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This paper addresses the issue of classification uncertainty in latent class
analysis. It proposes a new bootstrap-based approach for quantifying the level
of classification uncertainty at both the individual and the aggregate level. The
procedure is illustrated by means of two applications.

1 Introduction

Model-based clustering by latent class (LC) models can be formulated as
follows. Let y denote a J-dimensional observation and D = {y1,...,y»} a
sample of size n. Each data point is assumed to be a realization of the random
variable Y coming from an S-component mixture probability density function

(p.d.f.) ;
f(Yi;QO):ZstS(Yﬁas)v (1)
s=1

where 7, are positive mixing proportions that sum to one, 8, are the pa-
rameters defining the conditional distribution fs(y;;6s) for component s,
and ¢ = {m,...,m5-1,01,...,05}. Note that 7¢ = 1 — Zf;ll . The log-
likelihood function for a LC model — assuming i.i.d. observations — has the
form ¢(p;y) = > i, log f(y:; ), which is straightforward to maximize (yield-
ing the MLE - maximum likelihood estimator) by the EM algorithm [DLR77].

Our results concern standard LC models; that is, mixtures of indepen-
dent multinomial distributions [Clo95, VMO03]. For nominal data, let Y; have
L; categories, i.e., y;; € {1,...,L;}. The standard LC model with S la-
tent classes is obtained by defining the conditional density as fs(y:;6s) =
szl Hlejl HSIJ(?J :l), where 6,;; denotes the probability that an observation
belonging to latent class s gives response ! on variable j, and where I(y;; = {)
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is an indicator function taking the value 1 if the condition y;; = [ is true and
0 otherwise. It should be noted that ZzL:J1 0sj1 = 1. McHugh [McH56] and
Goodman [Goo74] give sufficient conditions for the identifiability of the LC
model. All the models used in this paper are identified and are straightfor-
wardly estimated by means of the EM algorithm [Eve84]. For our analysis, we
used programs written in MATLAB [MATO02].

From the parameters of the LC model one can derive the posterior proba-
bility that an observation belongs to a certain class or cluster conditional on
its response pattern. Bayes’ theorem gives the estimated a posteriori (MLE)
probability that observation i was generated by component s:

'ﬁsfs(Yi; és) .
Zle ’frva(YM 01})

It should be noted that these probabilities can not only be used for classifica-
tion purposes, but also for profiling classes. More specifically, Magidson and
Vermunt [MVO01] showed that one can investigate the relationship between
covariates and classes by comparing (and plotting) the average d;s across
subgroups defined by covariate categories.

Whereas the &;s values define a soft partitioning/clustering of the data
set, that is Zle Gis = 1 and &;5 € [0, 1]; the next step will usually be the
transforming of the resulting soft partition into a hard partition by applying
the optimal Bayes rule. Obtaining such a hard partition may be a goal on its
own — for example, if the LC model is used for a diagnostic instrument — but
it may also serve as input for a subsequent analysis — for example, an analysis
aimed at profiling clusters. Let ¢; represent the true cluster membership (the
missing data) of observation i. Alternatively, the missing data for case i (¢;)
can be represented by a set of dummy variables z;s = I(¢; = s), where I(.) is
an indicator function — I(A) = 1, if condition A is true and zero otherwise;
i.e., z;s = 1, if case i belongs to class s and 0 otherwise. Then, the optimal
Bayes rule assigning observation i to the class with maximum a posterior:
probability can be defined as follows:

(2)

Qs =

¢; = argmax Qs, 1 = 1,...,n, (3)
S
which is equivalent to
Sio = T (max iy = iy ), 8,8 = 1,008, i = 1. (4)
S/

Therefore, 2;5 defines a hard partition, because Zle 2 = land 2;5 € {0,1}.

In this paper, we address the following question: How should we measure
the level of uncertainty in the mapping from the [0, 1] soft partition to the
{0,1} hard partition obtained by applying the optimal Bayes rule? Note that
it is assumed here that the number of labels/classes is known (S is assumed
to be fixed); i.e., in determining the level of uncertainty, we do not take into
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account the uncertainty connected to selection of the model with the correct
number of clusters.

The remaining of the paper is organized as follows. In the next section,
we describe measures of classification uncertainty at the aggregate and at
the individual level. Then, we discuss the proposed bootstrap method for
estimating uncertainty and illustrate this procedure by means of two empirical
applications. The paper ends with a short discussion.

