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1 Introduction

The log-linear model has become a widely used method for the analysis of
multivariate frequency tables. A general approach for analyzing categorical
data which combines three important extensions of the standard log-linear
model will be presented. Modified path models, latent class models and
models for nonresponse are integrated within one general model.

Log-linear models are used to describe the observed frequencies or pro-
portions in a multi-way cross-tabulation by means of a limited number of
parameters. In the standard log-linear model, no distinction is made be-
tween dependent and independent variables. However, if one is interested in
the effects of a set of independent variables on a dependent variable, one can
use a ‘regression’ variant of the standard log-linear model, the well known
logit model (Goodman, 1972; Agresti, 1990). When the dependent variable
has more than two categories it sometimes also called a multinomial response
model (Haberman, 1979; Agresti, 1990).

Goodman (1973) introduced a ‘path analytic’ extension of the logit model.
He proposed a log-linear model which takes a priori information on the causal
ordering of the variables into account. The so-called ‘modified path analysis
approach’ consists of specifying a ‘recursive’ system of logit models in which
a variable appearing as the dependent variable in a particular logit equation
may appear as one of the independent variables in one of the next equations.

Often we want to study phenomena which are difficult to observe directly.
This has given rise to a family of measurement models for identifying unob-
served or latent variables from a set of observed variables. The latent class
model is a ‘factor analytic’ model for categorical data (Lazarsfeld and Henry,
1968; Goodman 1974). Haberman (1979) demonstrated that the latent class
model is equivalent to a log-linear model in which one or more of the variables
are unobserved.



For interval level data, the combination of factor analysis and path anal-
ysis led to the famous Lisrel model (Joreskog and Sérbom, 1988). Hagenaars
(1990, 1993) developed a ‘Lisrel’ model for categorical data by combining the
modified path model and the latent class model. He implemented this so-
called ‘modified Lisrel approach’ into his latent class analysis program LCAG
(Hagenaars en Luijkx, 1990).

As mentioned above, latent class models are log-linear models in which
one or more variables are completely unobserved. However, in social re-
search, and especially in panel studies, we often are confronted with another
type of missing data, i.e., with variables which are unobserved for a part of
the sample due to panel attrition, item nonresponse or the data collection
design. Fuchs (1982) proposed a method which makes it possible to use par-
tially observed data when estimating the parameters of a log-linear model.
Fay (1986) extended Fuchs’ work by making it possible to specify and test
explicitly ones assumptions with regard to the mechanism causing the miss-
ing data. He proposed to model the response mechanism via log-linear path
models in which so-called response indicators are included.

Both Hagenaars’ modified Lisrel models and Fay’s models for nonresponse
are modified path models in which some information is missing on particular
variables. By combining these two approaches, one obtains a more general
modified path model in which unobserved variables, partially observed vari-
ables, completely observed variables and response indicators can be included
(Vermunt, 1988, 1995; Hagenaars, 1990). A program called /EM (Log-linear
and event history analysis with missing data using the EM algorithm) has
been developed which can be used to estimate this rather general log-linear
model by means of the EM algorithm (Vermunt, 1993).

The three next sections present log-linear path models, log-linear mod-
els with latent variables, and log-linear models for nonresponse, respectively.
The models are illustrated by means of an application in Section 5. The data
for the example is taken from a long-term Dutch panel study on educational
and occupational careers of persons who were in the last grade of primary
school in 1952, the so-called ’extended Mathijssen-Sonnemans cohort’ (Har-
tog, 1986; Vermunt, 1988). The data are collected via a very specific data
collection design which resulted in a lot of missing data in addition to the
usual panel attrition. The other relevant aspects of the data will be intro-
duced when discussing the different kinds of models.



Figure 1: Modified Lisrel model (Model 6)
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2 Log-linear path models

Suppose we want to investigate the causal relationships among father’s ed-
ucational level (D), father’s occupation (E), sex (F'), school ability at the
end of the primary school (X), educational level (G) and occupation (H) by
means of log-linear analysis. The data required for such an analysis is the
six-way cross-tabulation DEFXGH of the above-mentioned variables. An
observed cell frequency in this cross-table will be denoted by ngefzgn, Where
the lower case subscripts denote the categories of the variables D, FE, F, X,
G and H. In contrast to standard log-linear models, we do not only want to
estimate the strength of the association among these variables, but we also
want to use a priori information on the causal order among the variables.
Figure 1 shows the assumed causal order among the variables used in the
example. The variables D, E and F' will be treated as exogenous variables.
The other ones are endogenous, where X is assumed to be posterior to G,
and G is assumed to be posterior to H. For the moment, it will be assumed
that all variables are observed directly. In the next section, the variables A,
B and C appearing Figure 1 will be used as indicators for the latent variable
X.



2.1 Probability structure

Let Tgetzgn denote the probability that D =d, E =e, F=f, X =2, G =gy
and H = h. Using the a priori information on the causal order among the
variables, 74 fz0n can be written as (Goodman, 1973)

Tdefegh = Tdef Wa|def Tg|defz Thidefzg - (1)
So imposing a causal ordering can be simply accomplished by decomposing
the joint probability into a product of marginal and conditional probabilities.
This is a straightforward way to express that the value of a particular variable
can only depend on the preceding variables and not on the posterior ones.
For instance, if the causal order is true, G can only depend on the preceding
variables D, K, F and X, but not on the posterior variable H. Therefore,
the probability that G = ¢g depends only on the values of D, E, ' and X,
and not on the value of H.

Decomposing the joint probabilities into a set of marginal and conditional
probabilities is only the first step in describing the causal relationships among
the variables under study. Generally, one also wants to reduce the number of
parameters in some way, while the right hand side of Equation (1) contains as
many unknown conditional probabilities as cell frequencies. In other words,
the model of Equation (1) is a saturated model in which it is assumed that a
particular dependent variable depends on all its posterior variables, including
all their interactions terms.

The simplest way to specify more parsimonious models is to restrict di-
rectly the conditional probabilities appearing in Equation (1). Suppose that,
as depicted in Figure 1, G depends on D, F and X, but not on F. This
assumption can be incorporated in the model by replacing 7y 4erz by Tgides
since in that case mggerz = Tg|ges- This is the easiest procedure for restrict-
ing the number of parameters. It is also applied in, for instance, discrete
Markov models (Van de Pol and Langeheine, 1990). When the same kinds
of restrictions can be imposed on the other elements appearing at the right
hand side of Equation (1), the number of parameters can be reduced a lot.
For instance, on the basis of the relationships depicted in Figure 1, a more
restricted version of the general Equation (1) would be

Tdefrgh — Tdef Tx|def Tg|dex Thlefzg - (2)

Thus, in addition to the already mentioned restriction on mggess, H is as-
sumed not to depend directly on D, that is, Tp\gefeg = Thjefzg-
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This rather simple procedure for obtaining more restricted models has,
however, one important disadvantage. The dependent variable must always
be related to the joint independent variable. For instance, in Equation 2, GG
depends on the joint variable DEX. Thus, if a particular variable is thought
to influence the dependent variable concerned, all interactions with the other
independent variables must be included in the model as well. As a result,
the model will generally still contain more parameters than necessary.

