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The aim of cognitive developmental research is to explain latent cognitive
processes or structures by means of manifest variables such as age, cognitive
behaviour, and environmental influences. In this paper the usefulness of the
latent class regression model is discussed for studying cognitive developmental
phenomena. Using this model, the relationships between latent and manifest
variables can be explained by means of empirical data without the need of
strong a priori assumptions made by a cognitive developmental theory. In the
latent class regression model a number of classes are distinguished which may
be characterized by particular cognitive behaviour. Environmental influences
on cognitive behaviour may vary for different (developmental) classes. An
application is given of the latent class regression model to transitive reasoning
data. The results showed that a Five-Class model best fitted the data and that
the latent classes differ with respect to age, strategy use (cognitive behaviour)
and the influence of task characteristics (environmental influences) on the
strategy use. The flexibility of the model in terms of mixed measurement levels
and treatment of different cognitive variables offers a broad application to
several cognitive developmental phenomena.

The general aim of cognitive developmental research is the uncovering of
relationships between cognitive processes, environmental influences and age
(see, e.g., Flavell, 1985; Siegler, 1991). Because cognitive processes can not
be observed directly but only inferred from observable variables, observable
cognitive behaviour is assumed to indicate the latent cognitive processes. In
Figure 1, a general model is displayed of the relationships between observed
and latent variables in the domain of cognitive development. The definition
and operationalization of the different aspects and relationships in Figure 1
varies for different cognitive developmental theories and the assumptions
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about the acquisition of knowledge. Moreover, cognitive developmental
theories have different perspectives on the importance of the aspects (Figure
1) and how they should be measured.

For example, in the theory of Piaget (see, e.g., Flavell, 1963; Chapman,
1988; Bidell & Fischer,1992), cognitive abilities are assumed to develop in
stages, which are characterized by a particular kind of knowledge structures.
One of the most important purposes of Piaget was to give a broad
description of the developing structures. Therefore, his theory was domain-
general without paying much attention to the influence of external
conditions (Case, 1992). In information processing theory (see, e.g., Kail
& Bisanz, 1992), however, development is defined as cumulative learning
without qualitative change. External experiences make it possible to acquire
knowledge, that is, to learn and develop cognitively.

Dependent on the theoretical perspective, assumptions are made about
the unobservable (latent) processes and how these processes should be
measured using observable variables. Given the assumptions, relationships
between observable variables such as age, task conditions and cognitive
behaviour, and unobservable variables, such as cognitive processes, are
modelled. By studying the observable variables empirically, or by means of
computer simulation, one wants to reveal the latent cognitive processes and
the relationships between these cognitive processes, environmental influ-
ences and age.

However, it is difficult to test a model empirically in which both the
observed and the unobserved variables are represented, that is, to estimate
and test relationships between observable and unobservable variables
without the need for strong cognitive theoretical assumptions. Nevertheless,
statistical models in which latent variables can be defined using manifest
variables do exist and can be used to study relationships between age,
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Figure 1. A general model for the relationships between manifest and latent variables in the

domain of cognitive development.
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environmental influences and cognitive processes (Embretson, 1985, 1991;
Fischer, 1995; Kelderman & Rijkes, 1994; Mislevy & Verhelst, 1990; Sijtsma
& Verweij, 1999).

In modern test theory, for example, the observed responses to a number
of tasks (e.g., arithmetic problems), which measure a particular ability (e.g.,
arithmetic ability) are used to determine the number of latent abilities
needed to explain the observable data structure, and the strength of the
relationships between the item scores and these latent abilities. Thus,
modern test models, also known as item response theory (IRT) models (see,
e.g., Hambleton & Swaminathan, 1985; Sijtsma & Molenaar, 2002), make it
possible to reveal and statistically test a latent structure for explaining the
data without the need to posit an a priori theoretical structure stipulated by
cognitive theory.

In IRT models the latent variable is continuous, whereas latent class
models (e.g., Hagenaars & McCutcheon, 2002) assume latent abilities to be
discrete, consisting of two or more nominal or ordered classes. In particular
when studying cognitive development, these latent class models are useful to
distinguish groups of children on a developmental scale which are
characterized by a pattern of specific cognitive behaviour. The cognitive
behaviour in a specific latent class may differ, in a particular aspect, from the
cognitive behaviour in other latent classes. Latent class models allow the
estimation of the classes of the latent variable from the data instead of
assuming them on the basis of a cognitive theory. However, latent class
models can also be used in a confirmatory way by testing the latent class
structure assumed by a cognitive theory.

