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1 Introduction

There are three main approaches to the analysis of longitudinal data (Diggle,

Liang, and Zeger 1994):

1. conditional, change-score or transitional models

2. marginal or population-average models

3. subject-specific, random-effects, or growth models.

Transitional models such as Markov-type models concentrate on changes

between consecutive time points. Marginal models can be used to investigate

changes in univariate distributions, and random-effects or growth models

study development of individuals over time. These three approaches do not

only differ in the questions they address, but also in the way they deal with

the dependencies between the repeated measures. Because of their structure,

transitional models take the bivariate dependencies between observations at

consecutive occasions into account. Growth models capture the dependence

by introducing one or more latent variables (random effects). In marginal

models, the dependency is not explicitly modeled, but dealt with as found
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in the data and in general is taken into account in a more ad hoc way in the

estimation procedure. Variants of transitional, growth and marginal models

have been developed for categorical response variables (Agresti, 2002), as

well as hybrids combining these approaches (Vermunt, Rodrigo, and Ato,

2001).

Growth modeling is probably the most popular tool for dealing with lon-

gitudinal data in social and behavioral sciences. In econometrics it is usually

referred to as panel regression. Basically, growth models are regression mod-

els for two-level data – time points nested within individuals – in which time

enters as one of the predictors. Here, we deal with growth models for cate-

gorical response variables, which implies using mixed-effects variants of the

appropriate regression models from the generalized linear modeling (GLM)

family, such as random-effects binary, ordinal, and multinomial logistic and

Poisson regression.

Whereas in standard growth models unobserved heterogeneity is captured

by means of continuous latent variables, it is also possible to work with

discrete latent variables, which yields what is referred to as latent-class (LC)

growth modeling. The purpose of this tool is to identify subgroups or clusters

showing different developmental patterns or trajectories. As will be shown,

the LC growth model is a special case of the mixture GLM for two-level data,

which makes it is straightforward to deal with categorical response variables,

such as binary, nominal, ordinal, and count variables. As in standard growth

models, one may use continuous random effects to account for (part of) the

unobserved heterogeneity, yielding hybrids between LC and standard mixed

models.
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Various interesting extensions of the standard LC growth model can be

derived using the new multilevel LC methodology proposed by Vermunt

(2003, 2004, 2005). For example, one could build a latent classification using

multiple indicators and specify a growth model for these latent classifications.

Another example is a LC growth model for multilevel data, in which groups

may belong to latent classes with different growth patterns or in which groups

may differ with respect to the growth class distribution of their members.

Below, I first describe the standard random-effects growth model for cat-

egorical response variables. Subsequently, I discuss the LC-based growth

modeling approach, as well as hybrid variants combining discrete and con-

tinuous random effects. Then, I present an empirical example in which the

standard, latent-class, and hybrid methods are applied. Subsquently, I com-

pare the obtained results with the ones that would have been obtained with

a Markov model. In the last section, I present extensions of the basic models

which involve the use of methods for three-level instead of two-level data.

2 Growth models

Let yit denote the response of case i at occasion t on the response variable

of interest, and N and T the number of cases and time points, respectively,

where 1 ≤ i ≤ N and 1 ≤ t ≤ T . It is not necessary to assume that each

case has observation at each time point, which means that the longitudinal

data set at hand may be unbalanced and may contain missing values.

Growth modeling involves specifying a random-effects regression model

for yit, in which the time-specific responses are assumed to be a function

3



of time (Hedeker, 2004). Depending on the scale type of the dependent

variable the regression model will be another member of the GLM family

(Agresti et al., 2000). More specifically, after an appropriate transformation

g(·), the expected value of the response variable E(yit) is assumed to be a

linear function of a set of predefined functions of t. In the binary case,

the transformation could, for example, be the logit transformation, yielding

g[E(yit)] = log P (yit=1)
1−P (yit=1)

.

The linear model for g[E(yit)] has the following form

g[E(yit)] = β0i +
S∑

s=1

βsi · fs(t) =
S∑

s=0

βsi · fs(t), (1)

in which fs(t) is a predefined function of time, and f0(t) = 1 for a compact

representation of the constant term. Typical special cases are the linear

growth model with S = 1 and f1(t) = t− 1, and the quadratic growth model

with S = 2 and f1(t) = t− 1 and f2(t) = (t− 1)2. The functions fs(t) could

also take on the form of a set of dummy variables for time points 2 to T , in

which case S = T − 1, and fs(t) = 1 if s = t + 1 and 0 otherwise. For an

extended discussion of possible functional forms for the time dependence, see

Snijders and Bosker (1999).

