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Abstract

The latent Markov (LM) model is a popular method for identifying distinct
unobserved states and transitions between these states over time in longitu-
dinally observed responses. The bootstrap likelihood-ratio (BLR) test yields
the most rigorous test for determining the number of latent states, yet little
is known about power analysis for this test. Power could be computed as
the proportion of the bootstrap p-values (PBP) for which the null hypoth-
esis is rejected. This requires performing the full bootstrap procedure for a
large number of samples generated from the model under the alternative hy-
pothesis, which is computationally infeasible in most situations. This paper
presents a computationally feasible short-cut method for power computation
for the BLR test. The short-cut method involves the following simple steps:
1) obtaining the parameters of the model under the null hypothesis, 2) con-
structing the empirical distributions of the likelihood-ratio under the null
and alternative hypotheses via Monte Carlo simulations, and 3) using these
empirical distributions to compute the power. We evaluate the performance
of the short-cut method by comparing it to the PBP method, and moreover
show how the short-cut method can be used for sample size determination.
Keywords : Latent Markov, Number of States, Likelihood-Ratio, Bootstrap,
Monte Carlo simulation, Longitudinal Data, Power Analysis, sample size.
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1 Introduction

In recent years, the latent Markov (LM) model has proven useful to identify
distinct underlying states and the transitions over time between these states
in longitudinally observed responses. In LM models, as in latent class mod-
els, or more generally in finite mixture models, the observed responses are
governed by a set of discrete underlying categories, which are named states,
classes, or mixture components. Moreover, the LM model allows transitions
between these states from one time-point to another, that is, the state mem-
bership of respondents can change during the period of observation. The
LM model finds its application, for example, in educational sciences to study
how the interests of students in certain subjects changes over time (Vermunt
et al., 1999), and in medical sciences to study the change in health behavior
of patients suffering from certain diseases (Bartolucci et al., 2010). Various
examples of applications in social, behavioral, and health sciences are pre-
sented in the textbooks by Bartolucci et al. (2013) and Collins and Lanza
(2010).

In most research situations, including those just mentioned, the number
of states is unknown and must be inferred from the data itself. The bootstrap
likelihood-ratio (BLR) test, proposed by McLachlan (1987) and extended by
Feng and McCulloch (1996) and Nylund et al. (2007), is often used to test
hypotheses about the number of mixture components. These previous studies
focused on p-value computation, rather than on power computation for the
BLR test, which is the topic of the current study.

The assessment of the power of a test, that is, the probability that the
test will correctly reject the null hypothesis when indeed the alternative hy-
pothesis is true, is important at several stages of a research study. At the
planning stage, an a priori power analysis is useful for determining the data
requirements of the study: e.g., the sample size, and the number of time
points at which measurement takes place. In general, the smaller the sample
size, the less power we have to reject the null hypothesis when it is false.
Therefore, a too small sample size may result in an under-extraction of the
number of states (see for example, Nylund et al. (2007) and Yang (2006)).
This not only misleads the conclusion about the number of states but also
the interpretation of the state specific parameters. Moreover, when the sam-
ple size is too small, the parameter estimates are prone to be unstable and
inaccurate (Collins and Wugalter, 1992; Marsh et al., 1998). Performing an
a priori power analysis helps to determine the smallest sample required to
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achieve a certain power level, usually a power level of .8 or larger, thereby
allowing the researcher to avoid excessively large, uneconomical sample sizes.
Oftentimes, when applying for a research grant, the funding agency asks to
justify the number of subjects to be enrolled for the study through a power
analysis. At the analysis stage, a post hoc assessment of the power achieved
given the specific design scenario and the parameter values obtained should
aid the interpretation of the study results. Also, in order to assure confidence
in the study results (or conclusions), journal editors often ask to report the
power.

Power computation is straightforward if, under certain regularity condi-
tions, the theoretical distributions of the test statistic under the null and the
alternative hypothesis are known. This is not the case for the BLR test in
LM models. The power of a statistical test can be computed as the propor-
tion of the p-values smaller than the chosen alpha. When using the BLR
statistic to test for the number of states in LM models, such a power cal-
culation becomes computationally expensive, because it requires performing
the bootstrap p-value computation for multiple sets of data. As explained in
detail below, it requires generating M data sets from the model under the
alternative hypothesis, and for each data set, estimating the models under
the null and alternative hypotheses to obtain the LR value. Whether the null
hypothesis will be rejected for a particular generated data set is determined
by computing the bootstrap p-value, which in turn requires (a) generating B
data sets from the model estimates under the null hypothesis and (b) esti-
mating the models under the null and alternative hypotheses using these B
data sets. Hereafter, we refer to this computationally demanding procedure,
which involves calculating the power as the proportion of the bootstrap p-
value for which the model under the null hypothesis is rejected, as the PBP
method.

