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1 Introduction
The log-linear model has become a widely used method for the analysis ofmultivariate frequency tables. A general approach for analyzing categoricaldata which combines three important extensions of the standard log-linearmodel will be presented. Modi�ed path models, latent class models andmodels for nonresponse are integrated within one general model.Log-linear models are used to describe the observed frequencies or pro-portions in a multi-way cross-tabulation by means of a limited number ofparameters. In the standard log-linear model, no distinction is made be-tween dependent and independent variables. However, if one is interested inthe e�ects of a set of independent variables on a dependent variable, one canuse a `regression' variant of the standard log-linear model, the well knownlogit model (Goodman, 1972; Agresti, 1990). When the dependent variablehas more than two categories it sometimes also called a multinomial responsemodel (Haberman, 1979; Agresti, 1990).Goodman (1973) introduced a `path analytic' extension of the logit model.He proposed a log-linear model which takes a priori information on the causalordering of the variables into account. The so-called `modi�ed path analysisapproach' consists of specifying a `recursive' system of logit models in whicha variable appearing as the dependent variable in a particular logit equationmay appear as one of the independent variables in one of the next equations.Often we want to study phenomena which are di�cult to observe directly.This has given rise to a family of measurement models for identifying unob-served or latent variables from a set of observed variables. The latent classmodel is a `factor analytic' model for categorical data (Lazarsfeld and Henry,1968; Goodman 1974). Haberman (1979) demonstrated that the latent classmodel is equivalent to a log-linear model in which one or more of the variablesare unobserved.

1



For interval level data, the combination of factor analysis and path anal-ysis led to the famous Lisrel model (J�oreskog and S�orbom, 1988). Hagenaars(1990, 1993) developed a `Lisrel' model for categorical data by combining themodi�ed path model and the latent class model. He implemented this so-called `modi�ed Lisrel approach' into his latent class analysis program LCAG(Hagenaars en Luijkx, 1990).As mentioned above, latent class models are log-linear models in whichone or more variables are completely unobserved. However, in social re-search, and especially in panel studies, we often are confronted with anothertype of missing data, i.e., with variables which are unobserved for a part ofthe sample due to panel attrition, item nonresponse or the data collectiondesign. Fuchs (1982) proposed a method which makes it possible to use par-tially observed data when estimating the parameters of a log-linear model.Fay (1986) extended Fuchs' work by making it possible to specify and testexplicitly ones assumptions with regard to the mechanism causing the miss-ing data. He proposed to model the response mechanism via log-linear pathmodels in which so-called response indicators are included.Both Hagenaars' modi�ed Lisrel models and Fay's models for nonresponseare modi�ed path models in which some information is missing on particularvariables. By combining these two approaches, one obtains a more generalmodi�ed path model in which unobserved variables, partially observed vari-ables, completely observed variables and response indicators can be included(Vermunt, 1988, 1995; Hagenaars, 1990). A program called `EM (Log-linearand event history analysis with missing data using the EM algorithm) hasbeen developed which can be used to estimate this rather general log-linearmodel by means of the EM algorithm (Vermunt, 1993).The three next sections present log-linear path models, log-linear mod-els with latent variables, and log-linear models for nonresponse, respectively.The models are illustrated by means of an application in Section 5. The datafor the example is taken from a long-term Dutch panel study on educationaland occupational careers of persons who were in the last grade of primaryschool in 1952, the so-called 'extended Mathijssen-Sonnemans cohort' (Har-tog, 1986; Vermunt, 1988). The data are collected via a very speci�c datacollection design which resulted in a lot of missing data in addition to theusual panel attrition. The other relevant aspects of the data will be intro-duced when discussing the di�erent kinds of models.
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Figure 1: Modi�ed Lisrel model (Model 6)
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2 Log-linear path models
Suppose we want to investigate the causal relationships among father's ed-ucational level (D), father's occupation (E), sex (F ), school ability at theend of the primary school (X), educational level (G) and occupation (H) bymeans of log-linear analysis. The data required for such an analysis is thesix-way cross-tabulation DEFXGH of the above-mentioned variables. Anobserved cell frequency in this cross-table will be denoted by ndefxgh, wherethe lower case subscripts denote the categories of the variables D, E, F , X,G and H. In contrast to standard log-linear models, we do not only want toestimate the strength of the association among these variables, but we alsowant to use a priori information on the causal order among the variables.Figure 1 shows the assumed causal order among the variables used in theexample. The variables D, E and F will be treated as exogenous variables.The other ones are endogenous, where X is assumed to be posterior to G,and G is assumed to be posterior to H. For the moment, it will be assumedthat all variables are observed directly. In the next section, the variables A,B and C appearing Figure 1 will be used as indicators for the latent variableX.
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2.1 Probability structure
Let �defxgh denote the probability that D = d, E = e, F = f , X = x, G = gand H = h. Using the a priori information on the causal order among thevariables, �defxgh can be written as (Goodman, 1973)

�defxgh = �def �xjdef �gjdefx �hjdefxg : (1)
So imposing a causal ordering can be simply accomplished by decomposingthe joint probability into a product of marginal and conditional probabilities.This is a straightforward way to express that the value of a particular variablecan only depend on the preceding variables and not on the posterior ones.For instance, if the causal order is true, G can only depend on the precedingvariables D, E, F and X, but not on the posterior variable H. Therefore,the probability that G = g depends only on the values of D, E, F and X,and not on the value of H.Decomposing the joint probabilities into a set of marginal and conditionalprobabilities is only the �rst step in describing the causal relationships amongthe variables under study. Generally, one also wants to reduce the number ofparameters in some way, while the right hand side of Equation (1) contains asmany unknown conditional probabilities as cell frequencies. In other words,the model of Equation (1) is a saturated model in which it is assumed that aparticular dependent variable depends on all its posterior variables, includingall their interactions terms.The simplest way to specify more parsimonious models is to restrict di-rectly the conditional probabilities appearing in Equation (1). Suppose that,as depicted in Figure 1, G depends on D, E and X, but not on F . Thisassumption can be incorporated in the model by replacing �gjdefx by �gjdexsince in that case �gjdefx = �gjdex. This is the easiest procedure for restrict-ing the number of parameters. It is also applied in, for instance, discreteMarkov models (Van de Pol and Langeheine, 1990). When the same kindsof restrictions can be imposed on the other elements appearing at the righthand side of Equation (1), the number of parameters can be reduced a lot.For instance, on the basis of the relationships depicted in Figure 1, a morerestricted version of the general Equation (1) would be