The index i appearing in the subscript of each of the regression coeffi-

cients in equation (1) indicates that these may be subject specific; that is,

each individual may have its own growth curve. Note that with longitudinal

data we have to take into account that the observations of the same indi-

vidual at the various time points are not independent of one another. In

fact, we are dealing with a two-level data structure in which time points are

nested within cases (Snijders and Bosker, 1999). Equivalent to multilevel

analysis, in growth model the dependence between observation is dealt with
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by assuming that some of the model parameters are “group-specific”, where

for parsimony, these coefficients are assumed to be random coefficients com-

ing from a multivariate normal distribution; that is βi ∼ N(β,Σβ). It is,

however, not necessary to assume that all unknown regression coefficients

vary across individuals. A simpler variant of the model described in equa-

tion (1) is obtained by assuming that only the intercept is a random effect,

in which case βis = βs for 1 ≤ s ≤ S. Inclusion of a random intercept is the

minimal requirement for claiming an appropriate treatment of the dependen-

cies between the repeated measures within cases. It amounts to assuming

that the association structure between the observations has the form of a

compound symmetric covariance matrix. With random change parameters

one can pick up autocorrelation structures and changing variances across

occasions (Hedeker, 2004; Snijders and Bosker, 1999).

An alternative, mixed modeling, formulation of the growth model de-

scribed in equation (1) is obtained by using the reparameterization βsi =

βs + usi for 0 ≤ s ≤ S, where ui ∼ N(0,Σβ). This yields:

g[E(yit)] =
S∑

s=0

βs · fs(t) +
S∑

s=0

usi · fs(t), (2)

in which the βs are called fixed effects and the usi are called random effects.

In the case of categorical response variables, for parameter estimation by

means of maximum likelihood (ML), it is useful to parameterize the mixed-

effects model as a factor-analytic model with uncorrelated latent variables

(random effects) with variances equal to 1. This is necessary to be able to

solve the integrals appearing in the log-likelihood function by Gauss-Hermite

quadrature. The factor-analytic formulation of the growth model described
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in equations (1) and (2) equals:

g[E(yit)] =
S∑

s=0

βs · fs(t) +
S∑

s=0

s∑
s′=0

λss′ · Fs′i · fs(t), (3)

where Fi ∼ N(0, I) and the λss′ are elements of a (S + 1) by (S + 1) lower-

diagonal “factor loadings” matrix Λ. The connection between the mixed-

effects and the factor-analytic parameterization is that Σβ= ΛΛ
′
, where Λ

is the Cholesky decomposition of Σβ (Skrondal and Rabe-Hesketh, 2004;

Vermunt and Magidson, 2005).

To see how the Cholesky decomposition works, consider the special case

that S = 1, yielding a factor-analytic model of the form

g[E(yit)] = β0 + β1 · f1(t) + λ00 · F0i + λ10 · F0i · f1(t) + λ11 · F1i · f1(t).

The connection between the λ parameters and the covariances of the random

effects is the following: σ00 = (λ00)
2, σ01 = λ00 ·λ10, and σ11 = (λ10)

2+(λ11)
2.

The factor-analytic parameterization is not only useful for parameter es-

timation using ML, it offers additional flexibility in terms of constraints that

can be imposed on the random effects. For example, assuming “factor load-

ing” λ10 to be equal to 0 yields a model in which the random effects u0i and

u1i are mutually uncorrelated; and assuming λ11 = 0 yields a model in which

u0i and u1i are perfectly correlated. Restricted factor-analytic structures are

especially useful in models containing many random coefficients as may, for

instance, occur growth models based on time dummies. With T − 1 time

dummies and an intercept, an unrestricted random part would contain T

random coefficients, and as a consequence (T + 1) ·T/2 unknown parameters

in the matrix Σβ. A much simpler factor-analytic structure with say two

6



factors and some λ elements equal to 0 will most probably do an equally

good job in terms of model fit.

The mixed-effects GLM described in equations (1), (2), and (3) can be

used with response variables that are continuous, binary, or counts. For

dealing with ordinal and nominal response variables, however, which from

a GLM perspective are in fact multivariate responses, we need to extend

somewhat the above models. Denoting a particular response category as m

and the number of response categories as M , an ordinal mixed-effects GLM

can be defined as

g[Em(yit)] = β0m +
S∑

s=1

βs · fs(t) + u0im +
S∑

s=1

usi · fs(t).