In the domain of cognitive developmental theory, age is hypothesized to
have an important influence on the formation of the latent classes. One may
expect that a particular latent class, which is characterized by specific
cognitive behaviour, may fit better for children of a particular age range
than for children outside this range. Latent class analysis makes it possible
to empirically determine the influence of age (as a covariate) on the
formation of the latent classes.

A division into classes does not necessarily imply a cognitive stage theory.
In contrast, the cognitive behaviour typical of a latent class may be an
expression of the same underlying ability continuum. The classes may be
ordered and it depends on the level of description of the observed variables
whether the interpretation of the latent classes differs quantitatively or
qualitatively. For example, Bouwmeester and Sijtsma (2003a) found that the
response patterns of children on a set of transitive reasoning tasks could be
explained by one ability, but that a broad variety of explanations were used
to motivate the responses. Possibly, on a more detailed level, the transitive
reasoning ability can be divided into a number of classes that are
characterized by a specific pattern of cognitive behaviour.
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The power of the latent class model is that specific behaviour patterns can
be distinguished and the influence of age determined without a priori
cognitive theoretical assumptions. However, it is possible to test a cognitive
stage theory using latent class models. Jansen and van der Maas (1997) used
a latent class model to empirically study the different stages of reasoning on
the balance scale task (Inhelder & Piaget, 1958; Siegler, 1976) and found that
the theoretical stages were, together with some others classes, represented by
the latent classes.

An additional possibility of latent class models is to describe the classes in
more detail by assessing the influence of certain external conditions on
cognitive behaviour in a particular class, and compare classes with respect to
the influence of external conditions on cognitive behaviour in a set of classes.
For this purpose, we used a latent class regression model (Wedel &
DeSarbo, 1994; Vermunt & Magidson, 2000), in which a multiple regression
function is estimated for a number of classes. The formation of the latent
classes is influenced by the covariate age. For every latent class, the influence
of external conditions on the cognitive behaviour can be determined. This
latent class regression model is a very general and flexible model that can be
applied to a broad range of cognitive developmental phenomena. Examples
are the development of reasoning on the balance scale task (see, e.g., Jansen
& van der Maas, 1997), transitive reasoning (see, e.g., Verweij, 1994),
inductive reasoning (see, e.g., De Koning, 2000), and analogical reasoning
(see, e.g., Hosenfield, 2003).

The covariate, the dependent variable and the predictor variables can
have different measurement levels. For example, instead of age in months,
grade level can be used as a covariate, or other child characteristics such as
gender, cultural background, or socioeconomic status. Cognitive behaviour
may be operationalized as correct/incorrect responses, strategy information,
verbal explanations, or reaction times. Predictors may be all kinds of
external conditions. For example, tasks may vary in specific task
characteristics, or the experiment may take place in different locations or
at different times. In the next section an application of the latent class
regression model is given in the context of transitive reasoning development.

AN APPLICATION: TRANSITIVE REASONING

In a transitive relation, the relationship, R, between two elements, A and
C, can be inferred from their known relationships with a third element, B;
that is (RAB, RBC) ) RAC. In this example, the relationships RAB and RBC

are premises. In the research on transitive reasoning a number of different
task characteristics are used to study the ability of transitive reasoning.
Different kinds of transitive and non-transitive strategies appeared to be
used to draw transitive inferences in tasks having different task
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characteristics (Perner & Mansbridge, 1983; Verweij, 1994; Bouwmeester &
Sijtsma, 2003b). Throughout the last decades a discussion has been taking
place about which kinds of cognitive behaviour are really expressions of
transitive reasoning; which kinds of tasks should be used to measure
transitive reasoning; and what really develops when studying transitive
reasoning (see, e.g., Smedslund, 1969; Trabasso, 1977; Brainerd & Reyna,
1992; Chapman & Lindenberger, 1992). Therefore, it is important to reveal
the relationships between age, cognitive behaviour, and external condi-
tions, when studying the development of this cognitive developmental
phenomenon.

