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Abstract 

Multigroup exploratory factor analysis (EFA) has gained popularity to address measurement 

invariance for two reasons. Firstly, repeatedly respecifying confirmatory factor analysis 

(CFA) models strongly capitalizes on chance and using EFA as a precursor works better. 

Secondly, the fixed zero loadings of CFA are often too restrictive. In multigroup EFA, factor 

loading invariance is rejected if the fit decreases significantly when fixing the loadings to be 

equal across groups. To locate the precise factor loading non-invariances by means of 

hypothesis testing, the factors’ rotational freedom needs to be resolved per group. In the 

literature, a solution exists for identifying optimal rotations for one group or invariant 

loadings across groups. Building on this, we present multigroup factor rotation (MGFR) for 

identifying loading non-invariances. Specifically, MGFR rotates group-specific loadings 

both to simple structure and between-group agreement, while disentangling loading 

differences from differences in the structural model (i.e., factor (co)variances). 

 

Keywords: measurement invariance; factor loading invariance; multigroup exploratory factor 

analysis; rotation identification 
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1. Introduction 

In behavioral sciences, latent constructs, e.g., emotions or personality traits, are 

ubiquitously measured by questionnaire items. The measurement model (MM) indicates which 

item is (assumed to be) measuring which construct and the leading method to evaluate whether 

this MM holds is confirmatory factor analysis (CFA; Lawley & Maxwell, 1962). The extent to 

which an item relates to a construct or ‘factor’ is quantified by a ‘factor loading’. CFA evaluates 

whether each item has a non-zero loading on the targeted construct only. Many research questions 

pertain to comparing constructs across groups, e.g., comparing the Big Five personality traits 

across countries (Schmitt, Allik, McCrae, & Benet-Martinez, 2007). For such comparisons, 

invariance of the MM or ‘measurement invariance’ (MI) across the groups is an essential 

prerequisite (Meredith, 1993). MI can be tested by multigroup factor analysis (Jöreskog, 1971; 

Sörbom, 1974). Despite the predominance of CFA-based methods, multigroup exploratory factor 

analysis (EFA) has gained popularity to address MI (Dolan, Oort, Stoel, & Wicherts, 2009; Marsh, 

Morin, Parker, & Kaur, 2014). The reason for this is twofold. Firstly, respecifying CFA models in 

an exploratory way capitalizes on chance (Browne, 2001; MacCallum, Roznowski, & Necowitz, 

1992) and using EFA as a precursor has proven to be a better strategy (Gerbing & Hamilton, 1996). 

Secondly, fixed zero loadings are often too restrictive and may cause bias (Muthén & Asparouhov, 

2012; McCrae, Zonderman, Costa, Bond, & Paunonen, 1996). 

MI testing with multigroup EFA starts by evaluating whether the fit significantly decreases 

when fixing the factor loadings to be equal (i.e., invariant) across groups, indicating that factor 

loading (or ‘weak’) invariance does not hold. Because EFA is used within the groups, the factors 

have rotational freedom, i.e., ‘rotating’ them yields an alternative set of factors which fit equally 

well to the data but may be easier to interpret (Brown, 2001; Osborne, 2015). When merely testing 
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invariance for all loadings, the factor rotation is irrelevant. The rotation becomes of interest, 

however, when one wants to determine what the invariant MM is (Asparouhov & Muthén, 2009; 

Dolan et al., 2009). To this end, simple structure rotation (i.e., striving for one non-zero loading 

per item; Thurstone, 1947) or target rotation towards an assumed MM can be applied. To enable 

hypothesis testing for rotated loadings, Jennrich (1973) showed how to obtain a fully identified 

model with optimally rotated maximum likelihood (ML) estimates. 

Jennrich’s approach does the trick for single-group factor models and multigroup factor 

models with invariant loadings, but leaves much to be desired when loadings are non-invariant 

across groups. In that case, pinpointing the precise loading differences would allow to find sources 

of non-invariance and interesting differences in the functioning of items (differential item 

functioning or DIF; Holland & Wainer, 1993). To this end, an optimal rotation needs to be obtained 

for each group. Using Jennrich’s approach per group precludes pursuing optimal between-group 

agreement of the loadings and thus impedes a correct evaluation of differences and similarities. 

Therefore, we present a multigroup extension to accommodate the search for loading differences. 

Specifically, each group is rotated both to simple structure per group and agreement across groups. 

At the same time, loading differences are disentangled from differences irrelevant to the MI 

question (i.e., factor (co)variances). The novel multigroup factor rotation (MGFR) can be applied 

with several rotation criteria and with a user-specified focus on agreement or simple structure. 

The remainder of this paper is organized as follows: Section 2 recaps MI testing by 

multigroup EFA, followed by a discussion of optimal rotation identification including the novel 

MGFR. Section 3 covers an extensive simulation study to evaluate the performance of MGFR with 

regard to the identification of loading differences and group-specific MMs and derives 
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recommendations for empirical practice. Section 4 illustrates the added value of MGFR for an 

empirical data set. Section 5 includes points of discussion and directions for future research. 

 

2. Method 

2.1. Multigroup exploratory factor analysis 

We denote the groups by g = 1, …, G and the subjects within the groups by ng = 1, …, Ng. 

The J-dimensional random vector of observed item scores for subject gn  is denoted by 
gny . The 

EFA model for the scores of subject gn  can be written as (Lawley & Maxwell, 1962): 

 
g g gn g g n n  y τ Λ η ε   (1) 

where gτ  indicates a J-dimensional group-specific intercept vector, gΛ  denotes a J × Q matrix of 

group-specific factor loadings,
gnη is a Q-dimensional vector of scores on the Q factors and 

gnε is a 

J-dimensional vector of residuals. The factor scores are assumed to be identically and 

independently distributed (i.i.d.) as  ,g gMVN α Ψ , independently of 
gnε , which are i.i.d. as 

 , gMVN 0 D . The factor means of group g are denoted by gα , whereas gΨ  pertains to the group-

specific factor covariance matrix and gD  to a diagonal matrix containing the group-specific unique 

variances of the items. The model-implied covariance matrix per group is 
g g g g g

 Λ Ψ Λ D . 

Estimating Equation 1 for each group corresponds to the baseline model for MI testing. To 

partially identify the model, the factor means gα  are fixed to zero and the factor covariance matrix 

gΨ  to identity (i.e., orthonormal factors) per group g. Note that, unlike multigroup EFA, 

multigroup CFA imposes zero loadings on gΛ  according to an assumed MM and it assumes this 

pattern of zero loadings to be invariant across groups (configural invariance; Meredith, 1993). 
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To test for MI, a series of progressively more restricted models is fitted. Factor loading 

invariance is evaluated by comparing the fit of the baseline model and the model with invariant 

loadings, i.e., g Λ Λ  for g = 1, …, G. For the latter model, orthonormality of the factors is no 

longer imposed per group but, e.g., for the mean factor (co)variances across groups. In the 

literature, several criteria and guidelines are discussed to evaluate whether a drop in fit is 

statistically significant (Hu & Bentler, 1999). When it is not significant, factor loading (or weak) 

invariance is established and the next level of MI – which is beyond the scope of this paper – can 

be tested by restricting the intercepts gτ  to be invariant across groups, while freely estimating 

factor means gα  per group (Dolan et al., 2009; Meredith, 1993). When the fit is significantly worse 

with invariant factor loadings – i.e., factor loading invariance is rejected – one can scrutinize the 

baseline model to locate factor loading non-invariances. 

