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Abstract In model-based clustering, a situation in which true class labels are
unknown and that is therefore also referred to as unsupervised learning, observations
are typically classified by the Bayes modal rule. In this study, we assess whether alter-
native classifiers from the classification or supervised-learning literature—developed
for situations in which class labels are known—can improve the Bayes rule. More
specifically, we investigate the performance of bootstrap-based aggregate (bagging)
rules after adapting these to the model-based clustering context. It is argued that spe-
cific issues, such as the label-switching problem, have to be carefully addressed when
using bootstrap methods in model-based clustering. Our two Monte Carlo studies show
that classification based on the Bayes rule is rather stable and difficult to improve by
bootstrap-based aggregate rules, even for sparse data. An empirical example illustrates
the various approaches described in this paper.
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1 Introduction

Model-based clustering by finite mixture (FM) models is formulated as follows
(McLachlan and Peel 2000). Let y denote a J -dimensional observation and D =
{y1, . . . , yn} a sample of size n. Each data point is assumed to be a realization of the
random variable Y with S-component mixture probability function

f (yi ;ϕ) =
S∑

s=1

πs fs(yi ; θs), (1)

where πs are positive mixing proportions—also referred to as prior class membership
probabilities—that sum to one, θs are the parameters of the conditional distribution of
component s defined by fs(yi ; θs), and ϕ = {π1, . . . , πS−1, θ1, . . . , θS} is the vector
of unknown parameters.

Assuming i.i.d. observations, the log-likelihood function corresponding to an FM
model is obtained as �(ϕ; y) = ∑n

i=1 log f (yi ;ϕ). For the most common forms of
fs(yi ; θs), it is straightforward to maximize the log-likelihood function by means of
the EM algorithm (Dempster et al. 1977).

From the prior class membership probabilities and the component-specific densities
defining the FM model of interest, one can easily derive the posterior probability that
a particular observation was generated by a given component or cluster. Using Bayes’
theorem we obtain the a posteriori probability that observation i belongs to class s as
follows:

αis = πs fs(yi ; θs)∑S
v=1 πv fv(yi ; θv)

. (2)

The maximum likelihood (ML) estimates of the posterior probabilities—denoted as
α̂is—play an important role in the classification of cases into clusters. Magidson and
Vermunt (2001) showed that these quantities can not only be used for classification
purposes, but also for profiling the clusters by comparing (and plotting) the average
value of α̂is across subgroups defined by covariate categories.

Whereas the α̂is define a soft partitioning/clustering of the data set at hand, an
additional step is needed to transform this soft partition into a hard partition. Let
ci represent the true class label of observation i , which in clustering applications
is unknown and that can, therefore, be consider to be missing data. An alternative
representation of the class membership of case i is by a set of S indicator variables
zis = I (ci = s), where I (.) stands for the indicator function—I (A) = 1, if A is true
and zero otherwise—i.e., zis = 1, if ci = s and 0 otherwise. The Bayes modal rule
assigns observation i to the class with maximum a posteriori probability. At the ML
estimate, this yields the following classification rule:

ĉi = arg max
s

α̂is, i = 1, . . . , n, (3)
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which is equivalent to

ẑis = I
(

max
v

α̂iv = α̂is

)
, s, v = 1, . . . , S, i = 1, . . . , n. (4)

Whereas the performance of the Bayes modal rule has been extensively studied for
supervised learning applications—i.e., classification tasks based on known class labels
ci —little is known on its performance in model-based clustering applications. It is
not clear at all whether the rule is optimal in all circumstances nor whether there is
room for improvements in model-based clustering classification by means of so-called
aggregation methods. In this study we, therefore, not only assess the quality of the
simple Bayes modal rule, but also adapt the bootstrap-based aggregate rule called
bagging to the unsupervised learning situation.

The remaining of this paper is organized as follows. In the two sections, we discuss
the Bayes rule and introduce an aggregate classification rule for model-based clus-
tering. Then, the implementation of this aggregate rule using the bootstrap method
is discussed, where special attention is given to the label-switching problem. Subse-
quently, two Monte Carlo studies are presented. Whereas the first study compares the
performance of the proposed classification rules under a set of conditions, the second
study focuses on the effect of sparseness. Then, an empirical example is presented.
The paper ends with some final remarks.

2 The Bayes’ classifier

2.1 Known class labels

As mentioned earlier, in classification or supervised-learning problems, the class labels
ci are known. The purpose of the analysis it to construct a classifier that can be used
for classifying new cases; that is, for assigning observations that were not used in the
analysis to one of the classes. The best-known classification method is discriminant
analysis, which yields as output a set of discriminant functions. By assigning obser-
vations to the class for which the discriminant function is largest, one minimizes the
probability of incorrect classification (McLachlan 1992; Duda et al. 2001).

