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An important aspect of applied research is the assessment of the
goodness-of-fit of an estimated statistical model. In the analysis of
contingency tables, this usually involves determining the discrepancy
between observed and estimated frequencies using the likelihood-
ratio statistic. In models with inequality constraints, however, the
asymptotic distribution of this statistic depends on the unknown model
parameters and, as a result, there no longer exists an unique p-value.
Bootstrap p-values obtained by replacing the unknown parameters by
their maximum likelihood estimates may also be inaccurate, especially
if many of the imposed inequality constraints are violated in the
available sample. We describe the various problems associated with
the use of asymptotic and bootstrap p-values and propose the use of
Bayesian posterior predictive checks as a better alternative for
assessing the fit of log-linear models with inequality constraints.
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1 Introduction

The variables of interest in social sciences research are often of an ordinal nature. A

possible modeling strategy with such variables is to analyze them using standard

categorical data techniques, such as log-linear models, implying that the available

information on the order of the categories is fully ignored. A better strategy is to use

models with inequality restrictions, yielding a nonparametric approach that permits

defining and testing ordinal hypotheses (see e.g. DARDANONI and FORCINA, 1998;
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VERMUNT, 1999, 2001). Standard log-linear models can be easily transformed into

ordinal log-linear models by including inequality constraints on the log-linear

parameters. Within such a framework, a positive relationship between two ordinal

variables, for example, would be represented by a log-linear model that restricts all

local log-odds ratios to be at least zero. Even though quite some work has already

been done on the maximum likelihood (ML) estimation and the testing of categorical

data models with inequality restrictions (see for example ROBERTSON, WRIGHT and

DYKSTRA (1988); CROON (1990, 1991); DARDANONI and FORCINA (1998); VERMUNT

(1999, 2001), further research is needed on the problem of goodness-of-fit testing

with the purpose of finding a method yielding accurate p-values.

A commonly used measure for assessing the goodness-of-fit of categorical data

models estimated by ML is the likelihood-ratio test statistic (G2), sometimes referred

to as the deviance statistic. Under the assumption that the target model of interest is

true (and that some other regularity conditions hold), this statistic has an asymptotic

chi-square (v2) distribution with a number of degrees of freedom equal to the number

of constraints implied by the target model or, equivalently, to the difference between

the number of parameters of the saturated and the target model. In models with

inequality constraints, however, one of the regularity conditions, namely, that the

null hypothesis has to lie within the parameter space, does not hold (CHERNOFF,

1954). It therefore turns out that in such cases G2 does not follow a v2 but a chi-bar-

square ð�v2Þ distribution, which is a mixture of central v2 distributions. There are,

however, two problems associated with the use of this �v2 distribution: (1) to obtain a

p-value one has to specify the parameter values under the null hypothesis, which is

not straightforward to do when dealing with inequality constraints, and (2) the

mixture weights needed to calculate p-values are very difficult to obtain if the number

of inequality constraints is larger than 5.

Because classical p-values may be difficult to obtain using asymptotic methods,

various authors have suggested using the parametric bootstrap, also called plug-in

method, as an alternative method for assessing the fit of ordinal models (e.g. RITOV

and GILULA, 1993; VERMUNT, 1999, 2001). This procedure involves approximating

the empirical distribution of the goodness-of-fit test statistic by means of Monte

Carlo simulations. Since the parametric bootstrap is based on less restrictive

assumptions than the asymptotic method, one might expect that it can provide a

reliable approximation of the distribution of the test statistic even in those cases in

which the asymptotic distribution cannot be trusted or is difficult to derive. A

simulation study by GALINDO and VERMUNT (2004), however, showed that

parametric bootstrap p-values do not perform well in all situations.

Rather than using ML estimation methods and classical p-values for testing, one

could use Bayesian methods for estimating and assessing the fit of categorical data

models with inequality constraints (e.g. see HOIJTINK and MOLENAAR, 1997; VAN

ONNA, 2002). Posterior predictive checks form the Bayesian alternative to the

classical test procedure. For this purpose, one can either use test statistics, which are

measures that depend only on the data, or discrepancy measures, which are functions
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of both the data and the model parameters (GELMAN, MENG and STERN, 1996). The

advantage of using discrepancy measures compared with using test statistics is that

the former allow the dependence on unknown parameters; that is, there is no need to

know the value of the parameters under the null hypothesis, as is the case in models

with inequality constraints. Posterior predictive p-values are computed by drawing

new data sets from the posterior predictive distribution and subsequently comparing

these replicated data with the observed data. If the target model fits the data well, the

replicated data should look similar to the observed data.