Here, g[Em(yit)] may represent one of the M − 1 logits defining an adjacent-

category or cumulative logit model, or the underlying latent variable in an

ordinal probit model. The main difference with the dichotomous case is

that there are M − 1 fixed (β0m) and random (u0im) effects associated with

the intercept instead of only one. Rather that using a M − 1 dimensional

multivariate normal distribution, Hedeker and Gibbons (1996) proposed re-

stricting these M − 1 random intercept terms using a single factor, that is,

as u0im = λ0m · F0i (see also Vermunt and Magidson, 2005).

In the nominal case, we obtain

g[Em(yit)] =
S∑

s=0

βsm · fs(t) +
S∑

s=0

usim · fs(t).

where g[Em(yit)] will usually be one of the M − 1 baseline category logits in

a multinomial logistic regression model. Note that there are M − 1 random

effects associated with each term, thus not only with the intercept (Agresti

7



et al., 2000). These can, however, again be restricted using a factor-analytic

parametrization with a single factor per term: usim = λsm · Fsi (Hedeker,

2003; Vermunt 2005; Vermunt and Magidson, 2005).

Thus far, we assumed that there were no other predictors than the time

variable itself. Equivalent to standard random-effects model, growth models

can easily be extended to include both time-constant (between-subject) and

time-varying (within-subject) predictors, denoted as zpi and zqit, respectively.

Suppose we have a single between-subject predictor z1i indicating whether

case i belongs to the treatment group (z1i = 1) or the control group (z1i = 0).

If we assume that the treatment affects both the initial value yi1 and the single

change term f1(t), in the mixed-effects model formulation we obtain

g[E(yit)] = β0 + β1 · f1(t) + β2 · z1i + β3 · z1i · f1(t) + u0i + u1i · f1(t).

In the alternative but equivalent two-level model formulation, one would

specify that βsi = βs + βS+s · z1i + usi.

The random-effects growth models presented in this section are extremely

valuable tools for dealing with longitudinal data. There are, however, also

several problematic aspects associated with the use of these methods:

• with categorical response variables, they may become computationally

very intensive when there are more than two or three random effects.

The reason for this is that the integrals appearing in the likelihood

function must be solve using approximation methods, such as lineariza-

tion methods, numerical integration methods, or (Bayesian) simulation

techniques. A possible way out to this problem is to reduce the dimen-

sionality of the problem by using the more restricted factor-analytic
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specification introduced above. Although usually approximation meth-

ods perform very well, this not always the case (Lesaffre and Spiessens,

2001; Rabe-Hesketh, Skrondal and Pickles, 2002; Rodriguez and Gold-

man, 2001).

• they rely on the untestable assumption that random coefficients come

from a multivariate normal distribution (Aitkin, 1999; Vermunt and

Van Dijk, 2001). Results obtained with these methods may be biased

when this rather strong distributional assumption is violated.

• it is not at all straightforward to interpret the parameters associated

with the random effects (the variances and covariances of the usi terms).

A common solution to this problem is to depict selected estimated

individual-specific curves, for example, the curves at 0, 1 and 2 standard

deviations from the mean.

3 Latent-class-based and hybrid growth mod-

els

Some of the problems associated with the parametric random-coefficients ap-

proach discussed in the previous section may be circumvented by adopting a

latent-class-based nonparametric random coefficients approach. This group-

based approach is usually referred to as latent class (LC) or mixture regres-

sion analysis (Vermunt and Van Dijk, 2001; Wedel and DeSarbo, 2002). Us-
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ing the LC regression framework, we obtain the following LC growth model:

g[E(yit|k)] =
S∑

s=0

βsk · fs(t), (4)

where k denotes a particular latent class, and again f0(t) = 1. The trans-

formed expected value of yit given that case i belongs to latent class k is

a function of time, where parameters may differ across latent classes. The

output obtained from growth modeling using LC regression analysis is thus

K class-specific growth curves, where K is the number of classes or mixture

components. Nagin (1999) proposed using the mixture growth model for the

analysis of developmental trajectories with the purpose to identify distinc-

tive groups of individual trajectories. Vermunt and Van Dijk (2001) and

Vermunt and Hagenaars applied the method in the context of panel studies

with categorical response variables.