Let C = {1, . . . , S} denote the set of class labels used in a classification task; ci ∈ C
indicates the class membership of observation i ; that is, ci = s means that observation
i is generated by or belongs to class s. Let Dc = {(ci , yi ), i = 1, . . . , n} be a sample
of n independent observations consisting of the class labels ci and the “explanatory
variables” yi . A classification method uses the data set Dc to construct a function
µ̂(y; Dc) that yields a prediction E[C |Y = y; Dc] for new observations, i.e., based
on Dc one defines a rule to predict the value of cn+1 given yn+1 ∈ RJ .

The classifier output is commonly defined as an S-dimensional vector
(µ̂1(y; Dc), . . . , µ̂S(y; Dc)), where µ̂s(y; Dc) can be interpreted as the degree of sup-
port given by classifier µ̂ to the hypothesis that y comes from class s, s = 1, . . . , S.
Without loss of generality, one can transform µ̂s(y; Dc) to lie within the interval
[0, 1] and to sum to one, yielding what is sometimes referred to as “soft labels”. In
some applications, “crisp” class labels are required, i.e., µ̂s(y; Dc) ∈ {0, 1}, with
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∑S
s=1 µ̂s(y; Dc) = 1. These are typically obtained by “hardening” the soft labels by

assigning 1 to the largest value (the winning class label), and 0 to the remaining ones,
yielding a hardening method referred to as the Bayes modal rule. Its underlying idea
is supported by decision theory as follows. Let s′ and s indicate the predicted classifi-
cation (the decision) and the true state of nature of observation i , respectively. Then,
the decision is correct if s′ = s and in error otherwise. The loss function of interest is
the so-called zero-one loss function, which is defined as follows:

L(ci = s′|ci = s) =
{

0, s′ = s
1, s′ �= s

(5)

for s′, s = 1, . . . , S. The conditional risk associated with this loss function is (Duda
et al. 2001, p. 27)

R(ci = s′|yi , Dc) = 1 − p(ci = s|yi , Dc). (6)

Therefore, under zero-one loss, the misclassification risk is minimized if and only if
observation i is assigned to the component s for which p(ci = s|yi ; Dc) is largest
(McLachlan 1992); that is,

ĉi = arg max
s

p(ci = s|yi ; Dc), (7)

which defines the Bayes classification rule or Bayes classifier.
Because in classification problems such as discriminant analysis the class labels are

known, the correct allocation rates can be directly computed by comparing predicted
with observed class labels. Using the definition of ẑis from Eq. (4), the correct alloca-
tion rate for class s (As) and the overall correct allocation rate (A) can be obtained as
follows:

As = 1

ns

n∑

i=1

zis I (zis = ẑis), (8)

A = 1

n

S∑

s=1

ns As, (9)

where ns = ∑n
i=1 zis , and n = ∑S

s=1 ns . Note that A is simply a weighted sum of the
S class-specific As values.

2.2 Unknown class labels

Contrary to the classification framework described above, in the clustering (or unsuper-
vised learning) framework we would like to focus on, the class labels ci are unobserved
(latent or missing). For simplicity of exposition, we restrict ourselves to the situation
in which the number of labels/classes is known, which means that S is treated as fixed.
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In clustering problems the observed data is D = {yi , i = 1, . . . , n}. The FM model
with S components in Eq. (1) defines the marginal distribution of the observed data;
that is, the distribution after integrating out (summing over) the missing data. The
hypothetical complete data may be referred to as {(zi , yi ), i = 1, . . . , n}, where the
indicators variables zi = (zi1, . . . , zi S) are assumed to come from a multinomial dis-
tribution defined by the component proportions π = (π1, . . . , πS), zi ∼ M (1;π).
The expected value of missing data zi conditional on the observed data and the unk-
nown model parameters ϕ is given by the Bayes’ theorem in Eq. (2). In practice one
will plug in the ML estimates ϕ̂ to obtain estimates for αis . Equivalently to the clas-
sification setting, in the clustering setting the Bayes modal rule assigns observation i
to the class with maximum a posteriori probability (see Eqs. 3 and 4).

For clustering problems, the class-specific and overall accuracy of the classification
cannot be directly computed using Eqs. (8) and (9) because the zis appearing in these
equations are unobserved; that is, the correct allocation rates depend on the unknowns
zi that have to be estimated. A natural alternative for As and A is

Âs = 1

nπ̂s

n∑

i=1

ẑis α̂is, (10)

Â = 1

n

n∑

i=1

max
s

α̂is, (11)

which, as shown by Basford and McLachlan (1985), are consistent but biased estima-
tors of As and A, respectively. To remove the bias in these estimators, these authors
proposed using bootstrapping techniques.