METHOD

Instruments

Bouwmeester and Sijtsma (2003a, 2003b) investigated transitive reasoning
by constructing a computer test containing 16 transitive reasoning tasks.
The tasks differed on three important external conditions, called task
characteristics. The task characteristics had 4, 2, and 2 levels defining 4 6 2
6 2=16 tasks. A description of the task characteristics is given in Table 1.

Strategies

For each task both the correct/incorrect responses and the verbal
explanations were recorded. The verbal explanations associated with the
correct/incorrect responses showed that children used a broad variety of

TABLE 1
Description of the transitive reasoning task characteristics

CHARACTERISTIC Level Description

FORMAT 1. YA 4YB 4YC

2. YA=YB=YC=YD

3. YA 4YB 4YC 4YD 4YE

4. YA=YB 4YC=YD

Defines the logical relationships

between the objects involved, e.g.,

when the relationship is length, YA

4YB 4YC means that object A is

longer than object B, which is longer

than object C.

PRESENTATION

FORM

1. Simultaneous

2. Successive

Determines whether all objects are

presented simultaneously, or in pairs

of two objects during premise

presentation.

CONTENT OF

RELATION

1. Physical

2. Verbal

Determines whether the relationship

can be perceived visually, or has to be

told in words by the experimenter.
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explanations but that this differentiation could not be discovered by
considering only the correct/incorrect responses. Moreover, Bouwmeester
and Sijtsma (2003b) showed that correct/incorrect responses to the tasks of
the transitive reasoning test did not form one reliable ability scale. Thus, we
used the verbal explanations data in this study. These verbal explanations
were categorized into seven strategies, which are displayed in Table 2. These
strategies formed the cognitive behaviour investigated by Bouwmeester and
Sijtsma (2003a).

Sample

The sample consisted of 615 children stemming from grade two through
grade six. Children came from six elementary schools in The Netherlands.
They were from middle-class socioeconomic status (SES) families. Table 3
gives an overview of the number of children per grade, and the mean age and
the standard deviation of age within each grade.

TABLE 2
Description of the seven strategies used to solve the transitive reasoning tasks

NAME Description Example

1. LITERAL All necessary premise information

is used to explain the transitive

relation.

Object A is longer than object C,

because object A is longer than

object B and object B is longer than

object C.

2. REDUCED The premise information is used in

a reduced form.

Animals get older to the right, so

the horse is older than the cow

because it is positioned before the

cow.

3. INCORRECT Premise information is incorrectly

used or incorrect premise

information is used.

The lion is older than the camel

because the hippo and the lion have

the same age.

4. INCOMPLETE Premise information is used

correctly but incompletely.

The blue stick is longer than the red

stick because the blue stick is

longer than the green stick.

5. FALSE

MEMORY

The test pair is confused with a

premise pair.

I’ve just seen that the blue stick is

longer than the red stick, so that

will still be the case.

6. EXTERNAL &

VISUAL

Visual or external information is

used to explain the transitive

relation, no premise information is

used.

The parrot is older than the duck

because parrots can become very

old; When I look very carefully, I

can see that the blue stick is longer

than the red stick.

7. NO

EXPLANATION

No explanation is given. I guessed, I just don’t know.
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Data

A representation of the input data file for the latent class regression analysis
is shown in Table 4. Each of the 615 children performed 16 tasks (in the
table indicated as replications). Each task was defined by a combination of
three task characteristics. For example, task 1 had format YA 4YB 4YC,
simultaneous presentation form, and verbal type of content. Each child used
one of the seven strategies, and the same child could use different strategies
for different tasks.

ANALYSIS: THE LATENT CLASS
REGRESSION MODEL

Parts of the model

It was expected that the strategy responses of the children on the 16
transitive reasoning tasks could be divided into a number of classes that
were ordered along a developmental scale and differed with respect to
specific strategy use for different kinds of transitive reasoning tasks. The
formation of the latent classes was expected to be influenced by age.
Grade level was used as a covariate instead of age because we were
primarily interested in the relationships between grade level and latent
class.