�defxgh = �def �xjdef �gjdex �hjefxg : (2)
Thus, in addition to the already mentioned restriction on �gjdefx, H is as-sumed not to depend directly on D, that is, �hjdefxg = �hjefxg.
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This rather simple procedure for obtaining more restricted models has,however, one important disadvantage. The dependent variable must alwaysbe related to the joint independent variable. For instance, in Equation 2, Gdepends on the joint variable DEX. Thus, if a particular variable is thoughtto inuence the dependent variable concerned, all interactions with the otherindependent variables must be included in the model as well. As a result,the model will generally still contain more parameters than necessary.
2.2 Logit models for probabilities
By using a log-linear or logit parameterization of the marginal and con-ditional probabilities, it is possible to specify and test more parsimoniouscausal models for categorical data. This leads to what Goodman called a`modi�ed path analysis approach' (Goodman, 1973). This approach con-sist of specifying a `recursive' system of logit models. As in path analysis,a particular variable which appears as dependent variables in one equationcan be used as independent variables in one of the next equations. The re-lationships among the exogenous variables can be restricted by means of alog-linear model. A model for the relationships among the variables used inthe example would consist of four so-called modi�ed path steps or submodels:one model for the exogenous variables D, E and F , and three logit models inwhich X, G and H appear as dependent variables. Because of simplicity ofexposition, here only simple hierarchical log-linear models will be used, butthe results can easily be generalized to log-linear models which include moresophisticated restrictions on the parameters, such as symmetric relationships,linear-by-linear interactions and log-multiplicative row and column e�ects.Suppose that G depends on D, E and X, and that there exist no threevariables interactions between G and the independent variables (see Figure1). In that case, the following logit parameterization of the conditional prob-ability concerned would apply,

�gjdefx = �gjdex = exp �uGg + uDGdg + uEGeg + uXGxg �Pg exp �uGg + uDGdg + uEGeg + uXGxg � ;
where the u's denote log-linear parameters which ful�ll the well known ANOVA-like constraints. Specifying this logit model for �gjdefx is equivalent to speci-fying log-linear model fDEFX;DG;EG;XGg for marginal table DEFXG,
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or
logmdefxg = �DEFXdefx + uGg + uDGdg + uEGeg + uXGxg ;

where mdefxg denote the expected frequencies in the marginal table con-cerned. Moreover, �DEFXdefx denotes the e�ect which �xes the marginal distri-bution of the dependent variables. Including this e�ect makes a log-linearmodel equivalent to a logit model (Goodman, 1972; Agresti, 1990).So specifying a causal model for a set of categorical variables can simplybe accomplished by specifying separate log-linear or logit models for di�er-ent marginal tables, or subtables. The marginal tables are formed by thevariables used in the previous marginal table and the variable which appearsas dependent variable. In this case, one must specify log-linear models fortables DEF , DEFX, DEFXG and DEFXGH, where the margin formedby the variables of the previous marginal table must always be �xed. Good-man (1973) presented his `modi�ed path analysis approach' showing how tospecify separate log-linear models for di�erent marginal tables. And next,he showed how to combine the expected frequencies of the separate submod-els by an equation similar to Equation (1). Note that the probabilities inEquation (1) can be obtained by means of the expected frequencies via
�gjdefx = mdefxgPgmdefxg : (3)

One additional remark has to made with regard to the modi�ed path models.When a particular variable does not depend on all its preceding variables,the procedure proposed by Goodman can be modi�ed somewhat. As al-ready mentioned above, G does not depend on F and therefore �gjdefx =�gjdex. Therefore, the log-linear restrictions which were imposed on �gjdefxcan also be imposed directly on �gjdex, namely by means of log-linear model
fDEX;DG;EG;XGg for marginal table DEXG, or

logmdexg = �DEXdex + uGg + uDGdg + uEGeg + uXGxg :
Estimating parameters in a marginal table which includes only the dependentvariables which are really used has two important advantages: it is compu-tationally more e�cient, and, moreover, it prevents �tted zeroes when the�xed margin DEFX contains observed zeroes cell which do not appear inthe margin DEX.
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2.3 Estimation
Maximum likelihood estimates for the log-linear parameters and the expectedfrequencies for the various subtables can be obtained using standard pro-grams for log-linear analysis. In that case, the models for the various sub-tables must be estimated separately. The estimated cell probabilities for theoverall model can be computed via Equations (3) and (1). Model testing canbe performed, for instance, by means of the log-likelihood ratio statistic L2.The various submodels can be tested separately. A test of the overall �t cansimply be obtained by adding both the L2-values and the degrees of freedomof the various submodels.A program called `EM has been developed to estimate log-linear pathmodels without the necessity to set up the di�erent marginal tables (Vermunt,1993). In `EM , specifying a log-linear path model is the standard way ofmodeling an observed frequency table. The current available version of theprogram (`EM 0.11) is based on the original procedure of Goodman, but themost recent working version uses the more e�cient procedure in which thesubtables contain only the independent variables which are really used. Theprocedure implemented in `EM to estimate hierarchical log-linear modelsis the iterative proportional �tting algorithm (Agresti, 1990). But `EMcan also be used to estimate more complex log-linear models in which theparameters are linearly restricted in some way (Haberman, 1979; Agresti,1990). This is accomplished by allowing the user to specify his own designmatrix for particular log-linear e�ects. In `EM , it is also possible to us log-multiplicative e�ects, such as the type II association models developed byGoodman (Goodman, 1979; Clogg, 1982; Xie, 1992). These non-hierarchicallog-linear models are estimated by means of the one-dimensional Newtonalgorithm (Goodman, 1979; Vermunt, 1995). This algorithm di�ers fromthe well known Newton-Raphson algorithm in that only one parameter isupdated at once instead of updating all parameters simultaneously. It is avery simple and fast algorithm per iteration which, as we will see in the nextsection, �ts very well into the EM algorithm used to estimate models withmissing data.
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3 Log-linear models with latent variables
In the previous section, it was assumed that all variables used in the causallog-linear model can be directly observed. However, often one encountersproblems in which several indicators are used to measure a concept whichitself cannot be measured directly. In the example, the variable school ability(X) is such a latent variable. Three di�erent school ability tests, denoted byA, B and C, are used as indicators for X.
3.1 Latent class models
Latent class analysis is a variant of factor analysis which is especially suitedfor analyzing categorical latent and manifest variables. The latent classmodel was �rst proposed by Lazarsfeld (Lazarsfeld and Henry, 1968). Good-man (1974) and Haberman (1979) made the model practically applicable byintroducing estimation and test procedures. As factor analysis, the latentclass model can be used to identify the latent construct X using the indi-cators A, B, C. Moreover, just as factor analysis, the latent class modelis based on he assumption of local independence. Using the classical pa-rameterization proposed by Lazarsfeld, the latent class model for one latentvariable X and three indicators A, B, C can be written as

