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Abstract

This paper discusses power and sample size computation for Likelihood-ratio
and Wald testing of the significance of covariate effects in latent class models.
For both tests asymptotic distributions can be used; that is, the test statistic
can be assumed to follow a central chi-square under the null hypothesis and
a non-central chi-square under the alternative hypothesis. Power or sample
size computation using these asymptotic distributions requires specification
of the non-centrality parameter which in practice is rarely known. We show
how to calculate this non-centrality parameter using a large simulated data
set from the model under the alternative hypothesis. A simulation study is
conducted evaluating the adequacy of the proposed power analysis methods,
determining the key study design factor affecting the power level, and com-
paring the performance of the Likelihood-ratio and Wald test. The proposed
power analysis methods turn out to perform very well for a broad range of
conditions. Moreover, apart from effect size and sample size, an important
factor affecting the power is the class separation, implying that when class
separation is low, rather large sample sizes are needed to achieve a reasonable
power level.
Keywords : latent class, power analysis, Likelihood-ratio, Wald test, asymp-
totic distributions, non-centrality parameter, large simulated data set.

Address for correspondence: Jeroen K. Vermunt, P.O.Box 90153, 5000LE Tilburg,
Department of Methodology and Statistics, Tilburg University, The Netherlands. E-mail:
J.K.vermunt@uvt.nl.

1



Introduction

In recent years, latent class (LC) analysis has become part of the standard
statistical toolbox of researchers in the social, behavioral, and health sci-
ences. A considerable amount of articles have been published in which LC
models are used (a) to identify subgroups of subjects with similar behaviors,
attitudes, or preferences, and (b) to investigate whether the respondents’
class memberships can be explained by variables such as age, gender, educa-
tional status, and type of treatment. This latter type of use is often referred
to as LC analysis with covariates or concomitant variables. Example appli-
cations include the assessment of the effect of maternal education on latent
classes differing in health behavior (Collins and Lanza, 2010), of education
and age on latent classes with different political orientations (Hagenaars and
McCutcheon, 2002), of age on latent classes of crime delinquencies (Van der
Heijden et al., 1996), and of paternal occupation on latent classes with differ-
ent gender-role attitudes (Yamaguchi, 2000). Though most methodological
aspects of the LC analysis with covariates are well addressed among others
by Bandeen-Roche et al. (1997), Dayton and Macready (1988), Formann
(1992), and Vermunt (1996), it is unclear how to perform power analysis
when one plans to apply these models. This is a great omission since a study
using an under powered design may lead to an enormous waste of resources.

As in standard logistic regression analysis, hypotheses about the effects
of covariates on the individuals’ latent class memberships can be tested us-
ing either Likelihood-ratio (LR), Wald, or Score (Lagrange multiplier) tests
(Agresti, 2007). Under certain regularity conditions, these three test statis-
tics are asymptotically equivalent, each following a central chi-square dis-
tribution under the null hypothesis and a non-central chi-square under the
alternative hypothesis. In the manuscript, we focus on the Wald and LR
tests. Researchers using such tests often ask questions such as: “What sam-
ple size do I need to detect a covariate effect of a certain size?”, “If I want to
test the effect of a covariate, should I worry about the number and/or quality
of the indicators used the LC model?”, and “Should I use a LR or a Wald
test?”These questions can be answered by assessing the statistical power of
the planned tests; that is, by investigating the probability of correctly reject-
ing a null hypothesis when the alternative is true. The aim of the current
paper is to present power analysis methods for the LR and the Wald test
in LC models with covariates, as well as to assess the data requirements for
achieving an acceptable power level (say of .8 or larger). We also compare

2



the power of the LR and the Wald test for a range of design and population
characteristics.

Recently, power and sample size determination in LC and related models
have received increased attention in the literature. Gudicha et al. (2016)
studied the power of the Wald test for hypotheses on the association between
the latent classes and the observed indicator variable(s), and showed that
power is strongly dependent on class separation. Tein et al. (2013) and
Dziak et al. (2014) studied the statistical power of tests used for determining
the number of latent classes in latent profile and LC analysis, respectively.
To the best of our knowledge, no previous study has yet investigated power
analysis for LC analysis with covariates, nor compared the power of the LR
and the Wald test in LC analysis in general.

Hypotheses concerning covariate effects on latent classes may be tested
using either LR or Wald tests, but it is unknown which of these two types of
tests is superior in this context. While the LR test is generally considered to
be superior (see, for example, Agresti (2007) and Williamson et al. (2007)),
the computational cost of the LR test will typically be larger because it
requires fitting both the null hypothesis and the alternative hypothesis model,
while the Wald test requires fitting only the alternative hypothesis model.
Note that when using LR tests, a null hypothesis model should be estimated
for each of the covariates, which can become rather time consuming given
the iterative nature of the parameter estimation in LC models and the need
to use multiple sets of starting values to prevent local maxima. A question
of interest though is whether the superiority of the LR test is substantial
enough to outweigh the computational advantages of the Wald test in the
context of LC modeling with covariates.

For standard logistic regression analysis, various studies are available on
power and sample size determination for LR and Wald tests (Demidenko,
2007; Faul et al., 2009; Hsieh et al., 1998; Schoenfeld and Borenstein, 2005;
Whittemore, 1981; Williamson et al., 2007). Here we not only build upon
these studies, but also investigate design aspects requiring special consider-
ation when applying these tests in the context of LC analysis. A logistic
regression predicting latent classes differs from a standard logistic regression
in that the outcome variable, the individual’s class membership, is unob-
served, but instead determined indirectly using the responses on a set of the
indicator variables. This implies that factors affecting the uncertainty about
the class memberships, such as the number of indicators, the quality of in-
dicators, and the number of latent classes, will also affect the power and/or
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the required sample size.
In the next section, we introduce the LC model with covariates and discuss

the LR and Wald statistics for testing hypotheses about the logit parameters
of interest, present power computation methods for the LR and the Wald
tests, and provide a numerical study illustrating the proposed power analysis
methods. The paper ends with discussion and conclusions.