2 Measures of classification uncertainty

It is natural to assume that the model-based clustering procedure is pro-
viding a classification of observations into clusters with a small uncertainty
when maxg &;s is close to one for most of the observations; conversely, the
uncertainty of classification can be assumed to be high when the posterior
probabilities are very similar across classes — or when max, &; is far below
1. At the individual level, classification uncertainty can be measured by the
posterior probabilities &;s. Another measure of individual uncertainty in clas-
sifying observation ¢ into the class with the largest posterior probability is
given by

e;=1-— Max Qs (5)

If the observation provides clear information, then e; ~ 0 [DHS01]. The def-
inition of e; is supported by decision theory as follows. Let s’ and s indicate
the predicted classification (the decision) and the true state of nature of ob-
servation 4, respectively. Then, the decision is correct if s’ = s and in error
otherwise. The loss function of interest is the so-called zero-one loss function,
which is defined as follows:

0, =s

L(c; =8|c; =3s) = { 1 s £ (6)

for s', s = 1,...,5. The conditional risk associated with this loss function is
[DHSO01, p.27]
R(c; = s'lyi) = 1= p(ei = slyi). (7)

Therefore, under zero-one loss, the misclassification risk is minimized if and
only if observation ¢ is assigned to the component s for which p(c; = s|y;) is
the largest (equation 3) and e; is the misclassification risk for LC models.

An aggregate measure of classification uncertainty is the entropy. For LC
models, the entropy is obtained by

n

s
EN(a) = —ZZais log cvjs. (8)

i=1 s=1

Its normalized version has been used as a model selection criterion indicating
the level of separation of components [CS96]. The relative entropy that scales
the entropy to the interval [0,1] is defined as [WKO00]
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E=1-EN(a)/(nlogs). 9)

For well-separated latent classes, E/ = 1; for ill-separated latent classes, E¥ =~ 0.
This provides a method for assessing the “fuzzyness” of the partition of the
data under the hypothesized model. The ML estimates of e;, EN(a), and E
—é;, EN(&), and FE — can be obtained using the MLE é&;, of «;, instead of
a;s in equations (5), (8), and (9).

3 The bootstrap method

The bootstrap is a computer intensive resampling technique introduced by
Efron [Efr79] for determining, among other things, standard errors, biases,
and confidence intervals in situations where theoretical statistics are difficult
to obtain. The bootstrap technique is easily stated. Suppose we have a random
sample D from an unknown probability distribution F' and we wish to estimate
the parameter ¢ = t(F). Let S(D, F) be a statistic. Whereas for theoretical
statistical inference, the underlying sampling distribution of S(D, F’) has to be
known, the bootstrap method approximates F' by some estimate F based on
D. This gives a sampling distribution based on S(D*, F'), where the bootstrap
sample D* = {y7,y5,...,y5} is a random sample of size n drawn from F,
and @* = S(D*,ﬁ') is a bootstrap replication of ¢, the ML estimator of
. The bootstrap performs a Monte Carlo evaluation of the properties of ¢
using repeated sampling, say B times, from F to approximate the sampling
distribution of ¢. The B samples are obtained using the following cycle:

1. Draw a bootstrap sample D(*?) = {yg*b)}, i=1,...,n, with yg*b)wﬁ;
2. Estimate @) = S(DUY) | F).

The quality of the approximation depends on the value of B and on the
similarity between F and F. For an overview of the bootstrap methodology,
we refer to Efron and Tibshirani [ET93].

Here, we propose using the bootstrap technique as a tool for better under-
standing the aggregate- and individual-level classification uncertainty mea-
sures presented in the previous section. We not only obtain bias-corrected
point estimates for these measures, but also standard errors and confidence
intervals. In other words, we get an indication about the sampling variability
of the encountered values for the various measures of classification uncertainty.

Given a fixed S, e;, EN(a), and E can be bootstrapped. For each boot-
(xb)

strap sample D(*®) and parameter estimate @*®) &, ~ are obtained by equa-

tion (2). By plugging in dg:b) in equations (5), (8), and (9), we obtain the

bootstrap distribution of e;, EN(«), and E, respectively. Graphical and sum-
mary descriptive measures of these distributions can be displayed.
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4 Bootstrapping LC models

4.1 Number of bootstrap samples

Efron and Tibshirani [ET93, p. 13] suggested using a B value between 50 to
200 when the bootstrap is used for the computation of standard errors. For
example, van der Heijden et al. [HHD97] and Albanese and Knott [AK94]
used 50 and 100 replications, respectively. For confidence intervals, on the
other hand, a much larger B value of at least 1000 is required [Efr87]. In
all the analyses reported below, we worked with B = 5000. This value gives
stable and smooth bootstrap results.