�xabc = �x �ajx �bjx �cjx ; (4)
where �xabc denotes the joint probability of the latent variable and its threeindicators, �x denotes the probability of belonging to particular latent class,and �ajx denotes the probability that A = a given X = x. The latentdistribution is assumed to be formed byX� mutually exclusive and exhaustivecategories, that is, PX�x=1 �x = 1. From Equation 4, it can easily be seen that,given a particular value of X, the variables of A, B and C are assumed tobe independent.Haberman (1979) demonstrated that the unrestricted latent class modelcan also be parametrized as a log-linear model in which one or more variablesare unobserved. Using the log-linear parameterization, the latent class modelof Equation (4) can be written as

mxabc = u+ uXx + uAa + uBb + uCc + uXAxa + uXBxb + uXCxc :
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This is equivalent to writing the separate conditional response probabilitiesin terms of log-linear parameters (Haberman, 1979; Formann, 1992; Heinen,1993). For instance, the probability that A = a given X = x can also bewritten as
�ajx = exp �uAa + uXAxa �Pa exp (uAa + uXAxa ) :

Formann (1992) used this parametrization of the latent class model for theformulation of his linear logistic latent class model. Heinen (1993) used thisparameterization to demonstrate the equivalence between latent class modelsand latent trait models in which the latent variable is discretized (see alsoVermunt and Georg, 1995).
3.2 Modi�ed Lisrel models
Several extensions of the standard latent class model have been proposed,such as models for more than one latent variable (Goodman,1974a, 1974b;Haberman 1979), models with so-called external variables (Clogg, 1981) andmodels for multiple-group analysis (Clogg and Goodman, 1984; McCutcheon,1987). A limitation of these extensions is, however, that they are all devel-oped within the framework of either the classical or the log-linear latent classmodel. Therefore, it is not always possible to postulate the wanted a prioricausal order among the structural variables incorporated the model.Hagenaars (1990, 1993) solved this problem by combining the modi�edpath model discussed in the previous section with the latent class model.More precisely, he showed how to specify a modi�ed path model for thejoint distribution of the external and the latent variables in a latent classmodel. Not surprisingly, he called this extension which he implemented inhis program LCAG (Hagenaars and Luijkx, 1990) a modi�ed Lisrel approach.If X is a latent variable with indicators A, B and C, and the same causalorder among D, E, F , X, G and H is assumed as in the previous section(see Figure 1), the joint probability of all variables can be written as

�defxghabc = �def �xjdef �gjdefx �hjdefxg �abcjdefxgh ; (5)
where

�abcjdefxgh = �abcjx = �ajx �bjx �cjx :
9



Thus, including latent variables in a modi�ed path model involves specifyingone or more additional modi�ed path steps in which the relationships amongthe latent variables and their indicators are speci�ed. These additional stepsform the measurement part of the model, while the other steps form thestructural part of a modi�ed Lisrel model.
3.3 Estimation
Obtaining maximum likelihood estimates for the parameters of latent classmodels, log-linear models with latent variables and modi�ed Lisrel modelsis a bit more complicated than for log-linear models in which all variablesare observed. Estimation can be performed, for instance, by means of theEM algorithm (Dempster, Laird and Rubin, 1977). The EM algorithm isa general iterative algorithm to estimate models with missing data. It con-sists of two separate steps per iteration cycle: an E(xpectation) step and aM(aximization) step.In the E step of the EM algorithm, the missing data is estimated. In ourcase, we must obtain estimates for the unobserved frequencies of the completetable DEFXGHABC, the n̂defxghabc's, conditional on the observed data andthe parameters estimates from the last EM iteration. This is accomplishedusing the observed incomplete data and the parameter estimates from thelast iteration by

n̂defxghabc = ndefghabc �̂xjdefghabc : (6)
Here, ndefghabc denotes an observed frequency, and �̂xjdefghabc denotes theprobability that X = x given the observed variables.In the M step, standard estimation procedures for log-linear models, suchas IPF or Newton-Raphson, can be used to obtain improved parameter esti-mates using the completed data as if it were the observed data. In fact, thelikelihood function in which the n̂defxghabc's appear as data, sometimes alsocalled the complete data likelihood, is maximized. The improved parame-ter estimates are used again in the E step to obtain new estimates for thecomplete table, and so on. The EM iteration continue until convergence isreached, for instance, a minimum increase in the likelihood function.Hagenaars' latent class analysis program LCAG (Hagenaars and Luijkx,1990) includes an option to specify a modi�ed path model for the joint latent
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distribution. Observed variables can be included in the modi�ed path modelby means of a trick, namely by making them quasi-latent via particularrestrictions on the conditional probabilities. This, however, can become alaborious operation, especially if, as in the example, many observed variablesappear in the structural part of the model.The program `EM is especially developed for estimating modi�ed pathmodels with latent variables. Latent and manifest variables are treated inexactly the same way by the program. That is why `EM is more user friendlyand more e�cient than LCAG for estimating modi�ed Lisrel models. More-over, in LCAG only hierarchical log-linear models can be speci�ed, while in`EM , as we already saw in the previous section, all kinds of linear restric-tions can be imposed on the log-linear parameters. Although in `EM 0.11the number of cells of the cross-tabulation of all variables is still limited, thecurrent working version of `EM can handle much bigger problems becausethe size of an application does not depend on the total number of cells in thecomplete table anymore.The algorithm used in `EM is a modi�ed version of the original EM algo-rithm because the M step always consists of only one iteration. So generallythe complete data likelihood is not maximized but only improved within aparticular M step. This is a special case of the so-called GEM algorithmwhich states that every increase in the complete data likelihood also leadsto an increase of the incomplete data likelihood we actually want to maxi-mize (Dempster, Laird and Rubin, 1977; Little and Rubin, 1987). In fact,the algorithm which is used in `EM is also a version of the ECM algorithm(Meng and Rubin, 1993). In the ECM algorithm, the M step is replaced bya conditional maximization (CM) step. Conditional maximization impliesthat instead of improving all the parameters simultaneously, subsets of pa-rameters are updated �xing the other ones at their previous values. Thisis just what is done by IPF and by the one-dimensional Newton algorithm.Meng and Rubin (1993) state that such simple and stable linear conver-gence methods are often more suitable for the M (or CM) step of the EM (orECM) algorithm than superlinear converging but less stable algorithms, suchas Newton-Raphson. This GEM or ECM algorithm converges in nearly thesame amount of iterations as the true EM algorithm. This makes it muchfaster than the true EM algorithm, especially in applications where a real Mstep would need many iterations to converge.