The LC model with covariates

Let X be the latent class variable, C the number of latent classes, and c =
1, 2, 3, ..., C the class labels. We denote the vector of P indicator variables
by Y = (Y1, Y2, Y3, ..., YP ), and the response of subject i (for i = 1, 2, 3, ..., n)
to a particular indicator variable by yij and to all the P indicator variables
by yi. Denoting the value of subject i for covariate Zk (for k = 1, 2, 3, ..., K)
by zik, we define the LC model with covariate as follows:

P (yi|zi) =
C∑
c=1

P (X = c|Z = zi)
P∏
j=1

P (Yj = yij|X = c) (1)

where zi is the vector containing the scores of subject i on the K covariates.
The term P (X = c|Z = zi) represents the probability of belonging to class x
given the covariate values zi, and P (Yj = yij|X = c) is the conditional prob-
ability of choosing response yij given membership of class x. The response
variables Y in equation (1) could represent a set of symptoms related to
certain types of psychological disorders, for example. In that case, the latent
classes X would represent the disorder types. The covariates Zk related to
the prevalence of the latent classes or disorder types could be age and gender.

The LC model defined in equation (1) is based on the following assump-
tions. Firstly, we assume that the latent classes are mutually exclusive and
exhaustive; that is, each individual is a member of one and only one of the C
latent classes. The second assumption is the local independence assumption,
which specifies that the responses to the indicator variables are independent
given the class membership. For simplicity, we also assume that given the
class membership, the covariates have no effect on the indicator variables.

The term P (X = c|Z = zi) in equation (1) is typically modeled by
a multinomial logistic regression equation (Magidson and Vermunt, 2004).
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Using the first class as the reference category, we obtain:

P (X = c|Z = zi) =
exp (γ0c +

∑K
k=1 γkczik)

1 +
∑C

s=2 exp (γ0s +
∑K

k=1 γkszik)
,

where γ0c represents an intercept parameter and γkc a covariate effect. For
each covariate, we have C−1 effect parameters. Assuming that the responses
Yj are binary, the logistic model for P (Yj = 1|X = c) may take on the
following form:

P (Yj = 1|X = c) =
exp(βjc)

1 + exp(βjc)
.

The γ parameters are sometimes referred to as the structural parameters,
and the β parameters as the measurement parameters. We denote the full
set of model parameters by Φ, which with binary responses is a column vector
containing (K + 1)(C − 1) + C · P non-redundant parameters.

The parameters of the LC model with covariates are typically estimated
by means of maximum likelihood (ML) estimation, in which the log-likelihood
function

l(Φ) =
n∑
i=1

logP (yi|zi) (2)

is maximized using, for instance, the expectation maximization (EM) algo-
rithm. Inference concerning the Φ parameters is based on the ML estimates
Φ̂, which can be used for hypotheses testing or confidence interval estimation.
In the current work, we focus on testing hypotheses about the γ parameters,
the most common of which is testing the statistical significance for the ef-
fect of covariate k on the latent class memberships. The corresponding null
hypothesis can be formulated as

H0 : γk = 0,

which specifies that the γkc values in γ
′

k = (γk2, γk3, γk4, ...γk(C)) are simulta-
neously zero. Using either the LR or the Wald test, the null significance of
this hypothesis is tested against the alternative hypothesis:

H1 : γk 6= 0.

For parameter identification, the logit parameter associated with the reference cat-
egory is set to zero, resulting in C − 1 non-redundant γ parameters. Note also that γ

′

denotes the transpose of a column vector γ.
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Following Buse (1982) and Agresti (2007), we define the LR and the Wald
statistic for this test as follows:

LR = 2l(Φ̂1)− 2l(Φ̂0)

W = γ̂
′

kV(γ̂k)
−1γ̂k,

(3)

where l(.) is the log-likelihood function as defined in equation (2), Φ̂1 and
Φ̂0 are the ML estimates of Φ under the unconstrained alternative and con-
strained null model, respectively, γ̂k are the ML estimates for the logit coef-
ficients of covariate Zk, and V(γ̂k) is the C − 1 by C − 1 covariance matrix
of γ̂k.

As we see from equation (3), the LR test for a covariate effect on the
latent classes involves estimating two models: the H0 model with the covari-
ate excluded and the H1 model with covariate included. The LR value is
obtained as the difference in minus twice the log-likelihood values of these
two models. The Wald test is a multivariate generalization of the z-test that
makes the parameters comparable by dividing each element of a parameter
by its standard deviation, which is equivalent to a one degree of freedom chi-
square test for z2 (i.e., parameter squared divided by its variance). As can be
seen, in the Wald formula we do the same but using the vector of parameters
(which is squared) and the covariance matrix (by which we divide).

When multiple covariates are included to the logistic regression, quantities
required to compute the power and sample size of the LR test is obtained by
estimating the H0 model with all the covariates except the one we wanted
to be tested included and the H1 model with all the covariates included.
Whereas for the Wald test, we compute the expected information matrix
from the H1 model with all the covariates included , and then correct the
standard errors for correlation between covariates as suggested by Hsieh et
al. (1998).