2.2 Logit models for probabilities

By using a log-linear or logit parameterization of the marginal and con-
ditional probabilities, it is possible to specify and test more parsimonious
causal models for categorical data. This leads to what Goodman called a
‘modified path analysis approach’ (Goodman, 1973). This approach con-
sist of specifying a ‘recursive’ system of logit models. As in path analysis,
a particular variable which appears as dependent variables in one equation
can be used as independent variables in one of the next equations. The re-
lationships among the exogenous variables can be restricted by means of a
log-linear model. A model for the relationships among the variables used in
the example would consist of four so-called modified path steps or submodels:
one model for the exogenous variables D, £ and F', and three logit models in
which X, G and H appear as dependent variables. Because of simplicity of
exposition, here only simple hierarchical log-linear models will be used, but
the results can easily be generalized to log-linear models which include more
sophisticated restrictions on the parameters, such as symmetric relationships,
linear-by-linear interactions and log-multiplicative row and column effects.

Suppose that G depends on D, E and X, and that there exist no three
variables interactions between G and the independent variables (see Figure
1). In that case, the following logit parameterization of the conditional prob-
ability concerned would apply,

G DG EG Xa
exp (ug T Ugy” T Ugy” + Uz )

G 4 DG 4 EG 4 ., XG)’
2g XD (ug + Ugy” Uy + Uy )

Tgldefer — Tgldex —

where the u’s denote log-linear parameters which fulfill the well known ANOVA-

like constraints. Specifying this logit model for 7y4es, is equivalent to speci-
fying log-linear model { DEF X, DG, EG, XG} for marginal table DEF XG,



or

_ DEFX G DG EG XG
log Mdefrg = adef:t + ug + udg + ueg + umg )

where mges,y denote the expected frequencies in the marginal table con-
cerned. Moreover, a}'X denotes the effect which fixes the marginal distri-
bution of the dependent variables. Including this effect makes a log-linear
model equivalent to a logit model (Goodman, 1972; Agresti, 1990).

So specifying a causal model for a set of categorical variables can simply
be accomplished by specifying separate log-linear or logit models for differ-
ent marginal tables, or subtables. The marginal tables are formed by the
variables used in the previous marginal table and the variable which appears
as dependent variable. In this case, one must specify log-linear models for
tables DEF, DEFX, DEFXG and DEFXGH, where the margin formed
by the variables of the previous marginal table must always be fixed. Good-
man (1973) presented his ‘modified path analysis approach’ showing how to
specify separate log-linear models for different marginal tables. And next,
he showed how to combine the expected frequencies of the separate submod-
els by an equation similar to Equation (1). Note that the probabilities in
Equation (1) can be obtained by means of the expected frequencies via

Mdefa
_ "tdefzg (3)

V = .
gldefx
Zg Mdefrg

One additional remark has to made with regard to the modified path models.
When a particular variable does not depend on all its preceding variables,
the procedure proposed by Goodman can be modified somewhat. As al-
ready mentioned above, G does not depend on F' and therefore mgger, =
Tgldex- Lherefore, the log-linear restrictions which were imposed on mg4efs
can also be imposed directly on 7 4.,, namely by means of log-linear model
{DEX, DG, EG, XG} for marginal table DEXG, or

log Maexy = afl)efX + u? + uflz}G + uf;G + ung .
Estimating parameters in a marginal table which includes only the dependent
variables which are really used has two important advantages: it is compu-
tationally more efficient, and, moreover, it prevents fitted zeroes when the

fixed margin DEF X contains observed zeroes cell which do not appear in
the margin DEX.



2.3 Estimation

Maximum likelihood estimates for the log-linear parameters and the expected
frequencies for the various subtables can be obtained using standard pro-
grams for log-linear analysis. In that case, the models for the various sub-
tables must be estimated separately. The estimated cell probabilities for the
overall model can be computed via Equations (3) and (1). Model testing can
be performed, for instance, by means of the log-likelihood ratio statistic L2.
The various submodels can be tested separately. A test of the overall fit can
simply be obtained by adding both the L2-values and the degrees of freedom
of the various submodels.

A program called /EM has been developed to estimate log-linear path
models without the necessity to set up the different marginal tables (Vermunt,
1993). In YEM, specifying a log-linear path model is the standard way of
modeling an observed frequency table. The current available version of the
program (¢EM 0.11) is based on the original procedure of Goodman, but the
most recent working version uses the more efficient procedure in which the
subtables contain only the independent variables which are really used. The
procedure implemented in EM to estimate hierarchical log-linear models
is the iterative proportional fitting algorithm (Agresti, 1990). But {EM
can also be used to estimate more complex log-linear models in which the
parameters are linearly restricted in some way (Haberman, 1979; Agresti,
1990). This is accomplished by allowing the user to specify his own design
matrix for particular log-linear effects. In £EM, it is also possible to us log-
multiplicative effects, such as the type II association models developed by
Goodman (Goodman, 1979; Clogg, 1982; Xie, 1992). These non-hierarchical
log-linear models are estimated by means of the one-dimensional Newton
algorithm (Goodman, 1979; Vermunt, 1995). This algorithm differs from
the well known Newton-Raphson algorithm in that only one parameter is
updated at once instead of updating all parameters simultaneously. It is a
very simple and fast algorithm per iteration which, as we will see in the next
section, fits very well into the EM algorithm used to estimate models with
missing data.



3 Log-linear models with latent variables

In the previous section, it was assumed that all variables used in the causal
log-linear model can be directly observed. However, often one encounters
problems in which several indicators are used to measure a concept which
itself cannot be measured directly. In the example, the variable school ability
(X) is such a latent variable. Three different school ability tests, denoted by
A, B and C, are used as indicators for X.