Note that, in case of multigroup CFA, the baseline model is already very restrictive due to 

the assumption of configural invariance. Therefore, multigroup CFA extensions for dealing with 

loading non-invariances – such as multigroup Bayesian structural equation modeling (multigroup 

BSEM; Muthén & Asparouhov, 2013) and multigroup factor alignment (Asparouhov & Muthén, 

2014) – only capture differences in the size of primary loadings, whereas differences in 

crossloadings and the position of primary loadings are disregarded. 

Thus, multigroup EFA has the important advantage that it leaves room to evaluate (the lack 

of) MI without having to predefine the MM and to find all types and combinations of loading 

differences. In the baseline model (Equation 1), the rotational freedom of the factors per group is 

beneficial to this aim. Specifically, striving for simple structure per group (e.g., Clarkson & 

Jennrich, 1988) as well as between-group agreement (e.g., ten Berge, 1977) allows for the group-
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specific MMs to be determined and loading differences to be pinpointed. Thus, sources of 

configural and weak non-invariance can be traced simultaneously. 

Multigroup EFA can be estimated by open-source software such as lavaan (Rosseel, 2012) 

and Mx (Neale, Boker, Xie, & Maes, 2003) as well as commercial software such as Latent Gold 

(LG; Vermunt & Magidson, 2013) and Mplus (Muthén & Muthén, 2005). LG-syntax for 

multigroup EFA with (optimally rotated) group-specific loadings is given in Appendix A. 

2.2. Optimal rotation in multigroup EFA 

In this section, we first discuss the case where loading invariance holds and one loading 

matrix needs to be rotated (Section 2.2.1). Then, we build on this to propose MGFR for the case 

where loading invariance fails and G loading matrices need to be rotated (Section 2.2.2). 

2.2.1. In case of factor loading invariance 

To partially identify a single EFA solution, up to rotation,  1 2Q Q   restrictions are 

needed. Usually, the factor covariance matrix Ψ  is restricted to be an identity matrix, implying 

factor variances of one and correlations of zero. In case of multigroup EFA with invariant loadings 

Λ , the restrictions on Ψ  are not imposed per group but, e.g., for the mean factor (co)variances 

across groups, or for one ‘reference’ group (Hessen, Dolan & Wicherts, 2006). To obtain a fully 

identified model, i.e., with an identified rotation, a total of Q² restrictions are necessary, yet not 

always sufficient (Jöreskog, 1979). Jennrich (1973) derived the necessary restrictions for obtaining 

the optimal rotation according to a criterion of choice. This solution can be readily applied to rotate 

invariant loadings in multigroup EFA. In this paper, we focus on oblique rotation, which implies 

that factor correlations are no longer fixed to zero and thus that only Q restrictions are imposed 

directly on Ψ . Therefore,   1Q Q   additional restrictions are needed to identify the rotation. 
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Specifically, to obtain an optimal oblique rotation according to rotation criterion R, the following 

matrix F is restricted to be diagonal: 

 1dR

d

F Λ Ψ
Λ

. (2) 

Imposing these restrictions is done by means of constrained ML estimation (Asparouhov 

& Muthén, 2009) or the gradient projection algorithm (Jennrich, 2001, 2002). Upon identifying 

the rotation, and thus obtaining a fully identified model, standard errors for the model parameters 

and hypothesis testing to determine significant factor loadings, and thus the invariant MM, are 

available (Jennrich, 1973). 

2.2.1.1. Simple structure rotation criteria 

For the choice of rotation criterion R in Equation 2, several simple structure rotation criteria 

exist that minimize either the variable complexity (i.e., the number of non-zero loadings per 

variable), factor complexity (i.e., the number of non-zero loadings per factor), or a combination of 

both (Schmitt & Sass, 2011). We focus on oblique simple structure rotation to minimize the 

variable complexity since this matches the concept of a MM, i.e., items as pure measurements of 

one factor. Geomin (Yates, 1987) is a popular criterion (e.g., it is default in Mplus; Asparouhov & 

Muthén, 2009) but is sensitive to local minima (Asparouhov & Muthén, 2009; Browne, 2001). 

(Direct) oblimin1 (Clarkson & Jennrich, 1988) is a widely-used rotation offered in the statistical 

packages SPSS (Nie, Bent, & Hull, 1970) and STATA (Hamilton, 2012). Stepwise rotation 

procedures such as promax (Hendrickson, & White, 1964) and promin (Lorenzo-Seva, 1999) 

cannot be readily applied as the rotation criterion in Equation 2. Simple structure rotation criteria 

often perform suboptimal when the variable complexity is higher than one for some items 

                                                           
1 Oblimin performs best when the parameter   is equal to zero (Jennrich, 1979) and then it is in fact direct quartimin 

rotation (Jennrich & Sampson, 1966), but we will refer to it as ‘oblimin’ throughout the rest of the paper. 
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(Ferrando & Lorenzo-Seva, 2000; Lorenzo-Seva, 1999; Schmitt & Sass, 2011). To avoid this 

deficiency, weighted oblimin (Lorenzo-Seva, 2000) was presented, but the weighting procedure is 

known to fail in some cases (Kiers, 1994). Target rotation (Browne, 2001) towards a zero loading 

pattern is a better alternative to achieve simple structure, since crossloadings can be tolerated by 

leaving the corresponding element of the target unspecified. Simplimax (Kiers, 1994) can be used 

to determine the optimal target for a given loading matrix. When one has prior beliefs about the 

MM, a target corresponding to this MM can be applied. In this paper, the oblimin criterion is 

applied for simple structure rotation RSS, where 
jq  is the loading of item j on factor q: 

 
2 2

1 1 1

.
Q Q J

SS

jq jq

q q q j

R   

   

     (3) 

2.2.2. In case of factor loading non-invariance 

If invariant factor loadings are untenable, the group-specific loadings are scrutinized to 

identify sources of non-invariance. To this end, the optimal rotation needs to be identified for each 

group and one may choose to apply the restrictions in Equation 2 to each group separately, 

implying  1G Q Q   restrictions, while the factor variances remain fixed to one per group 

(Section 2.1). This approach entails two pitfalls. Firstly, the rotation for each group separately 

disregards the resulting (dis)agreement of loadings across groups, resulting in overestimated 

loading differences. Secondly, when keeping the factor variances fixed to one per group during 

rotation, differences in factor scale show up in the loadings, while these differences are irrelevant 

to the MI question. Specifically, factor variances (as well as factor covariances) are part of the 

structural model rather than the MM (Dolan et al., 2009; Meredith, 1993). 