Large sample probability theory suggests that, under certain regularity
conditions, if the null hypothesis holds, both the LR and W statistics asymp-
totically follow a central chi-square distribution with C−1 degrees of freedom
(see for example Agresti (2007), Buse (1982), and Wald (1943)). From this
theoretical distribution, the p-value can be obtained, and the null hypothesis
should be rejected if this p-value is smaller than the nominal type I error α.
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Power and sample size computation

For power or sample size computation, not only the distribution of the test
statistic under the null hypothesis needs to be obtained, but also its distribu-
tion under the alternative hypothesis. Under certain regularity conditions,
if the alternative hypothesis holds, both the LR and the Wald statistic fol-
low a non-central chi-square distribution with C − 1 degrees of freedom and
non-centrality parameter λ:

λLRn = n (2E[l(Φ1)]− 2E[l(Φ0)])

λWn = n
(
γ

′

kV(γk)
−1γk

)
.

(4)

Here, E[l(Φ1)] andE[l(Φ0)] denote the expected value of the log-likelihood
for a single observation under the alternative and null model, respectively, as-
suming that the alternative model holds. In the definition of λWn , V(γk)

−1 is
the matrix of parameter covariances based on the expected information ma-
trix for a single observation. Note that (4) is rather similar to equation (3).
However, an important difference is that equation (3) represents the sample
statistics (used for the actual testing) evaluated at the ML estimates com-
puted using the sample concerned, whereas equation (4) gives the expected
value of these statistics for a given sample size evaluated at the assumed
population values for the parameters, and are thus not sample statistics.

The power of a test is defined as the probability that the null hypothesis
is rejected when the alternative hypothesis is true. Using the theoretical
distribution of the LR and Wald tests under the alternative hypothesis, we
calculate this probability as

powerLR = P
(
LR > χ2

(1−α)(C − 1)
)

powerW = P
(
W > χ2

(1−α)(C − 1)
)
,

(5)

where χ2
(1−α)(C − 1) is the (1 − α) quantile value of the central chi-square

distribution with C − 1 degrees of freedom, and LR and W are random
variates of the corresponding non-central chi-square distribution. That is,
LR,W v χ2(C − 1, λ), where λ is as defined in equation (4). For the Wald
test, this large sample asymptotic approximation requires multivariate nor-
mality of the ML estimates of the logit parameters, as well as that V(γk)
is consistently estimated by V(γ̂k) (Redner, 1981; Satorra and Saris, 1985;
Wald, 1943).
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Computing the asymptotic power (also called the theoretical power) using
equation (5), requires us to specify the non-centrality parameter. However,
in practice this non-centrality parameter is rarely known. Below, we show
how to obtain the non-centrality parameter using a large simulated data set,
that is, a data set generated from the model under the alternative hypothesis.

Calculating the non-centrality parameter

O’Brien (1986) and Self et al. (1992) showed how to obtain the non-centrality
parameter for the LR statistic in log-linear analysis and generalized linear
models using a so-called “exemplary ”data set representing the population
under the alternative model. In LC analysis with covariates, such an ex-
emplary data set would contain one record for each possible combination of
indicator variable responses and covariate values, with a weight equal to the
likelihood of occurrence of the pattern concerned. Creating such an exem-
plary data set becomes impractical with more than a few indicator variables,
with indicator variables with larger numbers of categories, and/or when one
or more continuous covariates are involved. As an alternative, we propose
using a large simulated data set from the population under the alternative
hypothesis. Though such a simulated data set will typically not include all
possible response patterns, if it is large enough, it will serve as a good ap-
proximation of the population under H1.

By analyzing the large simulated data set using the H0 and H1 models,
we obtain the values of the log-likelihood function under the null and alter-
native hypotheses. The large data set can also be used to get the covariance
matrix of the parameters based on the expected information matrix. These
quantities can be used to calculate the non-centrality parameters for the LR
and Wald statistics as shown in equation (4). More specifically, the non-
centrality parameter is calculated, using this large simulated data set, via
the following simple steps:

1. Create a large data set by generating say N = 1000000 observations
from the model defined by the alternative hypothesis.

2. Using this large simulated data set, compute the maximum value of
the log-likelihood for both the constrained null model and the uncon-
strained alternative model. These log-likelihood values are denoted by
l̃(Φ0) and l̃(Φ1), respectively. For the Wald test, use the large simulated
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data to approximate the expected information matrix under the alter-
native model. This yields Ṽ(γk), the approximate covariance matrix
of γk.

3. The non-centrality parameter corresponding to a sample of size 1 is
then computed as follows:

λLR1 =
2l̃(Φ1)− 2l̃(Φ0)

N
and λW1 =

γ
′

kṼ(γk)
−1γk

N

for the LR and Wald test, respectively. As can be seen, this involves
computing the LR and the Wald statistics using the information from
step 2, and subsequently rescaling the resulting values to a sample size
of 1.

4. Using the proportionality relation between sample size and non-centrality
parameter as shown in equation (4), the non-centrality parameter asso-
ciated with a sample of size n is then computed as λLRn = nλLR1 and λWn =
nλW1 (Brown et al., 1999; McDonald and Marsh, 1990; Satorra and
Saris, 1985).

Power computation

The power computation itself proceeds as follows:

1. Given the assumed population values under the alternative hypothesis,
compute the non-centrality parameter λ1 using the large simulated data
set as discussed above. Rescale the non-centrality parameter to the
sample size under consideration.

2. For a given type I error α, read the (1 − α) quantile value from the
(central) chi-square distribution with C − 1 degrees of freedom. That

is, find χ2
(1−α)(C − 1) such that P

(
LR > χ2

(1−α)(C − 1)
)

= α and

P
(
W > χ2

(1−α)(C − 1)
)

= α for the LR and Wald test statistics, re-

spectively. This quantile – also called the critical value – can be read
from the (central) chi-square distribution table, which is available in
most statistics text books. For example, for α = .05 and C = 2, we
have χ2

(.95)(1) = 3.84 (Agresti, 2007).
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3. Using the non-centrality parameter value obtained in step 1, the spec-
ified sample size n, and the critical value obtained in step 2, evaluate
equation (5) to obtain the power of the LR or Wald test of interest.
This involves reading the probability concerned from a non-central chi-
square distribution with degrees of freedom C − 1 and non-centrality
parameter λn.