Although this may not directly be clear from equation (4), also in this

model we are assuming that the regression coefficients are random – that they

differ across individuals according to some distribution. In fact, we assume

that the individual-specific parameters come from a K-mass discrete distri-

bution with unknown locations βk and unknown weights πk. By increasing

the number of classes K till the log-likelihood function does no longer in-

crease, we obtain what is referred to as the nonparametric ML estimator

for the random-effects model of interest (Aitkin, 1999; Skrondal and Rabe-

Hesketh, 2004; Vermunt 2004). Nagin (1999) referred to the situation in

which a smaller number of classes is retained than the maximum that can be

identified as a semi-parametric ML estimator.

The similarity with the parametric approach described in the previous

section becomes even clearer if one sees that the means and covariances of
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the random effects can easily be obtained from the βsk and πk parameters;

that is

βs =
K∑

k=1

βsk · πk, σss′ =
K∑

k=1

(βsk − βs) · (βs′k − βs′) · πk.

In most applications, these numbers will be similar in terms of size to their

parametric counterparts (fixed effects βs and entries of Σβ). It should also

be noted that we could write βsk in terms of a fixed and a random effect:

βsk = βs + usk.

Similar to the parametric approach, it is possible to assume that certain

growth parameters vary across (classes of) individuals, while others do not.

Such a constraint amounts to equating a particular growth parameter across

classes: βsk = βs.. This is, however, not the only type of constraint that

can be imposed. It is also possible to equate parameters across selected

classes and to fix growth parameters to 0 or some other value in selected

classes. The latter options make possible to specify LC models in which the

functional form of the time dependency differs across classes. For example,

in a 4-class model, in class 1 the time dependence may be quadratic, in class

2 unrestricted (S = T − 1 dummies), and in classes 3 and 4 there may be no

time dependence (S = 0; no change), where in class 4 the intercept is fixed to

a very high negative value, yielding a so-called mover-stayer or zero-inflated

model. This flexibility of having class-specific models makes it possible to

test very specific hypotheses about developmental trajectories.

As in the parametric case, small modifications are needed for dealing with

ordinal and nominal response variables. For ordinal responses, we again have
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a model with category-specific intercept terms:

g[Em(yit|k)] = β0mk +
S∑

s=1

βsk · fs(t);

and for nominal responses a model with category-specific intercepts and

slopes:

g[Em(yit|k)] =
S∑

s=0

βsmk · fs(t).

As in standard growth models, in LC-based growth models, one can in-

clude time-varying and time-constant predictors in the regression equation

for the dependent variable. Whereas in the standard growth models, regress-

ing the latent variable on time-constant predictors is equivalent to including

those predictors in the regression model for the outcome variable of interest,

in the discrete random-effects models discussed in this section this is not the

case. As a result, there are two alternative ways to deal with time-constant

covariates: they can be used in the regression model for the response variable

or in the regression model for the latent classes. The latter can be accom-

plished by means of a multinomial logistic regression model of the form

log
πk|zi

π1|zi

= γ0k +
P∑

p=1

γpk · zpi.

One could, for example, be interested in knowing whether belonging to the

treatment group (say z1i = 1) increases the probability of belonging to a

latent class with a favorable trajectory. This is an alternative to a model

in which treatment is assumed to have a direct effect on (changes in) the

response variable.

The LC-based approach has various advantages compared to the para-

metric models discussed in the previous section. That is,
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• it is much less computationally intensive when applied with categor-

ical response variables. The log-likelihood function contains a sum

over K latent classes rather than a set of integrals that should be ap-

proximated by, for example, numerical integration methods. Since the

log-likelihood can be computed exactly, no approximations are needed

when applied with categorical responses. In fact, no special provisions

are needed for dealing with such variables.

• it does not rely on nontestable assumptions about the distributions of

the random effects.

• it yields much easier to interpret results. Rather than a set means,

variances and covariances summarizing the N observed trajectories,

one obtains K basic trajectories.

The LC-based approach does not only have advantages compared to the

standard approach, but also certain weak points. These are that

• researchers are confronted with additional model selection issues. One

not only needs to decide about the functional form of the time depen-

dence and about which parameters should be assumed to vary across

individuals, but also about the necessary number of latent classes, as

well as about the form for each of the class-specific time functions. A

way to simplify the model selection is to 1) work with the same type

of time dependence for all classes, 2) determine the number of classes

using BIC (Bayesian information criterion), and 3) investigate whether

the selected model can be simplified by equating parameters across

classes or fixing certain coefficients to 0.
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• local maxima are more common in nonparametric random-effects mod-

els than in parametric models. However, current software has provision

for dealing with the local maxima problem by using multiple sets of ran-

dom starting values for the model parameters (Vermunt and Magidson,

2005).