3.1 Latent class models

Latent class analysis is a variant of factor analysis which is especially suited
for analyzing categorical latent and manifest variables. The latent class
model was first proposed by Lazarsfeld (Lazarsfeld and Henry, 1968). Good-
man (1974) and Haberman (1979) made the model practically applicable by
introducing estimation and test procedures. As factor analysis, the latent
class model can be used to identify the latent construct X using the indi-
cators A, B, C'. Moreover, just as factor analysis, the latent class model
is based on he assumption of local independence. Using the classical pa-
rameterization proposed by Lazarsfeld, the latent class model for one latent
variable X and three indicators A, B, C can be written as

Tzabe — Tz Talz Tblz Te|x > (4)

where ... denotes the joint probability of the latent variable and its three
indicators, 7, denotes the probability of belonging to particular latent class,
and m,; denotes the probability that A = a given X = x. The latent
distribution is assumed to be formed by X* mutually exclusive and exhaustive
categories, that is, Zf;l m, = 1. From Equation 4, it can easily be seen that,
given a particular value of X, the variables of A, B and C are assumed to
be independent.

Haberman (1979) demonstrated that the unrestricted latent class model
can also be parametrized as a log-linear model in which one or more variables
are unobserved. Using the log-linear parameterization, the latent class model
of Equation (4) can be written as

XC

X A B C XA XB
Myrabe = u"'ug: +ua +ub —|—’LLC +ua¢a +ua¢b +uwc



This is equivalent to writing the separate conditional response probabilities
in terms of log-linear parameters (Haberman, 1979; Formann, 1992; Heinen,
1993). For instance, the probability that A = a given X = z can also be

written as
exp (ug‘ + ui,flA)

T Yeexp (uf +ulA)

Ta|z

Formann (1992) used this parametrization of the latent class model for the
formulation of his linear logistic latent class model. Heinen (1993) used this
parameterization to demonstrate the equivalence between latent class models
and latent trait models in which the latent variable is discretized (see also
Vermunt and Georg, 1995).

3.2 Modified Lisrel models

Several extensions of the standard latent class model have been proposed,
such as models for more than one latent variable (Goodman,1974a, 1974b;
Haberman 1979), models with so-called external variables (Clogg, 1981) and
models for multiple-group analysis (Clogg and Goodman, 1984; McCutcheon,
1987). A limitation of these extensions is, however, that they are all devel-
oped within the framework of either the classical or the log-linear latent class
model. Therefore, it is not always possible to postulate the wanted a priori
causal order among the structural variables incorporated the model.

Hagenaars (1990, 1993) solved this problem by combining the modified
path model discussed in the previous section with the latent class model.
More precisely, he showed how to specify a modified path model for the
joint distribution of the external and the latent variables in a latent class
model. Not surprisingly, he called this extension which he implemented in
his program LCAG (Hagenaars and Luijkx, 1990) a modified Lisrel approach.

If X is a latent variable with indicators A, B and C', and the same causal
order among D, E, F', X, G and H is assumed as in the previous section
(see Figure 1), the joint probability of all variables can be written as

Tdefrghabe — Tdef Tx|def Tg|defx Th|defrg Tabc|defzgh » (5)

where

Tabc|ldefrgh — Tabclx — Talz To|lx Te|z -



Thus, including latent variables in a modified path model involves specifying
one or more additional modified path steps in which the relationships among
the latent variables and their indicators are specified. These additional steps
form the measurement part of the model, while the other steps form the
structural part of a modified Lisrel model.

3.3 Estimation

Obtaining maximum likelihood estimates for the parameters of latent class
models, log-linear models with latent variables and modified Lisrel models
is a bit more complicated than for log-linear models in which all variables
are observed. Estimation can be performed, for instance, by means of the
EM algorithm (Dempster, Laird and Rubin, 1977). The EM algorithm is
a general iterative algorithm to estimate models with missing data. It con-
sists of two separate steps per iteration cycle: an E(xpectation) step and a
M (aximization) step.

In the E step of the EM algorithm, the missing data is estimated. In our
case, we must obtain estimates for the unobserved frequencies of the complete
table DEFXGHABC, the Ngefzghabe's, conditional on the observed data and
the parameters estimates from the last EM iteration. This is accomplished
using the observed incomplete data and the parameter estimates from the
last iteration by

hdefxghabc = Ndefghabc 7%3£|defghabc . (6)

Here, ngefgnave denotes an observed frequency, and 7iyjgefgnase denotes the
probability that X = z given the observed variables.

In the M step, standard estimation procedures for log-linear models, such
as IPF or Newton-Raphson, can be used to obtain improved parameter esti-
mates using the completed data as if it were the observed data. In fact, the
likelihood function in which the figefzgnane’s appear as data, sometimes also
called the complete data likelihood, is maximized. The improved parame-
ter estimates are used again in the E step to obtain new estimates for the
complete table, and so on. The EM iteration continue until convergence is
reached, for instance, a minimum increase in the likelihood function.

Hagenaars’ latent class analysis program LCAG (Hagenaars and Luijkx,
1990) includes an option to specify a modified path model for the joint latent
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distribution. Observed variables can be included in the modified path model
by means of a trick, namely by making them quasi-latent via particular
restrictions on the conditional probabilities. This, however, can become a
laborious operation, especially if, as in the example, many observed variables
appear in the structural part of the model.

The program {EM is especially developed for estimating modified path
models with latent variables. Latent and manifest variables are treated in
exactly the same way by the program. That is why £EM is more user friendly
and more efficient than LCAG for estimating modified Lisrel models. More-
over, in LCAG only hierarchical log-linear models can be specified, while in
CEM, as we already saw in the previous section, all kinds of linear restric-
tions can be imposed on the log-linear parameters. Although in /EM 0.11
the number of cells of the cross-tabulation of all variables is still limited, the
current working version of /EM can handle much bigger problems because
the size of an application does not depend on the total number of cells in the
complete table anymore.