11



4 Log-linear models for nonresponse
In survey research, it almost always occurs that information on some vari-ables is missing for a part of the sample. This can be caused, for instance, byitem-nonresponse, by panel attrition or by the data collection design. Theeasiest way to deal with partially observed variables is to perform the analy-sis using only complete cases. This, however, may lead to biased parameterestimates in case the nonresponse is selective in some way. Another possi-bility is to impute the missing data. The model based approach to partiallyobserved data that will be discussed in this section is strongly related to im-putation. The main di�erence between imputation and the approach to bepresented below is that the data are imputed during the estimation of themodel parameters and not beforehand. Moreover, the approach presentedhere allows to specify and test models for the mechanism causing the missingdata.The data of the 'extended Mathijssen-Sonnemans cohort' were collectedvia a very speci�c data collection design which resulted in a lot of missingdata in addition to the usual panel attrition. In 1952, 5823 pupils from thelast grade of all primary schools in the Dutch province Brabant were testedwith regard to their school ability (A, B and C). For 5387 of these pupils,the head master was able to supply information on the occupation of theirfather (E). In 1957, information on the educational level of the father (D)was collected for the children who had a school ability score above the mean.In 1958 and 1959, the same information was collected for sons of farmersand workers. Altogether, information on the father's educational level wascollected for 2740 persons. In 1983, the complete group was approached againto obtain information about their �nished education level and their currentoccupation (G and H). This resulted in useful information for 2587 person.This group contains more males because more e�ort was made to get theirinformation, that is, they were approached more often than females in caseof nonresponse.Summarizing, starting with the 5387 persons for which information isavailable on A, B, C, E and F , there are four subgroups of persons withexactly the same kind of information. Subgroup DEFGHABC consists of1279 persons, subgroup EFGHABC of 506, subgroup DEFABC of 1344and subgroup EFABC of 1358, where the capital letters indicate whichvariables are observed for the subgroup concerned.
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4.1 Fuchs' approach
Fuchs (1982) proposed to apply the EM algorithm to incorporate missingdata when estimating the parameters of a log-linear model. Hagenaars (1990)showed how to adapt Fuchs' approach when the log-linear model concernedcontains latent variables, such as the modi�ed Lisrel models discussed above.In that case, one has a double missing data problem, namely partially ob-served variables and latent variables. Let ndefghabc, nefghabc, ndefabc, nefabc de-note the observed frequencies in the subgroups DEFGHABC, EFGHABC,DEFABC and EFABC, respectively. Applying Fuchs' method equates re-placing the E step of Equation (6) by

n̂defxghabc = ndefghabc �̂xjdefghabc + nefghabc �̂dxjefghabc
+ ndefabc �̂xghjdefabc + nefabc �̂dxghjefabc :

The M step of the EM algorithm is equivalent to the one discussed in theprevious section. This version of the EM algorithm is implemented in Hage-naars' program LCAG (Hagenaars and Luijkx, 1990).Although perhaps it might not be immediately clear, the method pro-posed by Fuchs (1982) is based on the assumption that the response mech-anism is ignorable for likelihood based inference (Rubin, 1976; Little, 1982;Little and Rubin, 1987). The response mechanism is called ignorable if forevery sampled unit the response distribution is independent of the missingdata. In other words, for every subgroup it is assumed that the probabilityof belonging to that particular subgroup, or having missing information onjust those variables, depends only on the observed variables. If the responsemechanism can be assumed to be ignorable, cases with missing data canbe used to estimate the parameters without the need to specify the exactignorable response mechanism. This results from the fact that under theignorable condition the likelihood can be partioned into a part which de-pends only on the model parameters and a part which depends only on theresponse mechanism. Both parts can be maximized separately. So also if theresponse mechanism is speci�ed, every ignorable response mechanism leadsto the same parameters estimates. That is the reason why when applyingFuchs' approach, the least restrictive ignorable response mechanism can beassumed to be valid: missing at random (=MAR). However, Fuchs actuallytests the most restrictive form of ignorable nonresponse mechanism, namelymissing completely at random (=MCAR) (Vermunt, 1995). After presenting
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Fay's approach, I will discuss more in detail the various kinds of responsemechanism.
4.2 Fay's approach
Although ignorability of the response mechanism is often a reasonable as-sumption, Fuchs' method has particular disadvantages which can be over-come by making use of an extension which was independently proposed byFay (1986) and by Baker and Laird (1988). Using Fuchs' method it is neitherpossible to test a priori assumptions about the response mechanism, nor tospecify nonignorable response mechanisms.Fay (1986) proposed to include response indicators into a log-linear pathmodel in which the relationships among the survey variables and the mech-anism causing nonresponse are speci�ed together. A response indicator isa variable which indicates whether a particular set of variables is observedor not. In the example, two response indicators are needed, one indicatingwhether D is observed or not and another one indicating whether G and Hare observed or not. They will be denoted by the letters R and S, whereR = 1 means that D is observed and R = 2 that D is missing. And, S = 1means that G and H are observed and R = 2 that they are not observed.It will be clear that the levels of R and S identify the four above-mentionedsubgroups.The two response indicators can be used in a modi�ed path model inthe same way as the other variables. That makes it possible to relate, forinstance, the probability of responding on D (=R) to the variables used inthe analysis. There is, however, one restriction with regard to the use of theresponse indicators. They can only be used either as dependent variablesor as independent variables in a logit equation in which another responseindicator is explained. Because the response indicators are not allowed toinuence the other variables, the modi�ed Lisrel model from the previoussection can simply be extended by including two additional modi�ed pathsteps,

�defxghabcrs = �def�xjdef�gjdefx�hjdefxg�abcjx�rjdefxghabc�sjdefxghabcr :
Of course, the conditional probabilities for R and S have to be restricted insome way to get a model which is identi�able.
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As mentioned above, for the example data set, the mechanism causingthe missing data is at least partially known. The probability of observing Ddepends on A, B and C, or on X, and on the interaction between E and F .The probability of observing G and H depends on F . Thus, according to theavailable information on the response mechanism, plausible logit models forR and S are
�rjdefxghabc = �rjefx = exp �uRr + uXRxr + uERer +FRfr +uEFRefr

�
Pr exp �uRr + uXRxr + uERer +FRfr +uEFRefr

� ;

�sjdefxghabcr = �sjfr = exp �uSs + uFSfs + uRSrs �Ps exp �uSs + uFSfs + uRSrs � : (7)