The aim of the current paper is to investigate whether posterior predictive p-values

are a good alternative to classical p-values when assessing the fit of order-restricted

categorical data models. Section 2 describes the log-linear model with the inequality

constraints of interest, as well as methods to solve the estimation problem. Section 3

introduces the various classical and Bayesian methods to obtain p-values. In Section

4, these methods are compared with one another using an empirical example and a

small simulation experiment. The paper ends with a short discussion.

2 Log-linear models with inequality constraints

Suppose one wishes to test whether there exists a positive relationship between two

ordinal variables cross-classified in a two-way R-by-C contingency table. One possible

modeling option that can be used for this purpose is log-linear analysis. Let m be the

vector of expected frequencies, X the design matrix, and b the vector containing the K

unknown log-linear parameters. The model of interest can be formulated as follows

logm ¼ Xb: ð1Þ

Since we are dealing with a two-way table, the two-variable association parameters

in the saturated model represent the strength of the relationship between the row and

the column variable. GALINDO, VERMUNT and CROON (2002) showed that a coding

scheme based on the differences between adjacent categories yields two-way

association parameters that are directly related to local log-odd ratios. In the case of

a three-by-three table, for example, the corresponding design matrix takes on the form

X ¼

1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 1 1
1 1 1 0 0 0 0 0 0
1 0 1 1 1 0 1 0 1
1 0 1 0 1 0 0 0 1
1 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

where each column is related to an element of the parameter vector. Columns six to

nine represent the two-way association parameters. The correspondence between
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log-odds ratios and two-way association parameters can be seen by substituting the

logarithms of the expected frequencies appearing in equation (1) by the corres-

ponding log-linear parameters. For example, it can be seen that b9 is in fact the local

log odds ratio log h22,

log h22 ¼ logðm4Þ þ logðm9Þ � logðm8Þ � logðm6Þ
¼ ðb1 þ b3 þ b5 þ b9Þ þ ðb1Þ � ðb1 þ b5Þ � ðb1 þ b3Þ ¼ b9:

Whereas the above standard log-linear model does not make use of information

on the order of the categories of the row and column variables, it can easily be

transformed into an ordinal model by imposing nonnegativity constraints on the

two-way association terms; that is, in the three-by-three example, by setting bk � 0,

for 6 � k � 9. This yields a weak definition of a positive relationship between the

two ordinal variables, namely, that all log-odds ratios are at least zero. In the general

case, we say that K ¼ K1 þ K2, where K1 is the number of unrestricted parameters

and K2 the number of order-restricted parameters.

For parameter estimation, we use a loglikelihood function based on assuming a

Poisson sampling scheme,

lðnjbÞ ¼
X
i

ni logmi �
X
i

mi;

where ni and mi represent elements of n, the vector of observed frequencies, and m

respectively. The parameters of the order-constrained log-linear model can either be

estimated by maximum likelihood or by Bayesian estimation methods. To solve the

ML estimation problem, we use an activated constraints variant of the Newton-

Raphson algorithm (GILL and MURRAY, 1974), in which unrestricted and non-acti-

vated order-restricted parameters are updated in the usual manner, whereas parame-

ters corresponding to activated constraints are only updated in a particular iteration if

that means that they will become positive (for more details, see GALINDO et al. (2002)).

In the Bayesian estimation of the order-restricted log-linear model, unknown

parameters are treated as random variables instead of constants and the inequality

constraints are dealt with as a part of the prior distribution of the parameter rather

than as a part of the likelihood function (GELFAND, SMITH and LEE, 1992). In our

case, the distribution of the constrained parameters is assumed to be truncated at

zero, implying that a restricted parameter drawn from the posterior distribution,

p(b|n), will never be negative. A random walk Metropolis–Hastings (M–H)

algorithm (see GELMAN, CARLIN, STERN and RUBIN (2003, Section 11.4)) is used

for drawing samples from the posterior distribution of the parameters of the order-

restricted log-linear model. The employed jumping distribution has the form of a

univariate normal distribution for each bk parameter. This distribution is truncated

at zero for k > K1. Two different methods can be used for drawing samples from

truncated normal distributions. The first method involves generating a proposal b�k
from an unconstrained normal distribution Nðbsk; r2kÞ for each iteration s þ 1 until a

