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Abstract. Heterogeneous hidden Markov models (HHMMs) are models with
time-constant and time-varying discrete latent variables that capture unobserved
heterogeneity between and within clusters, respectively. We apply the HHMMs in
modeling financial return indexes from seven markets. The return-risk patterns of
the encountered latent states that correspond to well-known bear and bull market
states.
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1 Introduction

Latent class or finite mixture modeling has proven to be a powerful tool for
analyzing unobserved heterogeneity in a wide range of social and behavioral
science data (see, for example, McLachlan and Peel (2000)). We introduce a
latent class model for time series analysis that takes into account unobserved
heterogeneity by means of time-constant and time-varying discrete latent
variables.

Here, this methodology is used to model the dynamics of the returns of
seven stock market indexes. As is illustrated below, the proposed approach is
flexible in the sense that it can deal with the specific features of financial time
series data, such as asymmetry, kurtosis, and unobserved heterogeneity, an
aspect that is almost always ignored in finance research. Because we selected
a heterogeneous sample of countries including both developed and emerging
countries from the American region, we expect that heterogeneity in market
returns due to country idiosyncrasies will show up in the results. For instance,
emerging market return distributions show larger deviations from normality;
i.e., are more skewed and have fat tails (Harvey, 1995).
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The paper is organized as follows: Section 2 presents the full mixture
hidden Markov model; Section 3 describes the seven stock market time series
that are used throughout this paper. Section 4 reports HHMM estimates.
The paper concludes with a summary of the main findings.

2 The heterogeneous hidden Markov model (HHMM)

We model simultaneously the time series of n stock markets. Let yit rep-
resent the response of observation (stock market) i at time point t, where
i ∈ 1, . . . , n, t ∈ 1, . . . , T , and yit ∈ <. In addition to the observed “re-
sponse” variable yit, the HHMM contains two different latent variables: a
time-constant discrete latent variable and a time-varying discrete latent vari-
able. The former, which is denoted by w ∈ {1, ..., S}, is used to capture the
unobserved heterogeneity across stock markets; that is, stock markets are
clustered based on differences in their dynamics. We will refer to a model
with S clusters as HHMM-S. The two-state time-varying latent variable is
denoted by zt ∈ {1, 2}. Changes between the two states or regimes between
adjacent time points are assumed to be in agreement with a first-order Markov
or first-order autocorrelation structure.

Let f(yi; ϕ) be the (probability) density function associated with the
index return rates of stock market i. The HHMM-S defines the following
parametric model for this density:1

f(yi; ϕ) =

S
∑

w=1

2
∑

z1=1

· · ·

2
∑

zT =1

f(w)f(z1|w)

T
∏

t=2

f(zt|zt−1, w)

T
∏

t=1

f(yit|zt). (1)

As in any mixture model, the observed data density f(yi; ϕ) is obtained by
marginalizing over the latent variables. Because in our model these are dis-
crete variables, this simply involves the computation of a weighted average of
class-specific probability densities where the (prior) class membership proba-
bilities or mixture proportions serve as weights (McLachlan and Peel, 2000).
We assume that within cluster w the sequence {z1, . . . , zT } is in agreement
with a first-order Markov chain. Moreover, we assume that the observed re-
turn at a particular time point depends only on the regime at this time point;
i.e, conditionally on the latent state zt, the response yit is independent of re-
turns at other time points, which is often referred to as the local independence
assumption. As far as the first-order Markov assumption for the latent regime
switching conditional on cluster membership w is concerned, it is important
to note that this assumption is not as restrictive as one may initially think.
It does clearly not imply a first-order Markov structure for the responses yit.
The standard or hidden Markov model (Baum et al., 1970) is the special

1 For a detailed presentation of the model specification, we refer to Dias et al.
(2007).
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case of the HRSM-S that is obtained by eliminating the time-constant latent
variable w from the model, that is, by assuming that there is no unobserved
heterogeneity.

The characterization of the HHMM is provided by:

• f(w) is the prior probability of belonging to a particular latent class or
cluster w with multinomial parameter πw = P (W = w);

• f(z1|w) is the initial-regime probability; that is, the probability of having
a particular initial regime conditional on belonging to latent class w with
Bernoulli parameter λkw = P (Z1 = k|W = w);

• f(zt|zt−1, w) is a latent transition probability; that is, the probability of
being in a particular regime at time point t conditional on the regime
at time point t− 1 and class membership; assuming a time-homogeneous
transition process, we have pjkw = P (Zt = k|Zt−1 = j, W = w) as the
relevant Bernoulli parameter. In other words, within cluster w one has
the transition probability matrix

Pw =

(

p11w p12w

p21w p22w

)

,

with p12w = 1−p11w and p22w = 1−p21w. Note that the HHMM-S allows
that each cluster has its specific transition or regime-switching dynamics,
whereas in a standard HMM it is assumed that all cases have the same
transition probabilities.

• f(yit|zt), the probability density of having a particular observed stock
return in index i at time point t conditional on the regime occupied
at time point t, is assumed to have the form of a univariate normal
(or Gaussian) density function. This distribution is characterized by the
parameter vector θk = (µk, σ2

k) containing the mean (µk) and variance
(σ2

k) for regime k. Note that these parameters are assumed to be equal
across clusters, an assumption that may, however, be relaxed.