To strive for agreement and simple structure, MGFR minimizes multigroup criterion RMG: 
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  1

1

,..., ,..., (1 )
G

MG A SS

g G g

g

R wR w R


   Λ Λ Λ   (4) 

where RA refers to the agreement criterion across all groups and SS

gR  refers to a simple structure 

criterion within group g. For RA, we consider two criteria discussed in Section 2.2.2.1. For SS

gR , 

oblimin, geomin and target rotation are currently supported (see Appendix A). The relative 

influence of the agreement and simple structures on RMG is determined by the user-specified 

weighting parameter w. Thus, the novelty of this criterion lies not only in combining RA and SS

gR

(g = 1, …, G) but also in the weighting of this combination2, resulting in a flexible framework of 

rotations that includes every degree of focus on either agreement or simple structure.  

To partially identify the scales of the group-specific factors, we restrict the across-group 

mean factor variances to one:    
1

1 G

g Q
g

diag
G 

 Ψ 1 . As such, we allow for factor variances to 

differ between groups and avoid the arbitrariness of choosing a reference group with fixed 

variances. The group-specific factor variances will be further identified by the RA part (i.e., 

maximizing between-group agreement), whereas the factor covariances are identified by both parts 

of the rotation (i.e., maximizing simple structure per group as well as between-group agreement). 

Given the Q scaling restrictions,    21 1G Q Q Q    additional restrictions are needed 

to identify the optimal multigroup rotation. To find the restrictions that minimize RMG, we use its 

differential in the point corresponding to the optimally rotated loadings gΛ  for g = 1, …, G:  

                                                           
2 Note that Lorenzo-Seva, Kiers and ten Berge (2002) already presented a set of oblique rotations of multiple loading 

matrices to a compromise of simple structure and optimal agreement. These rotations are performed in a stepwise 

manner, however, making them hard to implement as a single rotation criterion in MGFR. Also, they either do not 

allow for differences in factor correlations between the groups or do not maintain between-group agreement in the 

final step, resulting in a suboptimal between-group agreement of the rotated loadings. 
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    1

1

,..., ,...,
G

MG MG

g G g

g

dR dR


Λ Λ Λ Λ   (5) 

The differential is derived in Appendix B and results in the following restrictions for each group: 

  1 1

1

1MG MGG
MG

g g g g g Q Q
gg g

dR dR
diag

d G d

 

  
 

 
     

 
F Λ Ψ Λ Ψ 0

Λ Λ
  (6) 

Again, standard errors can be obtained for the optimally rotated loadings (Jennrich, 1973) 

and hypothesis testing can be performed. To identify for factor loading non-invariances, one can 

test per loading whether it is significantly different across the groups using a Wald test. To evaluate  

group-specific MMs (or causes of configural non-invariance), one can also test which loadings are 

significantly different from zero per group and evaluate how these results differ across groups. 

2.2.2.1. Agreement rotation criteria 

A widely used criterion for agreement rotation of multiple loading matrices is generalized 

procrustes (GP; ten Berge, 1977), which optimizes agreement in the least squares sense:  

  
2

1 1 1 1

QG G J
A

gjq g jq

g g g j q

R   

    

      (7) 

Due to the square, the loss due to a loading difference smaller than one is attenuated, and more so 

for smaller differences. The loss due to a difference larger than one is amplified. Thus, GP aims to 

minimize large loading differences and tolerate small differences. This implies that, in the attempt 

to minimize (true) large differences, (false) small differences may be created. Note that GP is 

originally an orthogonal rotation, but since it is combined with oblique simple structure rotations, 

MGFR does not impose orthogonality on GP and thus disentangles loading differences from 

differences in factor variances as well as correlations. 

As an alternative, some aspects of the (confirmatory) multigroup factor alignment 

(Asparouhov & Muthén, 2014) can be included in MGFR. Specifically, in multigroup factor 
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alignment, the factors are ‘aligned’ (i.e., rescaled and shifted in terms of their factor means) to 

minimize the following function of loading and intercept differences, separately per factor q: 

    
2 2

1 1 1

G G J

g g gjq g jq gj g j

g g g j

N N        

   

 
     

 
      (8) 

where   is a small number included to facilitate the minimization and 
g gN N   is a weight 

depending on the group sizes. On the one hand, intercept (and factor mean) differences are beyond 

the scope of this paper and are thus omitted from the criterion (i.e., they are fixed during rotation) 

for MGFR. On the other hand, we are dealing with (the rotation of) EFA rather than CFA and thus 

apply the criterion across all factors simultaneously. Therefore, it becomes: 

  
2

1 1 1 1

QG G J
A

gjq g jq

g g g j q

R   

    

       (9) 

where g gN N   is omitted since SS

gR  does not include such a weight. We will refer to this adjusted 

alignment criterion as the ‘loading alignment’ (LA) criterion. The square root attenuates the loss 

for loading differences larger than one, whereas the loss is amplified for differences smaller than 

one, and more so for small differences. Therefore, minimizing the LA criterion eliminates small 

loading differences while large differences are tolerated. Thus, it strives for loading differences to 

be either zero or large (Asparouhov & Muthén, 2014), which fits our aim of distinguishing 

invariant from non-invariant loadings irrespective of the size of the non-invariance. 

2.2.3. Implementation of optimal rotation 

MGFR is implemented in LG 6.0 and applied by syntax (Appendix A). In the future, it can 

be readily implemented in other software (e.g., implementation in lavaan is under development). 

The performed steps are: 
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1. ML estimation: The model is estimated without the optimal rotation restrictions, i.e., 

maximizing the log-likelihood (LL), with factor variances fixed to one per group. 

2. Gradient projection per group: Using the estimates from Step 1 as initial values and keeping 

the factor variances fixed, the gradient project algorithm (Jennrich, 2001, 2002) is applied for 

each group g = 1, …, G  to minimize SS

gR  by imposing diagonality on Equation 2. 

3. Reflection and permutation: The factors of group 1 are ordered according to their explained 

variance and reflected such that (most) strong loadings have a positive sign. Then, the factors 

of groups g = 2, …, G are permuted and reflected to minimize the applied agreement criterion 

with the factor loadings of group 1 (i.e., A

ggR 
 with g’ = 1). 