4.2 Parametric versus nonparametric bootstrap

There are two types of bootstrap procedures that differ in the way F' is ap-
proximated. The parametric bootstrap assumes a parametric form for F' and
estimates the unknown parameters by their sample quantities (Fpm). That is,
one draws B samples of size n from the parametric estimate of the function
F — the function defined by the MLEs of the unknown model parameters. In
the nonparametric bootstrap procedure, the approximation of F' (Fnonpar) is
obtained by its nonparametric maximum likelihood estimate; that is, by the
empirical distribution function which puts equal mass 1/n at each observa-
tion. In that procedure, sampling from F means sampling with replacement
from the data D.

It has been argued that the parametric bootstrap is better for categorical
data whenever the frequency table to be analyzed is sparse [LPP96, Dav97].
In the nonparametric bootstrap, because the sampling is from the empirical
distribution, a data pattern that is not observed in the sample has probability
zero of being selected into the bootstrap samples and, consequently, Fnonmr
may be too far from the true distribution F. The same problem can, how-
ever, also occur in the parametric bootstrap, namely, when certain parameter
estimates are on the boundary of the parameter space [HHD97]. In such a
case, the resampling will not show any variability within the component con-
cerned, although zero estimated cell frequencies are very rare. On the other
hand, Albanese and Knott [AK94] obtained similar results with the paramet-
ric and nonparametric bootstrap for latent trait models estimated for binary
responses. In our analysis, we compare results from the nonparametric (NP)
and parametric (PAR) versions of the bootstrap technique.

4.3 Starting values

For estimating the parameters of the LC model for each resample b (¢*?),
one needs to use an iterative algorithm. The EM algorithm is an elegant
alternative, but its success in converging to the global maximum depends on
various factors, such as the quality of the starting values [MK97]. Because
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the original sample D and the replicated sample D*? may not differ too
much, McLachlan and Peel [MP00] suggested using the MLE of ¢ from D
as a starting value. Dias [Dia05] showed that for the LC model this strategy
performs well in comparison with starting the EM algorithm 10 times with
random values for the parameters . Therefore, in our analysis, within the
bootstrap procedure, the EM algorithm is started from the MLE for sample
D.

4.4 Label-switching problem

As is well-known, the likelihood function of mixture models is invariant under
permutations of the S latent classes; i.e., any rearrangement of the latent
class indices yields the same likelihood value. In bootstrap analysis, as well
as in Bayesian analysis by Markov chain Monte Carlo (MCMC) techniques,
a permutation of the latent classes may occur, resulting in a distortion of the
distribution of interest [Ste97, Ste00, DW04]. Dias [Dia05] showed that for the
computation of standard errors and confidence intervals of LC parameters by
bootstrap methods, the label-switching problem can have severe impact on
the estimation if not handled properly. However, the statistics we use here
to measure classification uncertainty at individual (equation 5) and aggregate
(equations 8 and 9) levels are invariant to the label switching of the latent
classes.

5 Applications

5.1 Stouffer-Toby dataset

This first example illustrates the measurement of classification uncertainty
in LC modeling using the classical Stouffer-Toby (ST) data set (Table 4 in
[ST51, p. 406]), which has been used by various other authors [Goo74, AK94].3
It contains the information for 216 respondents with respect to whether they
tend towards particularistic or universalistic values when confronted with four
different role conflict situations. In our analysis, we assume that S = 2.
Dias [Dia05] showed with this data set that the label-switching problem for
the latent class model can have a severe impact at the parameter level.
Table 1 reports the obtained values for the measures of individual and ag-
gregate uncertainty. The encountered value for the relative entropy E (0.72)
indicates that the level of separation of components is moderately high, with
a 95% nonparametric bootstrap confidence interval of (0.59, 0.87). Note that

3 Our estimates are slightly different from results reported in [Goo74], because
the original dataset of Souffer and Toby is slightly different from the dataset
utilized later by [Goo74, p.216]. However, given the purposes of this application
the difference is irrelevant.
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the percentile method takes a direct 95% bootstrap confidence interval us-
ing the empirical 2.5% and 97.5% quantiles of the bootstrap replicates. From
the individual uncertainty indicator é;, we conclude that the most problematic
patterns to be classified are the (2,1,2,2), (2,2,2,1), and (2,2, 1, 2) responses.
For these three patterns and for (1,2,2,2) we find the largest differences be-
tween the bootstrap estimate and MLE (the largest biases) for e;, as well as
upper 95% confidence interval limits near to 0.5, which is the maximum value
for e; with § = 2.