3 Aggregate classifiers

3.1 Known class labels

An aggregate classifier or aggregate classification rule µA is given by the general
expression

µA(y) = EF [µ̂(y, Dc)], (12)

where the expectation is over samples Dc distributed according to F . The underlying
idea of using an aggregate classifier is that one wishes to reduce the effect of the
specific data set that is used to build the classifier. Theoretically, this is achieved by
integrating over—or aggregating over—all possible data sets that can be generated
from F , the true population distribution of Dc.

Although in practice one typically has no more than a single data set from F at hand
to construct a classifier, it turns out to be possible to mimic the process underlying
the aggregate classifier by means of the bootstrap method, a rather general computer
intensive resampling technique introduced by Efron (1979). The bootstrap can be used,
among other things, to determine standard errors, biases, and confidence intervals of
model parameters in situations in which theoretical statistics are difficult to obtain.
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Breiman (1996a) was the first who proposed using the bootstrap method as a tool for
building more stable classifiers.

The bootstrap technique is easily stated. Suppose we have a random sample D
from an unknown probability distribution F and we wish to estimate the unknown
parameter ϕ = t (F). Let S(D, F) be a statistic. Whereas standard statistical infe-
rence assumes that the underlying sampling distribution of S(D, F) is known, in the
bootstrap method, F is estimated by F̂ based on D. More specifically, the bootstrap
provides an approximation of the sampling distribution based on S(D∗, F̂), where the
bootstrap sample D∗ = {

y∗
1, y∗

2, . . . , y∗
n

}
is a random sample of size n drawn from F̂ ,

and ϕ̂∗ = S(D∗, F̂) is a bootstrap replication of ϕ̂. In fact, the bootstrap performs a
Monte Carlo evaluation of the properties of ϕ̂ using repeated sampling, say B times,
from F̂ to approximate the sampling distribution of ϕ̂. The B samples are obtained
using the following iterative scheme:

1. Draw a bootstrap sample D(∗b) = {y(∗b)
i }, i = 1, . . . , n, with y(∗b)

i ∼F̂ ;

2. Estimate ϕ̂(∗b) = S(D(∗b), F̂).

Breiman (1996a) introduced what he called the bagging (bootstrap aggregating)
procedure, in which the aggregate rule µA(y) is obtained by generating B of Dc using
the bootstrap method. The aggregate classifier is defined as follows:

µ̂A(y) = EF̂ [µ̂(y, D∗
c )], (13)

where D∗
c is a bootstrap sample from the empirical distribution function; that is, a

sample that is obtained by sampling with replacement from the observed data set.
The bootstrap expectation is obtained by Monte Carlo integration: for every bootstrap
resample from F̂ , one computes µ̂(∗b)(y;D(∗b)

c ), b = 1, . . . , B and subsequently
approximates Eq. (13) by the ergodic mean µ̂∗

A(y) ≈ B−1 ∑B
b=1 µ̂(∗b)(y;D(∗b)

c ).
The aggregate classifier µ̂A will usually perform better than the original classifier

µ̂(y, Dc) based on a single observed data because its variance is either equal or smaller
than the variance of µ̂(y, Dc), where the expected variance reduction is larger when
the original predictor is more “unstable”. Because both procedures have a similar bias,
the mean square error of the bagged estimator will be lower, particularly for unstable
predictors (Breiman 1996b; Bauer and Kohavi 1999). Heuristically, a predictor is
said to be unstable if small changes in the data Dc can cause large changes in the
classifier (Breiman 1996b). It has been shown that certain regression and classification
methods (e.g., regression trees) prediction/classification can be very unstable. For a
more rigorous treatment of the instability issue and for theoretical results explaining
the improved performance of aggregate classifiers, we refer to Bühlmann and Yu
(2002).

Various refinements of the bagging procedure have been proposed in the classifi-
cation literature, such as boosting and arcing—two procedures that adaptively change
the weights of the training patterns based on their performance at previous itera-
tions (Freud and Schapire 1996; Breiman 1998)—and double-bagging—a procedure
that uses information of observations not included in a given bootstrap replication
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(Hothorn and Lausen 2003). Though a comparison by Bauer and Kohavi (1999)
showed that these refinements may improve classification performance, here will use
only the more standard implementation of bagging because the other procedures can-
not easily be adapted to the situation in which class labels are unknown.

3.2 Unknown class labels

In the clustering setting, an aggregate classifier generalizes the Bayes rule described
in Eq. (3) in the sense that it classifies observations taking into account the aggregate
results, i.e., it classifies yi into components by majority vote over the class labels
produced from the B bootstrap resamples. This concept of voting is borrowed from
the bagging procedure for classification problems which was described above.