non-negative value occurs, which simply amounts to rejecting impermissible values
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for b�k. In the second method, if F is the normal cumulative distribution, F�1 the

inverse normal cumulative distribution, and U a uniform (0, 1) variate, a proposal b�

can be derived from: b� � F�1fF(0) þ U[1 � F(0)]g (GELFAND et al., 1992). Once

the K parameters are sampled from the corresponding proposal distributions, the

candidate parameter vector is accepted with probability

a ¼ min 1;
pðb�jnÞJðbsjb�Þ
pðbsjnÞJðb�jbsÞ

� �
:

Here, J(b�|bs) is the jumping distribution which equals
Q

k f ðb
�
k jb

s
k; r

2
kÞ, where

f ðb�k jb
s
k; r

2
kÞ equals the normal density function Nðb�k jb

s
k; r

2
kÞ if the parameter is

unconstrained and ½Nðb�k jb
s
k; r

2
kÞ�=½1 � F ð0jbsk; r2kÞ� if the parameter is constrained.

The same type of formula applies to J(bs|b�). Several independent parallel sequences

are generated and the
ffiffiffî
R

p
criterion described in GELMAN et al. (2003, Section 11.6) is

employed to determine convergence.

The iterations are started with 10000 burning in samples, with r2k being the inverse

of the square of the number of parameters. Then, we performed another 10 000

burning in iterations, where r2k is equated to the estimated variance from the first

samples divided by the square of the number of parameters. The r2k for the

subsequent iterations were equated to the estimated variance from the second set of

burning in samples divided by the number of parameters. The
ffiffiffiffî
R

p
criterion was

equated to 1.001 for each parameter and determined using six independent chains.

Convergence was checked at each 50 000th iteration. We retained each 50th sample

to compute expected a posteriori (EAP) or posterior mean estimates of the unknown

parameters, which are defined as follows:

EðbjnÞ ¼
Z

bpðbjnÞdb:

After obtaining parameters estimates using one of the two estimation methods

described above, the goodness-of-fit test can be performed by various methods. Five

of these methods are described in the next section.

3 Methods for estimating p-values

The null hypothesis that the order-restricted model holds is tested against the general

alternative, the saturated model. Since some of the model parameters under the null

hypothesis may be on the boundary of the parameter space, the standard asymptotic

theory does not apply and the asymptotic distribution of the test statistic does not

need to be a v2 distribution. In this section, several methods for obtaining p-values

are discussed. First, we introduce the test statistic and the discrepancy measure that

we will use in the description of the methods for computation of the p-values.

Subsequently, we derive the asymptotic distribution of the test statistic. At the end of

this section, two non-asymptotic methods for computing p-values are described.
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3.1 Test statistics and discrepancy measures

The likelihood-ratio test statistic or deviance is defined as

G2 ¼ 2
X
i

ni log
ni
mi

� �
; ð2Þ

where each mi represents an expected frequency estimated by ML. In order to

compare the posterior predictive checks described below with the classical approach,

G2 is also computed for samples simulated from the posterior distribution. RUBIN

and STERN (1994) used this test statistic for monitoring a latent class model.

In addition to the use of test statistics, the Bayesian approach allows the use of

summary measures that are functions of both the unknown parameters and the data

(GELMAN et al., 1996). Since we are interested in checking the goodness-of-fit of an

ordinal categorical data model, a natural summary measure is the deviance, defined as

T ðn; bÞ ¼ 2
X
i

ni log
ni

miðbÞ

� �
;

which is the discrepancy between the observed data and the frequencies sampled

from the posterior distribution, mi(b).

3.2 Asymptotic p-values

Next we derive the asymptotic distribution of the likelihood ratio statistic. Suppose

that the asymptotic distribution of n1=2ðb̂� bÞ is multivariate normal with 0 mean

and variance-covariance matrix I, where b̂ is the ML estimator of b and I can be

approximated by the Fisher information matrix. Let Q be the parameter space,

which is a cone or linear space. Then, Theorem 2.1 in SHAPIRO (1985) shows that the

asymptotic distribution of G2 is the same as the distribution of a Wald statistic

measuring the differences between unrestricted and restricted parameter estimates

min
b2H

ðb̂� bÞ0H�1ðb̂� bÞ;

where H is a function of I. This asymptotic distribution is �v2, which is a mixture of v2

distributions with weights w‘(H,Q), namely,

P �v2 � c
� �

¼
XK2

‘¼0

w‘ H;Hð ÞP v2‘ � c
� �

: ð3Þ

Here v2‘ denotes a chi-square random variable with ‘ degrees of freedom and

P ½v20 � c� ¼ 0. Each w‘(H,Q) represents the probability that exactly ‘ constraints are

activated in a particular sample, which depends on the matrix H and on Q. For our
model, the asymptotic distribution of G2 turns out to be a mixture of

K2 ¼ (R � 1)(C � 1) chi-square distributions.