Sample size computation

The expression for sample size computation can be derived from the relation
in equation (4):

nLR = λn {2E[l(Φ1)]− 2E[l(Φ0)]}−1

nW = λn

[
γ

′

kV(γk)
−1γk

]−1
,

(6)

where nLR and nW are the LR and Wald sample size, respectively.
Using equation (6), the sample size required to achieve a specified level

of power is computed as follows:

1. For a given value of α, read the (1−α) quantile value from the central
chi-square distribution table.

2. For a given power and the critical value obtained in step 1, find the non-
centrality parameter λn such that, under the alternative hypothesis,

the condition that the power is equal to P
(
LR > χ2

(1−α)(C − 1)
)

for

the LR statistic and P
(
W > χ2

(1−α)(C − 1)
)

for the Wald statistic is

satisfied.

3. Given the parameter values of the model under the alternative hypoth-
esis and the λn value obtained in step 2, use equation (6) to compute
the required sample size. Note that also for sample size computation a
large simulated data set is used to approximate E[l(Φ0)], E[l(Φ1)], and
V(γ).

LC-specific factors affecting the power

As in any statistical model, also in LC analysis the power of a test is influ-
enced by sample size, effect size, and type I error. However, an important
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difference between a LC analysis with covariates and a standard logistic re-
gression analysis is that in the former the outcome variable in the logistic
regression model is not directly observable, and thus its value is uncertain.
It can, therefore, be expected that also factors affecting the certainty about
individuals’ class memberships (or the class separation) will affect the power
of the statistical tests of interest. Information on the (un)certainty about in-
dividuals’ class memberships is contained in the posterior membership prob-
abilities:

P (X = c|yi, zi) =
P (X = c|zi)

∏P
j=1 P (Yj = yij|X = c)∑C

s=1 P (X = s|zi)
∏P

j=1 P (Yj = yij|X = s)
. (7)

Gudicha et al. (2016) discussed how the elements of the expected information
matrix for class-indicator associations are related to the posterior class mem-
bership probabilities; that is, the diagonal elements become smaller when the
posterior membership probabilities are further away from 0 and 1. A similar
thing applies to the covariate effects. When covariates are included, the di-
agonal element of the information matrix for effect γkc conditional on y and
z can be expressed as follows:

I(γkc,γkc|y,z) = (zk)
2 {[P (X = c|y, z)]2 − 2P (X = c|y, z)P (X = c|z) + [P (X = c|z)]2

}
(8)

This reduces to the expression for the standard multinomial regression model
when class membership is certain, that is, when P (X = c|y, z) equals 1 for
one class and 0 for the others. It is mainly the term [P (X = c|y, z)]2 in
Equation (8) which yields the information loss. The sum of this term over
classes, and thus also the total information contributed by a data pattern,
decreases when uncertainty about the class membership increases. This af-
fects not only the power of the Wald test through the parameter covariance
matrix but also the power of the LR test. A large amount of information
on the parameters corresponds with a larger curvature of the log-likelihood
function at Φ̂1 (Buse, 1982), which implies the difference between 2l(Φ̂1) and
2l(Φ̂0) will be larger. This will have a direct effect on both the LR value
calculated via equation (3) and the non-centrality parameter calculated via
the procedures discussed above.

Considering different scenarios for the LC model structure and parameter
values, Gudicha et al. (2016) showed that more favorable conditions in terms
of class separation occur with response probabilities which differ more across
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the classes, with a larger number of indicators, with more equal classes sizes,
and with a smaller number of classes.

Numerical study

The purpose of this numerical study is to 1) compare the power of the Wald
test with the power of the LR test, 2) investigate the effect of factors influ-
encing the uncertainty about the individuals’ class membership – mainly the
measurement parameters – on the power of the Wald and LR tests concerning
the structural parameters, 3) evaluate the quality of the power estimation
using the non-centrality parameter value obtained with the large simulated
data set, and 4) give an overview of the sample sizes required to achieve a
power level of .8 or higher, .9 or higher, or .95 or higher in several typical
study designs. In the current numerical study, we consider models with one
covariate only, but the proposed methods are also applicable with multiple
covariates. We assume asymptotic distributions for both the tests, and esti-
mate the non-centrality parameter of the non-central chi-square distribution
using the large data set method described earlier. All analyses were done
using the syntax module of the Latent GOLD 5.0 program (Vermunt and
Magidson, 2013).

Study set up

The power of a test concerning the structural parameters is expected to
depend on three key factors: the population structure and the parameter
values for the other parts of the model, the effect sizes for the structural
parameters to be tested, and the sample size. Important elements of the
first factor include the number of classes, the number of indicator variables,
the class-specific conditional response probabilities, and the class propor-
tions (Gudicha et al, 2016). In this numerical study, we varied the number
of classes (C = 2 or 3) and the number of indicator variables (P = 6 or
10). Moreover, the class-specific conditional response probabilities were set
to 0.7, 0.8, or 0.9 (or, depending on the class, to 1-0.7, 1-0.8, and 1-0.9),
corresponding to conditions with weak, medium, and strong class-indicator
associations. The conditional response probabilities were assumed to be high
for class 1, say 0.8, and low for class C, say 1-0.8, for all indicators. In class
2 of the three-class model, the conditional response probabilities are high for
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the first half and low for the second half of the indicators.
The effect size was varied for the structural parameters to be tested, that

is, for the logit coefficients that specify the effect of a continuous covariate
Z on the latent class memberships (see equation (2) above). Using the first
class as the reference category, the logit coefficients were set to 0.15, 0.25, and
0.5, representing the three conditions of small, medium, and large effect sizes.
In terms of the odd ratio, these small, medium, and large effect sizes take on
the values 1.16, 2.28, and 1.65, respectively. Two conditions were used for
the intercept terms: in the zero intercept condition, the intercepts were set
to zero for both C = 2 and C = 3, while in the non-zero intercept condition
the intercepts equaled -1.10 for C = 2, and -1.10 and -2.20 for C = 3. Note
that the zero intercept condition yields equal class proportions (i.e., .5 each
for C = 2 and .33 each for C = 3), whereas the non-zero intercept condition
yields unequal class proportions (i.e., .75 and .25 for C = 2, and .69, .23, and
.08 for C = 3).