4. Constrained ML estimation: The factor loadings and (co)variances are updated by maximizing 

the objective function LL + l × vec(FMG), where l is a vector of Lagrange multipliers and FMG 

contains all group-specific restrictions MG

gF  (Equation 6) and is transformed into a vector by 

the ‘vec’ operator. Fisher scoring (Lee & Jennrich, 1979) is used, with possible step size 

adjustments to prevent inadmissible factor covariance matrices, until the updates converge to 

a solution with both l and FMG equal to zero, i.e., the (optimally rotated) ML solution. 

Note that, apart from the occasional non-convergence in the standard multigroup EFA estimation 

(Step 1), convergence of the multigroup rotation (Step 4) is not guaranteed and may fail when 

initial values are far from the optimal rotation. The initial values correspond to the unrotated factor 

loadings resulting from Step 1, which are partially optimized by rotation to simple structure per 

group (Step 2) and reflection and permutation to between-group agreement (Step 3), in order to 

facilitate the convergence of Step 4. If Step 4 fails to converge, repeating the procedure from Step 

1 and onwards yields a new set of initial values and may solve the non-convergence. Note that 

especially the loading alignment criterion is a difficult one to optimize. 
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3. Simulation study 

3.1. Problem 

The goal of the simulation study is to evaluate the performance of MGFR with respect to: 

(1) the convergence of the optimal rotation, (2) the recovery of the factor loadings by the optimal 

rotation, and (3) the false positives (FP) and false negatives (FN) of hypothesis testing – based on 

the optimal rotation – for loading differences and non-zero loadings. For the rotation, we use 

generalized procrustes (GP; Equation 7) and loading alignment (LA; Equation 9) as RA and oblimin 

(O; Equation 3) as SS

gR  for g = 1, …, G, with a variety of weights w. For the hypothesis testing, 

we focus on Wald tests because they are part of the default output of LG. We manipulated six 

factors that were expected to affect MGFR and/or the hypothesis testing: (1) the number of groups, 

(2) the group sizes, (3) the number of factors, (4) the type and size of the loading differences, and 

(5) the number of loading differences. 

In terms of their effect on the performance of MGFR, we hypothesize the following: It will 

be more difficult to recover the optimal multigroup rotation when the rotation pertains to more 

groups and thus more loading matrices (1), when the sampling fluctuations of the group-specific 

factor loadings and factor covariance matrices are higher due to smaller groups (2), when the 

rotation pertains to more factors (3), and when the degree of the simple structure violations and 

disagreement between the groups is higher (4, 5). Non-convergence of MGFR becomes more 

likely as one or more of these aspects adds to the complexity of the rotation. The Wald tests for 

loading differences and non-zero loadings depend on the MGFR and their performance is thus 

indirectly affected by the above-mentioned aspects. On top of those indirect effects, we  

hypothesize (Hogarty et al., 2005; Pennell, 1968) that the power of the Wald tests will be lower 
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when the sample size is lower (1, 2), the sampling fluctuations of factor loadings are higher (2), 

the number of factors is higher for the same number of variables (3), the loading differences are 

larger (4) and the simple structure violations are more severe (4) and/or more numerous (5). 

3.2. Design and procedure 

These factors were systematically varied in a complete factorial design: 

1. the number of groups G at 3 levels: 2, 4, 6; 

2. the group sizes Ng (i.e., number of observations per group) at 3 levels: 200, 600, 1000; 

3. the number of factors Q at 2 levels: 2, 4; 

4. the type and size of loading differences at 5 levels: primary loading shift, crossloading of 

.40, crossloading of .20, primary loading decrease of .40, primary loading decrease of .20; 

5. the number of loading differences at 2 levels: 4, 16; 

The group-specific factor loadings are all based on the same simple structure. In this ‘base 

loading matrix’, the fixed number of variables (i.e., 20) are equally distributed over the factors, 

i.e., each factor gets 10 non-zero loadings when Q = 2 (Table 1) and five non-zero loadings when 

Q = 4 (Table 2). Given that the unique variances vary around .40 (see below), the non-zero loadings 

are equal to .60  to obtain total variances of around one. From the common base, two different 

group-specific loading matrices are derived, each of which will pertain to half of the groups. 

Specifically, depending on the type and number of loading differences, for each of these two 

loading matrices, loadings were altered for a different set of variables (Tables 1, 2), referred to as 

‘DIF items’. In case of a primary loading shift, two differences are induced per DIF item and thus 

one DIF item is selected per group-specific loading matrix to obtain a total of four loading 

differences across groups, or four DIF items (equally distributed across factors) are selected per 
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loading matrix to obtain a total of 16 loading differences3. In particular, when Q = 2, the loadings 

.6 0 
   of the base matrix are replaced by 0 .6 

   (Table 1). When Q = 4, primary loadings are 

shifted similarly between factors 1 and 2 on the one hand, and between factors 3 and 4 on the other 

hand; e.g., .6 0 0 0 
   becomes 0 .6 0 0 

  . For the crossloading differences and primary 

loading decreases, one loading was altered per DIF item and thus two DIF items are selected per 

loading matrix to obtain four differences across groups, or 8 to obtain 16 differences (Table 2). In 

case of crossloadings, the loadings    .6 0 0 0 
   become    .6 .4 0 0 

   or    .6 .2 0 0 
   

depending on the size of the crossloadings. Note that a crossloading of .20 may be considered 

‘ignorable’, whereas one of .40 is not (Stevens, 1992). To manipulate a primary loading decrease, 

the loadings    .6 0 0 0 
   are replaced by    .6 .4 0 0 0 

   or    .6 .2 0 0 0 
   depending 

on the size of the decrease (see online supplements). Note that a primary loading decrease of .40 

is considered a large non-invariance (Stark, Chernyshenko, & Drasgow, 2006) that can lead to 

incorrect statistical inference and biased parameter estimates (Hancock, Lawrence, & Nevitt, 

2000). When G > 2, each of the two generated loading matrices was assigned to a random half of 

the groups. A number of remarks are in order: Firstly, in the case of four loading differences, only 

factors 1 and 2 are affected, even when Q = 4. Secondly, a primary loading shift maintains the 

item’s communality whereas a crossloading increases it and a primary loading decrease lowers it. 

Thirdly, and most importantly, primary loading shifts and crossloadings are violations of 

configural invariance and thus differences that are very hard to trace by CFA-based methods such 

as multigroup BSEM or multigroup factor alignment.  

