model approach was slightly more powerful than the constrained baseline 

model approach when there are three nonequivalent items. For conditions with a single nonequivalent 

item the true positive rates are high for both approaches. 

 

Example Application 

To illustrate the use of the approaches to detect longitudinal measurement nonequivalence a Markov 

model is applied to panel data on drugs use from the National Youth Survey (Vermunt, Tran, & 

Magidson, 2008; Elliot, Huizinga, & Menard, 1989). This data set contains data on 1725 children and 

teenagers that were followed for 16 years from the ages of 11 to 17 through the ages of 27 to 33 

starting in 1976. A total of 13665 observations are available, but due to the data structure a subset of 

these is used: The first five observations are annual, and the following observations triannual which 

results in 9 observations per respondent. To keep the example more succinct only the observations 

with a three year separation are used (2, 5, 6, 7, 8 and 9) for cases without missing responses on the 
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indicators relating to alcohol, marijuana and hard drugs use and abuse, resulting in 1063 cases with 

6378 observations. The data is further simplified by dichotomizing the original indicators into whether 

or not the respondent has used alcohol, marijuana or hard drugs in the past year. The data are freely 

available online after registration5 and are included in LatentGOLD as an example data set. 

 Previous analyses have indicated that a 4-state LM model fits best based on a combination 

of statistical and substantive arguments (Nagelkerke, 2018). The BIC selects a 7-state LM, but the 

states added in addition to these four have a definition that is almost identical to another state. This 

indicates that the fifth, sixth and seventh state mainly exist to better model the transitions over time. 

This can be resolved by relaxing the assumption that transition probabilities remain identical between 

occasions and allowing heterogeneous transitions over time. The four states, presented in Table 5, 

can be defined as ‘No substance use’, ‘Alcohol Only’, Alcohol and Marijuana’, and ‘All Substances’. 

 

[TABLE 5 ABOUT HERE] 

 

 Using this model as the starting point the two baseline models are estimated, namely the 

fully constrained and fully free model with regard to longitudinal measurement variance. Subsequently 

all of the three separate items are either freed up for the fully constrained model, or constrained for 

the fully free model. This is achieved by including the measurement occasion, here the year of 

observation, and allowing it to affect the probability (or logit) describing the relation between the 

observed indicator and the latent variable. Intuitively the measurement moment can then be 

understood as a nominal moderator variable, allowing the effect of the latent variable on the observed 

indicator to differ over time. 

Note that this does bring in a secondary assumption related to longitudinal measurement 

variance, namely that this change in the relation between the manifest and latent variable is equal for 

all the states as it pertains to the latent variable as a whole. To fully free up the model in terms of 

 
5 See https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/88  

https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/88
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measurement variance the specification needs to be extended such that the effect of time is allowed 

to differ per state, i.e. moving from 𝑃(𝑌𝑡𝑗  |𝑆𝑡, 𝑇) to 𝑃(𝑌𝑡𝑗 | 𝑆𝑡, 𝑇| 𝑆𝑡). The latter is a third specification that 

is used as fully free baseline and per item nonequivalence testing, resulting in the sixteen models 

presented in Table 7, where the more parsimonious 𝑃(𝑌𝑡𝑗 |𝑆𝑡, 𝑇) models are presented in Table 6. 

 

[TABLE 6 ABOUT HERE] 

 

 Comparing the two baseline models in Table 6, only the AIC prefers the unconstrained over 

the constrained model. The LR test indicates that the constrained model does not fit significantly worse 

than the unconstrained model and the BIC indicates a better suited model given its preference for 

parsimony. However, the LR test, respective Wald and Score tests, and both AIC and BIC prefer a 

model where at least one item is allowed to have a measurement variance. This shows that checking 

for measurement equivalency per item is important even when the global model fit tests indicate no 

nonequivalence: The large amount of parameters added to the model and complex dependence 

structure may obscure certain assumption violations when only considering global model fit. Further 

note that the interpretation of the Score test here is a significant improvement in fit when adding 

parameters, and the Wald is interpreted as a significant reduction in fit after constraining parameters. 