In addition to the above mentioned population characteristics, we varied
the sample size (n = 200, 500, or 1000) for the power computations. Likewise,
for the sample size computations, we varied the power values (power = .8,
.9, or .95). The type I error was fixed to .05 in all conditions.

Gudicha et al, (2016) showed that a study design with low separation
between classes leads to low statistical power of tests concerning the mea-
surement parameters in a LC model. Therefore, Table 1 shows the entropy
R-square , which measures the separation between classes for the design con-
ditions of interest.

Insert Table 1 about here.

Results

Tables 2, 3, and 4 present the power of the Wald and LR tests for different
sample sizes, class-indicator associations, number of indicator variables, class

The entropy R-square compares the entropy of the specified model with the entropy
of a baseline model in which the class proportions are the same for each individual. Latent
Gold uses a baseline model based on the actual class proportions, whereas the others (e.g.,
Mplus and PROC LCA ) use a baseline model with equal class proportions. The Latent
Gold R-square is a bit more conservative, but matches somewhat better the definition of
an R-square: the improvement in prediction compared to an intercept only model.
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proportions, and effect sizes. Several important points can be noted from
these tables. Firstly, the power of the Wald and LR tests increases with sam-
ple size and effect size, which is also the case for standard statistical models
(e.g., logistic regression for an observed outcome variable). Secondly, specific
to LC models, the power of these tests is larger with stronger class-indicator
associations, a larger number of indicator variables, and more balanced class
proportions. These LC specific factors affect the class separations as well, as
can be seen from Table 1. Comparing the power values in Table 2 and 3, we
also observe that the statistical power of the tests depends on the number of
classes as well. Thirdly, the power of the LR test is consistently larger than
of the Wald test, though in most cases differences are rather small.

The results in Tables 2, 3, and 4 further suggest that, for a given effect
size, a desired power level of say .8 or higher can be achieved by using a larger
sample, more indicator variables, or, if possible, indicator variables that have
a stronger association with the respective latent classes. Given a set of often
unchangeable population characteristics (e.g., the class proportions, the class
conditional response probabilities, and the effect sizes of the covariate effects
on latent class memberships), one will typically increase the power by increas-
ing the sample size. Table 5 presents the required sample size for the Wald
test to achieve a power of .8, .9, and .95 under the investigated conditions.
As can be seen from Table 5, for the situation where the class proportions are
equal, the number of response variables is equal to 6, the number of classes is
equal to 2, and the class-indicator associations are strong, a power of 0.80 or
higher is achieved 1) for a small effect size, using a sample of size 1434, 2) for
a medium effect size, using a sample of size 527, and 3) for a large effect size,
using a sample of size 143. When the class-indicator associations are weak,
the class proportions are unequal, or the requested power is .9, the required
samples become larger. We also observe from the same table that in 3-class
LC models with 6 indicator variables and strong class-indicator associations,
a power of .80 or higher is achieved by using sample sizes of 2120, 777, and
210, for small, medium and large effect sizes, respectively.

To assess the accuracy of the proposed power analysis method, we also
calculated the empirical power by Monte Carlo simulation. Using the critical
value from the theoretical central chi-square distribution, we computed the
empirical power as the proportion of the p-values rejected in 5000 samples
generated from the population under the alternative hypothesis. In Table
6, we refer to this empirical power as ’LR empirical’ and ’Wald empirical’,
indicating the power values computed from the empirical distribution of the
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LR and Wald statistics under the alternative hypothesis. We report results
for the study conditions with a small effect size and equal class proportions,
but similar results were obtained for the other conditions. Comparison of the
theoretical with the corresponding empirical power values shows that these
are very close in most cases, meaning that the approximation of the non-
centrality parameter using the large simulated data set works well. Overall,
the differences between the theoretical and empirical power values are small,
with a few exceptions, which are situations in which the power is very low
anyhow. The exceptions occur when the class-indicator associations are weak
in 2-class LC models with 6 indicator variables and in 3-class LC models with
6 as well as 10 indicator variables, which in Table 1 correspond to the design
conditions with entropy R-square values of .574, .345, and .502, respectively.

Insert Table 2, 3, 4, 5 and 6 about here.

Conclusions and Discussion

Summary

Hypotheses concerning the covariate effects on latent class membership are
tested using a LR test, a Wald test, or a Score test. In the current study,
we presented and evaluated a power analysis procedure for the LR and the
Wald tests in latent class analysis with covariates. We discussed how the
non-centrality parameter involved in the asymptotic distributions of the test
statistics can be approximated using a large simulated data set, and how the
value of the obtained non-centrality parameter can subsequently be used in
the computation of the asymptotic power or the sample size. The proposed
method requires us to specify the population values under the alternative
hypothesis, as is typical in power computation.

A numerical study was conducted to study how data and population
characteristics affect the power of the LR test and the Wald test, to compare
the power of these two tests, and to evaluate the adequacy of the proposed
power analysis method. The results of this numerical study showed that, as in
any other statistical model, the power of both tests depend on sample size and
effect size. In addition to these standard factors, the power of the investigated
tests depends on factors specific to latent class models, such as the number
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of indicator variables, the number of classes, the class proportions, and the
strength of the class-indicator associations. These latent class specific factors
affect the separation between the classes, which we assessed using the entropy
R-square value.