                                                           
3 Note that when inducing >16 loading differences, the differences could be partially cancelled out by permuting 

factors (in case of primary loading shifts), increasing factor correlations (in case of crossloadings) or rescaling factors 

(in case of primary loading decreases). 
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[ Insert Tables 1 and 2 about here ] 

The group-specific factor correlations are randomly sampled from a uniform distribution 

between −.50 and .50, i.e.,  .50,.50U  , and factor variances from  .50,1.50U . Whenever a 

resulting gΨ  is not positive definite, the sampling is repeated. Group-specific unique variances 

(i.e., diagonal of gD ) are sampled from  .20,.60U . Factor scores are sampled from  , gMVN 0 Ψ  

and residuals from  , gMVN 0 D , according to the specified group sizes. The group size of 200 

corresponds to the recommended minimal sample size for obtaining accurate factor loading 

estimates when item communalities are moderate (Fabrigar, MacCallum, Wegener, & Strahan, 

1999; MacCallum, Widaman, Zhang, & Hong, 1999), whereas 1000 delimits a range of group 

sizes that largely corresponds to previous MI studies (Asparouhov & Muthén, 2014; Meade & 

Lautenschlager, 2004). Finally, the simulated data are created according to Equation 1. Note that 

the intercepts gτ  are zero, since the focus is on loading differences. 

According to this procedure, 50 data sets were generated per cell of the design, using 

Matlab R2017a. Thus, 3 (number of groups) × 3 (group sizes) × 2 (number of factors) × 5 (type/size 

of loading differences) × 2 (number of loading differences) × 50 (replications) = 9 000 data sets 

were generated. The data were analyzed by LG 6.0, using syntaxes (Appendix A). Since MGFR 

was applied with several RMG criteria, one set of unrotated ML estimates (Step 1; Section 2.2.3) 

was obtained and used as starting values for the optimal rotation (Steps 2 – 4) per criterion. The 

average CPU time for multigroup EFA without rotation was 12s on an i7 processor with 8GB 

RAM. For three data sets, this estimation was repeated because it failed to converge the first time. 

Then, the following rotation criteria were applied – where ‘GP’ refers to generalized procrustes, 

‘LA’ to loading alignment and ‘O’ to oblimin: .01GP + .99O, .10GP + .90O, .30GP + .70O, .50GP 
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+ .50O, .70GP + .30O, .01LA + .99O. For the latter, LA was applied with an  -value of 1 × 10-12. 

The average CPU time of the rotation was 12s per criterion. Note that rotations with a higher 

weight of the LA criterion are omitted from the reported results, because they had markedly lower 

convergence rates, i.e., between 77% and 40% (increasing the  -value did not help). Also, since 

LA is based on square roots rather than squares of loading differences, it has a larger impact on 

RMG than GP. Therefore, a small weight is sufficient to properly identify the group-specific factor 

(co)variances while maintaining simple structure per group. Note that the goal of the simulation 

study was to prove that MGFR makes it possible to correctly identify a wide range of factor loading 

non-invariances in multigroup EFA and not so much to determine the best rotation criterion. 

3.3. Results 

In this section, we first discuss the convergence of the optimal rotation per criterion 

(Section 3.3.1). Next, the recovery of the rotated loadings (Section 3.3.2) and corresponding factor 

(co)variances (Section 3.3.3) is discussed. Then, we present Wald test results based on the rotated 

loadings – for significant loading differences (Section 3.3.4) and non-zero loadings (Section 3.3.5). 

We end with conclusions and recommendations for empirical practice (Section 3.4). 

3.3.1. Convergence of optimal rotation identification 

Initially, the percentage of data sets for which the rotation converged, %conv, was 92.4%, 

96.6%, 96.1%, 91.9%, and 82.4% when RA = GP and w = .01, .10, .30, .50 and .70, respectively. 

When RA = LA with a weight w of .01, the %conv-value was 90.9%. After re-running the non-

converged rotations once, starting from a different random rotation of the loadings, the %conv-

values increased between 2 and 5%. In Table 3, these %conv are given for the six rotations, in 

function of the simulated conditions. Clearly, %conv is affected most by Q, with %conv equal to or 

near 100% when Q = 2. The ‘.70GP + .30O’ rotation has a markedly lower %conv for Q = 4 than 
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the other criteria. Thus, for comparability reasons, this criterion is also omitted from the results 

discussed below. The following results are based on the converged rotations only. 

[ Insert Table 3 about here ] 

3.3.2. Goodness-of-recovery of optimally rotated loadings 

The recovery of the optimally rotated loadings is quantified by a goodness-of-loading-

recovery statistic (GOLR), i.e., by computing congruence coefficients   (Tucker, 1951) between 

the true ( gqλ ) and estimated ( ˆ
gqλ ) loadings and averaging across factors q and groups g: 

 

 
1 1

ˆ,

.

QG

gq gq

g q
GOLR

GQ


 



 λ λ

  (10) 

The GOLR evaluates the proportional equivalence of loadings (i.e., insensitive to factor rescaling) 

and varies between 0 (no agreement) and 1 (perfect agreement). Per criterion, the average GOLR 

is .99 (SD = .01). This excellent recovery is hardly affected by the conditions. 

3.3.3. Goodness-of-recovery of factor variances and covariances 

To quantify the recovery of the factor (co)variances, the mean absolute difference (MAD) 

between the true (
gqq  ) and estimated ( ˆ

gqq  ) factor (co)variances is calculated as follows:  

 
 

1 1

ˆ

.
1 2

Q QG
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g q q q
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GQ Q

  

  







  (11) 

The average MAD  -values in function of the criteria and conditions are given in Table 4. They 

vary around .07 or .08, indicating an overall good recovery of the gΨ  matrices by each criterion. 

For primary loading shifts, which cause severe disagreement between groups, a stronger 

enforcement of agreement by (a higher weight of) generalized procrustes leads to a worse recovery 
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of the group-specific factor (co)variances. For the crossloading differences of .40, using a higher 

weight for oblimin to impose simple structure degrades the recovery of the factor (co)variances.  

[ Insert Table 4 about here ] 

3.3.4. Wald tests for significant factor loading differences 

To be conservative, we use .01 as the significance level4 α and the Bonferroni correction 

for multiple testing (Bonferroni, 1936), i.e., we divided α by J × Q and consider a loading to differ 

significantly when, for the corresponding Wald test, p < .00025 for Q = 2 and p < .000125 for Q 

= 4. Table 5 presents percentages of data sets for which the Wald tests were perfectly correct (% 

correct; i.e., no false positives or false negatives), without false positives (0 FP) and without false 

negatives (0 FN). For the % correct, we conclude that: (1) Overall, the ‘.50GP + .50O’ rotation 

gives the best results. (2) As an exception, for primary loading shifts, ‘.01LA + .99O’ performs 

better. (3) For primary loading decreases of .40 and .20, ‘.10GP + .90O’ and ‘.30GP + .70O’ 

perform very similar to ‘.50GP + .50O’. (4) The lowest % correct are, not surprisingly, observed 

for small differences, i.e., crossloadings and primary loading decreases of .20. (5) The performance 

is better in case of more groups, more observations per group, less factors and less differences. 