Because using the PBP method is infeasible in most situations, we propose
an alternative method which we refer to as the short-cut method. Computing
the power using the short-cut method involves constructing the empirical
distributions of the LR under both the null and alternative hypotheses. We
show how the asymptotic values of the parameters of the model under the
null hypothesis can be obtained based on a certain large data set, and these
parameters will in turn be used in the process to obtain the distribution of
the LR statistic under the null hypothesis. As explained in detail below,
the distribution of the LR under the null hypothesis is used to obtain the
critical value, given a predetermined level of significance. Given this critical
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value, we compute the power by simulating the distribution of the LR under
the alternative hypothesis. Using numerical experiments, we examine the
data requirements (e.g., the sample size, the number of time points, and the
number of response variables) that yield reasonable levels of power for given
population characteristics.

The remaining part of the paper is organized as follows. In section 2,
we describe the LM model and the BLR test for determining the number of
states. In section 3, we provide power computation methods for the BLR
test and discuss how these methods can be applied to determine the required
sample size. Numerical experiments that illustrate the proposed methods of
power and sample size computation are presented in section 4. The paper
ends with a discussion and conclusions in section 5.

2 The LM models

Let Yt = (Yt1, Yt2, Yt3, ...YtP ) for t = 1, 2, 3, ..., T be the P -dimensional re-
sponse variable of interest at time point t. Denoting the latent variable at
time point t by Xt, in a LM model the relationships among the latent and
observed response variables at the different time points can be represented
using the following simple path diagram.

X1 X2 XT

Y1 Y2 YT

...

...

An LM model is a probabilistic model defining the relationships between
the time-specific latent variables Xt (e.g., between X1, X2, and X3) and the
relationships between the latent variables Xt and the time-specific vectors of
observed responses Yt (e.g., X1 with Y1). In the basic LM model, the latent
variables are assumed to follow a first-order Markov process (i.e., the state
membership at t+1 depends only on the state occupied at time point t), and
the response variables are assumed to be locally independent given the latent
states. Based on these assumptions, we define the S-state LM model as a
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mixture density of the form

p(yi,Φ) =
S∑

x1=1

S∑
x2=1

S∑
x3=1

...
S∑

xT=1

p(x1)
T∏
t=2

P (xt|xt−1)
P∏
j=1

p(ytji|xt),

where yi denotes the vector of responses for subject i over all the time points,
ytji the response of subject i to the j-th variable measured at time point t, xt
a particular latent state at time point t, and Φ the vector of model parameters
(Vermunt et al., 1999; Bartolucci et al., 2013).

The LM model has three sets of parameters:

1. The initial state probabilities (or proportions) p(X1 = s) = πs satis-
fying

∑S
s=1 πs = 1. That is, the probability of being in state s at the

first time point;

2. The transition probabilities p(Xt = s|Xt−1 = r) = πts|r satisfying∑S
s=1 π

t
s|r = 1. These transition probabilities indicate the probabilities

of remaining in a state or switching to another state, conditional on
the state membership at the previous time point. All transition prob-
abilities are conveniently collected in a transition matrix, in which the
entry in row r and column s represents the probability of a transition
from state r at time point (t− 1) to state s at time point t;

3. The state-specific parameters of the density function p(ytji|xt), which
govern the association between the latent states and the observed re-
sponse variables. The choice of the specific density form for p(ytji|xt),
which depends on the scale type of the response variable, determines
the state-specific parameters for this density function. With continu-
ous responses, one may, for example, define the state-specific density
to be a normal distribution, for which the parameters are the mean
µtj|s and the variance σ2t

j|s (Schmittmann et al., 2005). With dichoto-
mous and nominal responses, the multinomial distribution is assumed,
for which the parameters become the conditional response probabili-
ties p(ytji|xt = s) = θtj|s (Collins and Wugalter, 1992; Vermunt et al.,

2008). The state-specific parameters and the transition probabilities
may vary across time, hence the subscript t, but are assumed to be
time-homogeneous during the remainder of this paper.
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Given a sample of size n, the parameters are typically estimated by max-
imizing the log-likelihood function:

l(Φ) =
n∑
i=1

log p(yi,Φ). (1)

The search for the values of Φ that maximize the log-likelihood function in
equation (1) can be carried out with the Expectation-Maximization (EM) al-
gorithm (Dempster et al., 1977; McLachlan and Krishnan, 2007), which alter-
nates between computing the expected complete data log-likelihood function
(E step) and updating the unknown parameters of interest by maximizing
this function (M step). For LM models, a special version of the EM algorithm
with a computationally more efficient implementation of the E step may be
used. This algorithm is referred to as the Baum-Welch or forward-backward
algorithm (Baum et al., 1970; Bartolucci et al., 2010; Vermunt et al., 2008).