There are two kinds of problems in the application of the asymptotic method

described in this section: (1) in order to find a p-value one has to specify the values of
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the unknown parameters under H0, which is non-trivial when dealing with inequality

constraints, and (2) the analytic computation of the weights of the �v2 distribution is

impossible if the number of constraints is larger than 5. DARDANONI and FORCINA

(1998, p. 1117) proposed a procedure to obtain fairly accurate estimates using Monte

Carlo simulation methods. Their procedure involves drawing a reasonable number

of parameter vectors from a normal distribution with mean equal to the

hypothesized parameter values and a covariance matrix equal to the estimated

information matrix under H0, and subsequently projecting these parameter vectors

into the restricted parameters space.

As far as the specification of the values of the unknown parameters under H0 is

concerned, there are two options. The first option is to replace the hypothesized

parameter values by their ML estimates under the order-restricted model. The

weights of the �v2 are then approximated by drawing parameter vectors from

Nðb̂;HÞ. This procedure is referred to as a local test by DARDANONI and FORCINA

(1998). Although this local test may underestimate the number of inequalities that

hold as equalities in the population, which will produce too small p values, it is

expected that the difference between the nominal and the actual p-values will be

small if the sample size is large relative to the number of cells in the contingency

table. In the second option, it is assumed that all inequality constraints hold as

equalities, which defines the least favorable value of the parameters under the

model of interest (see e.g. BARTOLUCCI and FORCINA, 2000; DARDANONI and

FORCINA, 1998). The corresponding weights are computed by drawing parameter

vectors from N(0,H). We refer to this procedure as a global test. This global test

tends to produce somewhat too large p-values, which means that the order-

restricted model is accepted more often than expected given a certain significance

level.

3.3 Plug-in p-values

The parametric bootstrap is a generally accepted method for estimating the

distribution of G2 when either the standard approximation does not apply or the

accuracy of such an approximation is suspect. This procedure has been used by

various authors to test the fit of models with inequality restrictions. For example,

RITOV and GILULA (1993) proposed such a procedure in ML correspondence

analysis with ordered category scores, and GALINDO and VERMUNT (2004) applied

parametric bootstrap to test the goodness-of-fit of ordered row-column association

models.

The parametric bootstrap replaces the unknown parameters by their ML

estimates. The distribution of T ¼ G2 is approximated as follows. Firstly, R

independent replicate samples n�1; . . . ; n
�
r ; . . . ; n

�
R are drawn from the expected

frequencies under the target model. Subsequently, the model of interest is estimated

for each replicate sample n�r and the test statistic t�r is computed by equation (2). The

bootstrap p-value is defined as follows:
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p ¼
PR

r¼1 Iðt�r > T Þ
R

;

where I is an indicator function taking the value one if the inequality holds and

zero otherwise. In other words, the plug-in or bootstrap p-value is defined

as the proportion of replication samples with a larger value than the original value of

T.

Let b̂� be the vector of bootstrap parameter estimates. The asymptotic validity

of the bootstrap requires that, with probability one, the asymptotic distribution of

n1=2ðb̂� � b̂Þ equals the asymptotic distribution of n1=2ðb̂ � bÞ. However,

ANDREWS (2000) showed with a simple counter example that this condition does

not hold when inequality constraints are imposed on the model parameters,

implying that the parametric bootstrap may produce inaccurate p-values.

GALINDO and VERMUNT (2004) showed in a simulation study that the parametric

bootstrap may produce p-values that are slightly higher than expected given a

certain nominal level, especially with weak relationship between variables

combined with large samples.