Since f(yi; ϕ), defined by Equation (1), is a mixture of densities across
clusters w and regimes, it defines a flexible Gaussian mixture model that can
accommodate deviations of normality in terms of skewness and kurtosis. The
two-state HRSM-S has 4S + 3 free parameters to be estimated, including
S − 1 class sizes, S initial-regime probabilities, 2S transition probabilities, 2
conditional means, and 2 variances.

Maximum likelihood (ML) estimation of the parameters of the HHMM-S
involves maximizing the log-likelihood function: `(ϕ;y) =

∑n

i=1 log f(yi; ϕ),
a problem that can be solved by means of the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977). In the E step, we compute the joint
conditional distribution of the T + 1 latent variables given the data and
the current provisional estimates of the model parameters. In the M step,
standard complete data ML methods are used to update the unknown model
parameters using an expanded data matrix with the estimated densities of the



4 Dias et al.

500 1000 1500 2000 2500 3000

−20
0

20 AR

500 1000 1500 2000 2500 3000

−20
0

20 BR

500 1000 1500 2000 2500 3000

−20
0

20 CN

500 1000 1500 2000 2500 3000

−20
0

20 CL

500 1000 1500 2000 2500 3000

−20
0

20 MX

500 1000 1500 2000 2500 3000

−20
0

20 PE

500 1000 1500 2000 2500 3000

−20
0

20 US

Fig. 1. Time series of index rates for seven American region stock markets

latent variables as weights. Since the EM algorithm requires us to compute
and store the S·2T entries in the E step this makes this algorithm impractical
or even impossible to apply with more than a few time points. However,
for hidden-Markov models, a special variant of the EM algorithm has been
proposed that is usually referred to as the forward-backward or Baum-Welch
algorithm (Baum et al., 1970). The Baum-Welch algorithm circumvents the
computation of this joint posterior distribution making use of the conditional
independencies implied by the model.

An important modeling issue is the selection of the value of S, the num-
ber of clusters needed to capture the unobserved heterogeneity across stock
markets. The selection of S is typically based on information statistics such
as the Bayesian Information Criterion (BIC) of Schwarz (Schwarz, 1978). In
our application we select S that minimizes the BIC value defined as:

BICS = −2`S(ϕ̂;y) + NS log n, (2)

where NS is the number of free parameters of the model concerned and n is
the sample size.

3 Data set

The data set used in this article are daily closing prices from 4 July 1994
to 27 September 2007 for seven stock market indexes from the American
region drawn from Datastream database and listed in Table 1. The series are
denominated in US dollars. In total, we have 3454 end-of-the-day observations
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Table 1. Summary statistics

Stock market Mean Median Std. Deviation Skewness Kurtosis Jarque-Bera test
statistics p-value

Argentina (AR) 0.001 0.031 1.940 -1.756 34.648 173761.38 0.000
Brazil (BR) 0.055 0.077 1.961 -0.231 4.944 3527.58 0.000
Canada (CN) 0.054 0.096 0.997 -0.691 4.706 3442.42 0.000
Chile (CL) 0.027 0.000 1.024 -0.150 3.212 1487.90 0.000
Mexico (MX) 0.035 0.081 1.737 -0.807 16.347 38647.91 0.000
Peru (PE) 0.043 0.029 1.144 0.114 12.709 23139.40 0.000
United States (US) 0.038 0.042 1.040 -0.147 4.027 2332.37 0.000

per country. Let Pit be the observed daily closing price of market i on day
t, i = 1, ...n and t = 0, ..., T . The daily rates of return are defined as the
percentage rate of return by yit = 100 × log(Pit/Pi,t−1), t = 1, ..., T , with
T = 3454.

Table 1 provides descriptive statistics of the time series, while Figure 1
depicts the full time series. The sample period includes periods of market in-
stability as the Mexican crisis of 1994, the 1999 Brazilian crisis, the Argentina
crises in 2001-2002, and the global stock market downturn of the 2001 Inter-
net bubble. As can be seen, the mean return rates are all positive and close to
zero. This is confirmed by the reported medians. Stock markets show very di-
verse patterns of dispersion, where the largest standard deviations are found
in Brazil and Argentina and the smallest dispersion in Canada, Chile and the
United States. Higher standard deviations are typical for emerging markets,
known for their high risk. All stock market distributions of return rates are
negative skewed and the kurtosis (which equals 0 for normal distributions)
shows values above 0, indicating heavier tails and more peakness than the
normal. The Jarque-Bera test rejects the null hypothesis of normality for
each of the seven stock markets. Overall, market features seem well-suitable
to apply the mixture hidden Markov model.

4 Results

This section reports the results obtained when applying the HHMM-S
described before to the seven stock markets. We estimated models using
different values for S (S = 1, . . . , 8), where 300 different starting values were
used to avoid local maxima. A solution with three latent classes (S = 3)
yielded the lowest BIC value (log-likelihood = -38482.3136; number of free
parameters = 15, and BIC = 76993.8158).