As already discussed in the introduction section, identifying the number
of latent states is a common goal in LM modeling, and typically the first step
in the analysis. Testing hypotheses about the number of states involves esti-
mating LM models with increasing numbers of states and checking whether
the model fit is significantly improved by adding one or more states. More
formally, the hypotheses about the number of states may be specified as
H0 : S = r versus H1 : S = s, where r < s. Usually, the r-and s-state model
differ by one state. For example, the test for H1 : 3-state LM model against
H0 : 2-state LM model. However, in principle, the comparison can also be
between the 3-state and the 1-state LM model. In this paper, we restrict
ourselves to the situation in which r = s− 1.

The LR statistic for this type of test is defined as

LR = 2(l(Φ̂s)− l(Φ̂r)), (2)

where l(·) is the log-likelihood function and Φ̂s and Φ̂r are the maximum
likelihood estimates under the alternative and null hypothesis, respectively.
In the standard case, under certain regularity conditions, it is generally as-
sumed that the LR statistic in equation (2) follows a central chi-square under
the null hypothesis and a non-central chi-square distribution under the al-
ternative hypothesis (Steiger et al., 1985). In such a case, one may use the
(theoretical) chi-square distribution with the appropriate number of degrees
of freedom to compute the p-value of the LR test given a predetermined level
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of significance α or the power of the LR test given the population characteris-
tics of H1 model. These asymptotic distributions however do not apply when
using the LR statistic for testing the number of latent states (Aitkin et al.,
1981). One reason is that the H0 model with S − 1 states is obtained from
the H1 model by restricting the initial probability for state S and the transi-
tion probabilities towards state S to 0. This violates the regularity condition
that restriction should not be on the boundary of the parameter space. In
addition, when state S is assumed to have a zero probability of occurrence,
the parameters for this state are unidentified, which yields a violation of the
regularity condition that all parameters in the H0 should be identifiable.

One may however apply the method of parametric bootstrapping to con-
struct the empirical distribution of the LR, and subsequently use the con-
tructed empirical distribution for p-value computation. Due to advances in
computing facilities, this can be applied readily. Using parametric bootstrap-
ping, the empirical distribution of the LR statistic under the null hypothesis
is constructed by generating B independent (bootstrap) samples according
to a parametric (probability) model P (y, Φ̂r), where Φ̂r itself is an estimate
computed based on a sample of size n (McLachlan, 1987; Feng and McCul-
loch, 1996; Nylund et al., 2007). Denoting the bootstrap samples by yb (for
b = 1, 2, 3, ...B), equation (2) becomes

BLRb = 2(l(Φ̂b
s)− l(Φ̂b

r)), (3)

where BLRb denotes the BLR, computed for (bootstrap) sample yb.
So, sampling B data sets from the r-state LM model defined by P (y, Φ̂r)

and computing the BLR statistic as shown in equation (3) for each of these
data sets, yields the BLR distribution under the null hypothesis. This dis-
tribution is then employed in the bootstrap p-value computation. In short,
the bootstrap p-value computation proceeds as follows:
Step 1. Treating the ML parameter estimates as if they were the ”true”
parameter values for the r-state LM model, generate B independent (boot-
strap) samples from the r-state LM model.
Step 2. Compute the BLRb values as shown in equation (3), which requires
us to fit the r- and s-state models using the bootstrap samples generated in
Step 1.
Step 3. Compute the bootstrap p-value as p = 1

B

∑B
b=1 I(BLRb > LR),

where I(·) is the indicator function which takes on the value 1 if the argu-
ment BLRb > LR holds and 0 otherwise. The decision concerning whether
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the r-state LM model should be retained or rejected in favor of the s-state
model is then determined by comparing this p-value with the predetermined
significance level α.

3 Power analysis for the BLR test

As mentioned, two common goals of power analysis are (a) to determine
the post hoc power of a study (i.e., given a certain samples size, number of
time points, and number of response variables) and (b) to a priori determine
the sample size (or other design factors like the number of time points or
the number of response variables) required to achieve a certain power level.
In both cases, we assume that the population parameters are known (in a
priori analyses a range of expected parameter values may be used) and other
factors such as the number of indicator variables and the number of classes
are fixed. In what follows, we first show how the bootstrapping procedure
discussed above can be used for power computation, and subsequently present
the computationally more efficient short-cut method for power and sample
size computation in LM models.