Table 1. Classification uncertainty (ST dataset)

Patterns MLE Bias Percentile method
NP PAR NP PAR

Individual (é;)

(1,1,1,1) 0.000 0.000 0.000 (0.000, 0.002) (0.000, 0.001)
(1,1,1,2) 0.001  0.004 0.003 (0.000, 0.039) (0.000, 0.029)
(1,1,2,1) 0.001 0.003 0.002 (0.000, 0.028) (0.000, 0.024)
(1,1,2,2) 0.017 0.034 0.033 (0.000, 0.353) (0.000, 0.345)
(1,2,1,1) 0.001  0.003 0.002 (0.000, 0.026) (0.000, 0.018)
(1,2,1,2) 0.013  0.032 0.029 (0.000, 0.336) (0.000, 0.311)
(1,2,2,1) 0.018 0.030 0.027 (0.000, 0.293) (0.000, 0.287)
(1,2,2,2) 0.287 —0.117 —0.121 (0.000, 0.482) (0.000, 0.485)
(2,1,1,1) 0.002 0.002 0.001 (0.000, 0.025) (0.000, 0.017)
(2,1,1,2) 0.031 0.029 0.024 (0.000, 0.345) (0.000, 0.304)
(2,1,2,1) 0.045 0.024 0.014 (0.000, 0.318) (0.000, 0.236)
(2,1,2,2) 0.495 —0.235 —0.220 (0.000, 0.489) (0.000, 0.490)
(2,2,1,1) 0.033 0.018 0.013 (0.000, 0.231) (0.000, 0.194)
(2,2,1,2) 0.425 —0.170 —0.164 (0.000, 0.490) (0.000, 0.491)
(2,2,2,1) 0.483 —0.137 —0.129 (0.016, 0.493) (0.036, 0.495)
(2,2,2,2) 0.041 —0.003 —0.002 (0.008, 0.086) (0.011, 0.082)
Aggregate

Entropy (EN)  42.051 —3.121 —3.666 (18.862, 60.777) (19.817, 58.363)

Rel. entropy (E) 0.719 0.021 0.025 (0.594, 0.874)  (0.610, 0.868)

5.2 Political dataset

This second example applies the procedure to a dataset with 1156 observations
and 5 binary variables (System responsiveness: 1 - Low, 2 - High; Ideological
level: 1 - Nonideologues, 2 - Ideologues; Repression potential: 1 - High, 2 -
Low; Protest approval: 1- Low, 2 - High; Convential participation: 1 - Low,
2 - High). These dataset has been used by others [Hag93, VMO03]. Based on
BIC [Sch78] and AIC3 [Boz93], we picked a three-class solution (S = 3).
The relative entropy E = 0.637 indicates that the level of separation of
components is moderate, with a 95% parametric confidence interval of (0.50,
0.80). From the individual uncertainty indicator e;, we conclude that as far
as classification performance is concerned patterns (1,2,1,1,1), (2,1,1,2,1),
(1,1,2,1,2), and (2,2,1,1,1) are the most problematic ones. For these pat-
terns, the confidence interval reaches 0.5, which indicates that there is a un-
certainty in the classification (the maximum is 0.67 here). It should be noticed
that some patterns such as (1,1, 1,2, 2) with small uncertainty (é = 0.19) has
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(0.00, 0.60) as nonparametric 95% CI, which means that a small change in
the data set may have a huge impact on the classification of this pattern. We
noticed that patterns (1,2,1,1,1), (1,1,2,1,1), and (1,2,2,1, 1) present larger
biases (differences between the ML estimate and the bootstrap estimates), as
well as upper 95% confidence interval limits above 0.5. On the other hand,
patterns such as (1,2,2,2,2) have a clear and certain classification. Overall,
the results obtained with the parametric and the nonparametric bootstrap are
very similar.

Table 2. Classification uncertainty (Political dataset)