The first part of the latent class regression model is defined by the
probability (p) of being in a particular latent class (realization x of latent
variable X), given grade level (realization zc, of covariate Zc, where c stands
for covariate), that is:

pðxjzcÞ: ð1Þ

These marginal probabilities of being in a specific class given a value on the
covariate, add to 1 over the latent classes x:

TABLE 3
Number of children, mean age (M) and standard deviation (SD) per grade

Age

Grade Number Ma SD

2 108 95.48 7.81

3 119 108.48 5.53

4 122 119.13 5.37

5 143 132.81 5.17

6 123 144.95 5.34

a number of months.
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X
x

pðxjzcÞ ¼ 1: ð2Þ

In the second part of the model, the probabilities are estimated of using a
particular cognitive behaviour given the latent class and the value(s) on one
or more external conditions. In this application the dependent variable
‘‘cognitive behaviour’’ is the discrete variable ‘‘strategy’’ (Y, with realiza-
tions y) that has seven categories. The predictor variables ‘‘external
conditions’’ are three ‘‘task characteristics’’ (Zp

1, Z
p
2, Z

p
3, with realizations

zp1, z
p
2, z

p
3 (where

p stands for predictor) having also a discrete measurement
level:

f yjx; zp1; zp2; zp3
� �

: ð3Þ

For each task (which consists of a combination of the three task
characteristics) a multinomial probability function is estimated for the use

TABLE 4
Input data file for the latent class regression analysis; 16 lines per case, each line

representing a transitive reasoning task

Replication Case Id Grade Format* Presentation* Content* Strategy

1 1 2 1 1 1 3

2 1 2 2 1 1 2

3 1 2 3 1 1 6

4 1 2 4 1 1 2

5 1 2 1 2 1 7

6 1 2 2 2 1 6

. 1 2 . . . .

. 1 2 . . . .

. 1 2 . . . .

15 1 2 3 2 2 5

16 1 2 4 2 2 3

1 2 3 1 1 1 5

2 2 3 2 1 1 1

. . 3 . . . .

16 2 3 4 2 2 6

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

1 615 6 1 1 1 4

. 615 6 . . . .

. 615 6 . . . .

16 615 6 4 2 2 3

*Format, presentation, and content were the three task characteristics; for a detailed description

see Bouwmeester & Sijtsma (2003b).
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of a strategy in a latent class, and this is done for each combination of a
strategy and a latent class. In a fixed latent class, these probabilities add to 1
over strategies (y), that is:

X
y

f yjx; zp1; zp2; zp3
� � ¼ 1: ð4Þ

Because there are 16 tasks, there are 16 of these probability functions for
each latent class.

Then, Equations 1 and 3 combine into the latent class regression model.
The model is defined by the summation over latent classes of products of the
marginal probability of being in a latent class given the grade level, and the
product of multinomial probabilities for each task (denoted t, 16
combinations of task characteristics):

f yjzc; zp1; zp2; zp3
� � ¼

X
x

pðxjzcÞ
Y
t

f ytjx; zp1t; zp2t; zp3t
� �

: ð5Þ

Because there are 16 observations per case, the dependent variable Y is a
vector containing the sixteen strategy responses and the predictor variables
Zp
l are also vectors containing the levels of the task characteristics.

Parameters

To calculate the multinomial probabilities of being in a latent class given
grade level (pðxjzcÞ in Equation 5), two kinds of parameters have to be
estimated, denoted by g0x and g1zcx. Parameters g0x are the intercepts for the
latent class variable and parameters g1zcx are the covariate effects on the
latent class variable. Equation 1 is modelled by a multinomial probability,
which is defined as a logistic regression function:

pðxjzcÞ ¼ expðZxjzcÞP
x
expðZxjzcÞ

: ð6Þ

The linear term Zxjzc equals

Zxjzc ¼ g0x þ g1zcx ð7Þ

To estimate the multinomial probability function of using a particular
strategy given the latent class and a combination of task characteristics (i.e.,
f ytjx; zp1t; zp2t; zp3t
� �

, in Equation 5), again two kinds of parameters have to be
estimated, denoted by b1xy and b2xzp

lt
. Parameters b1xy are the class-specific

intercepts. For all strategies in every latent class there is a b1xy parameter.
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Parameters b2xzp
lt
are the class-specific regression coefficients. For all levels of

the task characteristics there is a parameter for all strategies in every latent
class. The multinomial probability function is again a logistic regression
function:

f ytjx; zp1t; zp2t; zp3t
� � ¼

exp Zyjx;zp
1t
;z

p
2t
;z
p
3t

� �

P
y
exp Zyjx;zp

1t
;z

p
2t
;z
p
3t

� � : ð8Þ

The linear term Zyjx;zp
1t
;z
p
2t
;z

p
3t
equals

Zyjx;zp
1t
;zp
2t
;zp

3t
¼ b1xy þ b2zp

1t
xy þ b2zp

2t
xy þ b2zp

3t
xy: ð9Þ

The number of parameters to be estimated increases rapidly with an
increasing number of latent classes. Table 5 shows the number of parameters
to be estimated for models with one through seven latent classes.