The algorithm used in /EM is a modified version of the original EM algo-
rithm because the M step always consists of only one iteration. So generally
the complete data likelihood is not maximized but only improved within a
particular M step. This is a special case of the so-called GEM algorithm
which states that every increase in the complete data likelihood also leads
to an increase of the incomplete data likelihood we actually want to maxi-
mize (Dempster, Laird and Rubin, 1977; Little and Rubin, 1987). In fact,
the algorithm which is used in £EM is also a version of the ECM algorithm
(Meng and Rubin, 1993). In the ECM algorithm, the M step is replaced by
a conditional maximization (CM) step. Conditional maximization implies
that instead of improving all the parameters simultaneously, subsets of pa-
rameters are updated fixing the other ones at their previous values. This
is just what is done by IPF and by the one-dimensional Newton algorithm.
Meng and Rubin (1993) state that such simple and stable linear conver-
gence methods are often more suitable for the M (or CM) step of the EM (or
ECM) algorithm than superlinear converging but less stable algorithms, such
as Newton-Raphson. This GEM or ECM algorithm converges in nearly the
same amount of iterations as the true EM algorithm. This makes it much
faster than the true EM algorithm, especially in applications where a real M
step would need many iterations to converge.
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4 Log-linear models for nonresponse

In survey research, it almost always occurs that information on some vari-
ables is missing for a part of the sample. This can be caused, for instance, by
item-nonresponse, by panel attrition or by the data collection design. The
easiest way to deal with partially observed variables is to perform the analy-
sis using only complete cases. This, however, may lead to biased parameter
estimates in case the nonresponse is selective in some way. Another possi-
bility is to impute the missing data. The model based approach to partially
observed data that will be discussed in this section is strongly related to im-
putation. The main difference between imputation and the approach to be
presented below is that the data are imputed during the estimation of the
model parameters and not beforehand. Moreover, the approach presented
here allows to specify and test models for the mechanism causing the missing
data.

The data of the 'extended Mathijssen-Sonnemans cohort’ were collected
via a very specific data collection design which resulted in a lot of missing
data in addition to the usual panel attrition. In 1952, 5823 pupils from the
last grade of all primary schools in the Dutch province Brabant were tested
with regard to their school ability (A, B and C'). For 5387 of these pupils,
the head master was able to supply information on the occupation of their
father (E). In 1957, information on the educational level of the father (D)
was collected for the children who had a school ability score above the mean.
In 1958 and 1959, the same information was collected for sons of farmers
and workers. Altogether, information on the father’s educational level was
collected for 2740 persons. In 1983, the complete group was approached again
to obtain information about their finished education level and their current
occupation (G and H). This resulted in useful information for 2587 person.
This group contains more males because more effort was made to get their
information, that is, they were approached more often than females in case
of nonresponse.

Summarizing, starting with the 5387 persons for which information is
available on A, B, C, E and F, there are four subgroups of persons with
exactly the same kind of information. Subgroup DEFGHABC' consists of
1279 persons, subgroup EFGHABC' of 506, subgroup DEFABC' of 1344
and subgroup FFABC of 1358, where the capital letters indicate which
variables are observed for the subgroup concerned.
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4.1 Fuchs’ approach

Fuchs (1982) proposed to apply the EM algorithm to incorporate missing
data when estimating the parameters of a log-linear model. Hagenaars (1990)
showed how to adapt Fuchs’ approach when the log-linear model concerned
contains latent variables, such as the modified Lisrel models discussed above.
In that case, one has a double missing data problem, namely partially ob-
served variables and latent variables. Let ngefgnabe; Tefghabe, Tdefabes Te fabe de-
note the observed frequencies in the subgroups DEFGHABC, EFGHABC,
DEFABC and EFABC, respectively. Applying Fuchs’ method equates re-
placing the E step of Equation (6) by

Ndefrghabe = Tdefghabe Tx|defghabe + Nefghabe Tdz|efghabe

+ Ndefabe Trgh|defabe + Nefabe Tdzghlefabe -

The M step of the EM algorithm is equivalent to the one discussed in the
previous section. This version of the EM algorithm is implemented in Hage-
naars’ program LCAG (Hagenaars and Luijkx, 1990).

Although perhaps it might not be immediately clear, the method pro-
posed by Fuchs (1982) is based on the assumption that the response mech-
anism is ignorable for likelihood based inference (Rubin, 1976; Little, 1982;
Little and Rubin, 1987). The response mechanism is called ignorable if for
every sampled unit the response distribution is independent of the missing
data. In other words, for every subgroup it is assumed that the probability
of belonging to that particular subgroup, or having missing information on
just those variables, depends only on the observed variables. If the response
mechanism can be assumed to be ignorable, cases with missing data can
be used to estimate the parameters without the need to specify the exact
ignorable response mechanism. This results from the fact that under the
ignorable condition the likelihood can be partioned into a part which de-
pends only on the model parameters and a part which depends only on the
response mechanism. Both parts can be maximized separately. So also if the
response mechanism is specified, every ignorable response mechanism leads
to the same parameters estimates. That is the reason why when applying
Fuchs’ approach, the least restrictive ignorable response mechanism can be
assumed to be valid: missing at random (=MAR). However, Fuchs actually
tests the most restrictive form of ignorable nonresponse mechanism, namely
missing completely at random (=MCAR) (Vermunt, 1995). After presenting
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Fay’s approach, T will discuss more in detail the various kinds of response
mechanism.

4.2 Fay’s approach

Although ignorability of the response mechanism is often a reasonable as-
sumption, Fuchs’ method has particular disadvantages which can be over-
come by making use of an extension which was independently proposed by
Fay (1986) and by Baker and Laird (1988). Using Fuchs’ method it is neither
possible to test a priori assumptions about the response mechanism, nor to
specify nonignorable response mechanisms.

Fay (1986) proposed to include response indicators into a log-linear path
model in which the relationships among the survey variables and the mech-
anism causing nonresponse are specified together. A response indicator is
a variable which indicates whether a particular set of variables is observed
or not. In the example, two response indicators are needed, one indicating
whether D is observed or not and another one indicating whether G and H
are observed or not. They will be denoted by the letters R and S, where
R = 1 means that D is observed and R = 2 that D is missing. And, S =1
means that G and H are observed and R = 2 that they are not observed.
It will be clear that the levels of R and S identify the four above-mentioned
subgroups.

The two response indicators can be used in a modified path model in
the same way as the other variables. That makes it possible to relate, for
instance, the probability of responding on D (=R) to the variables used in
the analysis. There is, however, one restriction with regard to the use of the
response indicators. They can only be used either as dependent variables
or as independent variables in a logit equation in which another response
indicator is explained. Because the response indicators are not allowed to
influence the other variables, the modified Lisrel model from the previous
section can simply be extended by including two additional modified path
steps,

Tdefxghabers — TdefTx|def T g|defrTh|defzgT abe|xTr|defrghabe™ s|defrghaber -

Of course, the conditional probabilities for R and S have to be restricted in
some way to get a model which is identifiable.
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As mentioned above, for the example data set, the mechanism causing
the missing data is at least partially known. The probability of observing D
depends on A, B and C, or on X, and on the interaction between F and F'.
The probability of observing G and H depends on F'. Thus, according to the
available information on the response mechanism, plausible logit models for
R and S are

exp (uff + uXF + uER 4 1R Lol R)

)
S exp (uff 4w+ bl 4 FR R

Tr|defrghabe — Trlefr —

exp (uss +ufl +uff’ )

S, exp (uf +uf? + uﬁs) .