 Both approaches in Table 6 reach the same conclusion when inspecting the per indicator 

item models. The free baseline approach indicates that fixing the first indicator does not significantly 

decrease the fit of the model, and the BIC and AIC indicate that the more parsimonious model is 

preferred. The results for the constrained baseline approach indicate that both items two and three 

should be made nonequivalent to improve fit. Further testing (not in table) of the model relaxing the 

invariance assumption for item two against the model relaxing items two and three indicates that the 

Wald (16.116, df = 5, p = .007), Score (25.971, df = 5, p < .001) and LR (15.117, df = 5, p = .010) tests 

all indicate a significantly better fit when relaxing the equivalence assumption for both indicators. I.e. 

fixing the first item, or relaxing the second and third items are the best fitting models out of these 

alternatives, which of course are the same model. 
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 Theoretically, this model is also warranted. In terms of the acceptance of marijuana use the 

years in which the panel was fielded show relatively strong fluctuations (Keyes, et al, 2011), which 

may translate to other substances and affect the way people respond to self-report questions on using 

drugs (Richter & Johnson, 2001; Johnson, 2014). In addition to this cohort effect, there is a 

longstanding idea that a period effect occurs whereby there is a tendency to over report substance 

use during high school (Gfroerer, 1997). Although these effects are hard to disentangle, the 

interpretation of the questions on drug use and potential measurement error such as systematic 

socially desirable reporting is likely to affect measurement. For alcohol use such effects are expected 

to be considerably smaller as a result of it being considered a far less sensitive topic, and the stigma 

surrounding a drug is central to the degree of biased reporting (Hser, 1997). 

 

[TABLE 7 ABOUT HERE] 

 

 Furthermore, given the extensive overview in (Johnson, 2014) it can be expected that for 

different types of drug users these changes in measurement differ. Therefore, in Table 7 the models 

are further extended to allow measurement to change longitudinally, and this change to differ between 

states. That is, an interaction between the occasion and latent state is allowed, in addition to the main 

effect of occasion on the response probabilities. 

 These additional interaction effects are not preferred by the fit statistics presented. The score 

test expects the parameter to be non-significant, the LR test shows no global model improvement, and 

both the AIC and BIC prefer the more parsimonious model. The notable exception is the Wald test 

indicating that the interaction effects are significant for marijuana and drug use. However, this is an 

artifact of testing, whereby the Wald test cannot distinguish between the main effect of measurement 

occasions and the added interaction effect. As a result most of the explained variance ends up being 

arbitrarily attributed to the interaction effect, and the true likelihood improvement is nowhere near the 

model improvement suggested by the Wald test. 



20 
 

 Substantively, the final model after testing for measurement invariance, is a model with 

four states, heterogeneous transitions, and a relaxation of the measurement equivalence assumption 

for the drug and marijuana use indicators that does not differ between latent states. Adding these ten 

parameters improves the likelihood chi-square from 2254 to 2178. More importantly, the additions to 

the model allow a better substantive description of drug and marijuana use. Table 8 displays the model 

response probabilities substance use per year per latent state for the original and measurement variant 

model.  

 For the two items that are allowed to be measurement nonequivalent a non-linear 

development can be concluded from Table 8. There is a markedly stronger jump in the probability of 

having used marijuana and drugs in the measurement occasion (5) where all respondents have 

entered adolescence, aged 17-23. At later ages marijuana use tapers off after this initial jump in all 

classes, whereas the use of other drugs increases in all classes.  

 

[TABLE 8 ABOUT HERE]  

 

 These findings do indicate that during adolescence there may be overreporting of marijuana 

use, with the higher probabilities for having used marijuana in the past year in all classes. Note that 

the longitudinal effects of actual higher use should already be captured by the original Markov process 

that allows heterogeneous transitions between classes, and this sudden increase holds for all types 

of users. A similar result is seen with regards to drug use, where the expected increase over time does 

indeed seem to hold from the increase in the response probabilities of having used drugs other than 

marijuana in the previous year. This is possibly due to increased acceptance over the years. 

 

Discussion 

The main objectives of this study is to compare two different strategies to investigate and detect 

longitudinal measurement nonequivalence in LM models, including the type of statistic that is used for 

model selection. The strategies align with the preferred model testing approach in SEM and multi-
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group latent class models or IRT, where the former prefer to start from a free baseline model, while 

researchers in the latter typically start with the constrained baseline model.  