• the LC approach has what is sometimes referred to the problem of

overextraction (Bauer and Curran, 2003). It may occur that a large

number of latent classes is needed to fully capture the variation in the

growth parameters, and that these classes differ mainly with respect

to the intercept. This can be seen as an artifact of the LC method

since it is usually not what the analyst is looking for. Most likely, he

is interested in finding groups with different change parameters rather

than different intercepts. A way out to this problem is the hybrid

methodology described below, which involves combining discrete with

continuous unobserved heterogeneity (Muthén, 2004).

A simple hybrid growth model that in most application will resolve the

overextraction problem is obtained by expanding the LC regression model

described in equation (4) with a random intercept (Lenk and DeSarbo, 2000;

Vermunt and Magidson, 2005). That is,

g[E(yit|k)] =
S∑

s=0

βsk · fs(t) + u0i

=
S∑

s=0

βsk · fs(t) + λ00 · F0i, (5)

Note that this model relaxes the basic assumption of the LC model that latent

classes are homogenous with respect to all model parameters by allowing for
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within-class heterogeneity with respect to the intercept. Another way to

see the random intercept is as a manner to relax the assumption that the

(time-specific) responses are independent within latent classes.

As far as the random part of the model described in equation (5) is con-

cerned, there is two possible extensions. One is to included random change

parameters in addition to a random intercept. Another interesting extension

is to allow the variance of u0i to vary across latent classes or, equivalently,

to replace λ00 by λ00k, where σ00k = (λ00k)
2. Such a model not only as-

sumes that there is within-class heterogeneity, but also that the amount of

within-class heterogeneity may differ across classes, an assumption that may

be more realistic in certain applications.

Any of the extensions of the LC regression model discussed above – equal-

ity, zero and other fixed-value restrictions, class-specific time functions, ordi-

nal and nominal responses, and explanatory variables affecting the responses

and/or the classes – can also be used in hybrid models.

4 An empirical example

The empirical example I will use to illustrate the various types of growth

models discussed above is taken from Hedeker and Gibbon’s (1996) MIXOR

program. It concerns a dichotomous outcome variable “severity of schizophre-

nia” measured at 7 occasions (consecutive weeks). This binary outcome was

obtained by collapsing a severity score ranging from 1 to 7 into two cate-

gories, where a 1 indicates that the severity score was at least 3.5 (severe),

and 0 that is was smaller than 3.5 (non severe).
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In total, there is information on 437 cases. However, for none of the cases

there is complete information. For 42 cases, we have observations at 2, for

66 at 3, for 324 at 4, and for 5 at 5 time points. There are 434, 426, 14, 374,

11, 9, and 335 observations at the 7 time points.

Besides the repeated measures for the response variable, there is one time-

constant predictor, treatment (0=control group; 1=treatment group). The

treatment is a new drug that is expected to decrease the symptoms related

to schizophrenia. The main research question to be answered with this data

set is whether the treatment reduces the symptoms related to schizophrenia.

[INSERT FIGURE 1 ABOUT HERE]

Figure 1 depicts the observed probability of being in the severe state at

each of the seven occasions for the treatment and control group. As can be

seen, at the start of the study, almost all cases belong to the severe category

in both the treatment and control group. At each of the next time points, the

treatment group has a lower probability of having severe schizophrenia symp-

toms than the control group, showing that there is evidence for a treatment

effect.

[INSERT TABLE 1 ABOUT HERE]

In the analysis of this data set, I followed Hedeker and Gibbon’s (1996)

suggestion to set S = 1, with f1(t) =
√

t− 1, and to use a binary logit

model. This yields a model in which the logit of severity is a function of the

square root of time. Though there is no strong theoretical motivation for

using this functional form for the time dependence, there is a good empirical
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motivation: in a simple model without random effects, this model fits the

time-specific response probabilities much better than a linear or a quadratic

model, and almost as good as model with an unrestricted time dependence.

Table 1 reports the test results obtained by applying various of the models

described in the previous two sections to the schizophrenia data set. Besides

the log-likelihood value (LL), the number of parameters (# par), and the

BIC value, the table provides information on the Wald test for the treatment

effect (Wald value, degrees of freedom, and p value). The latter is a test for

the time-treatment interaction in Models 1-5 and for the treatment effect on

class membership in Models 6-15.