3.4 Posterior predictive p-values

Posterior predictive checks are the Bayesian alternative to the classical statistical

tests (Rubin, 1984; MENG, 1994; GELMAN, MENG and STERN, 1996; BERKHOF,

MECHELEN and HOIJTINK, 2000). A posterior predictive p-value is defined as the

probability that a statistic T(nrep), which is solely a function of the replicated

observations nrep , is larger than or equal to the observed value of T(n) given that the

model M0 is true,

PB ¼ P T ðnrepÞ � T ðnÞjM0; n½ �:

To assess the fit of the order-restricted model, L ¼ 6000 parameter vectors (1000 for

each of the 6 chains) are drawn from the posterior distribution using the M–H

algorithm described in the previous section. For each parameter sample bl, a data set

nrep,l with the same size as the original data set is generated from the multinomial

distribution defined by the expected frequencies under the model. Next, T(n) ¼ G2 is

computed by equation (2). Note that ML estimates for the order-restricted model

must be obtained for each simulated sample making this method computationally

intensive. The value of each T ðnrep;lÞ ¼ G2
rep is compared with the G2 value for the

observed data set. For each replicate sample, also the discrepancy measure

T(nrep,l, bl) is compared with T(n, bl), the discrepancy between the observed data and

the parameter estimates under the model.

In the next section, we compare the two asymptotic p-values and the plug-in p-

values to the posterior predictive p-values computed from the test statistic and the

discrepancy measure described here by mean of a empirical example and a small

simulation study.
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4 An empirical example and a simulation experiment

4.1 Analysis of a four-by-four table

The order-restricted log-linear model will be illustrated with the analysis of a two-

way contingency table taken from AGRESTI�s textbook Categorical Data Analysis

(AGRESTI, 2002, Table 9.3). The two variables of interest are attitude toward

�Teenage birth control� and attitude toward �Premarital sex�. Both variables have four

levels. The data are summarized in Table 1. The research question of interest is as to

whether subjects having more favorable attitudes about teen birth control also tend

to have more tolerant attitudes about premarital sex.

Table 2 reports the ML estimates of the two-way association parameter according

to the order-restricted and the saturated model, as well as the EAP estimates for the

order-restricted model. The latter were obtained using the M–H algorithm and

assuming uniform priors for the unconstrained parameters and uniform densities in

the admissible areas of the parameters space for the constrained parameters. In this

example, there are K1 ¼ (4 � 1) þ (4 � 1) þ 1 ¼ 7 unconstrained main effect

parameters and K2 ¼ (4 � 1)(4 � 1) ¼ 9 two-way association parameter that are

constrained to be zero in the independence model, constrained to be non-negative in

the order-restricted model, and unconstrained in the saturated model.

From Table 2 it can be seen that the number of parameters of the ordinal model in

which the non-negative constraints hold as equalities does not always correspond

with the number of estimates with a negative value in the saturated model. Note that

b10, b13 and b14 are equated to zero in the ordinal model while only b̂10 and b̂14 have
a negative value in the saturated model. Though the value of b̂13 under the saturated
model is rather large, it is restricted to be zero under the ordinal model. Table 2 also

shows that EAP estimates for restricted parameters are all positive.

Table 1. Two-way cross-tabulation of the opinion about premarital sex and the opinion about teenage

birth control.

Premarital sex

Teenage birth control

Strongly disagree Disagree Agree Strongly agree

Always wrong 81 68 60 38

Almost always wrong 24 26 29 14

Wrong only sometimes 18 41 74 42

Not wrong at all 36 57 161 157

Table 2. Estimates of the two-way association parameters obtained with the data of Table 1.

b8 b9 b10 b11 b12 b13 b14 b15 b16

ML Saturated 0.25 0.23 �0.27 0.74 0.48 0.16 �0.36 0.45 0.54

ML Order-constrained 0.25 0.14 0.00 0.52 0.61 0.00 0.00 0.33 0.53

EAP Order-constrained 0.20 0.32 0.12 0.44 0.46 0.14 0.17 0.22 0.42

Bold values are the parameters associated with the violated order restrictions.
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The independence model does not fit the data (G2 ¼ 127.6, p ¼ 0.000), indicating

that there is a significant association between the variables. The order-restricted log-

linear model performs much better than the independence model (G2 ¼ 1.584). A

likelihood-ratio test comparing these two nested models will probably be significant.

The question of main interest in the context of this paper is which method yields the

most reliable p-values when testing the goodness-of-fit of the latter model.