 Our simulation study in this regard suggests that the detection rates for measurement 

nonequivalence will be good regardless of the analytic strategy used as long as the nonequivalence 

is sufficiently large or sufficient information is available to detect it in the form of a large sample, well 

defined states, or nonequivalence that affects larger areas of the model. The major difference between 

the two approaches is that in the case of multiple nonequivalent items, the detection rates of this 

nonequivalence is slightly higher when starting from the free baseline model, as compared to the 

constrained baseline. The reason for this is that, given the dependence structure of the model, the 

constrained baseline model starts from the assumption of full equivalence. Freeing up parameters in 

this situation does not guarantee that the dependence between indicator items is modeled adequately, 

and the model fit may not increase enough to warrant that particular parameter to be freed individually. 

However, the parameter may be of enough added value in combination with other parameters to 

warrant its estimation. The free-baseline model suffers a similar problem where deterioration of the 

model by constraining an item may only surface after constraining a second item, but this happens to 

a far smaller extent, because it makes no a-priori assumptions about the other parameters. Moreover, 

it would also more naturally lead to a situation in which, after constraining an item, the initial item is 

tested again. 

 Based on these results, we suggest applied researchers to use the free baseline model in a 

generic scenario of testing for measurement nonequivalence, especially if a substantial portion of 

items is expected to show nonequivalence. This is also in line with previous research in related fields. 

Kim and Willson (2014) showed that using the constrained baseline model approach may yield false 

positive results when detecting nonequivalence in multi-group second-order latent growth models.  

Stark, Chernyshenko and Drasgow (2006) compared the free baseline and constrained baseline 

strategies in a simulation study using confirmatory factor analysis and item response theory to detect 

measurement equivalence across groups. They showed that false positive results were higher when 

the constrained baseline strategy was used. A further theoretical argument for the free-baseline model 
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is made by Kankaras, Vermunt and Moors (2011) as it ensures that comparisons are always made 

with a model that is known to fit the data. 

 A second recommendation in light of the results is that, with regard of global model fit indices, 

the AIC or likelihood-ratio test should be preferred when testing for longitudinal measurement 

nonequivalence. The widely used BIC prefers parsimony to such an extent that it fails to indicate that 

model fit may improve by relaxing the equivalence assumption. The Wald and score tests in this study 

are used as more global tests too, and are obtained from their respective baseline models. They 

generally perform as well as using the AIC or LR tests in the current simulation setup, but as they are 

tests designed for individual parameters, they will likely outperform these measures when obtained 

iteratively for each individual parameter constraint. Do note that this would require reversing the logic, 

where the score test would be applied to the free-baseline instead of the constrained-baseline model 

and test whether a certain constraint is warranted. 

 Do note that a strong word of warning is in order here, as following these recommendations 

to detect measurement variance does not necessarily result in obtaining the correct model. One issue 

not taken into account here is the inflation of Type I error when testing many items subsequently. 

When the number of items is large, the number of 𝐽 + 1 tests is too, and the chances of falsely 

detecting measurement invariance increase. Following test outcomes blindly then results in 

capitalization on chance, and will lead to overfitting or accepting a wrong model. This is an effect that 

is seen for most modification indices and local fit measures when not controlling for inflated Type I 

error.  Detection of nonequivalence should be well considered, and model adjustments should not be 

made blindly merely to improve overall model fit, but should be validated and theoretically sensible. 

 The other results from the simulation study are generally related to the population and are all 

in the direction that they would be expected. Generally, measurement nonequivalence is easier to 

detect with more favorable conditions of either the nonequivalence itself being more pronounced, or 

more information through a larger sample or better separated classes. These findings nonetheless 

doe lead to additional questions for future research. To further address the issue of sample size and 
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inspect the required sample size to reliably detect nonequivalence a valuable next step would be to 

apply and extend the power computation methods proposed by Gudicha et al. (2015). 

 Furthermore, in situations where nonequivalence is limited detection rates are very low. 

However, in these situations the detection rate may not actually matter, and a future study may focus 

initially on the impact on parameter estimates and parameter recovery when the nonequivalence is 

ignored. It may well be the case that the model is able to incorporate limited nonequivalence without 

it resulting in extensive model misfit or parameter bias, negating the need for high detection rates.This 

would similarly allow the Wald and score tests to be applied in a per-model basis, and extend the 

investigation to include additional fit statistics to inspect whether they reliably detect nonequivalence, 

specifically when it affects smaller parts of the model. 