(7)

Ts|defxghaber — Ts|fr —

This is equivalent to assuming log-linear model { EF' X, X R, EF R} for marginal
table EF X R and model {FR, F'S, RS} for table FRS. The effect RS is in-
cluded in the last model to reproduce exactly the number of persons in every
particular subgroup.

4.3 Ignorable versus nonignorable response mechanisms

Because much of the theoretical work on nonresponse is based on the dis-
tinction between ignorable and nonignorable response mechanisms, I will pay
some attention to the link between the approach presented here and these
two types of response mechanisms (see also Vermunt, 1995).

As we saw above, the nonresponse is MAR if the probability of belonging
to a particular subgroup depends only on the observed variables for every
sample unit. So in terms of the response indicators R and S, the response
mechanism is MAR if 7,defeghabe €quals to either miygerghabes T21jesghabes
T12|defabe OT T22lefabe- 1Nis is the least restrictive assumption about the dis-
tribution of R and S under which the response mechanism is ignorable for
likelihood based inference. Note that the values on R and S depend on
different variables for the different subgroups. More precisely, in every sub-
group, the probability of observing just those variables depends only on the
observed variables. In other words, the probability of belonging to a par-
ticular subgroup is independent of the missing variables for the subgroup
concerned, including the latent variable X. These rather strange restrictions
on the probability on R and S can, however, not be imposed by means of the
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approach presented here. So there is no direct link between the log-linear
models for nonresponse and the distinction between ignorable and nonignor-
able nonresponse.

Using the models for nonresponse, the least restrictive model which fulfills
the requisites of an ignorable response model is a model in which the values
of the response indicators depend on all variables which are observed for all
persons, that is, T sdefeghabe = Trsjefabe- On the other hand, in the most
restrictive ignorable model, the MCAR model, 7,44efzghabe = rs, that is,
the response indicators are assumed to be independent of all other variables.
The MCAR random model is the response model which is actually tested by
Fuchs (1982).

The only situation in which there exist a log-linear path model which is
equivalent to a MAR response mechanism occurs in case of nested or mono-
tone patterns of nonresponse (Vermunt, 1995). A pattern of nonresponse
is nested when particular variables are missing more often than other ones,
and for all persons with a particular missing variable all variables which are
missing equally or more often are missing as well. Nested patterns of non-
response occur often in panel studies: nonparticipation in one panel wave
generally leads to nonparticipation in the subsequent waves too. In case of
a nested pattern of nonresponse, a MAR model can be obtained by specify-
ing a log-linear path model in which every response indicator is assumed to
depend on the variables which are observed more often and on the response
indicators belonging to these variables.

All response models which do not fulfill the above-mentioned conditions
for ignorability are nonignorable. If R depends on D, it is clear that the
response mechanism is nonignorable since the variable with missing data is
directly related to its own response indicator. In other words, the probability
of nonresponse depends on the variable with missing data. But also when
S depends on D, the response mechanism is nonignorable. Although S does
not indicate missingness on D, the mechanism is nonignorable because D is
missing for some persons. The response model proposed in Equations (7) is
nonignorable as well because both R and S depend on X which is missing
for all persons.

It will be clear that, although the distinction between ignorable and non-
ignorable response mechanisms is valuable, it is just a theoretical distinction
based on the fact whether it is necessary or not to specify the response mech-
anism for likelihood inference about the model parameters. Ignorability has

16



no substantive meaning like the log-linear models for nonresponse discussed
in this section. Therefore, one must be cautious when labeling a particu-
lar log-linear response model as ignorable or nonignorable. In the context
of log-linear models for nonresponse, to my opinion, it has more sense to
use another type of classification of response mechanism: the probability of
responding on a particular variable depends also on the variable concerned
or it does only depend on other variables. In the former case, the response
mechanism is always nonignorable. Baker and Laird (1988) gave a nice ex-
ample of an application in which the probability of nonresponse is allowed
to depend on the variable with nonresponse. In the latter case, the response
mechanism can be either ignorable or nonignorable.

4.4 Estimation

Fay (1986) proposed to estimate his causal models for patterns of nonresponse
using the EM algorithm. However, he did not consider log-linear models with
latent variables. Vermunt (1988, 1995) demonstrated how to adapt the E
step of the EM algorithm proposed by Fay to situations in which also latent
variables are included in the modified path model (see also Hagenaars, 1990).
In fact, it is the same kind of solution as Hagenaars applied to generalize
Fuchs’ approach (Hagenaars, 1990). In the E step, the unobserved frequencies
of the table DEFXGHABCRS are computed via

ﬁdef:vghabcll =  Ndefghabe 7%a:|defghabc11 ’
ﬁdefa:ghabcl? = TNefghabe 7?rdya|efghozbcl2 5
ﬁdefa:ghachl = TNdefabe 7?ra:gh|clefal7021 )
ﬁdef:vghabc22 = MNefabe 7Ardcvgh|efabc22 .

It can be seen that in every subgroup, or in every level of the joint response
indicators, the expectation of the complete data given the observed data
and the parameters estimates from the last iteration is obtained in a slightly
different manner.

The above-mentioned procedure is the standard way of handling partially
observed data in the program ¢EM (Vermunt, 1993). So estimation of log-
linear models for nonresponse, including models with latent variables, can
easily be performed using /EM. After specifying which variables are manifest
variables, latent variables and response indicators, all variables can be used
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in the same way when specifying the various submodels of a modified path
model.

5 Application

In this section, an application of the models discussed in the previous sec-
tions will be presented. For that purpose, the already mentioned "Mathijssen-
Sonnemans data’ will be used. The observed variables are again: three abil-
ity tests (A, B and C), father’s educational level (D), father’s occupation
(E), sex (F), educational level (G) and occupation (H). All variables are
dichotomized, except for father’s education, which has the following 4 cat-
egories: employees (1), independents (2), workers (3) and others (4). The
dichotomous variables all have the categories low (1) and high (2), except
for the variable sex (F), which has the categories male (1) and female (2).
The reason why most variables are dichotomized is that when preparing the
frequency tables, the models had to be estimated by means of LCAG (Ver-
munt, 1988). But still days of computer time were needed to estimate the
models presented in this section. Using £EM 0.11, estimation of each of the
models to be presented below toke less than two minutes.

First, T will present the analysis performed using only complete cases.
Then, incomplete cases will be used in the analysis by means of Fuchs’ (1982)
procedure, that is, assuming MCAR nonresponse. And finally, Fay’s models
for nonresponse will be used to specify and test different kinds of models for
the response mechanism.