Let ẑ(∗b)
is be the classification of observation i based on bootstrap replicate b, b =

1, . . . , B, which are obtained by plugging in α̂
(∗b)
is , the bth sample estimates of the

posterior probabilities, in Eq. (4). By majority vote, observation i (i = 1, . . . , n) is
assigned to the class with the maximum number of assignments across the bootstrap
resamples

ĉ(∗)
i = arg max

s

B∑

b=1

ẑ(∗b)
is . (14)

A question of interest is whether classification based by the Bayes rule—yielding
the ĉi of Eq. (3)—is always the most adequate or whether it can be improved by the
model-based aggregate classifier described in Eq. (14). In other words, is the Bayes
rule a stable classifier in the clustering setting or is there room for improvement? This
question is addressed below by means of a simulation study.

4 Implementation of the bootstrap in FM modeling

This section discusses various issues that are of interest when implementing bootstrap
methods. Two general issues are choices regarding the number of replications and the
type of bootstrap, and two issues which are specific for FM models are the problems
of local maxima and label switching.

4.1 Number of bootstrap samples

Efron and Tibshirani (1993, p. 13) suggested using a B value between 50 and 200 when
the bootstrap is used for the computation of standard errors. For confidence intervals,
on the other hand, a much larger B value of at least 1000 is required (Efron 1987). In
the boosting literature, the advice is generally to use a B = 50 (Breiman 1996a). In
our study, we compared results for B equal to 21, 51, and 101.
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4.2 Parametric versus nonparametric bootstrap

There are two types of bootstrap procedures that differ in the way F is approximated.
The parametric bootstrap assumes a parametric form for F and estimates the unknown
parameters by their sample quantities (F̂par). That is, one draws B samples of size n
from the parametric estimate of the function F—the function defined by the ML esti-
mates of the unknown model parameters. In the nonparametric bootstrap procedure,
the approximation of F (F̂nonpar) is obtained by its nonparametric maximum likeli-
hood estimate; that is, by the empirical distribution function which puts equal mass
1/n at each observation. In that procedure, sampling from F̂ means sampling with
replacement from the data D. While the nonparametric approach is the one that is
typically used in bagging rules, here both bootstrap procedures are investigated since
we would like to know whether the parametric bootstrap is a better choice in certain
situations.

4.3 Starting values

Estimating of the parameters of the FM model for each bootstrap replication b (ϕ̂(∗b))
requires the use of an iterative algorithm. The EM algorithm is an elegant alternative,
but its success in converging to the global maximum depends among others on the
quality of the starting values. Because the original sample D and the replicated sample
D(∗b) will usually not differ very much, McLachlan and Peel (2000) suggested using
the ML estimate of ϕ from D as the starting value for the bootstrap runs. For a latent
class (LC) model, Dias (2005) showed that this strategy performs well in comparison
with starting the EM algorithm 10 times with random values for the parameters ϕ.
Therefore, in our analysis, within the bootstrap procedure, the EM algorithm was
started from the ML estimates for sample D.

4.4 Label-switching problem

The likelihood function of a FM model is invariant under permutations of the S compo-
nents, i.e., any rearrangement of the component indices yields the same log-likelihood
value. Typical for the bootstrap is that permutations of the components may occur
across replications, resulting in a distortion of the distribution of interest. This pro-
blem, which is well-known in the Bayesian analysis of mixture models by Markov
chain Monte Carlo (MCMC) techniques, is usually referred to as the label-switching
problem.

One way to deal with this problem is to impose inequality constraints on a particular
set of model parameters, for example, that π(∗b)

1 < π
(∗b)
2 < · · · < π

(∗b)
S , b = 1, . . . , B

(Richardson and Green 1997). However, for Bayesian estimation of mixture models it
has been shown that such a simple strategy can seriously distort the results, especially
when the true class sizes are similar to one another (Stephens 1997; Celeux et al.
2000). Because similar problems are very likely to occur in the bootstrap, it is a better
option to use a method proposed by Stephens (2000) which determines the “right”
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order of the clusters by inspecting the posterior probabilities α
(∗b)
is defined in Eq. (2).

This method has been shown to outperform other methods in the Bayesian MCMC
context (Dias and Wedel 2004).

Let υ(∗b)(ϕ
(∗b)) define a permutation of the parameters for the bth bootstrap sample

and Q(b−1) = (q(b−1)
is ) be the bootstrap estimate of α = (αis), based on the previous

b − 1 bootstrap samples. Stephen’s algorithm for reordering the clusters is initialized

with a small number of runs, say B∗: Q(0) =
(

1
B∗

∑B∗
v=1 α̂

(v)
is

)
. Then, for the bth

bootstrap sample, choose υ(∗b) that minimizes the Kullback-Leibler divergence bet-
ween the posterior probabilities α̂is

{
υ(∗b)(ϕ̂

(∗b))
}

and the estimate of the posterior
probabilities Q(b−1), and subsequently compute Q(b).