As can be seen from Table 1, the estimated models differ in

• the way they capture unobserved heterogeneity. Model 1 contains no

random effects, Model 2 is a standard growth model, Models 3-8 and

12-13 are LC-based models, and Models 9-11 and 14-15 are hybrid

models

• how treatment enters in the equation. In Models 1-5 treatment affect

the response, whereas in the other models it affects class membership

• the assumed number of latent classes, ranging from 1 to 4.

• whether there is one latent class (the last one) with a different (quadratic)

time dependence. This is specified by defining f2(t) = t − 1 and

f3(t) = (t − 1)2, and setting the parameters corresponding to these

two terms to 0 in all but class K and the parameter corresponding to

f1(t) to 0 in class K. This specification is used in Models 12-15.
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For parameter estimation, I used version 4.0 of the Latent GOLD program

(Vermunt and Magidson, 2005), which uses ML estimation. For numerical

integration with Gauss-Hermite quadrature, I used the program’s default

setting of 10 quadrature points per dimension.

Model 1 without random effects serves as a baseline model. Comparison

of the log-likelihood and BIC values for Models 2-5 with the ones of Model 1

indicates clearly that it is necessary to take into account individual variation

in the growth parameters. When using a LC-based approach, three latent

classes seem to be needed. Whereas the log-likelihood value of the three-class

model (Model 4) is clearly higher than of the standard growth model (Model

2), according to the BIC criterion the latter is somewhat better. What is

most striking is that the treatment effect is not significant if we do not take

unobserved heterogeneity into account (Model 1), but it turn out to be if we

do so. It should be noted that Models 2 and 4 give similar answers concerning

the significance and size of the treatment effect.

Models 6-8 differ from 3-5 in that treatment is assumed to affect class

membership instead of having a direct effect on the outcome variable. The

latter models fit somewhat worse (have lower log-likelihood and higher BIC

values). Models 9-11 differ from 6-8 in that they contain a random intercept

allowing for within-class heterogeneity. When using such a specification, no

more than two latent classes are needed, and the Wald test for the treatment

effect shows an even more significant result (see Model 9).

Models 12-15 are variants of Models 6-7 and 9-10 in which the time de-

pendence in class K (the last class) is assumed to be quadratic instead of a

function
√

t− 1. It turns out that especially Model 14, which is a modified
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version of Model 9, does a very good job. It has a much lower log-likelihood

value than Model 9, and despite the extra parameter a much lower BIC value.

Moreover, it indicates that there is even more evidence for a treatment effect.

[INSERT TABLE 2 ABOUT HERE]

[INSERT FIGURE 2 ABOUT HERE]

Table 2 reports the parameter estimates obtained with Model 14. For each

latent class, we have a set of parameters describing the time dependence

of the logit of the probability of being in the severely schizophrenic state –

Intercept and SQRT-TIME in class 1 and Intercept, TIME, and SQ-TIME

in class 2 – as well the standard deviation of the random effect indicating

how much the intercept varies within classes. The size of latter parameter,

which is assumed to be equal across latent classes, indicates that there is

quite some variation within classes. To get a better idea on what all these

coefficients mean, Figure 2 depicts the estimated growth curves for the two

latent classes. The depicted time- and class-specific probabilities of being

severely depressed that are obtained by marginalizing over (integration out)

the continuous random effects. The obtained figure is similar to Figure 1,

with the difference that the two development patterns are much smoother and

more different from one another. It can also be seen why the quadratic curve

was needed for class 2: after a small drop in weeks 1 and 2, the probability

of a severe form of schizophrenia increased again, a pattern that cannot be

described by a monotonic function.

Out of the total sample, 65% is estimated to belong to latent class 1 and

35% to latent class 2. These numbers are 76% and 24% for the treatment
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group and 34% and 66% for the control group. The treatment effect on

class member is given in terms of a logistic regression coefficient and its

asymptotic standard error in the lower part of Table 2 – the odds of begin in

class 1 instead of 2 is exp(1.78) higher for the treatment than for the control

group. The encountered treatment effect shows, on the one hand, that there

is a rather strong relation between treatment and class membership, but, on

the other hand, that this relationship is far from perfect.

5 Markov models

Whereas this paper dealt with growth models for repeatedly observed cat-

egorical response variables, as was already mentioned in the introduction,

there are other alternatives for analyzing this type of data. The most impor-

tant alternative is the standard Markov model or one of its variants (Collins

and Wugalter, 1992; Langeheine and Van de Pol, 1994; Vermunt, Langeheine,

and Böckenholt, 1999).