This is equivalent to assuming log-linear model fEFX;XR;EFRg for marginaltable EFXR and model fFR;FS;RSg for table FRS. The e�ect RS is in-cluded in the last model to reproduce exactly the number of persons in everyparticular subgroup.
4.3 Ignorable versus nonignorable response mechanisms
Because much of the theoretical work on nonresponse is based on the dis-tinction between ignorable and nonignorable response mechanisms, I will paysome attention to the link between the approach presented here and thesetwo types of response mechanisms (see also Vermunt, 1995).As we saw above, the nonresponse is MAR if the probability of belongingto a particular subgroup depends only on the observed variables for everysample unit. So in terms of the response indicators R and S, the responsemechanism is MAR if �rsjdefxghabc equals to either �11jdefghabc, �21jefghabc,�12jdefabc or �22jefabc. This is the least restrictive assumption about the dis-tribution of R and S under which the response mechanism is ignorable forlikelihood based inference. Note that the values on R and S depend ondi�erent variables for the di�erent subgroups. More precisely, in every sub-group, the probability of observing just those variables depends only on theobserved variables. In other words, the probability of belonging to a par-ticular subgroup is independent of the missing variables for the subgroupconcerned, including the latent variable X. These rather strange restrictionson the probability on R and S can, however, not be imposed by means of the
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approach presented here. So there is no direct link between the log-linearmodels for nonresponse and the distinction between ignorable and nonignor-able nonresponse.Using the models for nonresponse, the least restrictive model which ful�llsthe requisites of an ignorable response model is a model in which the valuesof the response indicators depend on all variables which are observed for allpersons, that is, �rsjdefxghabc = �rsjefabc. On the other hand, in the mostrestrictive ignorable model, the MCAR model, �rsjdefxghabc = �rs, that is,the response indicators are assumed to be independent of all other variables.The MCAR random model is the response model which is actually tested byFuchs (1982).The only situation in which there exist a log-linear path model which isequivalent to a MAR response mechanism occurs in case of nested or mono-tone patterns of nonresponse (Vermunt, 1995). A pattern of nonresponseis nested when particular variables are missing more often than other ones,and for all persons with a particular missing variable all variables which aremissing equally or more often are missing as well. Nested patterns of non-response occur often in panel studies: nonparticipation in one panel wavegenerally leads to nonparticipation in the subsequent waves too. In case ofa nested pattern of nonresponse, a MAR model can be obtained by specify-ing a log-linear path model in which every response indicator is assumed todepend on the variables which are observed more often and on the responseindicators belonging to these variables.All response models which do not ful�ll the above-mentioned conditionsfor ignorability are nonignorable. If R depends on D, it is clear that theresponse mechanism is nonignorable since the variable with missing data isdirectly related to its own response indicator. In other words, the probabilityof nonresponse depends on the variable with missing data. But also whenS depends on D, the response mechanism is nonignorable. Although S doesnot indicate missingness on D, the mechanism is nonignorable because D ismissing for some persons. The response model proposed in Equations (7) isnonignorable as well because both R and S depend on X which is missingfor all persons.It will be clear that, although the distinction between ignorable and non-ignorable response mechanisms is valuable, it is just a theoretical distinctionbased on the fact whether it is necessary or not to specify the response mech-anism for likelihood inference about the model parameters. Ignorability has
16



no substantive meaning like the log-linear models for nonresponse discussedin this section. Therefore, one must be cautious when labeling a particu-lar log-linear response model as ignorable or nonignorable. In the contextof log-linear models for nonresponse, to my opinion, it has more sense touse another type of classi�cation of response mechanism: the probability ofresponding on a particular variable depends also on the variable concernedor it does only depend on other variables. In the former case, the responsemechanism is always nonignorable. Baker and Laird (1988) gave a nice ex-ample of an application in which the probability of nonresponse is allowedto depend on the variable with nonresponse. In the latter case, the responsemechanism can be either ignorable or nonignorable.
4.4 Estimation
Fay (1986) proposed to estimate his causal models for patterns of nonresponseusing the EM algorithm. However, he did not consider log-linear models withlatent variables. Vermunt (1988, 1995) demonstrated how to adapt the Estep of the EM algorithm proposed by Fay to situations in which also latentvariables are included in the modi�ed path model (see also Hagenaars, 1990).In fact, it is the same kind of solution as Hagenaars applied to generalizeFuchs' approach (Hagenaars, 1990). In the E step, the unobserved frequenciesof the table DEFXGHABCRS are computed via

n̂defxghabc11 = ndefghabc �̂xjdefghabc11 ;
n̂defxghabc12 = nefghabc �̂dxjefghabc12 ;
n̂defxghabc21 = ndefabc �̂xghjdefabc21 ;
n̂defxghabc22 = nefabc �̂dxghjefabc22 :

It can be seen that in every subgroup, or in every level of the joint responseindicators, the expectation of the complete data given the observed dataand the parameters estimates from the last iteration is obtained in a slightlydi�erent manner.The above-mentioned procedure is the standard way of handling partiallyobserved data in the program `EM (Vermunt, 1993). So estimation of log-linear models for nonresponse, including models with latent variables, caneasily be performed using `EM . After specifying which variables are manifestvariables, latent variables and response indicators, all variables can be used
17



in the same way when specifying the various submodels of a modi�ed pathmodel.

5 Application
In this section, an application of the models discussed in the previous sec-tions will be presented. For that purpose, the already mentioned 'Mathijssen-Sonnemans data' will be used. The observed variables are again: three abil-ity tests (A, B and C), father's educational level (D), father's occupation(E), sex (F ), educational level (G) and occupation (H). All variables aredichotomized, except for father's education, which has the following 4 cat-egories: employees (1), independents (2), workers (3) and others (4). Thedichotomous variables all have the categories low (1) and high (2), exceptfor the variable sex (F ), which has the categories male (1) and female (2).The reason why most variables are dichotomized is that when preparing thefrequency tables, the models had to be estimated by means of LCAG (Ver-munt, 1988). But still days of computer time were needed to estimate themodels presented in this section. Using `EM 0.11, estimation of each of themodels to be presented below toke less than two minutes.First, I will present the analysis performed using only complete cases.Then, incomplete cases will be used in the analysis by means of Fuchs' (1982)procedure, that is, assuming MCAR nonresponse. And �nally, Fay's modelsfor nonresponse will be used to specify and test di�erent kinds of models forthe response mechanism.
5.1 Using only complete cases
The model which serves as starting point is the modi�ed Lisrel model givenin Equation (5), where the aim is, of course, to restrict the marginal andconditional probabilities using a logit parameterization.As recommended by Hagenaars (1993), when specifying a modi�ed Lisrelmodel, one can best start by investigating the measurement part of the model,or in other words, the relationships among the latent variables and theirindicators. In this case, a latent class model has to be speci�ed for therelationships among the latent ability variable X and the three ability testA, B, and C. The latent ability variable X is assumed to have two categories.
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Model �t Conditional tests
Model L2 df p models L2 df p