Fit of the model

The program Latent Gold (Vermunt & Magidson, 2000, 2003) was used to
estimate the parameters and calculate the fit of the model. The program
gives evaluation statistics, estimates of the parameters and the accompany-
ing standard errors and z-values.

In the program Latent Gold a number of evaluation statistics are
provided to choose a plausible model. First, the log-likelihood statistics are
calculated which express the fit for models with a user-specified number of
latent classes. The amount of reduction of the log-likelihood statistic for
models with an increasing number of classes can be considered to choose the
best-fitting model. Because of sparse frequency tables, the asymptotic p-
values associated with the w2-statistics often cannot be trusted. Therefore, a
p-value can be estimated by means of bootstrapping (Efron & Tibshrani,
1993), which is implemented in the program. The bootstrap L2 procedure
involves generating a certain number of replication samples from the
maximum likelihood solution and re-estimating the model with each
replication sample. L2 is a test statistic or fit measure. The bootstrap p-
value is the proportion of replication samples with higher L2 than in the
original sample. For example, when 40% of the replication samples has an
L2 value higher than the L2 value of the original sample, the bootstrap p-
value is 0.40. However, a conditional bootstrap procedure, in which the fit
of models with different classes can be compared has not yet been
implemented in the Latent Gold program.

Second, the BIC values are calculated. The lower the BIC value, the
better fitting and the more parsimonious the model (McLachlan & Peel,
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2000). Third, the proportions of classification errors are provided. This
proportion indicates how well the model can predict latent class membership
given the value on the covariate and the dependent variable (Andrews &
Currim, 2003). This proportion is not a fit measure, but it is an important
measure to evaluate the distinctiveness of different classes.

Fourth, the class sizes and the interpretation of the classes were used to
choose a model. Although the evaluation statistics calculated by the
program provided useful guidelines to choose the best-fitting model, the
final decision was based on the interpretability of the classes and the class
size.

RESULTS

Analysis of variance, with number-correct score on all 16 tasks as dependent
variable and school and grade as independent variables, showed no
significant effects for the same grades of different schools. Therefore, it
was concluded tentatively that school had no influence on a child’s transitive
reasoning ability.

Model fit and number of classes

Seven models were fitted with an increasing number of classes ranging from
one to seven. Table 6 shows the evaluation statistics that were used to
choose a final model.

Although a number of fit-statistics that evaluate different aspects of
the model can be used to choose a plausible model, the choice of a final
model also depends on substantive considerations, previous research
results, considerations of parsimony, and so on. This can be compared
with factor analysis, where the choice of the final factor solution also

TABLE 6
Model fit statistics for seven latent class models

Number of

classes L2 value BIC valuea
Number of

parameters

Proportion of

classification errors

1 25338.593 31320.685 36 0.000

2 22867.005 29093.119 74 0.028

3 21824.833 28294.969 112 0.046

4 21176.725 27890.430 150 0.053

5 20777.859 27736.038 188 0.050

6 20430.206 27632.407 226 0.057

7 20204.839 27651.062 264 0.060

aBIC value=7 2 log-likelihood +No. parameters * ln(N).
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depends on considerations other than statistical ones. It remains difficult,
maybe practically impossible, to determine the exact number of latent
classes.

The log-likelihood statistics showed a reduction of at least 37% in
magnitude from the log-likelihood statistics going from the One-Class
model to the Five-Class model. The reduction of the log-likelihood statistic
from the Five-Class model to the Six-Class model was only 12%. On the
basis of the log-likelihood statistics the Five-Class model would be chosen.

The Six-Class model was the most parsimonious model in terms of BIC
values. The proportion of classification errors first increased from the One-
Class model through the Four-Class model. This can be explained by the
fact that correct classifying is more difficult with a higher number of classes.
The result that the proportion of classification errors decreases with the
Five-Class model and then increases again indicates that the Five-Class
model may be preferred over the Six-Class model.