Table 2 summarizes the results related to the distribution of stock market
across latent classes which gives the size of each cluster. The estimated prior
class membership probability is somewhat larger for Class 1 (0.542). From
the posterior class membership probabilities, the probability of belonging to
each of the clusters conditional on the observed data (Table 2), we have four
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Table 2. Estimated prior probabilities, posterior probabilities, and modal classes
for the HHMM-3

Stock market Latent class 1 Latent Class 2 Latent Class 3 Modal class
Prior probabilities 0.542 0.292 0.167
Posterior probabilities
Argentina (AR) 0.000 1.000 0.000 2
Brazil (BR) 0.000 0.000 1.000 3
Canada (CN) 1.000 0.000 0.000 1
Chile (CL) 1.000 0.000 0.000 1
Mexico (MX) 0.000 1.000 0.000 2
Peru (PE) 1.000 0.000 0.000 1
United States (US) 1.000 0.000 0.000 1

countries assigned to Class 1 (Canada, Chile, Peru and United States), two
countries to Class 2 (Argentina and Mexico) and the remaining one – Brazil –
to Class 3. Based on this classification one clearly has to reject the hypothesis
that stock markets can clustered regionally. With the exceptions of Canada
and the USA, and Peru and Chile, which share the same class, neighbor coun-
tries tend to be allocated to different classes. Notice that from the posterior
probabilities the modal allocation into classes is precise (the probability of
the most likely class is always one). Class 1 contains two developed countries
Canada and the USA and two emerging markets. By combining the classi-
fication information with the descriptive statistics in Table 1, we conclude
that Class 1 contains the countries with the lowest volatilities.

Table 3 provides information on the two regimes that were identified; that
is, the average proportion of markets in regime k over time and the mean
and variance of the return in regime k. The result is in line with the common
dichotomization of financial markets into “bull” and “bear” markets. Con-
sistently, the reported means show that one of the regimes is associated with
positive returns (bull market) and the other negative returns (bear market).
The probability of being in the bear and bull regimes is 0.26 and 0.74, respec-
tively. We would also like to emphasize that these results are coherent with
the common acknowledgment of volatility asymmetry of financial markets.
Volatility is likely to be higher when markets fall than when markets rise.

Table 4 reports the estimated probabilities of being in one of the regimes
for each latent class. There is a clear distinction between classes. Class 1
has the largest probability of being in bull regime (0.89). For Class 2 this
probability becomes 0.63. In case of Brazil (Class 3) is more likely to be in

Table 3. Estimated marginal probabilities of the regimes and within Gaussian
parameters

P (Z) Return (mean) Risk (variance)
Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

Estimate 0.7438 0.2562 0.0884 -0.1251 0.7079 6.5757
Std. error (0.0603) (0.0603) (0.0048) (0.0238) (0.0123) (0.1715)
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Table 4. Characterization of the switching regimes

Transitions Latent class 1 Latent Class 2 Latent Class 3
Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2

P (Z|W ) 0.8903 0.1097 0.6293 0.3707 0.4683 0.5317
(0.0120) (0.0120) (0.0212) (0.0212) (0.0299) (0.0299)

Regime 1 0.988 0.012 0.933 0.067 0.895 0.105
(0.0014) (0.0976) (0.0071) (0.0071) (0.0147) (0.0147)

Regime 2 0.098 0.902 0.113 0.887 0.092 0.908
(0.0114) (0.0114) (0.0125) (0.0125) (0.0148) (0.0148)

a bear regime than in a bull regime during the period of analysis. Moreover,
Table 4 provides another key result of our analysis. It gives the transition
probabilities between the two regimes for each of the three latent classes.
First, notice that all classes show regime persistence. Once a stock market
jumps to a regime it is likely to continue on it for some period, which is coher-
ent with stylized facts in financial markets. Second, Class 1 shows the lowest
propensity to move from a bull regime to a bear regime. This propensity is
higher for Class 2 and even higher for Class 3. Note that Class 2 and 3 were
severely affected by crises during the sampled period. Third, Class 2 shows
the highest probability of jumping from a bear to a bull regime.

Figure 2 shows the regime-switching dynamics of the countries within
each of our three latent classes. It depicts the posterior probability of being
in bull regime at period t, where the grey color identifies periods in which
this probability is below 0.5 which corresponds to a higher likelihood of being
in the bear state. The three clusters of countries have rather different pattern
of regime switching. Class 1 is more regime persistent with short duration
“bear” regimes that did not turn out to be endemic during the period of
analysis. Both Class 2 and Class 3 are extremely dynamic and tend to move
very fast between regimes. However, Class 3 tends to be more persistent in
bear regimes.

5 Conclusion

The HHMM takes into account both time-constant unobserved hetero-
geneity between and hidden regimes within time series. In the analysis of a
sample of seven stock markets providing observations for a period of 3454
days the best fitting model was the one with three latent classes. The three
latent classes clearly distinguished three types of regime switching, which is
coherent with many stylized facts in finance.
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Fig. 2. Estimated posterior bull regime probability and modal regime
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