To understand the fundamental difference between a growth model and

a Markov model, recall that in the former we try to describe and explain

individual-level differences in the probability of being in a certain state at

a particular time point. In the empirical example, we investigated whether

this individual-level probability is time and treatment dependent. In Markov

models on the other hand, we describe and explain aggregate transition prob-

abilities; that is, the overall probability of being in a certain state given the

state at the previous time point, possibly after controlling for covariates.

In the empirical application, the question of interest could, for example, be
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whether the probability of experiencing a transition between schizophrenic

and healthy is larger for the treatment than for the control group.

Mixed Markov and latent class Markov models are two important LC-

based variants of the standard Markov model. In a mixed Markov model,

individual are assumed to belong to one of K classes that differ with respect

to their transition probabilities. In the LC Markov model, the state variable

is assumed to be measured with error, yielding a model in which transitions

occur across time-specific latent states which are connected to observed states

by means of a probabilistic mechanism.

I estimated a standard stationary first-order Markov model, a mixed

Markov model with 2 latent classes, and a LC Markov model with 2 la-

tent states per time point to the schizophrenia data set. The obtained log-

likelihood values – -846, -844, and -844, respectively – show that these mod-

els fit as good as the best fitting growth models described above. These

log-likelihood values also show that the standard Markov model would suf-

fice, indicating that there is no evidence for unobserved heterogeneity in the

transition probabilities as assumed in the mixed Markov model, nor for mea-

surement error in the time-specific schizophrenia state as assumed in the LC

Markov model.

The estimated transition probabilities obtained with the stationary first-

order Markov model indicate that the treatment group has a higher prob-

ability of a transition out of the schizophrenic state (0.23 versus 0.05 for

control group) and a lower probability of a transition into the schizophrenic

state (0.08 versus 0.16). This is in agreement with the evidence for a positive

treatment effect as obtained with the growth modeling approach.
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6 Extensions

Various interesting extensions of the growth models described and illustrated

in the previous sections can be obtained using the multilevel LC framework

that was recently proposed by Vermunt (2003, 2004, 2005). Two of these

are growth models for multiple response variables and growth models for

individuals nested within groups. Both applications yield data structures

with three instead of two levels of nesting; that is, multiple responses nested

within time points and time points nested within cases, and time points

nested within cases and cases nested within groups.

Suppose that rather than with single indicator we would measure the

severity of schizophrenia using multiple indicators. Let yit` be the response

of case i at occasion t on item ` and L the total number of items. A possible

manner to deal with these multiple indicators is to construct a time-specific

latent typology using a standard LC model (Goodman, 1974; Magidson and

Vermunt, 2004). The time-specific LC model would be of the well-known

form:

P (yit = m) =
X∑

x=1

P (xit = x)
L∏

`=1

P (yit` = m`|xit = x),

where xit denotes the class membership of case i at occasion t, x a particular

latent class and X the number of latent classes. The growth model is no

longer specified for the observed responses, but instead for the time-specific

class memberships xit. Depending on whether one uses a standard or a LC-

based growth model, that part of the model would take the form a mixed-

effect multinomial logistic regression model

log
P (xit = x)

P (xit = 1)
=

S∑
s=0

βsx · fs(t) +
S∑

s=0

usxi · fs(t).
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or a LC multinomial logistic regression model

log
P (xit = x|k)

P (xit = 1|k)
=

S∑
s=0

βsxk · fs(t).

This multilevel LC approach to multiple response growth modeling makes

sense if the multiple responses are indicators of a single underlying latent

variable. The proposed method is, in fact, similar to LC Markov model-

ing (Vermunt, Langeheine, and Böckenholt, 1999), but rather than modeling

dependencies between the time-specific latent states using a transition struc-

ture, here these are modeled using random effects.

Nagin (2001) proposed an alternative growth modeling approach for mul-

tiple responses that makes more sense if these are not indicators of the

same underlying variable. His approach amounts to specifying a separate

LC growth structure for each response variable, where the multiple class

memberships are allowed to be correlated with one another. Nagin’s model

can, in fact, be specified as standard LC regression model with specific equal-

ity constraints across the latent classes so that these can be interpreted as

the categories of a joint discrete latent variable.