On the basis of the evaluation statistics provided by the program, the
Five- and Six-Class models are most plausible. For this application, the
bootstrap procedure was not informative about choosing the best-fitting
model. On the basis of the class sizes and the interpretation of the classes,
the Five-Class model was chosen as the final model. The Six-Class model
had three relative small classes (marginal probability5 0.10). Moreover, the
smallest class hardly differed from another class with respect to the
interpretation.

The g-parameters: class size and influence of grade

Table 7 shows the g parameters. The g0-parameters are intercept parameters,
which are used to calculate class size. The g1zcx-parameters were all significant
(z 4 1.96). This means that the covariate grade had a significant influence in
all classes. When these g-parameters are inserted in Equations 7 and 6,
respectively, the marginal probabilities (class size, see Table 7) and the
probability distribution of grade given the latent class can be calculated.

TABLE 7
g-Parameter estimates and class size for the five-class model

Class g0x g1zcx Class size

1 7 0.251 0.220 0.381

2 7 4.386 0.796 0.266

3 7 1.866 0.325 0.146

4 3.957 7 0.812 0.106

5 2.545 7 0.530 0.101
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Figure 2 shows the probabilities of grade for each class. In particular, in
Class Two, Grade Six had high probability. Also in Classes One and Three,
higher grades had higher probability than lower grades. For the Classes
Four and Five, lower Grades Two and Three had higher probability than
higher Grades Four, Five and Six.

The b parameters: strategy use and influence of
task characteristics

Table 8 shows the class-specific intercepts, the b1xy-parameters. A non-
significant b1xy-parameter estimate does not significantly deviate from zero,
which means that there is no effect for this strategy in the particular class.
The b1xy-parameters can be used to calculate the probability distribution of
strategy given the latent class,
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Figure 2. Probability distribution of grade given latent class.
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pðyjxÞ ¼ expðb1xyÞP
y
expðb1xyÞ

:

Figure 3 shows the probabilities of using a particular strategy for each class.
Children in Class One in particular use INCORRECT premise

information, LITERAL premise information and NO EXPLANATION.
Children in Class Two are characterized by the use of LITERAL

premise information and INCORRECT premise information. Children in
Class Three are characterized by the use of INCOMPLETE premise
information and INCORRECT premise information. Children in Class
Four in particular do NOT give an EXPLANATION or use EXTERNAL &
VISUAL information. Children in Class Five are characterized by the
use of EXTERNAL & VISUAL information, FALSE MEMORY and NO

EXPLANATION.
There are 280 class-specific regression coefficient parameters (b2xzp

lt
),

that is, one for each strategy (7) in each class (5), for every level of
the task characteristics (4 + 2 + 2). It is beyond the scope of this
article to interpret these parameters in detail, but we will give a global
interpretation of the influence of the task characteristics on the strategy
use in the latent classes by describing the size of the effect of the
parameters. Table 9 gives the interpretation of the strength of the
influences. TASK FORMAT has some influence on strategy use in the
Classes One and Two but hardly in the Classes Three, Four and Five.
PRESENTATION FORM has a strong effect on strategy use in four
Classes but not in Class Three. CONTENT OF THE RELATION has a
strong effect on strategy use in the Classes One and Two, some effect
in the Classes Three and Four and hardly any effect in Class Five.

TABLE 8
The bxy-parameter estimates for the five-class model

STRATEGY Class 1 Class 2 Class 3 Class 4 Class 5

LITERAL 0.705 2.260 0.788 7 1.137 7 0.910

REDUCED 1.421 7 0.026 7 0.871 7 2.320 7 2.351

INCORRECT 1.098 1.900 1.707 0.433 0.038

INCOMPLETE 7 0.704 0.392 2.559 7 0.770 7 0.651

FALSE MEMORY 7 0.273 7 2.367 0.409 0.440 0.887

EXTERNAL & VISUAL 7 0.236 7 0.926 0.410 0.726 2.040

NO EXPLANATION 0.831 7 1.232 7 5.001 2.629 0.946

Italics: effect is not significant (p 4 .05).
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DISCUSSION

When studying cognitive development of transitive reasoning using a latent
class regression model we found that a number of classes can be
distinguished, which differ with respect to cognitive behaviour. Using the
grade level distribution over the classes, an ordering of the classes became
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Figure 3. Probability distribution of strategy by latent class.