A difference between an MCMC run and a bootstrap is that in the latter the label
is likely to occur at every resample. An initial estimate using a small number of B∗
bootstrap estimates (without taking into account label switching) is, therefore, not
appropriate and a better solution seems to be to take Q(0) as the ML solution as the
starting configuration. An even simpler alternative is a non-adaptive procedure with
Q(b−1)= Q(0), i.e., which implies relabeling each bootstrap sample according to its
distance to the ML solution. We, however, found examples where this procedure fails
in removing multimodality and do, therefore, recommend not to use it.

5 Model Carlo studies

Below, we first introduce the specific FM model that was used in our two Monte-Carlo
studies, namely, the latent class model. Then we describe the design of and the results
obtained with the two simulation studies. It should be noted that because Monte-Carlo
(MC) studies of bootstrap methods are extremely computer intensive, only factors
believed to have a strong impact on the results were investigated. That is also the
reason why we restricted ourselves to a single, relatively simple, type of FM model.
The programming for the simulations was done in MATLAB (MathWorks 2002).

5.1 The latent class model

We deal with FMs of conditionally independent multinomial distributions for nominal
response variables, also known as latent class (LC) models (Goodman 1974). Let Y j

have L j nominal categories, i.e., yi j ∈ {1, . . . , L j }. Each category l is associated with
a binary variable defined by the indicator function I (yi j = l), which takes on the value
1 if the condition yi j = l holds and 0 otherwise.

The general FM model defined in Eq. (1) obtains the form of a LC model with S
latent classes by using a class-specific conditional density of the form fs(yi ; θs) =
∏J

j=1
∏L j

l=1 θ
I (yi j =l)
s jl . Here, θs jl is the probability that an observation belonging to

component s gives response l to variable j . As usual,
∑L j

l=1 θs jl = 1.
Based on the sufficient conditions for the identifiability of LC models provided by

McHugh (1956) and Goodman (1974), it can easily be shown that all models used
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Table 1 Parameter values and corresponding separation levels

Categories Level of separation

Well separated Moderately separated Ill separated

s = 1 s = 2 s = 1 s = 2 s = 1 s = 2

2 categories

l = 1 0.1 0.9 0.25 0.75 0.4 0.6

l = 2 0.9 0.1 0.75 0.25 0.6 0.4

E 0.9572 0.6153 0.1364

3 categories

l = 1 0.10 0.85 0.15 0.45 0.40 0.35

l = 2 0.05 0.10 0.25 0.40 0.35 0.25

l = 3 0.85 0.05 0.60 0.15 0.25 0.40

E 0.9681 0.5855 0.0943

E computed with a = 1, J = 5, and n = 106 observations

in this simulation study are identified. For parameter estimation, we used the EM
algorithm started for 50 different sets of starting values.

5.2 Monte Carlo study I

The factors that were varied in our first Monte Carlo (MC) study are: (1) the number of
categories of the observed variables (L j ), (2) the sample size (n), (3) the component
sizes, and (4) the level of separation of components. The number of categories L j

was either 2 or 3. For the sample size n, we used the values 300, 600, and 1200.

Component sizes were generated using the expression πs = as−1
(∑S

r=1 ar−1
)−1

,

with s = 1, . . . , S and a ≥ 1. Setting a = 1 yields equal proportions, whereas larger
values of a yield more unequal component sizes. We used two different values for a: 1
and 2. The level of separation of components depends on the differences between the
θs jl across classes, and can be controlled by the relative entropy E , a measure lying in

the [0,1] interval defined as 1−
(
−∑n

i=1
∑S

s=1 αis log αis

)
/(n log S). We used three

separation levels: well-separated components (E close to 1), moderately-separated
components, and ill-separated components (E close to 0). Table 1 shows the relative
entropy and the parameter values for different levels of separation of the components.
For simplicity, we use the same θs jl values for all J observed variables.

Because the ML estimate also suffers from the label-switching problem, for each
data set the ML solution was ordered according to the minimum KL distance from
the population values. The need to deal with this non-identifiability introduces a small
bias in favor of the Bayes rule, i.e., it tends to be slightly more similar to the true value
than expected. Because it was difficult to recover the natural order of ill-separated
components when dealing with more than 2 latent classes, the number of classes in
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Table 2 Results for study I (mean correct classification rates)