 Finally, one aspect that is ignored in this study are the transition probabilities, which are 

assumed to be homogeneous. In many applications this assumption is too strong, and heterogeneous 

transitions are required, as is the case in the application. The impact that this may have on 

nonequivalence detection requires further research, since it complicates the dependence structure of 

the data and may cause measurement nonequivalence to be harder to detect. 

 Despite all these additional unknowns, we do feel confident in our recommendation for the 

type of strategy and selection of fit statistics, and the application shows that modeling longitudinal 

measurement nonequivalence may indeed alter substantive outcomes as well as the types of research 

questions that can be answered adequately.  
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Table 1. False positive detection rates (Proportion of replications where nonequivalence is detected 

when equivalence holds) 

      Free-baseline Constrained-baseline 

 Measurement 

Strength N AIC BIC L2 Wald AIC BIC L2 Score 

Eq. 

Strong 1000 .04 .00 .03 .15 .07 .00 .06 .06 

 300 .06 .00 .05 .13 .08 .00 .07 .06 

 100 .08 .00 .07 .11 .12 .00 .10 .07 

Medium 1000 .03 .00 .02 .09 .05 .00 .04 .05 

 300 .05 .00 .03 .12 .07 .00 .06 .06 

 100 .08 .00 .07 .15 .11 .00 .08 .13 

Weak 1000 .05 .00 .04 .13 .06 .00 .05 .07 

 300 .11 .00 .08 .25 .08 .00 .07 .13 

 100 .11 .00 .08 .33 .13 .00 .11 .15 

Noneq. a 

Strong  
.05 .00 .04 .15 .09 .00 .07 .06 

Medium  .06 .00 .05 .16 .09 .00 .08 .09 

Weak   .11 .00 .10 .27 .14 .00 .12 .15 
a Equivalent items in nonequivalent conditions. 
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Table 2. True positive detection rates for strong measurement strength conditions (Proportion of 
replicates where existing nonequivalence is detected). 
   Free-baseline Constrained-baseline 

Items 

Degree 

of  

Noneq. 

N AIC BIC L2 Wald AIC BIC L2 Score 

Item 

 4-5-6a 

(States 1 & 2) 

Large 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  300 1.00 1.00 1.00 1.00 1.00 .86 1.00 1.00 

  100 .88 .23 .86 .86 .86 .19 .84 .86 

Medium 1000 1.00 1.00 1.00 1.00 1.00 .99 1.00 1.00 

  300 .97 .35 .97 .98 .98 .26 .96 .97 

  100 .59 .04 .54 .52 .62 .03 .57 .63 

Small 1000 .96 .22 .96 .98 .97 .14 .96 .96 

  300 .54 .00 .51 .59 .57 .00 .53 .56 

  100 .21 .00 .17 .22 .22 .00 .19 .18 

Item 

1-2-3 

(State 1) 

Large 1000 1.00 .74 1.00 1.00 1.00 .41 1.00 1.00 

  300 .78 .05 .75 .89 .68 .006 .61 .77 

  100 .37 .003 .32 .33 .32 .01 .28 .31 

Medium 1000 .97 .19 .97 .99 .93 .09 .93 .94 

  300 .54 .02 .51 .58 .43 .003 .41 .52 

  100 .26 .00 .23 .18 .27 .00 .24 .29 

Small 1000 .62 .00 .58 .67 .57 .00 .53 .59 

  300 .21 .00 .16 .21 .22 .00 .18 .20 

  100 .10 .00 .09 .08 .13 .00 .11 .13 

Item 4  

(States 1 & 2) 

Large 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  300 1.00 .98 1.00 1.00 1.00 .99 1.00 1.00 

  100 .93 .37 .92 .86 .95 .41 .95 .94 

Medium 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  300 .98 .44 .98 .98 .98 .51 .98 .98 

  100 .60 .07 .53 .56 .63 .12 .61 .62 

Small 1000 .98 .20 .98 .98 .99 .25 .98 .98 

  300 .61 .03 .57 .61 .66 .03 .64 .65 

  100 .25 .02 .23 .19 .35 .02 .30 .24 

Item 1 

(State 1) 