5.1 Using only complete cases

The model which serves as starting point is the modified Lisrel model given
in Equation (5), where the aim is, of course, to restrict the marginal and
conditional probabilities using a logit parameterization.

As recommended by Hagenaars (1993), when specifying a modified Lisrel
model, one can best start by investigating the measurement part of the model,
or in other words, the relationships among the latent variables and their
indicators. In this case, a latent class model has to be specified for the
relationships among the latent ability variable X and the three ability test
A, B, and C. The latent ability variable X is assumed to have two categories.
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Model fit Conditional tests

Model L?> df p models L? df p
1 {DEFXGH,XA,XB,XC} 3636 3718 .70
2 (1) + {DE,DF} 3742 385 64 (2)-(1) 106 7 .18
3 (1) + {DX,EFX) 3666 385 .74 (3)-(1) 30 7 .89
4 (1) + {DG,EG,XG} 3885 404 .70 (4)-(1) 249 26 .52
5 (1) + {EH,FH,XH,GH} 4177 435 .72 (5-(1) 541 57 .58
6 (1) +(2) +(3)+ @)+ (5) 4588 474 68 (6)-(1) 952 96 .50

Table 1: Test results for some models using only complete cases

To test the fit of the measurement model, one can start assuming the
relationships among the other variables to be saturated. So no restrictions
need to be imposed yet on the relationships among the structural variables
D, E, F, X, G and H. The simplest way to accomplish this is by spec-
ifying log-linear model {DEFXGH, XA, XB, XC} for the complete table
DEFXGHABC. Note that, given X, the variables A, B and C are not only
assumed to be mutually independent, but also to be independent of the joint
variable DEFGH. As can be seen from the test results given in Table 1, the
measurement model (Model 1) fits very well (L? = 363.6, df = 378,p = .70).

Next, it was tried to find a more parsimonious specification for the struc-
tural relationships among the variables D, E, F, X, G and H. For that
purpose, a step-wise model selection procedure was used per subtable, leav-
ing the other submodels saturated. By testing these models against each
other and against Model 1, it could be seen whether the more parsimonious
specification for the marginal or conditional probability concerned deterio-
rated the fit or not. Here, only the test results for the best fitting subtable
specific models will be presented.

For the relationships among the exogenous variables father’s education
(D), father’s occupation’s (F) and sex (F'), model {DFE, DF} (Model 2)
provides a good description of the data. Model 2 does not fit worse than
Model 1 (L? = 10.6,df = 7,p = .18). Since it is not plausible that in the
population sex is related to the father’s educational level, the significance of
the effect DF is almost certainly the result of the selectivity of the nonre-
sponse.

The latent variable ability (X) was found to depend on D, E, F on the in-
teraction of £ and F'. Restricting 7,45 via log-linear model {DEF, DF X, EX'}
for marginal table DEFX (Model 3) does not deteriorate the fit compared
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to Model 1 (L? = 3.0,df = 7,p = .89).

A good fitting parsimonious model for mqef, (educational level) is ob-
tained via model {DEF X, DG, EG, XG} for subtable DEFXG. So G de-
pends on D, E and X. The conditional test of this model (Model 4) against
Model 1 gives a nonsignificant result (L? = 24.9,df = 26,p = .52).

Variable H (occupational level) seemed to depend only on E, F, X and
G. Model {DEFXG,EH,FH,XH,GH} for table DEFXGH (Model 5)
does no fit worse than Model 1 (L? = 54.1,df = 57,p = .58).

The final model in which all best fitting submodels were combined (Model
6) fits the data very well (L? = 458.8,df = 474,p = .68. Moreover, like all
submodels presented above, it does not significantly fit worse than Model 1
(L? = 95.2,df = 96,p = .50. The final model which is depicted in Figure 1
is very parsimonious. It contains only 34 independent log-linear parameters.

Table 2 presents the estimates for the two-variable and three-variable
interaction terms according to Model 6. The log-linear parameters for the
measurement model show that the indicators are strongly related to the latent
variable X: u? = 9225, u{® = 5307 and u\¢ = .6829.

The parameters for the relationships among the exogenous variables in-
dicate that children of employees have higher educated father’s that other
children (u{}¥ = —.8441). The value .1233 for u}" indicates that males have
lower educated father’s than females. It can be expected that this artificial
effect disappears when the partially observed data is used in the analysis.

Children of lower educated father’s have a much lower school ability than

children of higher educated father’s (ulX = .4125), males have a lower school
ability than females (uff* = .1089), and children of employees have a much
higher school ability than other children (ufX = —.4970). Moreover, the

three-variable parameters uEfF X show that the relationship between father’s

occupation and school ability is stronger for males than for females.

The educational level of the father has a positive effect on the educational
level of the respondent (uD¢ .1848). Moreover, children of employees
are relatively high educated (u11 = —.3988) and children of workers are
relatively low educated (uf% = .3893). School ability has a strong positive
effect on the final educational level (u¢ = .3893).

The most important determinant of the occupational status of the re-
spondent is the respondent’s own educational level (u&Hf = .5426). Moreover,
holding constant other factors, males have more often an occupation with a
high status than females (ul,7 = —.3387). Also, there exists a small positive
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Parameter Model 6 Model 11a

ulF -0.8441 -0.8461
ulf 0.3724 0.2908
ulyf 0.5061 0.4940
ult 0.1233

ullX 0.4125 0.3047
ul® -0.4970 -0.5370
ub® 0.2137 0.1041
u® 0.2708 0.1478
ulf® 0.1089 -0.0680
uff X -0.2039

ubiX 0.2346

ufh =~ 0.2944

ul¢ 0.1848 0.2062
uf)? -0.3988 -0.3587
ub® -0.0576 -0.0813
ulil 0.3893 0.3929
u® 0.3724 0.4216
ubyf -0.1846 -0.2460
uitt -0.1045 -0.1166
udit 0.1605 0.1541
ulf -0.3387 -0.3353
un 0.1316 0.1736
ulit 0.5426 0.5484
ul X H -0.0837
ub -0.1204
ul 0.0311
u A 0.9225 1.0489
u P 0.5307 0.5289
u® 0.6829 0.6975

Table 2: Log-linear effects among the survey variables according to Model 6
and Model 11a
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effect of X on H (u{" = .1316). And finally, children of workers have a
higher probability of having an occupation with a low status (v = .1605)
than others.

5.2 Fuchs’ procedure for nonresponse

Fuchs’ procedure to handle partially observed tables (Fuchs, 1982) can be
implemented in £EM by specifying a model for the response mechanism which
is equivalent to the MCAR assumption. In other words, the probability of
R =7 and S = s is assumed to independent of the other variables included
in the model.