Design ML allocation rate Difference between aggregate and Bayes rules

NP PAR

B = 21 51 101 21 51 101

Sample size

300 0.8203 −0.0018 −0.0014 −0.0012 −0.0012 −0.0012 −0.0009

600 0.8249 −0.0029 −0.0026 −0.0027 −0.0020 −0.0014 −0.0011

1200 0.8282 −0.0038 −0.0041 −0.0042 −0.0021 −0.0016 −0.0017

No. of categories

2 0.8322 −0.0039 −0.0041 −0.0040 −0.0022 −0.0018 −0.0017

3 0.8167 −0.0018 −0.0013 −0.0014 −0.0013 −0.0010 −0.0008

Comp. size

Equal 0.8140 −0.0042 −0.0043 −0.0047 −0.0013 −0.0013 −0.0011

Unequal 0.8349 −0.0014 −0.0011 −0.0008 −0.0022 −0.0015 −0.0014

Comp. separation

Well 0.9897 −0.0001 −0.0001 0.0000 −0.0001 −0.0001 0.0000

Moderate 0.8816 −0.0008 −0.0005 −0.0003 −0.0007 −0.0004 −0.0003

Ill 0.6020 −0.0077 −0.0076 −0.0078 −0.0046 −0.0038 −0.0035

Total 0.8245 −0.0028 −0.0027 −0.0027 −0.0018 −0.0014 −0.0013

the LC model was restricted to two (S = 2). The number of observed variables was
set to five (J = 5), yielding an LC model that is identified.

This MC study uses a 22 × 32 factorial design with 36 cells. Within each cell,
200 data sets (replications) were generated. For each data set within each cell, 101
nonparametric (NP) and parametric (PAR) bootstrap samples were generated. This
means that 7200 samples and 1454400 resamples were considered in this study. For
the resamples we used the ML solution of the sample as starting set. The EM algorithm
was stopped when the difference between two subsequent values of the log-likelihood
values was smaller than 10−6 (tolerance level).

Table 2 presents the main results of the first MC study. Note that in a simulation
study like ours we know the true class labels (ci ). Therefore, we can compute the
correct allocation rates (using Eq. 9) for the Bayes and aggregate classifiers rules.
The correct allocation rate reported in the second column is the average for the Bayes
rule across the 7200 samples. The remaining columns report the difference between
the average correct allocation rate for the corresponding aggregate classifier and the
Bayes rule.

The main finding that can be derived from Table 2 is the remarkable performance of
the Bayes rule for clustering problems. Contrary to what we expected, the aggregate
classifiers perform slightly worse than the Bayes rule, though the differences are
smaller for the larger B values. The parametric bootstrap version of the classifier
performs slightly better than the nonparametric version.

Increasing the sample size seems to improve the performance of all classifiers, but
the aggregate classifiers improve at a slightly smaller rate. Increasing the number of
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Table 3 Multiple regression of
differences between bootstrap
and Bayes classifiers (study I)

∗∗∗ p < 0.001
∗∗ p < 0.01
∗ p < 0.05

B = 21 B = 51 B = 101

Intercept −0.0011∗ −0.0016∗ −0.0016∗∗
Sample size

300 – – –

600 −0.0009∗ −0.0007 −0.0008

1200 −0.0014∗∗ −0.0016∗∗∗ −0.0019∗∗∗
No. of categories

2 – – –

3 0.0016∗∗∗ 0.0018∗∗∗ 0.0017∗∗∗
Comp. size

Equal – – –

Unequal 0.0009∗ 0.0015∗∗∗ 0.0018∗∗∗
Comp. separation

Well – – –

Moderate −0.0007 −0.0004 −0.0003

Ill −0.0061∗∗∗ −0.0056∗∗∗ −0.0056∗∗∗
Bootstrap method

Nonparametric – – –

Parametric 0.0011∗∗ 0.0013∗∗∗ 0.0015∗∗∗
Sparseness – – –

F statistic 36.4083∗∗∗ 39.7149∗∗∗ 43.1717∗∗∗

categories of the observed variables reduces the performance of the Bayes rule as
well as the difference between the two rules. When latent class are of unequal size,
the performance of the Bayes rule is better than with equal class sizes. For equal
class proportions, the parametric bootstrap classifier presents more similar results to
the Bayes rule than the nonparametric bootstrap classifier; for unequal proportions,
allocation rates for nonparametric bootstrap classifiers are more similar to the Bayes
rule than the parametric bootstrap classifier. Finally, one can observe that the level of
separation of components has a huge impact on the correct allocation rate for the Bayes
rule. For well-separated components almost all observations are correctly classified
(0.99); however, for ill-separated components the correct allocation rate is only 0.60.
For well-separated and moderately separated components, both classifiers virtually
yield the same results.

To shed further light on the effect of the design factors on the relative performance of
these rules, a regression analysis was performed with “difference in correct allocation
rate compared to the standard classifier” as dependent variable (Model I in Table 3).
One observes that the relation between the design factors and the relative performance
of these rules is significant. Taking into account that the first level of each design
factor was used as the reference category, it can be seen that increasing the sample
size increases the difference in favor of the Bayes rule and that reducing the level of
separation of components has a similar effect. Increasing the number of categories has
the largest impact on improving the bootstrap classifier in comparison to the Bayes
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rule (0.0017 for B = 101). Unequal component sizes also improve the aggregate rule
in comparison to the Bayes rule. Given the massive amount of data, significance levels
should be interpreted with some care in the sense that even very small effects may be
significant.