3.1 Power computation

In this sub-section, we present two alternative methods for computing the
power of the BLR test. The first option, the PBP method, involves comput-
ing the power as the proportion of the bootstrap p-values (PBP) for which
H0 is rejected. More specifically, the PBP method for power computation
involves the following steps:
Step 1. Generate M independent samples, each of size n, from the paramet-
ric model P (y,Φs), where Φs is the given parameter values under H1.
Step 2. For each sample m (m = 1, 2, 3, ..., M) in Step 1, compute the
likelihood-ratio LRm as shown in equation (2).
Step 3. Obtain the bootstrap p-value of each samplem as pm = 1

B

∑B
b=1 I(BLRbm >

LRm), where LRm is the LR of sample m from the H1 population, BLRbm

is the corresponding BLR for bootstrap sample b, and I(·) is the indicator
function as defined above.
Step 4 The actual power associated with a sample of size n is computed as
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the proportion of the H1 data sets in which H0 is rejected. That is,

PBP =
1

M

M∑
m=1

I(pm < α), (4)

where the indicator function I(·) and α are as defined above.
As mentioned above, such a method of power computation is computa-

tionally expensive and requires considerable amount of computer memory.
For example, setting M = 500 and B = 99 requires us to generate and
analyze M(B + 1) = 50000 data sets. Also, in order to achieve a good ap-
proximation to the sampling distribution, which, if not well approximated,
could affect the p-value (and subsequently the power), both M and B should
be large enough.

For LM models, for which model fitting requires iterative procedures,
power computation by using the PBP method is computationally too inten-
sive in practice. We propose a computationally more efficient method, which
we call the shortcut method. It works very much as the standard power
computation (see for example, Brown et al. (1999)), with the difference that
we construct the distributions under H0 and H1 by Monte Carlo simulation.
In Figure 1, these two distributions are indicated with curve H0 and H1,
respectively. As explained below, the distribution under H0 is used to obtain
the critical value (CV), and the distribution under H1 is used to compute
the power given the CV.

First, the H0 “population” parameters needed to compute the CV should
be obtained. This can be achieved by creating an exemplary data set, which
is a data file with all possible response patterns and the relative frequencies of
the response patterns under H1 as weights (O’Brien, 1986; Self et al., 1992).
Because in LM models with more than a few indicators and/or time points,
the number of possible response pattern is very large, this method cannot
always be applied. Therefore, as an alternative, using the parameter values
of the H1 model, we generate a large data set (e.g., 10000 observations),
which is assumed to represent the hypothetical H1 population. Estimating
the H0 model (i.e., the r-state LM model) using this large data set yields the
pseudo parameter values for the r-state model. These H0 parameters are then
employed to construct the distribution of the LR under the null hypothesis.
That is, given the estimated parameters of the H0 model, generate K data
sets (each of size n) and for each of these data sets, compute the LR as
shown in equation (2). Next, order the LR values in such a way that LR[1] ≤
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CV1−α

H0

H1

power

Figure 1: Distributions of LR under the null and alternative hypotheses

LR[2] ≤ LR[3] ≤ ... ≤ LR[K]. Given the nominal level α, compute the CV as

CV(1−α) = {LRk : p(LR > LR[k]|H0) = α}. (5)

Similarly, the distribution of the LR under the alternative hypothesis is
constructed using M samples of the H1 model. That is, given the parameters
of the H1 model, we generate M independent samples from the s-state LM
model and for each of these samples, compute the LR as shown in equation
(2). For sufficiently large M , the distribution of the LR under the alterna-
tive hypothesis approximates the H1 curve in Figure 1. The power is then
computed as the probability that the LR value belongs to the shaded region
of Figure 1. That is,

power = p(LR > CV(1−α)|H1) =

∑M
m=1 I(LRm > CV(1−α))

M
, (6)

where I(·) is the indicator function, indicating whether the LR value (com-
puted based on the b sample of the H1 population) exceeds the CV1−α value.
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So both, the PBP and the short-cut methods require M samples given H1

and the calculation of the LR for each of these samples (i.e., steps 1 and 2 of
the PBP power calculation). The saving in computation time of the short-cut
method lies in the omission of the full bootstrap for each of the M samples
from the H1 model. Rather, the LRs given H1 are now evaluated against
the approximated distribution of LRs given H0. Therefore, compared to the
PBP-based power computation, the number of data sets to be generated and
analyzed is much smaller when using the short-cut method. For example, for
M = 500 and K = 500, we analyze M + K = 1000 data sets. To further
explain the computational time gain, let the time required to calculate the
PBP based power by analyzing M(B+ 1) data sets be ω. The time required
to compute the power by the short cut method – which requires analyzing

M +K data sets – can be shown to be
(

1
B+1

+ K
M+ B

M

)
ω. For large M , and

under the setting with B = K = M , this computational time may simplify
to ( 2

M
)ω. In other words, the shortcut method is M/2 times faster than the

PBP method.
The short-cut method of power computation presented above can easily

be implemented using statistical software for LM analysis as outlined below.

1. Obtain the H0 population parameters: Given the parameters of the H1

model, generate a large data (e.g., 10000 observations) from the H1

population. For this purpose, any software that allows generating a
sample from a LM model with fixed parameter values can be used. For
the numerical studies shown below, we used the syntax module of the
Latent GOLD 5.0 program (Vermunt and Magidson, 2013). Using this
large data set, then estimate the parameters of the H0 model.