Table 3 presents the test results for some models which were estimated us-
ing all the available data. The best way to start the analysis when some data
is missing, is to test the MCAR assumption itself. This can be accomplished
by specifying model {DEFGHABC, RS} for the table DEFGHABCRS
(Model 7). By assuming a saturated model for the relationships among the
variables and, moreover, R and S to be independent of the other variables,
one has a direct test for the MCAR assumption. As could be expected on the
basis of the available information on the response mechanism, this response
model must be rejected (L? = 2419.6, df = 445, p = .00). Nevertheless, more
parsimonious models for the relationships among the research variables may
be specified, that is, for the structural model and the measurement model.
The fit of such models can be tested by comparing them with Model 7. Be-
cause any ignorable response model gives the same parameters estimates for
the structural and the measurement model, a conditional test against Model
7 is a test of the model concerned, given that the response mechanism is
MAR (Fuchs, 1982).

Model 8 is equivalent to Model 1, that is, it can be used to test separately
the measurement part of the model. On the basis of the conditional test
against Model 7, it must be concluded that the measurement model fit less
well when all available data is used (L? = 438.6,df = 378,p = .00). This
may be the result of the increased power of the significance test. However, it
may also be an indication that the measurement model is only appropriate
for the selective group without missing data. Although the fit of Model 8
can be improved by supplying it with some additional parameters, here the
measurement model will be left just as it is. In other words, prevalence will
be given to the principle of parsimony. Like Model 1, Model 8 will be used
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Model fit

Conditional tests

Model L? df p models L> df p

7 MCAR 2419.6 445 .00
8 (1) + MCAR 28582 823 .00 (8)-(7) 4386 378 .02
9 (6) + MCAR 29509 919 .00 (9)-(8) 927 96 .58
9% (9)- DF 2051.7 920 .00 (9a)-(9) 08 1 .37
9b (9a)- EFX 29578 923 .00 (9b)-(%a) 6.9 3 .08
9 (9b) + EXH 29498 920 .00 (9b)-(9) 80 3 .05
00 (9)-(7) 5302 475 .04

Table 3: Test results for some models using Fuchs’ approach

as a reference point for the more restricted structural models.

Model 9, which is equivalent to the final model for the complete data
(Model 6), does not fit worse than Model 8 (L? = 92.7,df = 96,p = .58). In
Model 9a, the effect DF was excluded from the model to test whether the
significance of the effect DF was caused by the selectivity of the nonresponse.
Since leaving out this effect does not lead to a worse fit (L? = 0.8,df = 1,p =
.37), it can be concluded that the significance of the effect DF resulted from
analyzing complete cases only.

Starting with Model 9a, it was tried to find more parsimonious models
for the other submodels as well. The only effect which was not significant
anymore was the three-variable interaction among E, F' and X. In Model 9b,
this effect is set equal to zero (L? = 6.9,df = 3,p = .08). It is plausible that
this effect is also caused by the nonresponse because particular combinations
of X, E/ and F have higher probabilities of responding on D.

Because of the greater power of the significance tests when using all avail-
able data, particular effects which where not significant when using only
the complete data can become significant now. This was checked for ef-
fects with significance levels between 5 and 10 percent in the analysis per-
formed using only complete cases. There is only one effect which becomes
significant now: the interaction between E and X with respect to their ef-
fect on H. Model 9c containing the effect EX H fits better than Model 9b
(L? = 8,df = 3,p < .05).
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Model fit Conditional tests

Model L? df p models L? df D
10 (9) + {EFXR}
+ {DEFXS, RS} 1032.0 874 .00 (9¢)-(10)  1917.8 46 .00

0a (9c) + {EFABCR}
+ {DEFABCS,RS} 7354 730 .44 (9c)-(10a) 22144 190 .00
11 (%) + {EFR,XR}

+ {RS,FS} 1150.5 911 .00 (9¢)-(11)  1799.3 9 .00
(11)-(10) 1185 37 .00

lla (11) + FXS + FXR 1097.5 908 .00 (11)-(11a) 53.0 3 .00
(11a)-(10) 65.5 34 .00

12 (lla) + DR 1097.3 907 .00 (1la)-(12) 0.2 1 .65
13 (11a) + GS + HS 1093.5 906 .00 (1la)-(13) 4.0 2 .14

Table 4: Test results for some models for nonresponse

5.3 Models for patterns of nonresponse

When modeling the response mechanism, Model 9¢ will be taken as starting
point. It will be tried to make this model better fitting by adding parameters
describing the response mechanism. From Model 7, it is known that at
most 2419.6 in L? can be gained by using all 445 degrees of freedom for the
specification of the response model. In that case, the L?-value of the model
would be 530.2 with df = 475 (see (9¢)-(7) in Table 3), which is the test result
for Model 9c¢ in case the nonresponse is MAR. The MAR model can be seen
as a saturated ignorable response model. Of course, here we are interested
in much more parsimonious specifications of the response mechanism.

First, log-linear models { EF X R} and {DEF XS, RS} were specified for
the probability that R = r and S = s respectively (Model 10). The other
part of the model is equivalent to Model 9¢. Actually, Model 10 is the most
extended plausible model in which the response indicators are not influenced
by the variables which response probability they indicate. In Model 10, R
is assumed to depend on E, F' and X, including all their interaction terms.
Of course, it not possible that R depends on the variables G and H which
are measured many years later. Furthermore, S is assumed to depend on all
variables, except for G and H, the variables which missingness it indicates.
The effect RS is included in the model to fix the sample sizes of the four
subgroups. Comparison of Model 10 with Model 9¢, shows that most of the
information on the response mechanism is captured by Model 10 (see Table
4): The L*-value improves with 1917.8, using only 46 degrees of freedom.
However, there are still 399 degrees of freedom left to gain 502.2 in L?. The
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reason why Model 10 does not fit as perfect as could be expected is that R
and S are regressed on the latent variable X instead of the indicators A, B
and C'. This can be seen from the fact that Model 10a, where X is replaced by
A, B and C, does not fit significantly worse than the saturated MAR model
(L? = 735.4 — 530.2 = 205.2,df = 730 — 475 = 245, p = .97). Apparently,
the assumption that A, B, C' and R are mutually independent given X is
a bit too strong. This is the same kind of problem that was encountered
when testing the measurement model (Model 8). On the basis of the same
arguments as we used above, we will continue assuming that given X the
indicators are conditional independent of all other variables, including the
response indicators. Therefore, X will be used as regressor when specifying
the response mechanism and not the indicators A, B and C.