Large 1000 1.00 .98 1.00 1.00 1.00 1.00 1.00 1.00 

  300 .91 .25 .91 .93 .97 .34 .94 .97 

  100 .60 .02 .56 .43 .68 .01 .64 .70 

Medium 1000 1.00 .46 1.00 1.00 1.00 .56 1.00 1.00 

  300 .66 .02 .65 .70 .75 .02 .71 .80 

  100 .26 .01 .25 .20 .39 .01 .35 .46 

Small 1000 .56 .00 .54 .60 .68 .01 .67 .71 

  300 .16 .00 .16 .19 .25 .00 .25 .25 

  100 .09 .00 .07 .08 .14 .00 .13 .11 
a For multiple items the average proportion is presented. 
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Table 3. True positive detection rates for medium measurement strength conditions (Proportion of 
replicates where existing nonequivalence is detected). 
   Free-baseline Constrained-baseline 

 Items 
Degree of  

Noneq. 
N AIC BIC L2 Wald AIC BIC L2 Score 

Item 

 4-5-6a 

(States 1 & 2) 

Large 1000 1.00 .99 1.00 1.00 1.00 .96 1.00 1.00 

  300 .97 .25 .96 .99 .94 .18 .94 .93 

  100 .62 .04 .58 .76 .51 .00 .49 .50 

Medium 1000 1.00 .85 1.00 1.00 1.00 .64 1.00 1.00 

  300 .85 .06 .84 .89 .76 .03 .73 .77 

  100 .36 .01 .33 .43 .31 .01 .28 .38 

Small 1000 .83 .02 .81 .86 .76 .01 .73 .76 

  300 .33 .00 .30 .41 .35 .00 .32 .35 

  100 .19 .00 .17 .30 .18 .01 .15 .14 

Item 

1-2-3 

(State 1) 

Large 1000 .82 .02 .79 .96 .70 .01 .66 .69 

  300 .32 .00 .29 .64 .30 .00 .27 .25 

  100  .24 .00 .20 .41 .17 .00 .15 .18 

Medium 1000 .72 .00 .70 .84 .60 .00 .57 .66 

  300 .24 .00 .20 .46 .23 .00 .21 .28 

  100 .18 .00 .16 .35 .13 .00 .11 .15 

Small 1000 .29 .00 .27 .39 .29 .00 .26 .31 

  300 .09 .00 .08 .17 .13 .00 .11 .14 

  100 .13 .00 .11 .16 .13 .00 .11 .15 

Item 4  

(States 1 & 2) 

Large 1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

  300 1.00 .75 1.00 1.00 1.00 .83 1.00 1.00 

  100 .75 .16 .78 .81 .83 .20 .82 .84 

Medium 1000 1.00 .96 1.00 1.00 1.00 .99 1.00 1.00 

  300 .89 .13 .88 .91 .92 .24 .92 .92 

  100 .49 .03 .46 .54 .57 .02 .55 .61 

Small 1000  .82 .02 .82 .86 .92 .04 .89 .91 

  300 .31 .00 .25 .34 .40 .00 .35 .39 

  100 .14 .00 .10 .32 .23 .00 .20 .21 

Item 1 

(State 1) 

Large 1000 1.00 .60 1.00 1.00 1.00 .83 1.00 1.00 

  300 .71 .02 .70 .77 .83 .04 .83 .87 

  100 .34 .00 .32 .31 .38 .01 .34 .42 

Medium 1000 .93 .06 .91 .96 1.00 .15 .99 1.00 

  300 .38 .01 .35 .47 .55 .01 .51 .61 

  100 .21 .00 .16 .28 .20 .00 .18 .25 

Small 1000 .31 .00 .29 .39 .45 .00 .42 .46 

  300 .12 .00 .10 .16 .18 .00 .18 .22 

  100 .14 .00 .12 .13 .12 .00 .10 .15 
a For multiple items the average proportion is presented. 
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Table 4. True positive detection rates for weak measurement strength conditions (Proportion of 
replicates where existing nonequivalence is detected). 

    Free-baseline Constrained-baseline 

 Items 

Degree 

of  

Noneq. 