1 fDEFXGH;XA;XB;XCg 363.6 378 .70
2 (1) + fDE;DFg 374.2 385 .64 (2)-(1) 10.6 7 .18
3 (1) + fDX;EFXg 366.6 385 .74 (3)-(1) 3.0 7 .89
4 (1) + fDG;EG;XGg 388.5 404 .70 (4)-(1) 24.9 26 .52
5 (1) + fEH;FH;XH;GHg 417.7 435 .72 (5)-(1) 54.1 57 .58
6 (1) + (2) + (3) + (4) + (5) 458.8 474 .68 (6)-(1) 95.2 96 .50

Table 1: Test results for some models using only complete cases
To test the �t of the measurement model, one can start assuming therelationships among the other variables to be saturated. So no restrictionsneed to be imposed yet on the relationships among the structural variablesD, E, F , X, G and H. The simplest way to accomplish this is by spec-ifying log-linear model fDEFXGH;XA;XB;XCg for the complete tableDEFXGHABC. Note that, given X, the variables A, B and C are not onlyassumed to be mutually independent, but also to be independent of the jointvariable DEFGH. As can be seen from the test results given in Table 1, themeasurement model (Model 1) �ts very well (L2 = 363:6; df = 378; p = :70).Next, it was tried to �nd a more parsimonious speci�cation for the struc-tural relationships among the variables D, E, F , X, G and H. For thatpurpose, a step-wise model selection procedure was used per subtable, leav-ing the other submodels saturated. By testing these models against eachother and against Model 1, it could be seen whether the more parsimoniousspeci�cation for the marginal or conditional probability concerned deterio-rated the �t or not. Here, only the test results for the best �tting subtablespeci�c models will be presented.For the relationships among the exogenous variables father's education(D), father's occupation's (E) and sex (F ), model fDE;DFg (Model 2)provides a good description of the data. Model 2 does not �t worse thanModel 1 (L2 = 10:6; df = 7; p = :18). Since it is not plausible that in thepopulation sex is related to the father's educational level, the signi�cance ofthe e�ect DF is almost certainly the result of the selectivity of the nonre-sponse.The latent variable ability (X) was found to depend on D, E, F on the in-teraction ofE and F . Restricting �xjdef via log-linear model fDEF;DFX;EXgfor marginal table DEFX (Model 3) does not deteriorate the �t compared
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to Model 1 (L2 = 3:0; df = 7; p = :89).A good �tting parsimonious model for �gjdefx (educational level) is ob-tained via model fDEFX;DG;EG;XGg for subtable DEFXG. So G de-pends on D, E and X. The conditional test of this model (Model 4) againstModel 1 gives a nonsigni�cant result (L2 = 24:9; df = 26; p = :52).Variable H (occupational level) seemed to depend only on E, F , X andG. Model fDEFXG;EH;FH;XH;GHg for table DEFXGH (Model 5)does no �t worse than Model 1 (L2 = 54:1; df = 57; p = :58).The �nal model in which all best �tting submodels were combined (Model6) �ts the data very well (L2 = 458:8; df = 474; p = :68. Moreover, like allsubmodels presented above, it does not signi�cantly �t worse than Model 1(L2 = 95:2; df = 96; p = :50. The �nal model which is depicted in Figure 1is very parsimonious. It contains only 34 independent log-linear parameters.Table 2 presents the estimates for the two-variable and three-variableinteraction terms according to Model 6. The log-linear parameters for themeasurement model show that the indicators are strongly related to the latentvariable X: uXA11 = :9225, uXB11 = :5307 and uXC11 = :6829.The parameters for the relationships among the exogenous variables in-dicate that children of employees have higher educated father's that otherchildren (uDE11 = �:8441). The value .1233 for uDF11 indicates that males havelower educated father's than females. It can be expected that this arti�ciale�ect disappears when the partially observed data is used in the analysis.Children of lower educated father's have a much lower school ability thanchildren of higher educated father's (uDX11 = :4125), males have a lower schoolability than females (uFX11 = :1089), and children of employees have a muchhigher school ability than other children (uEX11 = �:4970). Moreover, thethree-variable parameters uEFXefx show that the relationship between father'soccupation and school ability is stronger for males than for females.The educational level of the father has a positive e�ect on the educationallevel of the respondent (uDG11 = :1848). Moreover, children of employeesare relatively high educated (uEG11 = �:3988) and children of workers arerelatively low educated (uEG11 = :3893). School ability has a strong positivee�ect on the �nal educational level (uXG11 = :3893).The most important determinant of the occupational status of the re-spondent is the respondent's own educational level (uGH11 = :5426). Moreover,holding constant other factors, males have more often an occupation with ahigh status than females (uFH11 = �:3387). Also, there exists a small positive
20



Parameter Model 6 Model 11a

uDE11 -0.8441 -0.8461
uDE12 0.3724 0.2908
uDE13 0.5061 0.4940
uDF11 0.1233

uDX11 0.4125 0.3047
uEX11 -0.4970 -0.5370
uEX21 0.2137 0.1041
uEX31 0.2708 0.1478
uFX11 0.1089 -0.0680
uEFX111 -0.2039
uEFX211 0.2346
uEFX311 0.2944

uDG11 0.1848 0.2062
uEG11 -0.3988 -0.3587
uEG21 -0.0576 -0.0813
uEG31 0.3893 0.3929
uXG11 0.3724 0.4216

uEH11 -0.1846 -0.2460
uEH21 -0.1045 -0.1166
uEH31 0.1605 0.1541
uFH11 -0.3387 -0.3353
uXH11 0.1316 0.1736
uGH11 0.5426 0.5484
uEXH111 -0.0837
uEXH211 -0.1204
uEXH311 0.0311