[ Insert Table 5 about here ] 

When inspecting the ‘0 FP’ and ‘0 FN’ percentages, it is clear that: (1) For crossloadings 

and primary loading decreases of .20, the lower % correct is mainly due to false negatives. (2) 

With an increasing G and Ng, we observe the well-known trade-off between false positives and 

false negatives in function of sample size. (3) In case of more factors and more loading differences, 

the ‘0 FN’ and ‘0 FP’ percentages both decrease, which is due to the rotation being more intricate 

in these cases. Specifically, when Q = 4 more factor variances and covariances need to be 

                                                           
4 The results for a (Bonferroni-corrected) significance level of .05 may be requested from the first author. 
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optimized and 16 differences make it challenging to pursue agreement and/or simple structure per 

group – the latter is true for 16 crossloading differences in particular. (4) Focusing on the best 

criterion per type/size of loading differences, the occurrence of false positives is notably higher 

for crossloadings of .40. This confirms the suboptimal performance of oblimin – and most simple 

structure criteria – in case of item complexities larger than one (Lorenzo-Seva, 1999). 

In Section 2.2.2.1, we pointed out that using generalized procrustes as RA could result in 

(false) small differences in an attempt to minimize (true) large differences, whereas loading 

alignment eliminates small differences while tolerating large ones. This explains why ‘.01LA + 

.99O’ performs best in case of primary loading shifts (i.e., the largest differences, of size .6 ) and 

why ‘.50GP + .50O’ performs better for the other differences (of size .40 or .20). This is supported 

by the fact that ‘.50GP + .50O’ often results in false positives for primary loading shifts (Table 5). 

Focusing on the best performing rotation for each type/size of loading differences 

(specified above), we inspected how many false positives (FP) and false negatives (FN) occurred 

for each affected data set. Out of the 614 data sets with FP, only one FP was found for 401 (65%) 

and two FP for 97 data sets (16%). Out of the 1799 data sets with FN, only one FN was found for 

465 (26%) and two FN for 308 data sets (17%). FN are mainly found for differences of .20. 

To evaluate how MGFR performs in case of no differences, we performed an additional 

simulation study according to the procedure described above, without manipulating loading 

differences (i.e., retaining manipulated factors 1-3). Out of these 900 data sets, 97% of the 

converged ‘.50GP + .50O’ rotations resulted in zero FP, whereas for 89 data sets this rotation did 

not converge. Note that ‘.01LA + .99O’ failed to converge for 99% of these data sets. 

3.3.5. Wald tests for significant factor loadings 
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For evaluating the MM(s) of the groups, we look at Wald tests for significance of factor 

loadings across groups5. Again, we focus on α = .01 and the Bonferroni correction divides α by J 

× Q. The percentage of data sets without false negatives (FN) does not differ across rotation criteria 

and is affected most by the type of loading differences. For ‘.50GP + .50O’ and ‘.01LA + .99O’, 

no FN occurred for 99 to 100% of the data sets with primary loading shifts or primary loading 

decreases. For crossloadings of .40, 92 to 93% of the data sets are without FN and, for 

crossloadings of .20, 60 to 61%. The results for the false positives (FP) are more intricate and are 

detailed in Table 6. The most important conclusion is that both the percentage of data sets without 

FP and the best performing rotation in this respect depend strongly on the type of loading 

differences. In case of primary loading shifts, generalized procrustes with a higher weight appears 

to create more small crossloadings that are detected as FP, whereas the loading alignment criterion 

‘.01LA + .99O’ – also the preferred criterion for detecting differences in case of primary loading 

shifts – performs very well with 96% of the data sets being free from FP. In case of crossloadings 

of .40 and .20, the best criterion for detecting the differences – i.e., ‘.50GP + .50O’ – is also the 

best one for avoiding FP in terms of non-zero loadings. The percentage of data sets without FP is 

still quite low – i.e., 42% and 56% for the crossloadings of .40 and .20, respectively – again 

confirming that achieving simple structure is challenged by the crossloadings. In case of PL 

decreases of .40 and .20, ‘.50GP + .50O’ is clearly suboptimal for detecting significant non-zero 

loadings whereas it is the best one for detecting the differences. Luckily, in Section 3.3.4., we 

found that ‘.10GP + .90O’ performed nearly the same in terms of revealing differences while it is 

                                                           
5 The output of LG 6.0 also contains z tests per group. In this case, the Bonferroni correction divides α by J × Q × G, 

which implies a loss in power. For these tests, the results on FP are highly similar as described in Section 3.3.5. The 

percentage of data sets without FN is lower, however, and this is especially the case for crossloadings of .40 and .20 

and primary loading decreases of .40. Specifically, with ‘.50GP +.50O’ rotation, it is 80% for crossloadings of .40, 

26% for crossloadings of .20, and 80% for primary loading decreases of .40. In practice, the results of the Wald tests 

for significant loadings across groups can be used to selectively test for significant loadings per group (i.e., to 

determine for which groups they apply), thus warranting a less rigorous correction for multiple testing. 
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the best one to avoid false positive loadings in case of PL decreases. Selecting the mentioned best 

criterion for each type of loading differences, out of the 2085 data sets with FP, one FP was found 

for 751 (36%) and two for 384 (18%) data sets. 

[ Insert Table 6 about here ] 

3.4. Conclusions and recommendations for empirical practice 

MGFR showed a good performance, especially given that the simulation study included 

small loading differences of .20. By means of the best rotation criterion for each configuration of 

loading differences, the loadings were recovered and rotated very well. Wald tests for detecting 

the differences were flawless for roughly 70% of the data sets (i.e., for 70% of the data sets, no 

false positives or false negatives were found). When false positives (FP) or false negatives (FN) 

did occur (i.e., for 30% of the data sets), they often pertained to just one or two loadings. The 

simulation confirmed how the number of groups and group sizes make out the FN-FP trade-off. 

Furthermore, the performance drops somewhat in case of more factors and more differences, which 

make the rotation more challenging. It proved to be possible to evaluate the MM(s) at the same 

time, but, in case of crossloadings, one should be aware of FP and, in case of primary loading 

decreases, a lower weight for generalized procrustes is advised. 

Since the best rotation criterion for detecting loading differences, as well as non-zero 

loadings, depends on the type and size of loading differences for a given data set, the following 

recommendations are in order (Figure 1): Because the type and size of loading differences are 

unknown beforehand and empirical data often contain a mix of differences, it is wise to first use 

the overall best criterion for distinguishing factor loading non-invariances; i.e., ‘.50GP + .50O’. 

Interestingly, this is equivalent to an unweighted combination of the generalized procrustes (GP) 

and oblimin (O) criterion. Then, one could scrutinize the between-group differences of the 
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obtained loadings and adjust the criterion as follows: (1) When the rotated solution reveals a few 

larger differences and many very small differences, it is advisable to see whether the loading 

alignment (LA) criterion ‘.01LA + .99O’ eliminates the small ones. (2) When differences pertain 

to primary loading decreases and one also wants to identify non-zero loadings, lowering w to .10 

improves results for the latter while hardly affecting the detection of differences. (3) When 

differences pertain to crossloadings, using LA or lowering w is not advisable. In this case, one may 

try whether an informed semi-specified target rotation (see Appendix A) improves the simple 

structure. (4) When a mix of differences occurs, the optimal choice is less clear-cut. Then, the 

advice is to resort to ‘.50GP + .50O’, but comparing to other criteria may still be informative. 