5.3 Monte Carlo study II

The second study was aimed at having a closer look at the effects of the level of
sparseness, defined as n−1 ∏J

j=1 L j , and of the number of bootstrap replications on
the differential performance of the two classification rules. The number of components
(S) was set to 2, classes were of equal size, and the sample size was fixed to 600. For
the level of separation of components, we used the same three sets of parameter values
as in Table 1. The level of sparseness was manipulated by varying the number of
categories the observed variables (2 or 3) as well as the number of observed variables
(5, 8, 11, or 14). Compared to the Study I, apart from using LC models with a larger
number of variables, we also increased the number of resamples up to B=1001 for
both the nonparametric and parametric procedure, making it possible to assess the
potential improvements for large B. Within each cell we simulated 30 data sets, which
means that 360 samples and 720720 resamples had to be analyzed.

Table 4 presents the main results of the second MC study. We conclude that the
results from both classifiers are virtually identical with a slightly better performance
for the Bayes classifier (Total). We also observe that increasing the number of bootstrap
resamples (B), despite of reducing the difference to the Bayes classifier, has a rather
small impact on the performance of the bootstrap classifier. As expected, the relative
performance of the aggregate classifier improves when the number of variables (and
thus also sparseness) increases. When components are well separated, both classifiers
can retrieve the right classification. However, for the smallest level of separation the
aggregate classifier tends to perform slightly worse.

As before a regression analysis was performed to establish the relation between the
difference in performance of the two classifiers and the design factors (Table 5). As can
be seen, using the parametric bootstrap (compared to the nonparametric) improves the
relative performance of the aggregate classifier. Moreover, increasing the number of
variables reduces the difference in performance (only significant from 5 to 8 variables).
On the other hand, reducing the level of separation of components reduces the perfor-
mance of the aggregate classifier in relation to the Bayes classifier (significantly for
Ill-separated level).

6 An empirical example

This section illustrates the topics related to uncertainty in LC modeling using the
original version of the well-known Stouffer-Toby data set (Stouffer and Toby 1951,
p. 406), a data set has been used by various other authors (e.g., Goodman 1974). It
contains the information for 216 respondents with respect to whether they tend towards
particularistic or universalistic values when confronted with four different role conflict
situations. We set S = 2.
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Table 4 Results for study II (mean correct classification rates)

Number Level of ML Difference between aggregate and Bayes rules
of separation allocation
variables of components rate

B = 11 51 101 501 1001

Nonparametric

Well 0.9912 0 0 0 0 0

5 Moderate 0.8982 −0.0014 −0.0008 −0.0001 0 −0.0001

Ill 0.5787 −0.0073 −0.0031 −0.0040 −0.0044 −0.0043

Well 0.9977 0.0001 0 0.0001 0.0001 0.0001

8 Moderate 0.9286 0.0007 −0.0002 0.0001 0.0005 0.0002

Ill 0.6474 −0.0365 −0.0365 −0.0387 −0.0374 −0.0363

Well 0.9998 0 0 0 0 0

11 Moderate 0.9662 −0.0002 −0.0002 −0.0001 0.0001 0.0001

Ill 0.7053 −0.0195 −0.0168 −0.0148 −0.0134 −0.0151

Well 0.9999 −0.0001 0 0 0 0

14 Moderate 0.9765 0 −0.0003 0.0001 0.0001 0.0001

Ill 0.7338 −0.0188 −0.0097 −0.0080 −0.0065 −0.0076

Parametric

Well 0.9912 0 0 0 0 0

5 Moderate 0.8982 −0.0006 −0.0002 −0.0004 −0.0001 −0.0001

Ill 0.5787 −0.0035 −0.0053 −0.0076 −0.0043 −0.0027

Well 0.9977 0.0001 0.0001 0 0 0

8 Moderate 0.9286 −0.0001 −0.0008 −0.0003 0 −0.0001

Ill 0.6474 −0.0017 −0.0071 −0.0037 −0.0030 −0.0042

Well 0.9998 0 0 0 0 0

11 Moderate 0.9662 0 0 0 0 0

Ill 0.7053 −0.0001 −0.0001 −0.0001 −0.0001 −0.0001

Well 0.9999 0 0 0 0 0

14 Moderate 0.9765 0 0 0 0 0

Ill 0.7338 0.0001 0.0001 0.0001 0.0001 0.0001

Total 0.8686 −0.0037 −0.0034 −0.0032 −0.0028 −0.0029

Table 6 presents Bayes- and aggregate-classifier results for the Stouffer-Toby data
set. We conclude that for the most problematic patterns, (2, 1, 2, 2), (2, 2, 2, 1), and
(2, 2, 1, 2), the aggregate classifier confirms the decision by the Bayes classifier. Both
rules give the same hard partition of the data set, including for the most uncertain
patterns. This empirical application also suggests that a voting system of 100 resamples
may not be enough to obtain a stable classification.