uXA11 0.9225 1.0489
uXB11 0.5307 0.5289
uXC11 0.6829 0.6975

Table 2: Log-linear e�ects among the survey variables according to Model 6and Model 11a
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e�ect of X on H (uXH11 = :1316). And �nally, children of workers have ahigher probability of having an occupation with a low status (uEH31 = :1605)than others.
5.2 Fuchs' procedure for nonresponse
Fuchs' procedure to handle partially observed tables (Fuchs, 1982) can beimplemented in `EM by specifying a model for the response mechanism whichis equivalent to the MCAR assumption. In other words, the probability ofR = r and S = s is assumed to independent of the other variables includedin the model.Table 3 presents the test results for some models which were estimated us-ing all the available data. The best way to start the analysis when some datais missing, is to test the MCAR assumption itself. This can be accomplishedby specifying model fDEFGHABC;RSg for the table DEFGHABCRS(Model 7). By assuming a saturated model for the relationships among thevariables and, moreover, R and S to be independent of the other variables,one has a direct test for the MCAR assumption. As could be expected on thebasis of the available information on the response mechanism, this responsemodel must be rejected (L2 = 2419:6; df = 445; p = :00). Nevertheless, moreparsimonious models for the relationships among the research variables maybe speci�ed, that is, for the structural model and the measurement model.The �t of such models can be tested by comparing them with Model 7. Be-cause any ignorable response model gives the same parameters estimates forthe structural and the measurement model, a conditional test against Model7 is a test of the model concerned, given that the response mechanism isMAR (Fuchs, 1982).Model 8 is equivalent to Model 1, that is, it can be used to test separatelythe measurement part of the model. On the basis of the conditional testagainst Model 7, it must be concluded that the measurement model �t lesswell when all available data is used (L2 = 438:6; df = 378; p = :00). Thismay be the result of the increased power of the signi�cance test. However, itmay also be an indication that the measurement model is only appropriatefor the selective group without missing data. Although the �t of Model 8can be improved by supplying it with some additional parameters, here themeasurement model will be left just as it is. In other words, prevalence willbe given to the principle of parsimony. Like Model 1, Model 8 will be used
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Model �t Conditional tests
Model L2 df p models L2 df p

7 MCAR 2419.6 445 .00
8 (1) + MCAR 2858.2 823 .00 (8)-(7) 438.6 378 .02
9 (6) + MCAR 2950.9 919 .00 (9)-(8) 92.7 96 .58
9a (9) - DF 2951.7 920 .00 (9a)-(9) 0.8 1 .37
9b (9a) - EFX 2957.8 923 .00 (9b)-(9a) 6.9 3 .08
9c (9b) + EXH 2949.8 920 .00 (9b)-(9c) 8.0 3 .05

.00 (9c)-(7) 530.2 475 .04

Table 3: Test results for some models using Fuchs' approach
as a reference point for the more restricted structural models.Model 9, which is equivalent to the �nal model for the complete data(Model 6), does not �t worse than Model 8 (L2 = 92:7; df = 96; p = :58). InModel 9a, the e�ect DF was excluded from the model to test whether thesigni�cance of the e�ect DF was caused by the selectivity of the nonresponse.Since leaving out this e�ect does not lead to a worse �t (L2 = 0:8; df = 1; p =:37), it can be concluded that the signi�cance of the e�ect DF resulted fromanalyzing complete cases only.Starting with Model 9a, it was tried to �nd more parsimonious modelsfor the other submodels as well. The only e�ect which was not signi�cantanymore was the three-variable interaction among E, F and X. In Model 9b,this e�ect is set equal to zero (L2 = 6:9; df = 3; p = :08). It is plausible thatthis e�ect is also caused by the nonresponse because particular combinationsof X, E and F have higher probabilities of responding on D.Because of the greater power of the signi�cance tests when using all avail-able data, particular e�ects which where not signi�cant when using onlythe complete data can become signi�cant now. This was checked for ef-fects with signi�cance levels between 5 and 10 percent in the analysis per-formed using only complete cases. There is only one e�ect which becomessigni�cant now: the interaction between E and X with respect to their ef-fect on H. Model 9c containing the e�ect EXH �ts better than Model 9b(L2 = 8; df = 3; p < :05).
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Model �t Conditional tests
Model L2 df p models L2 df p

10 (9c) + fEFXRg
+ fDEFXS;RSg 1032.0 874 .00 (9c)-(10) 1917.8 46 .00

10a (9c) + fEFABCRg
+ fDEFABCS;RSg 735.4 730 .44 (9c)-(10a) 2214.4 190 .00

11 (9c) + fEFR;XRg
+ fRS;FSg 1150.5 911 .00 (9c)-(11) 1799.3 9 .00

(11)-(10) 118.5 37 .00
11a (11) + FXS + FXR 1097.5 908 .00 (11)-(11a) 53.0 3 .00

(11a)-(10) 65.5 34 .00
12 (11a) + DR 1097.3 907 .00 (11a)-(12) 0.2 1 .65
13 (11a) + GS + HS 1093.5 906 .00 (11a)-(13) 4.0 2 .14

Table 4: Test results for some models for nonresponse
5.3 Models for patterns of nonresponse
When modeling the response mechanism, Model 9c will be taken as startingpoint. It will be tried to make this model better �tting by adding parametersdescribing the response mechanism. From Model 7, it is known that atmost 2419.6 in L2 can be gained by using all 445 degrees of freedom for thespeci�cation of the response model. In that case, the L2-value of the modelwould be 530.2 with df = 475 (see (9c)-(7) in Table 3), which is the test resultfor Model 9c in case the nonresponse is MAR. The MAR model can be seenas a saturated ignorable response model. Of course, here we are interestedin much more parsimonious speci�cations of the response mechanism.First, log-linear models fEFXRg and fDEFXS;RSg were speci�ed forthe probability that R = r and S = s respectively (Model 10). The otherpart of the model is equivalent to Model 9c. Actually, Model 10 is the mostextended plausible model in which the response indicators are not inuencedby the variables which response probability they indicate. In Model 10, Ris assumed to depend on E, F and X, including all their interaction terms.Of course, it not possible that R depends on the variables G and H whichare measured many years later. Furthermore, S is assumed to depend on allvariables, except for G and H, the variables which missingness it indicates.The e�ect RS is included in the model to �x the sample sizes of the foursubgroups. Comparison of Model 10 with Model 9c, shows that most of theinformation on the response mechanism is captured by Model 10 (see Table4): The L2-value improves with 1917:8, using only 46 degrees of freedom.However, there are still 399 degrees of freedom left to gain 502:2 in L2. The
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reason why Model 10 does not �t as perfect as could be expected is that Rand S are regressed on the latent variable X instead of the indicators A, Band C. This can be seen from the fact that Model 10a, whereX is replaced byA, B and C, does not �t signi�cantly worse than the saturated MAR model(L2 = 735:4 � 530:2 = 205:2; df = 730 � 475 = 245; p = :97). Apparently,the assumption that A, B, C and R are mutually independent given X isa bit too strong. This is the same kind of problem that was encounteredwhen testing the measurement model (Model 8). On the basis of the samearguments as we used above, we will continue assuming that given X theindicators are conditional independent of all other variables, including theresponse indicators. Therefore, X will be used as regressor when specifyingthe response mechanism and not the indicators A, B and C.Model 11 is the response model of Equations (7), the model that was for-mulated on the basis of the a priori knowledge about the response mechanism.Using only 9 additional parameters compared to Model 9c, Model 11 capturesa very large part of the mechanism causing the nonresponse: L2 = 1799:3.So the a priori information on the mechanism causing the nonresponse iscon�rmed by the analysis. Omitting any of the parameters describing the re-sponse mechanism of Model 11 deteriorates the �t a lot. However, in terms of�t, Model 11 is inferior to Model 10 (L2 = 118:5; df = 37; p = :00). Therefore,it was tried to improve the �t of Model 11 by adding some extra parameters.This resulted in Model 11a which contains 3 additional parameters, namely:the interaction of F and X with respect to their e�ect on R, the e�ect of Xon S and the interaction e�ect of F and X on S. Although Model 11a stilldi�ers signi�cantly from Model 10 (L2 = 65:5; df = 34; p = :00), no othersingle parameter could considerably improve the �t anymore.The parameters estimates for Model 6 and Model 11a are given in Table2. It can be seen that apart from the fact that particular parameters are notsigni�cant anymore and that one e�ect becomes signi�cant, the parameterestimates for the relationships among the research variables do not changevery when partially observed cases are used in the analysis. Perhaps the mostinteresting di�erence between the two models is that according to Model 6,males have a bit lower school ability than females (uFX11 = :1089), whileaccording to Model 11a, males have a bit higher school ability than females(uFX11 = �:0680).Table 5 contains the parameter estimates for the response model accord-ing to Model 11a. The parameter estimates show that school ability deter-
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Parameter Model 11a