[ Insert Figure 1 about here ] 

 

4. Application 

To illustrate the empirical value of MGFR, we applied it to data on the Open Sex Role 

Inventory (OSRI) downloaded from https://openpsychometrics.org/_rawdata/. The OSRI is a 

modernized measure of masculinity and femininity based on the Bem Sex Role Inventory (BSRI; 

Bem, 1974). Bem postulated that masculinity and femininity are two separate dimensions, 

allowing to characterize someone as masculine, feminine, androgynous or undifferentiated. The 

assumed MM of the BSRI has been widely contested, however (Choi & Fuqua, 2003). The OSRI 

contains 22 items (supposedly) measuring masculine characteristics alternated by 22 items 

measuring femininity (Appendix C). To the best of our knowledge, no studies on the MM of the 

OSRI have been published. Therefore, an EFA-based approach is preferred over CFA. 

Note that the data is collected through the website and is thus not a random sample. For the 

purpose of our illustration, this is not a problem. Information is available on education, race, 

religion, gender and sexual orientation, as well as the country respondents are located in and 

https://openpsychometrics.org/_rawdata/
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whether English is their native language. We excluded non-native English speaking respondents 

to avoid differences due to misunderstanding items. Mainly respondents in the USA (2240), Great-

Britain (357), Canada (180) and Australia (118) were left. Multigroup EFA confirmed factor 

loading invariance across gender, but revealed differences across sexual orientations and these 

results are reported below. Respondents with missing data on the items or grouping variable were 

excluded. For the reported analyses, 2767 respondents were included: 1539 hetero-, 568 bi-, 230 

homo-, and 172 asexuals, and 258 who specified their sexuality as ‘other’. 

The inadequacy of the masculine-feminine MM is confirmed by the fit of the corresponding 

baseline multigroup CFA model: CFI = .82 and RMSEA = .064. The CFI of multigroup EFA with 

two factors is .90 (RMSEA = .049) and dropped to .87 (RMSEA = .054) when imposing loading 

non-invariance. To identify the loading differences, MGFR was first applied with the generalized 

procrusted (GP) based criterion ‘.50GP + .50O’ as recommended in Section 3.4. A mix of 

differences is found, corresponding to crossloadings appearing and primary loadings increasing or 

decreasing in one or more groups, but differences are never as sizeable as the primary loading 

shifts in the simulation study (i.e., loading alignment is not recommended). ‘.50GP + .50O’ 

rotation resulted in 14 loading differences and 71 non-zero loadings (out of 88), whereas ‘.10GP 

+ .90O’ rotation resulted in 16 differences and 68 non-zero loadings, even though the rotated 

loadings look very similar. ‘.30GP + .70O’ rotation seemed to be a good middle ground with 14 

differences and 69 non-zero loadings and these rotated loadings are given in Table 7, with Wald 

test p-values. Using simplimax-based group-specific targets did not improve the rotation. 

Even though the factors can more or less be labelled ‘M’ (masculinity) and ‘F’ (femininity), 

hardly any of the items are pure measures of either M or F, which is supported by the p-values for 

the non-zero loadings (Table 7). Most of the significant loading differences seem to exist between 
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heterosexuals on the one hand and (some of) the other groups on the other hand. This is confirmed 

by pairwise Wald tests that are obtained by the ‘knownclass’ option in LG (i.e., clustering the 

groups into five latent classes and enforcing a perfect prediction of class by group; Vermunt & 

Magidson, 2013). For example, for heterosexuals, Q4 (‘I give people handmade gifts’) has a 

negative crossloading on M and a decreased primary loading for F. The factor covariance is non-

significant for all groups: −.05 for heterosexuals, .05 for bisexuals, −.03 for homosexuals, −.08 for 

asexuals and −.04 for ‘other’. The factor variances differ quite a bit across groups: the variances 

of M are 1.33, .98, .90, .89, .90, and the variances of F are .99, .89, 1.00, .88, 1.25 for that same 

order of groups, respectively. Therefore, oblimin rotation per group with fixed factor variances, 

using the Jennrich (1973) restrictions, overestimates the loading differences, i.e., 26 differences 

are found to be significant. In any case, before using the OSRI for comparing masculinity and 

femininity across sexual orientations, it needs to be revised to a large extent. 

 

5. Discussion 

Testing for MI is essential before comparing latent constructs across groups. When factor 

loading invariance fails, further MI tests are ruled out and one can either ignore the non-invariance 

and risk invalid conclusions, refrain from further analyses, or take action by scrutinizing loading 

differences. The latter may give clues on how non-invariances can be avoided in future research 

(e.g., excluding or rephrasing items). When looking for all kinds of differences (i.e., including 

primary loading shifts and crossloadings), multigroup EFA is the way to go. To properly identify 

these non-invariances, MGFR pursues both agreement and simple structure, disentangles loading 

differences from differences in the structural model, and enables hypothesis tests for the loadings. 

When using the loading alignment criterion for agreement, MGFR may be conceived as an 

EFA extension of multigroup factor alignment (MGFA; Asparouhov & Muthén, 2014) in that it 
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both aligns and rotates, albeit that – for now – it focuses on factor loadings only. Unlike MGFA, 

MGFR deals with all factors at once and allows for group-specific MMs to be investigated rather 

than assumed. Of course, before making latent construct comparisons, intercept invariance should 

be addressed as well, but like in MI testing, we prefer to tackle the levels of MI in a stepwise 

manner. While MGFA only assesses primary loadings and assumes differences to be small and 

pertaining to a minority of the loadings or groups (i.e., partial and/or approximate MI), we are not 

even assuming an invariant zero loading pattern. Therefore, it makes no sense to align the 

intercepts for enabling factor mean comparisons while rotating the factors toward one another to 

assess whether they are somewhat comparable in the first place. In future research, it would be 

interesting to study how MGFR can be combined with intercept alignment and whether it indeed 

needs to be a stepwise approach. To this end, the principles of MGFA need to be extended to the 

multi-factor EFA case, whereas currently it cannot even align CFA models with a crossloading. 

Clearly, the latter warrants a separate study in itself. 