We saw that the sample size required to achieve a certain level of power
depends strongly on the latent class specific factors. The stronger the class-
indicator variable associations, the more indicator variables, the more bal-
anced the class proportions, and the smaller the number of latent classes,
the smaller the required sample size that is needed to detect a certain effect
size with a power of say .8 or higher. We can describe the same finding in
terms of the entropy R-square, that is, the larger the entropy R-square, the
smaller the sample size needed to detect a certain effect size with a power of
say .8 or higher. A more detailed finding is that for a given effect size, the
improvement in power obtained through adding indicator variables is more
pronounced when class-indicator associations are weak or medium than when
they are strong.

In line with previous studies (see for example Williamson et al. (2007)),
the power for the LR test is larger than for the Wald test, though the dif-
ference is rather small. An advantage of the Wald test is, however, that it
is computationally cheaper. Given the population values under the alterna-
tive hypothesis and the corresponding non-centrality parameter, the sample
size for the Wald test can be computed using equation (6) directly. When
using the LR test, the log-likelihood values under both the null hypothesis
and the alternative hypothesis must be computed, which can be somewhat
cumbersome when a model contains multiple covariates.

The adequacy of the proposed power analysis method was evaluated by
comparing the asymptotic power values with the empirical ones. The results
indicated that the performance of the proposed method is generally good.
In the study design condition for which the entropy R-square is low – this
occurs when few indicator variables with weak associations with the latent
classes are used – and the sample size is small, the empirical power seemed to
be larger than the asymptotic power. But these were situation in which the
power turned out to be very low anyhow. We also looked at the type I error
rates of the Wald and LR tests. In simulation conditions with medium/strong
class-indicator associations or larger sample sizes, the type I error rates of
the two tests are generally comparable and moreover close to the nominal
level. However, in conditions with weak class-indicator association and small
sample size, the type I error rates of both the tests are highly inflated. In such
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design conditions, instead of relying on the asymptotic results, we suggest
using the empirical distributions constructed under the null and under the
alternative hypothesis.

Directions for further research

We presented the large data set power analysis method for a simple LC
model with cross-sectional data, but the same method may be applied with
LC models for longitudinal and multilevel data. Moreover, although the
simulations in the current paper were performed with a single covariate, it is
expected that increasing the number of (uncorrelated) covariates to two or
more will improve the entropy R-square and therefore also the power. The
method may also be generalized to the so-called three-step approach for the
analysis of covariate effects on LC memberships (Bakk et al., 2013; Gudicha
and Vermunt, 2013; Vermunt, 2010).

As in standard logistic regression analysis (Agresti, 2007), null hypothesis
significance testing can be performed using Wald, likelihood-ratio, or Score
(Lagrange multiplier) tests. Under certain regularity conditions, these three
test statistics are asymptotically equivalent, each following a central chi-square
distribution under the null hypothesis and a non-central chi-square under
the alternative hypothesis. In the manuscript, we focus on the Wald and LR
tests. Future research may consider extending the proposed power analysis
method to the Score test.

Sometimes researchers would like to know what the required effect size is
for a specified sample size and power level (Dziak et al., 2014). Because our
power and sample size computation methods depend on the alternative hy-
pothesis, they cannot be used directly for such an effect size computation. An
indirect approach can however be used, which involves applying the method
multiple times with different effect sizes. That is, if for the specified effect
size and power level the computed sample size turns out to be larger than
the sample size one would wishes to use, the effect size should be increased.
If the computed sample size is smaller than one would like to use, the effect
size can be reduced. Interpolation techniques can be used for an efficient
implementation of such a search procedure.

This research has several practical implications. Firstly, it provides an
overview of the design requirements for achieving a certain level of power
in LC analysis with a covariate affecting class memberships. Secondly, it
presents a tool for determining the required sample size given the specific
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research design that a researcher has in mind instead of relying on a rule
of thumb. Based on the literature and on the results of our study, we can
conclude that easy rules of thumb, such as a sample size of 500 suffices when
the number of indicator variables is 6, cannot be formulated for LC analysis.
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Table 1: The computed entropy R-square for different design cells

equal class proportions unequal class proportions

class-indicator class-indicator
associations associations

weak medium strong weak medium strong

C = 2 P = 6 .574 .855 .981 .534 .838 .978
C = 2 P = 10 .732 .935 .997 .704 .944 .998

C = 3 P = 6 .354 .650 .900 .314 .618 .878
C = 3 p = 10 .502 .805 .969 .462 .782 .963

Note. C = the number of classes; P = number of indicator variables. The entropy
R-square values reported in this table pertain to the model with small effect sizes for
the covariate effects, and these entropy R-square values slightly increase for the case
when we have larger effect sizes.
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Table 2: The power of the Wald and the Likelihood-ratio test to reject the null hypothesis that
covariate has no effect on class membership in the 2-class latent class model; the case of equal class
proportions

n = 200 n = 500 n = 1000

effect class-indicator class-indicator class-indicator
size associations associations associations

weak medium strong weak medium strong weak medium strong

Six indicator variables

small Wald .125 .164 .181 .242 .338 .379 .429 .587 .645
LR .126 .166 .180 .245 .343 .377 .434 .594 .645

medium Wald .269 .363 .408 .546 .721 .779 .835 .945 .971
LR .260 .369 .411 .548 .729 .784 .836 .953 .973

large Wald .702 .868 .913 .976 .998 1 1 1 1
LR .743 .885 .923 .985 .998 1 1 1 1

Ten indicator variables

small Wald .147 .177 .184 .297 .369 .385 .523 .633 .655
LR .151 .176 .181 .307 .367 .380 .539 .63 .647

medium Wald .319 .397 .412 .653 .766 .786 .914 .967 .974
LR .315 .402 .422 .647 .773 .796 .91 .969 .976

large Wald .812 .903 .917 .994 .999 .999 1 1 1
LR .837 .918 .9309 .996 .999 .999 1 1 1