Patterns MLE Bias Percentile method
NP PAR NP PAR

(
(1,1,1,1,1) 0.098 0.010 0.004 (0.008, 0.332) (0.010, 0.241)
(1,1,1,1,2) 0.347 —0.056 —0.075 (0.018, 0.521) (0.008, 0.519)
(1,1,1,2,1) 0.141 —0.007 0.003 (0.036, 0.248) (0.070, 0.241)
(1,1,1,2,2) 0.192 0.041 0.075 (0.000, 0.601) (0.000, 0.584)
(1,1,2,1,1) 0.045 0.009 0.003 (0.008, 0.150) (0.013, 0.103)
(1,1,2,1,2) 0.452 —0.105 —0.104 (0.000, 0.580) (0.000, 0.587)
(1,1,2,2,1) 0.269 0.003 0.000 (0.033, 0.483) (0.145, 0.421)
(1,1,2,2,2) 0.096 0.017 0.006 (0.000, 0.391) (0.000, 0.261)
(1,2,1,1,1) 0.511 —0.171 —0.193 (0.000, 0.587) (0.000, 0.584)
(1,2,1,1,2) 0.274 —0.058 —0.078 (0.000, 0.457) (0.000, 0.414)
(1,2,1,2,1) 0.139 0.061 0.080 (0.000, 0.504) (0.000, 0.523)
(1,2,1,2,2) 0.006 0.056 0.091 (0.000, 0.452) (0.000, 0.457)
(1,2,2,1,1) 0.358 —0.102 —0.093 (0.000, 0.540) (0.000, 0.541)
(1,2,2,1,2) 0.021 0.104 0.101 (0.000, 0.480) (0.000, 0.475)
(1,2,2,2,1) 0.067 0.034 0.023 (0.000, 0.425) (0.000, 0.306)
(1,2,2,2,2) 0.003 0.018 0.009 (0.000, 0.183) (0.000, 0.092)
(2,1,1,1,1) 0.321 —0.036 —0.017 (0.032, 0.516) (0.040, 0.513)
(2,1,1,1,2) 0.231 —0.033 —0.065 (0.011, 0.408) (0.005, 0.314)
(2,1,1,2,1) 0.449 —0.066 —0.033 (0.139, 0.511) (0.242, 0.569)
(2,1,1,2,2) 0.046 0.050 0.107 (0.000, 0.474) (0.000, 0.496)
(2,1,2,1,1) 0.190 0.007 0.006 (0.033, 0.425) (0.055, 0.400)
(2,1,2,1,2) 0.142 0.091 0.078 (0.000, 0.537) (0.000, 0.535)
(2,1,2,2,1) 0.353 —0.033  0.005 (0.093, 0.492) (0.189, 0.495)
(2,1,2,2,2) 0.021 0.025 0.012 (0.000, 0.278) (0.000, 0.149)
(2,2,1,1,1) 0.406 —0.077 —0.095 (0.000, 0.592) (0.000, 0.591)
(2,2,1,1,2) 0.299 —0.088 —0.093 (0.000, 0.460) (0.000, 0.437)
(2,2,1,2,1) 0.031  0.068 0.077 (0.000, 0.467) (0.000, 0.447)
(2,2,1,2,2) 0.001 0.044 0.082 (0.000, 0.414) (0.000, 0.439)
(2,2,2,1,1) 0.101 0.105 0.099 (0.000, 0.547) (0.000, 0.539)
(2,2,2,1,2) 0.005 0.083 0.094 (0.000, 0.463) (0.000, 0.464)
(2,2,2,2,1) 0.014 0.029 0.012 (0.000, 0.307) (0.000, 0.106)
(2,2,2,2,2) 0.001 0.020 0.008 (0.000, 0.275) (0.000, 0.081)
Aggregate

Entropy (EN) 461.65 —19.6 —40.32 (241.46, 618.89) (256.53, 632.34)

Rel. entropy (E) 0.637 0.015 0.003 (0.513, 0.810)  (0.502, 0.798)

Beyond the summary analysis provided above, it is possible to explore
further the richness of the bootstrap results. For example, Figure 1 plots the
bootstrap distribution for the relative entropy obtained with the nonparamet-
ric and parametric procedures. Given the large number of bootstrap resamples,
the plots have a nice smooth shape.
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Fig. 1. Nonparametric and parametric distributions of the relative entropy

6 Discussion

We dealt with the measurement of classification uncertainty at the individual
and aggregate level in the context of LC modeling. We proposed using para-
metric and nonparametric bootstrap techniques to determine the bias and
sampling fluctuation of measures of classification uncertainty. At the aggre-
gate level, we used the entropy, which is related to the level of separation
of the latent classes. As an individual measure of classification uncertainty,
we applied e; = 1 — max, a;5. The exact implementation of bootstrap proce-
dures in LC modeling is not at all straightforward since issues such as label
switching and local maxima have to be taken into account. An important ad-
vantage of the proposed approach is, however, that it is not affected by the
label-switching problem. Results obtained with the parametric and nonpara-
metric bootstrap were discussed for two examples. It should be noticed that
this paper introduces a methodology for measuring the uncertainty at individ-
ual and global levels. In particular, this approach allows the identification of
problematic observations with higher classification uncertainty level. In this
case, we know for each observation the risk of the traditional optimum Bayes
classification rule (equation 3).

Whereas our research focused on LC models, which are mixtures of con-
ditionally independent multinomial distributions, future research could be
aimed at extending our findings and proposals to other types of finite mixture
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models, such as mixture regression models, or even to more general models
with latent discrete variables for longitudinal or multilevel data structures.
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