The three-level modeling approach cannot only be used to deal with

multiple response variables, but also with situations in which individuals

are nested within groups, such as children nested within schools, employ-

ees nested within firms, patients nested within therapists, or citizens nested

within regions. In such situations, one may wish to investigate how the pa-

rameters of the specified growth model differ across groups. There are at least

four types of hierarchical data extensions of the growth models discussed in

the previous section that may be of interest:
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1. inclusion of group-level random effects in a standard growth model;

2. inclusion of a group-level discrete latent variable affecting the response

variable in a LC-based growth model;

3. inclusion of group-level random effects in the model for the individual-

level growth classes;

4. inclusion of a group-level discrete latent variable affecting the individual-

level growth classes.

Option 1 yields a standard three-level mixed-effects model, while option 2

yields its LC-based nonparametric counterpart (Vermunt, 2004). These mod-

els make it possible to assume that growth curves differ both across groups

and individuals. Suppose that the patients participating in the schizophrenia

study are nested within therapists, and that it makes sense to assume that

there is a therapist effect on the outcome variable. In the standard random

effects approach, this might give rise to a mixed-effects model of the form:

g[E(yjit)] =
S∑

s=0

βs · fs(t) +
S∑

s=0

usij · fs(t) +
S∑

s=0

vsj · fs(t),

where the index j refers to the therapist and vsj are random therapist effects.

Similarly, it is possible to expand the LC-based model with therapist effects

by assuming that each therapist belongs to one of G classes of therapist.

Denoting a particular group-level class by g, the three-level LC regression

model can be defined as

g[E(yjit|k, g)] =
S∑

s=0

βsk · fs(t) +
S∑

s=0

vsg · fs(t),

where vsg are the group-level growth parameters.
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Options 3 and 4 listed above are variants of the multilevel LC models

described by Vermunt (2003, 2005). The basic idea is that groups may dif-

fer with respect to the sizes of the growth classes. In the context of our

schizophrenia application, this might mean that the probability of belonging

to class 1 – the class that showed a significant improvement over time – varies

between therapists. Depending on whether one uses a standard or LC-based

random-effects approach for this part of the model, one obtains

log
πk|zij ,vj

π1|zij ,vj

= γ0k +
P∑

p=1

γpk · zpij + v0kj,

where v0kj is a group-level random intercept, or

log
πk|zij ,g

π1|zij ,g

= γ0kg +
P∑

p=1

γpk · zpij,

where the index g in γ0kg indicates that the intercept in the model for the

individual-level classes differs across group-level classes. Whereas in these

specifications only the intercept is assumed to be group specific, also the

covariate effects – for example, the treatment effect – can be assumed to

differ across groups (therapists).
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Figure 1: Observed trajectories for the treatment and control group
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Model # Classes Random Treatment Wald DF P value LL # par BIC

1 1 response 2.7 1 1.0E-01 -681 4 1386

2 1 u0i, u1i response 11.3 1 7.6E-04 -614 7 1270

3 2 response 9.5 1 2.1E-03 -619 7 1280

4 3 response 10.8 1 1.0E-03 -607 10 1275

5 4 response 17.5 1 2.9E-05 -602 13 1283

6 2 classes 9.5 1 2.1E-03 -625 6 1286

7 3 classes 12.4 2 2.0E-03 -608 10 1277

8 4 classes 11.2 3 1.1E-02 -601 14 1287

9 2 u0i classes 21.5 1 3.6E-06 -613 7 1268

10 3 u0i classes 12.0 2 2.5E-03 -604 11 1274

11 4 u0i classes 11.2 4 1.1E-02 -601 15 1293

12 2 (1 sqr) classes 15.9 1 6.5E-05 -620 7 1282

13 3 (1 sqr) classes 19.3 2 6.5E-05 -597 11 1261

14 2 (1 sqr) u0i classes 24.8 1 6.2E-07 -601 8 1250

15 3 (1 sqr) u0i classes 19.1 2 7.0E-05 -595 12 1263

Table 1: Test results for the growth models estimated with the schizophrenia

data
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Model for Responses Class 1 Class 2

β or λ s.e. z-value β or λ s.e. z-value

Intercept 8.79 1.17 7.54 6.76 0.88 7.64

StdDev Random Intercept 3.31 0.53 6.27 3.31 0.53 6.27

TIME - 3.78 1.01 -3.75

SQ-TIME 1.12 0.29 3.79

SQRT-TIME -4.81 0.62 -7.80

Model for Latent Classes Class 1

γ s.e. z-value

Intercept -0.65 0.31 -2.13

Treatment 1.78 0.36 4.98

Table 2: Parameter estimates obtained with Model 14
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Figure 2: Class-specific trajectories obtained with Model 14
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