Note. The power values reported in this table are obtained by assuming theoretical chi-square distribu-
tions for both the Wald and the Likelihood-ratio test statistics, for which the non-centrality parameter
of the non-central chi-square is approximated using a large simulated data set.
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Table 3: The power of the Wald and the Likelihood-ratio test to reject the null hypothesis that the
covariate has no effect on class membership in the 3-class latent class model; the case of equal class
proportions

n = 200 n = 500 n = 1000

effect class-indicator class-indicator class-indicator
size associations associations associations

weak medium strong weak medium strong weak medium strong

Six indicator variables

small Wald .081 .106 .125 .131 .200 .252 .222 .365 .464
LR .080 .108 .126 .130 .206 .255 .221 .377 .471

medium Wald .135 .214 .272 .281 .478 .599 .517 .789 .894
LR .140 .215 .272 .295 .48 .600 .540 .792 .894

large Wald .365 .642 .779 .752 .967 .994 .968 1 1
LR .436 .686 .810 .837 .978 .996 .989 1 1

Ten indicator variables

small Wald .089 .118 .130 .155 .233 .265 .272 .430 .49
LR .092 .119 .133 .163 .236 .274 .289 .436 .504

medium Wald .163 .252 .287 .353 .559 .628 .632 .864 .913
LR .178 .263 .290 .391 .583 .632 .686 .882 .915

large Wald .471 .738 .807 .871 .989 .996 .994 1 1
LR .571 .772 .823 .938 .993 .997 .999 1 1

Note. The power values reported in this table are obtained by assuming theoretical chi-square distribu-
tions for both the Wald and the Likelihood-ratio test statistics, for which the non-centrality parameter
of the non-central chi-square is approximated using a large simulated data set.
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Table 4: The power of the Wald and the Likelihood-ratio test to reject the null hypothesis that the
covariate has no effect on class membership; the case of unequal class proportions, and six indicator
variables

n = 200 n = 500 n = 1000

effect class-indicator class-indicator class-indicator
size associations associations associations

weak medium strong weak medium strong weak medium strong

2-class model

small Wald .102 .133 .148 .183 .263 .299 .319 .465 .525
LR .103 .136 .153 .185 .268 .312 .322 .475 .547

medium Wald .195 .283 .322 .411 .590 .658 .688 .872 .918
LR .197 .282 .331 .414 .590 .674 .693 .871 .926

large Wald .549 .761 .826 .909 .988 .996 .995 1 1
LR .590 .783 .844 .933 .991 .997 .998 1 1

3-class model

small Wald .077 .100 .120 .120 .185 .238 .198 .334 .439
LR .076 .101 .121 .119 .188 .242 .197 0.34 .447

medium Wald .125 .197 .257 .253 .439 .570 .467 .746 .873
LR .127 .208 .267 .257 .465 .593 .474 .775 .889

large Wald .337 .600 .751 .712 .951 .990 .945 .999 1
LR .387 .641 .785 .782 .966 .994 .977 1 1

Note. The power values reported in this table are obtained by assuming theoretical chi-square distribu-
tions for both the Wald and the Likelihood-ratio test statistics, for which the non-centrality parameter
of the non-central chi-square is approximated using a large simulated data set.
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Table 5: Sample size requirements for Wald statistic in testing the covariate effect on class membership
given specified power levels, class-indicator associations, number of indicator variables, number of classes,
class proportions, and effect sizes.

power = .8 power = .9 power = .95

effect class-indicator class-indicator class-indicator
size associations associations associations

weak medium strong weak medium strong weak medium strong

2-class model with equal class proportions and six indicator variables

small 2473 1652 1434 3312 2210 1925 4097 2734 2380
medium 911 606 527 1210 811 705 1509 1003 872

large 253 165 143 338 221 191 418 273 236

2-class model with equal class proportions and ten indicator variables

small 1929 1485 1412 2582 1988 1891 3193 2458 2338
medium 709 544 518 949 729 693 1173 901 857

large 194 148 140 260 198 188 321 245 232

2-class model with unequal class proportions and six indicator variables

small 3544 2241 1916 4745 3000 2566 5868 3710 3173
medium 1306 811 700 1749 1098 937 2163 1357 1159

large 362 221 187 484 295 250 599 365 310
3-class model with equal class proportions and six indicator variables

small 4922 2785 2120 6464 3657 2786 7888 4463 3400
medium 1869 1025 777 2454 1347 1020 2995 1644 1245

large 558 283 210 733 372 276 895 454 337
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Table 6: Theoretical versus empirical (H1-simulated) power values of the
Likelihood-ratio test of the covariate effect on class membership in design
conditions of interest

n = 200 n = 1000

class-indicator class-indicator
associations associations

weak medium strong weak medium strong

2-class model with six indicator variables

Wald theoretical .125 .164 .181 .429 .587 .645
Wald empirical .131 .156 .176 .429 .584 .648
LR theoretical .126 .166 .180 .434 .594 .645
LR empirical .138 .177 .182 .432 .58 .648

2-class model with ten indicator variables

Wald theoretical .147 .177 .184 .523 .633 .655
Wald empirical .138 .175 .196 .513 .632 .652
LR theoretical .151 .176 .181 .539 .63 .647
LR empirical .150 .179 .189 .537 .638 .665