Model 11 is the response model of Equations (7), the model that was for-
mulated on the basis of the a priori knowledge about the response mechanism.
Using only 9 additional parameters compared to Model 9c, Model 11 captures
a very large part of the mechanism causing the nonresponse: L? = 1799.3.
So the a priori information on the mechanism causing the nonresponse is
confirmed by the analysis. Omitting any of the parameters describing the re-
sponse mechanism of Model 11 deteriorates the fit a lot. However, in terms of
fit, Model 11 is inferior to Model 10 (L? = 118.5,df = 37,p = .00). Therefore,
it was tried to improve the fit of Model 11 by adding some extra parameters.
This resulted in Model 11a which contains 3 additional parameters, namely:
the interaction of ' and X with respect to their effect on R, the effect of X
on S and the interaction effect of F' and X on S. Although Model 11a still
differs significantly from Model 10 (L? = 65.5,df = 34,p = .00), no other
single parameter could considerably improve the fit anymore.

The parameters estimates for Model 6 and Model 11a are given in Table
2. It can be seen that apart from the fact that particular parameters are not
significant anymore and that one effect becomes significant, the parameter
estimates for the relationships among the research variables do not change
very when partially observed cases are used in the analysis. Perhaps the most
interesting difference between the two models is that according to Model 6,
males have a bit lower school ability than females (uf* = .1089), while
according to Model 11a, males have a bit higher school ability than females
(ulf¥ = —.0680).

Table 5 contains the parameter estimates for the response model accord-
ing to Model 11a. The parameter estimates show that school ability deter-

25



Parameter Model 11a

ulf 0.0929
ubi? 0.2356
ulif 0.3747
ulff 0.2037
u -0.7070
ulfi B -0.0968
ubi B 0.1427
ulfi 0.1133
ult 0.1814
ul? 0.2182
uis® -0.0672
ufts 0.1424
ulitd 0.0603

Table 5: Log-linear effects for the response model according to Model 11a

mines very strongly the probability of observing D: u® = —.7070. More-
over, children of independents and workers have higher probabilities of D
being observed: ufF = 2356 and ul = .3747. The three-variable inter-
action term shows that this effect is stronger for males than for females.
And, for males D is observed more often than for females (uf® = .2037).
The parameter ul;® = .2182 shows that for males there is a higher prob-
ability of observing G and H than for females. Moreover, females with
a low school ability have a lower probability of responding on G and H
(u® — uly¥ = —.0672 — .0603 = —.1275), while males with a high school
ability have a higher probability of responding on G and H.

Finally, two models were estimated in which a direct effect between the
variables with missing variables and their response indicators was included.
Model 12 is equivalent to Model 11a, except for that it contains a direct effect
of D on R. This effect is clearly not significant. The same applies to Model
13: Neither the effect of G on S nor the effect of H of S is significant.

Summarizing, for this application, the modified Lisrel model extended
with Fay’s approach to partially observed data gave a very parsimonious
description of both the causal relationships among the research variables
and the response mechanism. The 960 observed frequencies were described
using only 52 parameters: 35 for the causal log-linear model and 17 for the
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response model. Using partially observed data made it possible to detect
some artificial effects. Moreover, because of the greater power of the tests,
one effect became significant. The models for nonresponse confirmed the a
priori knowledge about the response mechanism. However, the overall fit of
the final model is not perfect. This is caused by the fact that the measurement
model does not fit very well when all available data is used. By means of
a more elaborate analysis of this data set, it would, of course, be possible
to find the additional parameters to get an even better description of the
observed data.

6 Discussion

A general approach for specifying and testing causal models for categorical
variables was presented. It can be used to specify log-linear models with ob-
served, partially observed and unobserved variables. The general log-linear
model combines a structural model in which the causal relations among the
structural variables are specified, a measurement model in which the rela-
tions between the latent variables and their indicators are specified, and a
model for the response mechanism. The application demonstrated very well
the value of this model. The relationships among the research variables could
be decribed using a small number of log-linear parameters. When using the
partially observed data, particular effects became significant as a result of the
increased power of the statistical tests, and artificial effects were discovered
which resulted from selective nonresponse. Although not demonstrated by
the example, when the probability of nonresponse on a particular variable
depends strongly on the value of the variable concerned, the parameter esti-
mates of the model for the survey variables may change a lot as well (Baker
and Laird, 1988).

In the application, only hierarchical log-linear model were used. However,
it is also possible to impose all kinds of linear restriction on the log-linear pa-
rameters, that is, to specify non-hierarchical log-linear models per subtable.
This becomes more important, when the model contains several polytomous
variables with ordered or equidistant categories. The possibility to restrict
the log-linear parameters can, for instance, be used to specify discrete approx-
imations of latent trait models (Heinen, 1992, Vermunt and Georg, 1995).
Because of the equivalence of the more general log-linear or logit model to
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the logistic regression model, it can also be used to incorporate continuous
exogenous variables into a modified Lisrel model (Vermunt, 1995).

The way of specifying the causal order among the structural variables
in modified Lisrel models is similar to the specification of (latent) Markov
models (Van de Pol and Langeheine, 1990). Actually, the (latent) Markov
model is a special case of the modified Lisrel model. The approach presented
here is more general since the more flexible way of specifying the conditional
probability structure makes it possible to relax the basic assumptions of the
(latent) Markov model. The modified Lisrel model can, for instance, be used
to specify multivariate Markov models (Vermunt, 1995) and latent Markov
models with correlated errors (Bassi, Croon, Hagenaars and Vermunt, 1995).
Furthermore, the possibility to parametrize the conditional probabilities by
means of a logit model can, among other things, be used to specify regression
models for the transition probabilities which are similar to discrete-time event
history models (Vermunt, 1995).

Although in the example the latent class model was used as a measure-
ment model, it can also be used for unmixing populations having different
structural parameters (Titterington, Smith and Makov, 1985). Examples of
the use of the latent class model as a finite mixture or discrete compound
model are the mixed logit model (Formann, 1992), the mixed Markov model
(Van de Pol and Langeheine, 1990), and the mixed Rasch model (Rost, 1990).
Specifyng these kinds of mixed models within the modified Lisrel approach
involves including a latent variable without indicators into the model.

And finally, the causal log-linear models that were presented are recursive
models, that is, models in which the causal relationships among the vari-
ables are uni-directional. Recently Mare and Winship (1991) proposed ‘non-
recursive’ log-linear models with reciprocal effects. Although not demon-
strated here, the rather complicated ‘non-recursive’ log-linear models pro-
posed by Mare and Winship can also be handled within the modified Lisrel
approach.
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