TABLE 9
Size of the effect of influence of the task characteristics on strategy use

CHARACTERISTIC Class 1 Class 2 Class 3 Class 4 Class 5

TASK FORMAT some some hardly hardly hardly

PRESENTATION FORM strong strong hardly strong strong

CONTENT strong strong some some hardly
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visible. Classes Four and Five, which contained in particular lower-grade
children, were characterized by superficial cognitive behaviour using almost
no task information but rather directly observable task characteristics or
unimportant information from the external world. Several times, children
gave no explanation at all. In the Classes One and Three, in which children
from all grades were represented but in particular from Grades Three, Four,
and Five, children often knew that they had to use the task information but
they did not have a complete or correct representation of the task space.
Class Two contained in particular higher-grade children who were able to
use the task information, understand the underlying pattern and form a
complete internal representation of the task space in most cases.

By treating age as a covariate, which influenced the formation of the
classes, the developmental ordering of the classes was not assumed to be
known a priori. The results showed that there is a developmental ordering,
but that children from the highest grades are (marginally) represented in
lower-ability classes, while children from lower grades are represented in the
higher-ability class. The model thus gives opportunities to diagnose children
who deviate from the age-related criterion and to interpret that deviation in
detail.

An interesting finding of this application, which is difficult to reveal when
no latent classes are distinguished, is the differential influence of task
characteristics on strategy use in a latent class. In addition to a general
overview of the strategy use in a particular latent class, the latent class
regression model makes it possible to explain or predict the influence of
external conditions at a detailed level, or even the influence of interactions of
external conditions (which was not done in this application).

An interesting product of this method is that specific cognitive behaviour
can be better interpreted in relation to other cognitive behaviour. For
example, it is difficult to interpret the NO EXPLANATION strategy when there
is no further information. When children do not give an explanation, they
may simply not know how to solve the problem; they may know that the
premises information has to be used, but they do not know how; or they
may simply not know how to explain their answer to other people. The
distribution of the strategies over the classes gives information on how to
interpret this NO EXPLANATION strategy. In Class One and Class Four
children often used NO EXPLANATION, but children in Class One used some
more-proficient strategies besides the NO EXPLANATION strategy, while
children in Class Four in particular used low-proficiency strategies. It
appears that children in Class Four had absolutely no idea how to solve the
tasks, while children in Class One understood that they had to use the
premises but did not know how to use them.

The analysis of this application was explorative. We did not assume a
particular cognitive theory which was tested. However, it is also possible to
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test a cognitive theory in terms of the latent class regression model, that is,
to perform a confirmative analysis. Assuming Piaget’s theory, we could have
tested whether empirical data fitted in the cognitive developmental stages
Piaget assumed. Then, it should be tested whether the data could be
explained by a number of latent classes, which represented the cognitive
developmental stages. Using the latent class regression model, it is also
possible to model a priori hypotheses about developmental stages. It may be
expected from a developmental theory that a particular condition has no
effect in one particular latent class, or an equal effect in two or more
different classes. By imposing restrictions on the model, effects can be set to
zero, or can be set equal for different classes.

It has to be emphasized that we used data from a cross-sectional design,
that is, children of different ages were tested once. This design makes it
possible to interpret development in terms of differential classes, but we can
only speculate about an individual child’s transition from one class to
another. A longitudinal study is necessary to study this transition. The latent
class regression model can also be used to study such a longitudinal design.

In this article we introduced the latent class regression model for studying
cognitive developmental phenomena. The most important value of the
model is the possibility it provides to empirically test the presence or absence
of latent classes without the need for strong cognitive theoretical
assumptions about the latent variable(s). In the application of the model
to transitive reasoning data, a very large number of parameters had to be
estimated, making the model relatively complex. The large number of
parameters was caused by a nominal dependent variable, having seven
categories, and nominal independent variables. Models with other types of
dependent and independent variables will contain substantially fewer
parameters.

The flexibility of the model in terms of mixed measurement levels and
treatment of different cognitive variables further offers a broad application
to a number of cognitive developmental phenomena, such as conservation,
symbolic analogies, verbal analogies, inductive reasoning, reading compre-
hension, and problem solving.
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