3-class model with six indicator variables

Wald theoretical .081 .106 .125 .222 .365 .464
Wald empirical .187 .134 .123 .223 .368 .454
LR theoretical .08 .108 .126 .221 .377 .471
LR empirical .238 .146 .134 .267 .374 .456

3-class model with ten indicator variables

Wald theoretical .089 .118 .130 .272 .430 .490
Wald empirical .169 .118 .127 .283 .426 .508
LR theoretical .092 .119 .133 .289 .436 .504
LR empirical .161 .133 .134 .286 .443 .493

Note. The power values reported in this table are for the study design
conditions with small effect size and equal class proportions.
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Table 7: Type I error rates for the Wald and LR
tests

Sample test class-indicator associations

size statistic weak medium strong

200 Wald .106 .077 .063
LR .204 .079 .062

500 Wald .094 .072 .063
LR .118 .064 .056

1000 Wald .08 .069 .061
LR .088 .068 .052

Note. The type I error rates reported in this ta-
ble pertain to the 3-class model with six indicator
variables and equal class size.

Appendix: Latent GOLD syntax for Wald and

LR power computations

This appendix illustrates the application of the proposed Wald and LR power
computation methods using the Latent GOLD 5.0 program (Vermunt and
Magidson, 2013) Syntax . As an example, we use a 2-class LC model with
six binary response variables (y1 through y6) and a covariate (Z). Using the
proposed mehods, in order to perform a power computation, one should first
create a small “example” data set; that is, a data set with the structure of
the data one is interested in. With six binary response variables and one
covariate, this file could be of the form:

Z y1 y2 y3 y4 y5 y6 freq1000000

-1.56669890 0 0 0 0 0 0 100000

-1.21854359 0 0 0 0 0 0 100000

-.87038828 0 0 0 0 0 0 100000

-.52223297 0 0 0 0 0 0 100000

-.17407766 0 0 0 0 0 0 100000
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.17407766 0 0 0 0 0 0 100000

.52223297 0 0 0 0 0 0 100000

.87038828 0 0 0 0 0 0 100000

1.21854359 0 0 0 0 0 0 100000

1.56669890 0 0 0 0 0 0 100000

This data file contains 10 arbitrary values for the response variables, (stan-
dardized) values for the covariate, and the cases weights.

A Latent GOLD syntax model consists of three sections: “options ” “vari-
ables ” and “equations ”Ṫhe relevant LC model is defined as follows

// basic model

options

output parameters=first standarderrors profile;

variables

caseweight Freq1000000;

dependent y1 nominal 2, y2 nominal 2, y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class <- 1 + (beta) Z;

y1-y6 <- 1 | class;

The “output ” option indicates that we wish to use dummy coding for the
logit parameters with the first category as the reference category. Subse-
quently, we define the variables which are part of the model.

The two equations represent the logit equations for the structural and
the measurement part of the model, respectively. Note that “1 ” indicate an
intercept, and “| ” that the intercept depends on the variable concerned. Next
the power computaion is proceeded as follow: Step 1: Using the large data
set method, one should first simulate a large data set from the population
defined by the H1 model. Simulating the large data set is done as follows:

options

output

parameters=first profile;

outfile ’sim.sav’ simulation;
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variables

caseweight Freq1000000;

dependent y1 nominal 2, y2 nominal 2, y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class <- 1 + Z;

y1-y6 <- 1 | class;

{

0.000

0.25

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

}

end model

In the “variables ” section, we define the variables which are in the model
and also their number of categories. These are the six response variables,
the latent variable “class ” , and the covariate Z . The “equations” section
specifies the logit equations defining the model of interest, as well as the
values of the population parameters. We use the “outfile ” option to indicate
that a data file should be simulated, use the “caseweight ” to indicate the
size of the large data set (here 1000000), and specify the parameter values
of the population model. Note that the values .000, .25, and 0.84729786 for
a logit coefficients corresponds to equal class size, medium effect size, and a
conditional response probability of .70.

Step 2: Analyze the large data set obtained under step 1 using both the
H0 and H1 model.

i) Fit the H1 model

options
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output

parameters=first profile;

variables

variables

dependent y1 nominal 2, y2 nominal 2, y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class <- 1 + (b)Z;

y1-y6 <- 1 | class;

end model

ii) Fit the H0 model

options

output

parameters=first profile;

variables

variables

dependent y1 nominal 2, y2 nominal 2, y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class <- 1 + (b)Z;

y1-y6 <- 1 | class;

b[1,1] = 0;

end model

Next, based on the results in (i) and (ii) for the LR test and the results
in (i) for the Wald test, we compute the non-centrality parameter. Once the
non-centrality parameter is obtained, one may use the following R subscript
to compute the power:

CV<-qchisq(0.05, 2, ncp=0, lower.tail = FALSE, log.p = FALSE)

power<-pchisq(CV, 2, ncp=1.7218, lower.tail = FALSE, log.p = FALSE)

where, in this example, the non-centrality parameter is equal to 1.7218
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For the Wald test, power may also computed the power ( without simu-
lating the large data set) as follows.

options

output parameters standarderrors

WaldPower=<number> WaldTest=’fileName’;

variables

dependent y1 nominal 2, y2 nominal 2, y3 nominal 2, y4 nominal 2,

y5 nominal 2, y6 nominal 2;

independent Z;

latent

class nominal 2;

equations

class <- 1 + Z;

y1-y6 <- 1 | class;

{

0.000

0.25

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

0.84729786 -0.84729786

}

end model

The “output” line in the “options” section lists the output requested.
With WaldPower=<number>, one requests a power or sample size compu-
tation. When using a “number” between 0 and 1, the program reports the
required sample size for that power, and when using a value larger than 1,
the program reports the power obtained with that sample size. The optional
statement WaldTest=‘filename’ can be used to define the null hypothesis.
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