uER11 0.0929
uER21 0.2356
uER31 0.3747
uFR11 0.2037
uXR11 -0.7070
uEFR111 -0.0968
uEFR211 0.1427
uEFR311 0.1133
uFXR111 0.1814

uFS11 0.2182
uXS11 -0.0672
uRS11 0.1424
uFXS111 0.0603

Table 5: Log-linear e�ects for the response model according to Model 11a
mines very strongly the probability of observing D: uXR11 = �:7070. More-over, children of independents and workers have higher probabilities of Dbeing observed: uER21 = :2356 and uER31 = :3747. The three-variable inter-action term shows that this e�ect is stronger for males than for females.And, for males D is observed more often than for females (uFR11 = :2037).The parameter uFS11 = :2182 shows that for males there is a higher prob-ability of observing G and H than for females. Moreover, females witha low school ability have a lower probability of responding on G and H(uXS11 � uFXS211 = �:0672 � :0603 = �:1275), while males with a high schoolability have a higher probability of responding on G and H.Finally, two models were estimated in which a direct e�ect between thevariables with missing variables and their response indicators was included.Model 12 is equivalent to Model 11a, except for that it contains a direct e�ectof D on R. This e�ect is clearly not signi�cant. The same applies to Model13: Neither the e�ect of G on S nor the e�ect of H of S is signi�cant.Summarizing, for this application, the modi�ed Lisrel model extendedwith Fay's approach to partially observed data gave a very parsimoniousdescription of both the causal relationships among the research variablesand the response mechanism. The 960 observed frequencies were describedusing only 52 parameters: 35 for the causal log-linear model and 17 for the
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response model. Using partially observed data made it possible to detectsome arti�cial e�ects. Moreover, because of the greater power of the tests,one e�ect became signi�cant. The models for nonresponse con�rmed the apriori knowledge about the response mechanism. However, the overall �t ofthe �nal model is not perfect. This is caused by the fact that the measurementmodel does not �t very well when all available data is used. By means ofa more elaborate analysis of this data set, it would, of course, be possibleto �nd the additional parameters to get an even better description of theobserved data.

6 Discussion
A general approach for specifying and testing causal models for categoricalvariables was presented. It can be used to specify log-linear models with ob-served, partially observed and unobserved variables. The general log-linearmodel combines a structural model in which the causal relations among thestructural variables are speci�ed, a measurement model in which the rela-tions between the latent variables and their indicators are speci�ed, and amodel for the response mechanism. The application demonstrated very wellthe value of this model. The relationships among the research variables couldbe decribed using a small number of log-linear parameters. When using thepartially observed data, particular e�ects became signi�cant as a result of theincreased power of the statistical tests, and arti�cial e�ects were discoveredwhich resulted from selective nonresponse. Although not demonstrated bythe example, when the probability of nonresponse on a particular variabledepends strongly on the value of the variable concerned, the parameter esti-mates of the model for the survey variables may change a lot as well (Bakerand Laird, 1988).In the application, only hierarchical log-linear model were used. However,it is also possible to impose all kinds of linear restriction on the log-linear pa-rameters, that is, to specify non-hierarchical log-linear models per subtable.This becomes more important, when the model contains several polytomousvariables with ordered or equidistant categories. The possibility to restrictthe log-linear parameters can, for instance, be used to specify discrete approx-imations of latent trait models (Heinen, 1992, Vermunt and Georg, 1995).Because of the equivalence of the more general log-linear or logit model to
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the logistic regression model, it can also be used to incorporate continuousexogenous variables into a modi�ed Lisrel model (Vermunt, 1995).The way of specifying the causal order among the structural variablesin modi�ed Lisrel models is similar to the speci�cation of (latent) Markovmodels (Van de Pol and Langeheine, 1990). Actually, the (latent) Markovmodel is a special case of the modi�ed Lisrel model. The approach presentedhere is more general since the more exible way of specifying the conditionalprobability structure makes it possible to relax the basic assumptions of the(latent) Markov model. The modi�ed Lisrel model can, for instance, be usedto specify multivariate Markov models (Vermunt, 1995) and latent Markovmodels with correlated errors (Bassi, Croon, Hagenaars and Vermunt, 1995).Furthermore, the possibility to parametrize the conditional probabilities bymeans of a logit model can, among other things, be used to specify regressionmodels for the transition probabilities which are similar to discrete-time eventhistory models (Vermunt, 1995).Although in the example the latent class model was used as a measure-ment model, it can also be used for unmixing populations having di�erentstructural parameters (Titterington, Smith and Makov, 1985). Examples ofthe use of the latent class model as a �nite mixture or discrete compoundmodel are the mixed logit model (Formann, 1992), the mixed Markov model(Van de Pol and Langeheine, 1990), and the mixed Rasch model (Rost, 1990).Specifyng these kinds of mixed models within the modi�ed Lisrel approachinvolves including a latent variable without indicators into the model.And �nally, the causal log-linear models that were presented are recursivemodels, that is, models in which the causal relationships among the vari-ables are uni-directional. Recently Mare and Winship (1991) proposed `non-recursive' log-linear models with reciprocal e�ects. Although not demon-strated here, the rather complicated `non-recursive' log-linear models pro-posed by Mare and Winship can also be handled within the modi�ed Lisrelapproach.
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