To assess the goodness-of-fit of the order-restricted model using the asymptotic

theory, we have to assume an unique value for the population parameters. The

p-value obtained when assuming that all inequalities hold as equalities in the

population (the global test) equals 0.909 and the critical value for a nominal level

a ¼ 0.05 is 12.28. According to the local test, the p-value equals 0.378 and the

critical value for a ¼ 0.05 is 5.82. The difference between the p-values is caused

by the fact that in the global test, larger weights are given to the v2 distributions

with large number of degrees of freedom (see equation (3)) while in the local test

larger weights are given to the v2 distribution with three or less degrees of

freedom. The plug-in p-value equals 0.503 and is thus larger than the p-value

obtained with the local test and smaller than the one from the global test. The

obtained posterior predictive p-values are 0.355 for the test statistic T(n) ¼ G2

and 0.461 for the discrepancy measure T(n, b), where it should be noted that the

discrepancy measure is the most natural measure for assessing the fit of a model

within a full Bayesian analysis. The fact that the p-value associated with the

discrepancy measure is not very extreme indicates that the model describes the

data well.

4.2 A small simulation experiment

In order to compare the performance of the asymptotic, plug-in, and posterior

predictive p-values, 1000 data set where generated from a two-way cross table whose

parameters were chosen to be equal to the order-restricted ML estimates of the

empirical example. We took these parameter values because the two-way association

terms were quite small, a situation corresponding to the most problematic case in the

simulation study performed by GALINDO and VERMUNT (2004). For each sample, the

order-restricted model was estimated and the five p-values described above were

computed. The proportion of samples in which the order-restricted log-linear model

was rejected at a significance level of 0.05 were 0.036 for the global test, 0.288 for the

local test, 0.197 for the plug-in method, 0.320 for the posterior predictive check

based on the test statistic, and 0.005 for the posterior predictive check based on the

discrepancy measure. As can be seen, none of the methods yields a rejection

proportion that is in agreement with the nominal a level. The global test and the

posterior predictive check with a discrepancy measure are too conservative while the

other methods are too liberal.

According to BAYARRI and BERGER (2000), in the perfect case, p-values should be

uniformly distributed random variables. However, in most problems exact

uniformity of p-values cannot be attained. From Figure 1 it can be seen that all
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five methods produce p-values that clearly deviate from the uniform distribution,

and that, contrary to our expectation, the p-values obtained with the plug-in and the

global test methods are closer to the uniform distribution than the posterior

predictive p-values. These results are, however, in agreement with the results of

BAYARRI and BERGER (2000).

Comparison of the local test to the posterior predictive p-values based on the

statistic shows that these two methods produce similar results. The posterior

predictive p-values has however the advantage that it is not based on asymptotic

assumptions and that the parameters do not need to be fixed to a particular value

(GELMAN et al., 2003).

5 Discussion

We compared classical and Bayesian methods for assessing the goodness-of-fit of

order-restricted log-linear models. The main strengths and weaknesses of the various

procedures were discussed. The main problem of the asymptotic methods is that the

number of parameters that are close to the boundary in the population cannot be

known, and that, depending on the assumption about this number, the test may be

too conservative (if all the constraints are supposed activated) or too liberal (if the

local test is used). Another disadvantage of the asymptotic methods is that in most

situations the weights of the �v2 distribution have to be approximated using

computationally quite intensive simulation methods.

100 300 500 700 900

0.0

0.2

0.4

0.6

0.8

1.0

global
local
boot
ppv st
ppv di

Fig. 1. Rejection rates at all alpha levels for the five methods.
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A disadvantage shared by the local test and the parametric bootstrap is that they

both depend on the reliability of the ML estimates. In our small simulation study, we

encountered that parameter estimates obtained by ML are biased, specially the

order-constrained parameters. Whereas the number of parameters on the boundary

in the postulated population was only two, the proportion of samples with three or

more parameter estimates on the boundary was 0.749. This may be an explanation

for the bad performance of the parametric bootstrap in the simulation study.

However, the simulation study also shows that the posterior predictive checks do not

produce more accurate p-values than the parametric bootstrap. Not only are the

local test and the bootstrap procedure too liberal, but the posterior predictive

p-value corresponding to the statistic turns out to be too liberal.

A more extended simulation study should be performed to assess whether our

results can be generalized. An alternative solution to the testing problem may be to

use plug-in p-values in which the unknown parameters are replaced by an estimate

other than the maximum likelihood estimate, for example, the posterior mean or

median.
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