2. Compute the CV: Given the estimated parameters of the H0 model,
generate K data sets (each of size n) and for each of these data sets,
compute the LR as shown in equation (2). Note that this requires
estimating both the r- and the s-state model. For a sufficiently large
K, the LR distribution approximates the population distribution of
the LR under the null hypothesis (i.e., the H0 curve in Figure 1). We
use this distribution to compute the CV of the LR test as shown in
equation (5).

3. Compute the power: Given the parameters of the H1 model, obtain the
empirical distribution of the LR. That is, generate M data sets from
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H1 model, and, using these data sets, compute the LR as shown in
(2). Given the CV and the empirical distribution of the LR under H1,
compute the power as shown in equation (6).

3.2 Sample size computation

In this section, we show how the procedure described above for power compu-
tation using the short-cut method can be applied for sample size determina-
tion. For sample size determination, step 1 of the power computation proce-
dure (discussed under software implementations) remains the same. The last
two steps are however repeated for different trial sample sizes. More specifi-
cally, suppose the investigator wishes to achieve a certain pre-specified power
level (say, power = .8 or larger) while avoiding the sample size to become un-
necessarily large. Then, the LR power computation is performed as outlined
in step 2 and 3, starting with a certain sample size n1. Below we provide
power curves that can be used as a guidance to locate this starting sample
size. If the power obtained based on these n1 observations is lower than .8,
repeat step 2 and 3 by choosing n2 larger than n1. If the chosen n1 result
in larger power instead (and we want to optimize the sample size), choose
n2 smaller than n1 and repeat step 2 and 3. In this way, the power compu-
tation procedure is repeated for different trial samples of varying sizes, and
from these trial samples, the one that best approximates the desired power
level is used as the sample size for the study concerned. In our numerical
study, we repeat this power computation procedure for different sample sizes,
which resulted in a series of power values. By plotting these power values
against the corresponding sample size, we obtain a power curve from which
one can easily determine the minimum sample size that satisfies the power
requirements, for example that the power should be larger than .8.

When designing a longitudinal study, it is also of interest to determine
the number of time points required to achieve a certain power level. For a
fixed sample size, a fixed number of response variables, and a priori specified
H1 parameter values, the procedures discussed above for sample size deter-
mination can be applied to the number of time points determination as well.
More specifically, in step 2 and 3 of the power computation procedures, the
number of time points T should be varied instead of the sample size n.

12



4 Numerical study

A numerical study was conducted to (a) illustrate the proposed power and
sample size computation methods, and (b) investigate whether the short-cut
method and the PBP method give similar results. This numerical study has
an additional benefit for applied researchers using the LM model: given the
population characteristics, the resulting BLR power tables and the power
curves shown below may help to make an informed decision about the data
requirements in testing the number of states for the LM model. More specif-
ically, the results of this numerical study may be used as a guidance by
applied researchers to locate the initial trial sample size when computing the
required sample size to achieve a desired power level, as discussed in section
3.

4.1 Numerical study set up

The power of the BLR test for the number of states in LM models depends
on several design factors and population characteristics. See, for example,
Gudicha et al., (2015) who studied factors affecting the power in LM models.
The design factors include the sample size, the number of time points, and
the number of response variables. The number of latent states, and the
various model parameter values (i.e., parameter values for the initial state
proportions, for the state transition probabilities, and for the state specific
densities) define the population characteristics (Collins and Wugalter, 1992).

In this numerical study, we varied both the design factors and the popula-
tion characteristics. The design factors varied were the sample size (n = 300,
500, or 700), the number of time points (T = 3 or 5), and the number
of response variables (P = 6 or 10). The population characteristics un-
der the alternative hypothesis (i.e, the s-state LM model for S = 3, or 4)
were specified to meet varying levels of a) initial state proportions (balanced,
moderately imbalanced, highly imbalanced), b) stability of state member-
ship (stable, moderately stable, unstable), and c) state-response associations
(weak, moderate, strong) as follows.

In line with Dias (2006), the initial state proportions were specified using
πs = δs−1∑S

h=1 δ
h−1

. We set the values of δ to 1, 2, and 3, which correspond to bal-

anced, moderately imbalanced, highly imbalanced initial state proportions,
respectively. For the transition matrix, we used the specification suggested
by Bacci et al. (2014), which under the assumption of time homogeneity
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Table 1: Values of conditional response probabilities

state-responses S=3 S=4
association levels s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 s = 4

Weak .75 .58 .25 .75 .58 .75 or.25 .25
Moderate .80 .65 .20 .80 .65 .80 or .20 .20

Strong .85 .70 .15 .85 .70 .85 or.15 .15

gives πs|r = ρ|s−r|∑S
h=1 ρ

|h−r| . Setting the values of ρ to ρ = 0.1, 0.15, and 0.3 yields

what we referred to above as stable, moderately stable, and unstable state
membership. In this numerical study, we restricted ourselves to the situation
that the response variables of interest are binary and that the state specific
conditional response probabilities are time-homogeneous. We set θj|1 to .75,
.8 and .85, θj|S to 1-.75, 1-.8, and 1-85, and for S = 3, θj|2 to .58, .65, and .7
which yields the structure shown in Table 1. For S = 4, we used the same
setting of conditional response probabilities as for S = 3, but now defined
the conditional response probabilities of the remaining state as high (=θj|1)
for half of the response variables and low (=θj|S) for the other half.