7 Final remarks

We introduced a model-based clustering aggregate classifier as an alternative to the
Bayes rule. More specifically, we showed how to transform the bagging majority vote
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Table 5 Multiple regression of differences between bootstrap and Bayes classifiers (study II)

B = 11 B = 51 B = 101 B = 501 B = 1001

Intercept −0.0017 −0.0004 −0.0010 −0.0008 −0.0006

No. of variables

5 – – – – –

8 −0.0041 −0.0059∗∗∗ −0.0051∗∗∗ −0.0052∗∗∗ −0.0056∗∗∗
11 −0.0011 −0.0013 −0.0005 −0.0008 −0.0013

14 −0.0010 −0.0001 0.0007 0.0004 −0.0001

Comp. separation

Well – – – – –

Moderate −0.0002 −0.0003 −0.0001 0.0001 0.00001

Ill −0.0109∗∗∗ −0.0098∗∗∗ −0.0096∗∗∗ −0.0086∗∗∗ −0.0088∗∗∗
Bootstrap method

Nonparametric – – – – –

Parametric 0.0064∗∗∗ 0.0045∗∗∗ 0.0045∗∗∗ 0.0045∗∗∗ 0.0047∗∗∗
F statistic 10.7355∗∗∗ 14.6982∗∗∗ 13.8089∗∗∗ 12.8620∗∗∗ 13.6017∗∗∗

∗∗∗ p < 0.001

Table 6 Estimated class-1 allocation rates (empirical example)

Patterns Posterior Voting share (proportion)
probabilities

NP PAR

B = 100 1000 5000 100 1000 5000

(1,1,1,1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(1,1,1,2) 0.001 0.020 0.009 0.006 0.000 0.002 0.002

(1,1,2,1) 0.001 0.000 0.002 0.001 0.000 0.000 0.000

(1,1,2,2) 0.017 0.040 0.026 0.021 0.020 0.012 0.012

(1,2,1,1) 0.001 0.000 0.000 0.000 0.000 0.000 0.000

(1,2,1,2) 0.013 0.040 0.026 0.020 0.010 0.012 0.010

(1,2,2,1) 0.018 0.030 0.006 0.005 0.020 0.005 0.003

(1,2,2,2) 0.287 0.430 0.383 0.364 0.370 0.336 0.347

(2,1,1,1) 0.001 0.000 0.000 0.000 0.000 0.000 0.000

(2,1,1,2) 0.031 0.050 0.020 0.016 0.010 0.008 0.009

(2,1,2,1) 0.045 0.030 0.011 0.007 0.000 0.000 0.001

(2,1,2,2) 0.505 0.500 0.528 0.545 0.580 0.548 0.538

(2,2,1,1) 0.033 0.020 0.003 0.003 0.000 0.001 0.001

(2,2,1,2) 0.425 0.400 0.463 0.448 0.420 0.438 0.436

(2,2,2,1) 0.518 0.620 0.588 0.590 0.600 0.588 0.574

(2,2,2,2) 0.959 1.000 1.000 1.000 1.000 1.000 1.000

Particularistic (1), B = 5000 resamples, ML and KL strategies
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procedure from the classification literature into a classification rule that can be used
in the context of model-based clustering; that is, when true class labels are unknown.
We studied variants based on the parametric and on the nonparametric bootstrap pro-
cedures for different numbers of bootstrap resamples. An important complication in
the implementation of these bootstrap-based aggregate classifiers for FM models was
the label-switching problem resulting from the non-identifiability of the class labels,
a problem that had not received any attention so far in the literature on bootstrapping
with mixture models. We introduced an adaptation of the Stephens’ method to the
bootstrap methodology as an alternative to using inequalities constraints which may
yield distortions of the geometry of the bootstrap distribution.

From our Monte Carlo studies we concluded that the Bayes rule is remarkably
stable as a classifier for model-based procedures. Even for sparse data, the aggregate
classifier, which averages over a larger number of resamples, can hardly beat the Bayes
rule. It should be emphasized that results for the aggregate classifier are conservative
due to the setting of the non-identifiability of the FM model by using the ML solution
to define the true classification of each observation, which is more favorable to the
Bayes rule. Moreover, our simulation studies showed that the aggregate classifier
works better with the parametric than with the nonparametric bootstrap.

Our results focused on FMs of independent multinomial distributions (LC models).
Future research could be aimed at extending our findings and proposals to other model-
based clustering procedures based on FM models, such as multivariate normal mixture
models and FMs of regression models.
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