N AIC BIC L2 Wald AIC BIC L2 Score 

Item 

 4-5-6a 

(States 1 & 2) 

Large 1000 .99 .31 .99 .99 .95 .09 .93 .87 

  300 .73 .00 .71 .86 .47 .00 .45 .41 

  100 .40 .01 .37 .54 .30 .01 .26 .23 

Medium 1000 .93 .03 .91 .96 .84 .01 .80 .83 

  300 .47 .00 .44 .72 .38 .00 .34 .40 

  100 .34 .00 .27 .46 .25 .00 .22 .21 

Small 1000 .52 .00 .49 .63 .43 .00 .40 .47 

  300 .22 .00 .19 .43 .14 .00 .12 .24 

  100 .28 .00 .23 .31 .24 .00 .20 .20 

Item 

1-2-3 

(State 1) 

Large 1000 .27 .00 .22 .78 .14 .00 .13 .06 

  300 .29 .00 .26 .61 .15 .00 .13 .14 

  100 .21 .00 .17 .35 .24 .00 .22 .16 

Medium 1000 .29 .00 .28 .64 .19 .00 .17 .17 

  300 .22 .00 .19 .47 .12 .00 .10 .13 

  100 .22 .00 .16 .33 .18 .00 .15 .19 

Small 1000 .14 .00 .11 .32 .11 .00 .09 .18 

  300 .16 .00 .14 .36 .13 .00 .11 .18 

  100 .15 .00 .12 .33 .17 .00 .17 .19 

Item 4  

(States 1 & 2) 

Large 1000 1.00 .99 1.00 1.00 1.00 1.00 1.00 1.00 

  300 .93 .11 .93 1.00 1.00 .51 1.00 .83 

  100 .62 .04 .56 .74 .73 .09 .71 .49 

Medium 1000 .99 .49 .99 .99 1.00 .84 1.00 1.00 

  300 .70 .01 .67 .83 .92 .08 .87 .68 

  100 .38 .00 .34 .42 .52 .00 .50 .30 

Small 1000 .68 .00 .66 .74 .77 .00 .74 .76 

  300 .26 .00 .21 .39 .35 .00 .30 .38 

  100 .18 .00 .14 .31 .23 .00 .21 .25 

Item 1 

(State 3) 

Large 1000 .88 .04 .87 .97 .99 .31 .99 .73 

  300 .42 .00 .36 .64 .61 .01 .57 .47 

  100 .23 .00 .20 .39 .41 .00 .35 .28 

Medium 1000 .68 .00 .65 .77 .85 .03 .85 .78 

  300 .28 .00 .25 .45 .35 .00 .31 .40 

  100 .17 .00 .13 .32 .25 .00 .25 .22 

Small 1000 .28 .00 .25 .34 .34 .00 .32 .44 

  300 .13 .00 .13 .33 .10 .00 .08 .19 

  100 .15 .00 .14 .25 .19 .00 .16 .20 
a For multiple items the average proportion is presented. 
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Table 5. Profile of the 4-state latent Markov model classifying substance users assuming 
measurement invariance and linear heterogeneous transitions. 

 State 1 - Alcohol State 2 - Alcohol 
& Marijuana 

State 3 - None State 4 - All 

Alcohol     

 No .018 .020 .893 .005 

 Yes .982 .980 .107 .995 

Marijuana     

 No .978 .226 .989 .078 

 Yes .022 .774 .011 .922 

Drugs     

 No .976 .932 .991 .157 

 Yes .024 .068 .009 .843 

     

Prevalence .428 .239 .187 .146 

     

Transitiona      

State 1 .845 .245 .229 .027 

State 2 .100 .545 .113 .233 

State 3 .041 .010 .637 .071 

State 4 .014 .201 .020 .669 
a Columns are originating states at 𝑡 − 1, rows are the probabilities to transition to the current state at 𝑡. 
E.g. there is a probability of .637 that non users stay in their state, and a probability of .229 to start belonging 
to the alcohol state. 
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Table 6. Model fit statistics for the latent Markov models testing possible measurement variance. P-values for the likelihood ratio and Wald 

or Score test between parentheses. 