The design factors and population characteristics were fully crossed re-
sulting in 3 (sample size)× 2 (number of time points)×2 (number of response
variables)× 2 (number of states) ×3 (initial state proportions) × 3 (transi-
tion probability matrices) × 3 (state-response variables association levels)
= 572 simulation conditions. For each simulation condition, a large data set
(of 10000 observations) was generated according to the H1 model and the
H0 parameters were estimated using this data set. Next, for each simulation
condition, K = 1000 samples were generated according to the H0 parame-
ters and the CV was computed, assuming α = .05. Given a specified sample
size, number of time points, and the parameter values under the alternative
hypothesis, the power was then computed based on M = 1000 samples gen-
erated according to the H1 model as discussed in section 3. To minimize the
problem of local maxima, we use multiple random start sets for parameter
estimation, in combination with specifying the true population parameter
value as the starting value.
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4.2 Results

The results obtained from the numerical study for power computation by
the short-cut and PBP methods are shown in Tables 2, 3, 4, and 5. As
can be seen from these tables, the power values of the two methods are in
general comparable. Although the power values obtained by the short-cut
method seem to be slightly larger, overall differences do not lead to different
conclusions regarding the hypotheses about the number of states. The most
important added value of the short-cut method is however that it is M

2
times

faster than the PBP method, where M refers to the number of Monte Carlo
and bootstrap samples for the short-cut and the PBP methods, respectively.

If we now turn to the power values for various combinations of data and
population characteristics, we see in Table 2 that the power of the BLR test
increases with sample size and the number of time points. Comparison of
the effect of sample size and the number of time points show that holding
the other factors constant, increasing the number of time points has a larger
impact on the power than increasing the sample size. Also, keeping the other
design factors constant, the power of the BLR test in general increases with
stronger measurement conditions (i.e., weak to moderate to strong state-
response variable associations) and with more stable state memberships (
smaller transition probabilities).

While in Table 2 we reported the results for equal initial state proportions,
in Table 3, we report the results for unequal initial state proportions. As can
be seen, the BLR power drops when the initial state size is imbalanced. The
more imbalanced the initial state sizes the smaller the power. Table 4 shows
the effect of the number of indicator variables on the power of the BLR test:
power generally increases when the number of indicator variables increases.
Comparing the results in Table 2 with those in Table 5, holding the other
factors constant, the power of the BLR test to reject H0 : S = 2 in favour of
H1 : S = 3 is in general larger than for H0 : S = 3 against H1 : S = 4.

In summary, the results reported in Tables 2, 3, 4, and 5 show that in
the weak measurement condition, the power of the BLR test is in general
very low, indicating that very large sample sizes may be required to achieve
an acceptable power level in these conditions. Although the quality of state-
response association plays a dominant role, the power computed for the weak
measurement condition improved substantially by increasing the number of
response variables or time points. Also, situations in which the state mem-
bership is unstable (e.g., ρ = 0.3 or larger) need special care, since the power
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is low in such situations.
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Table 2: Power of the BLR test for H0 : S = 2 versus H1 : S = 3: the case of equal initial state size (δ = 1)
and six indicator variables (P = 6)

State-responses associations

Weak Moderate Strong

sample Index of state Index of state Index of state
size Method transition transition transition

ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.1 ρ = 0.15 ρ = 0.3

T = 3 300 short-cut .188 .145 .104 .301 .260 .176 .568 .494 .339
PBP .180 .148 .116 .286 .250 .131 .550 .496 .320

500 short-cut .398 .301 .178 .581 .534 .294 .869 .809 .631
PBP .394 .280 .150 .558 .493 .296 .858 .804 .610

700 short-cut .642 .439 .238 .842 .704 .405 .978 .957 .796
PBP .592 .442 .224 .802 .691 .387 .968 .960 .800

T = 5 300 short-cut .698 .559 .228 .849 .727 .394 .972 .927 .687
PBP .683 .516 .212 .846 .730 .380 .966 .947 .700

500 short-cut .955 .868 .416 .990 .959 .726 1 .999 .942
PBP .958 .870 .422 .986 .960 .650 1 .993 .952

700 short-cut .995 .970 .654 1 .999 .887 1 1 .992
PBP .998 .969 .640 1 .997 .892 1 1 .988