   Free-baseline (Item constrained)  Constrained-baselinea (Item freed) 

 Pars. AIC BIC L2 Waldb Pars. AIC BIC L2 Scorec 

Baseline 90 13771 14218 10.080 (.073) - 75 13824 14197 - - 

Alcohol 85 13768 14191 7.475 (.188) 6.675 (.250) 80 13824 14222 10.080 (.073) 8.885 (.110) 

Marijuana 85 13783 14206 22.763 (.000) 23.157 (.000) 80 13773 14171 60.965 (.000) 57.271 (.000) 

Drugs 85 13774 14196 13.314 (.021) 13.177 (.022) 80 13784 14181 50.474 (.000) 32.179 (.000) 

a For the free baseline model the respective item is constrained leaving two unconstrained items, for the constrained baseline model the respective 

item is freed leaving two constrained items. 
b Wald and Score tests for the direct effect of observed time on the indicator variable taken from the baseline model. 
c Score tests are obtained using the variance through the expected information matrix, for details see Oberski & Vermunt (Under review). 
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Table 7. Model fit statistics for the latent Markov models testing longitudinally changing measurement variance: Testing the 𝑃(𝑌𝑡𝑗 | 𝑆𝑡, 𝑇| 𝑆𝑡) 

specification to the 𝑃(𝑌𝑡𝑗 |𝑆𝑡, 𝑇) models in Table 6. P-values for the likelihood ratio and Wald or Score test between parentheses. 

   Free-baseline (Item constrained)  Constrained-baselinea (Item freed) 

 Pars. AIC BIC L2 Waldb Pars. AIC BIC L2 Scorec 

Baseline 135 13805 14475  - 75 13824 14197  - 

Alcohol 115 13785 14356 43.429 (.054) 10.655 (.780) 95 13826 14298 27.780 (.023) 15.289 (.430) 

Marijuana 115 13806 14377 37.431 (.165) 48.951 (.000) 95 13781 14253 21.929 (.110) 21.726 (.110) 

Drugs 115 13785 14362 43.280 (.055) 105.243 (.000) 95 13795 14268 18.528 (.236) 21.550 (.120) 

a For the free baseline model the respective item is constrained leaving two unconstrained items, for the constrained baseline model the respective 

item is freed leaving two constrained items. 
b Wald and Score tests for the direct effect of observed time on the indicator variable taken from the baseline model. 
c Score tests are obtained using the variance through the expected information matrix, for details see Oberski & Vermunt (Under review). 
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Table 8. Response probabilities per measurement occasion in the 4-state model with 
heterogeneous transitions and measurement variance for marijuana and drug use indicators. 

  Measurement Invariant Measurement Variant 

 T Ages Alc Alc & MJ None All Alc Alc & MJ None All 

Alcohol 

2 12-18 .983 .980 .107 .995 .982 .979 .106 .997 

5 15-21 .983 .980 .107 .995 .982 .979 .106 .997 

6 18-24 .983 .980 .107 .995 .982 .979 .106 .997 

7 21-27 .983 .980 .107 .995 .982 .979 .106 .997 

8 24-30 .983 .980 .107 .995 .982 .979 .106 .997 

9 27-33 .983 .980 .107 .995 .982 .979 .106 .997 

Marijuana 

2 12-18 .022 .774 .011 .922 .020 .770 .006 .930 

5 15-21 .022 .774 .011 .922 .099 .948 .033 .986 

6 18-24 .022 .774 .011 .922 .022 .784 .007 .935 

7 21-27 .022 .774 .011 .922 .021 .783 .007 .934 

8 24-30 .022 .774 .011 .922 .012 .662 .003 .885 

9 27-33 .022 .774 .011 .922 .013 .682 .004 .894 

Drugs 

2 12-18 .024 .068 .009 .843 .004 .039 .003 .658 

5 15-21 .024 .068 .009 .843 .011 .088 .007 .821 

6 18-24 .024 .068 .009 .843 .014 .112 .009 .857 

7 21-27 .024 .068 .009 .843 .019 .151 .012 .894 

8 24-30 .024 .068 .009 .843 .018 .145 .012 .890 

9 27-33 .024 .068 .009 .843 .031 .224 .020 .933 
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Figure 1. Latent Markov model with T measurement occasions and J items 
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Figure 2. Latent Markov models with and without parameter constraints: Arrow labels indicate parameter estimates 
where two identical labels indicate a longitudinal constraint. E.g. in model B the first item is constrained to be 

invariant. 
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