Note. T= number of time points, P= number of response variables, δ=initial state proportion index, ρ=state
transition probability index, and PBP= proportion bootstrap p-value rejected.
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Table 3: Power of the BLR test for H0 : S = 2 versus H1 : S = 3: the case of imbalanced initial state size
(δ = 2 or 3) with six indicator variables (P = 6) and three time points (T = 3)

State-responses associations

Weak Moderate Strong

sample Index of state Index of state Index of state
size Method transition transition transition

ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.1 ρ = 0.15 ρ = 0.3

δ = 2 300 short-cut .147 .130 .080 .247 .197 .135 .346 .308 .249
PBP .142 .130 .104 .204 .170 .128 .332 .272 .214

500 short-cut .290 .210 .127 .357 .296 .244 .637 .559 .457
PBP .274 .208 .132 .336 .280 .252 .604 .544 .410

700 short-cut .445 .367 .193 .594 .517 .337 .801 .763 .574
PBP .416 .336 .186 .571 .484 .295 .790 .775 .566

δ = 3 300 short-cut .114 .075 .073 .138 .099 .090 .171 .147 .125
PBP .108 .092 .084 .106 .100 .095 .164 .134 .110

500 short-cut .146 .112 .104 .196 .173 .131 .307 .281 .220
PBP .135 .112 .107 .176 .168 .146 .298 .228 .166

700 short-cut .231 .186 .124 .306 .245 .195 .515 .456 .378
PBP .193 .176 .124 .289 .246 .196 .482 .374 .244

Note. T= number of time points, P= number of response variables, δ=initial state proportion index, ρ=state
transition probability index, and PBP= proportion bootstrap p-value rejected.
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Table 4: Power of the BLR test for H0 : S = 2 versus H1 : S = 3: the case of equal initial state size (δ = 1)
and three time points (T = 3)

State-responses associations

Weak Moderate Strong

sample Index of state Index of state Index of state
size Method transition transition transition

ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.1 ρ = 0.15 ρ = 0.3

P = 6 300 short-cut .188 .145 .104 .301 .260 .176 .568 .494 .339
PBP .180 .148 .116 .286 .250 .151 .550 .496 .320

500 short-cut .398 .301 .178 .581 .534 .294 .869 .809 .631
PBP .394 .280 .150 .558 .493 .296 .858 .804 .610

700 short-cut .642 .439 .238 .842 .704 .405 .978 .957 .796
PBP .592 .442 .224 .802 .691 .387 .968 .960 .800

P = 10 300 short-cut .791 .646 .402 .872 .786 .551 .987 .952 .885
PBP .766 .618 .394 .848 .746 .540 .970 .948 .848

500 short-cut .973 .941 .702 .993 .976 .866 1 1 .993
PBP .975 .934 .674 .992 .981 .874 1 1 .992

700 short-cut .989 .941 .831 .993 .976 .893 1 1 1
PBP .996 .958 .859 1 1 .970 1 1 .998

Note. T= number of time points, P= number of response variables, δ=initial state proportion index, ρ=state
transition probability index, and PBP= proportion bootstrap p-value rejected.
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Table 5: The power of the BLR test for testing H0 : S = 3 versus H1 : S = 4: the case of equal initial state
size and six indicator variables

State-responses associations

Weak Moderate Strong

number of sample Index of state Index of state Index of state
time size transition transition transition

points ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.1 ρ = 0.15 ρ = 0.3

T = 3 300 short-cut .121 .099 .074 .170 .120 .093 .377 .3007 .195
PBP .114 .096 .062 .162 .142 .110 .338 .284 .178

500 short-cut .199 .158 .122 .272 .230 .171 .643 .539 .341
PBP .213 .162 .108 .294 .224 .154 .610 .512 .302

700 short-cut .273 .218 .151 .464 .387 .233 .811 .717 .516
PBP .258 .222 .126 .474 .354 .238 .794 .718 .498

T = 5 300 short-cut .387 .237 .147 .534 .483 .212 .872 .737 .401
PBP .351 .244 .136 .516 .448 .200 .868 .754 .388

500 short-cut .738 .551 .214 .882 .802 .361 .994 .962 .706
PBP .694 .504 .208 .864 .758 .342 .994 .970 .698

700 short-cut .919 .736 .356 .985 .918 .572 1 1 .886
PBP .924 .732 .315 .980 .912 .542 1 1 .894

Note. T=number of time points.
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Figures 2 and 3 present a power curve (as a function of sample size)
for different settings of the parameter values of the 3-state LM population
model with equal initial state proportions, 6 response variables, and 3 time
points. Figure 2 shows that when the state-response associations are weak,
to achieve a power of .8 or larger, we may require a sample of 1000 or more
when state membership is stable, and a sample of 2000 or more when state
membership is unstable. We can also see from the same figure that when
the state-response associations are rather strong, the required sample sizes
may drop to less than 500 and 700, respectively for stable and unstable state
membership conditions. As can be seen from Figure 3, to achieve a power
level of .8 when the state memberships are moderately stable, sample sizes
of at least 1200, 850, and 500, may be required in the weak, medium, and
strong measurement condition, respectively.
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Figure 2: Power by sample size for a 3-state LM population model with
varying levels of measurement parameters, equal initial state proportions, 6
response variables, and 3 time points
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Figure 3: Power by sample size for a 3-state LM population model with vary-
ing levels of transition parameters, equal initial state proportions, 6 response
variables, and 3 time points

5 Discussion and conclusion

The current study addressed methods of power analysis for the BLR when
testing hypotheses on the number of states in LM models. Two alternative
methods of power computation were discussed: the proportion of signifi-
cant bootstrap p-values (PBP) and the short-cut method. Using the PBP
method, power is computed by first generating a number of independent
data sets under the alternative hypothesis, and then, for each of these data
sets, computing the p-value by applying a parametric bootstrap procedure
(McLachlan, 1987). The PBP method is computationally very demanding
as it requires performing the full bootstrap for each of M samples from the
H1 model. We proposed solving this computational problem using the short-
cut method. The short-cut method works very much as a standard power
computation, with the difference that instead of relying on the theoretical dis-
tributions (a central chi-square under the null hypothesis and a non-central
chi-square under the alternative hypothesis), the distributions under H0 and
H1 are constructed by Monte Carlo simulation.

A numerical study was conducted to (a) illustrate the proposed power
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analysis methods and (b) compare the power obtained by the short-cut and
the PBP methods. As expected, the power of the BLR test in the LM models
increased with sample size. Likewise, power increased with more time points
and more response variables. In addition to these design factors, the power
of the BLR test was shown to depend on the following population charac-
teristics: the initial state proportions, the state transition probabilities, and
the state-response associations. Holding the other design factors constant,
power was larger with more balanced initial state proportions, more stable
state memberships, and stronger state-response associations. Contrary to
this, when initial state proportions are highly imbalanced, state membership
is unstable, and the state-response association is weak, the power of the BLR
test is low.

For the simulation conditions that we have considered in this study, the
sample size required to achieve a power level of .8 or larger ranged from a
few hundred to thousands of cases. Also, the required sample size depended
on other design factors and population characteristics, which are highly in-
terdependent. In general, the more time points, the more response variables,
the more balanced the initial state proportions, the more stable the state
memberships, and the stronger the state-response associations, the smaller
the sample size needed to achieve a certain power level. Because of mu-
tual dependencies among the LM model parameters, and since the required
sample size is also influenced by the number of time points, response vari-
ables, and state-indicator variable associations, a sample size of 300 or 500
will often not suffice in LM analysis. Therefore, we strongly suggest applied
researchers to perform a power analysis for his/her specific research situa-
tion instead of relying on certain rules of thumb about the sample size. The
same applies to questions about the minimum number of time points and/or
response variables.

Both the short-cut and PBP method discussed in this paper make use of
parameter estimates obtained by maximizing the log-likelihood function. In
LM models, as in other mixture models, the log-likelihood function can have
multiple maxima, meaning that the estimates found do not always correspond
to the global maximum of the log-likelihood function. This may have an effect
on the computed power (or sample size). In this paper, we dealt with this
problem of local maxima by using multiple sets of random starting values
for the parameters, in addition to a set of start values corresponding to the
known population parameter values.

Limitations to the current numerical experiments need to be acknowl-
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edged. Firstly, in the current study, we assumed time homogeneity for
both state transition and conditional response probabilities. Future research
should assess the power of the BLR test if this assumption is relaxed. Sec-
ondly, the conditional response probabilities of the binary response variables
were set to equal values, and for simplicity, we considered a specific struc-

ture of the transition matrix: πs|r = ρ|s−r|∑S
h=1 ρ

h−r
. However, in practice the

conditional response probabilities may differ across response variables, the
response variables may be nominal with more than two categories, continuous
or of mixed type, and the structure of the transition matrix can be completely
unconstrained, or, for example, symmetric or triangular (Bartolucci, 2006).
Thirdly, this paper focused on power and sample size computation. A further
study with more focus on determining the required number of measurement
occasions is suggested. Power analysis for the number of time points depends
not only the state transition probabilities, but also on the time scale and on
whether the dynamics of the system is stationary or not. Fourthly, in our
study, we illustrated the proposed power computation methods considering
tests for 3-state against 2-state LM models and 4-state against 3-state LM
models. In practice, one may encounter tests for larger numbers of states.

It can be concluded that more intensive simulations that address these
different scenarios concerning the H1 population model may be needed to
establish more knowledge and guidelines about the power and sample size
requirements of the BLR test for the number of states in LM models. What
is clear is one should not rely on certain rules of thumb about the required
sample size, number of time points, or number of indicator variables, but
instead perform a power analysis tailored to the specific situation of interest.
The proposed shortcut method makes this computationally feasible.
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