Since MGFR proved to be very promising, it would be worthwhile to devote more research 

to refining and extending it in a number of respects. Firstly, it would be interesting to determine 

invariant sets (Asparouhov & Muthén, 2014) of groups per factor loading, building on the pairwise 

Wald tests mentioned in Section 4. Secondly, the unrotated solution that is fed to the rotation 

procedure (Section 2.2.3) corresponds to a single set of random ‘starting values’ for the rotation 

and the latter may fail to converge or end up in a local optimum depending on these values. Future 

research will include an evaluation of the sensitivity to local optima and the possibility of a 

multistart MGFR procedure or a multigroup extension of the gradient projection algorithm, 

compatible with free factor variances. For now, the user is advised to repeat the analysis a few 

times to see whether this affects results. Thirdly, the rotation depends on the weight of the 
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agreement versus the simple structure criterion. The best weight to use depends on the loading 

differences. It would be interesting to evaluate whether it can be automatically optimized for the 

loadings of a given data set. For now, the user is advised to compare a few rotations (Section 3.4). 

Finally, an interesting question is to what extent MGFR can serve as a precursor to 

multigroup EFA or CFA with partial loading invariance according to the identified loading 

differences and MM(s). Needless to say, this requires a crossvalidation approach (Gerbing & 

Hamilton, 1996), e.g., where each group is split in random halves, and thus larger sample sizes. 

When group sizes are too small or the number of groups is large, MGFR can team up with a mixture 

approach such as proposed by De Roover, Vermunt, Timmerman, and Ceulemans (2017), where 

groups are clustered according to the similarity of their loadings and the rotation would be applied 

per cluster. 
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Table 1. Base loading matrix and the derived group-specific loading matrices, in case of two factors and 

primary loading shifts. Differences are indicated in bold face and differences between brackets are only 

induced in the case of 16 loading differences.  

 Base loading matrix  Group-specific loading 

matrix 1 

 Group-specific loading 

matrix 2 

 F1 F2  F1 F2  F1 F2 

V1 .6   0  0  .6   .6  0 

V2 .6  0  (0) ( .6 )  .6  0 

V3 .6  0  .6  0  0 .6  

V4 .6  0  .6  0  (0) ( .6 ) 

V5 .6  0  .6  0  .6  0 

V6 .6  0  .6  0  .6  0 

V7 .6  0  .6  0  .6  0 

V8 .6  0  .6  0  .6  0 

V9 .6  0  .6  0  .6  0 

V10 .6  0  .6  0  .6  0 

V11 0 .6   ( .6 ) (0)  0 .6  

V12 0 .6   ( .6 ) (0)  0 .6  

V13 0 .6   0 .6   ( .6 ) (0) 

V14 0 .6   0 .6   ( .6 ) (0) 

V15 0 .6   0 .6   0 .6  

V16 0 .6   0 .6   0 .6  

V17 0 .6   0 .6   0 .6  

V18 0 .6   0 .6   0 .6  

V19 0 .6   0 .6   0 .6  

V20 0 .6   0 .6   0 .6  
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Table 2. Base loading matrix and the derived group-specific loading matrices, in case of four factors and 

crossloading differences. The crossloadings (CL) are either equal to .40 or .20. Differences are indicated 

in bold face and differences between brackets are only induced in the case of 16 loading differences. 

 Base loading matrix  Group-specific loading 

matrix 1 

 Group-specific loading 

matrix 2 

 F1 F2 F3 F4  F1 F2 F3 F4  F1 F2 F3 F4 

V1 .6  0 0 0  .6  CL 0 0  .6  0 0 0 

V2 .6   0 0 0  .6  (CL) 0 0  .6  0 0 0 

V3 .6  0 0 0  .6  0 0 0  .6  CL 0 0 

V4 .6  0 0 0  .6  0 0 0  .6  (CL) 0 0 

V5 .6  0 0 0  .6  0 0 0  .6  0 0 0 

V6 0 .6  0 0  CL .6  0 0  0 .6  0 0 

V7 0 .6  0 0  (CL) .6  0 0  0  .6  0 0 

V8 0 .6  0 0  0 .6  0 0  CL .6  0 0 

V9 0 .6  0 0  0 .6  0 0  (CL) .6  0 0 

V10 0 .6  0 0  0 .6  0 0  0 .6  0 0 

V11 0 0 .6  0  0 0 .6  (CL)  0 0 .6  0 

V12 0 0 .6  0  0 0 .6  (CL)  0 0 .6  0 

V13 0 0 .6  0  0 0 .6  0  0 0 .6  (CL) 

V14 0 0 .6  0  0 0 .6  0  0 0 .6  (CL) 

V15 0 0 .6  0  0 0 .6  0  0 0 .6  0 

V16 0 0 0 .6   0 0 (CL) .6   0 0 0 .6  

V17 0 0 0 .6   0 0 (CL) .6   0 0 0 .6  

V18 0 0 0 .6   0 0 0 .6   0 0 (CL) .6  

V19 0 0 0 .6   0 0 0 .6   0 0 (CL) .6  

V20 0 0 0 .6   0 0 0 .6   0 0 0 .6  
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Table 3. Convergence frequencies (%) of the optimal rotation procedure for six rotation criteria, in function 

of the simulated conditions. ‘GP’ = generalized procrustes, ‘LA’ = loading alignment, ‘O’ = oblimin, ‘PLS’ 

= primary loading shifts, ‘CL’ = crossloadings, and ‘PLD’ = primary loading decreases. 

 .01GP + 

.99O 

.10GP + 

.90O 

.30GP + 

.70O 

.50GP + 

.50O 

.70GP + 

.30O 

.01LA + 

.99O 

G=2 96.0 98.4 98.7 98.4 96.7 96.8 

G=4 94.3 97.2 96.8 94.6 87.7 92.7 

G=6 94.3 96.1 95.7 90.5 76.8 87.3 
       

Ng =200 96.7 97.4 97.3 96.1 91.9 96.4 

Ng =600 95.4 97.4 97.5 94.9 86.0 92.7 

Ng =1000 92.6 96.9 96.5 92.4 83.4 87.7 
       

Q=2 100 100 100 100 99.9 94.7 

Q=4 89.8 94.5 94.2 89.0 74.2 89.8 
       

PLS 95.1 97.8 97.5 95.5 83.4 89.8 

CL .40 95.7 96.8 97.0 93.4 86.1 94.9 

CL .20 95.9 97.5 96.9 94.8 89.1 96.1 

PLD .40 94.1 96.9 97.1 95.6 90.1 89.4 

PLD .20 93.8 97.2 96.9 93.2 86.7 91.1 
       

4 diff. 94.4 96.9 96.9 94.2 84.9 89.9 

16 diff. 95.4 97.6 97.2 94.7 89.3 94.6 
       

Total 94.9 97.2 97.1 94.5 87.1 92.3 

 
Table 4. Mean absolute difference between true and estimated factor variances and covariances, in 

function of five rotation criteria and the simulated conditions. See Table 3 caption for abbreviations. 

 .01GP + .99O .10GP + .90O .30GP + .70O .50GP + .50O .01LA + .99O 

G=2 .08 .06 .07 .07 .07 

G=4 .08 .07 .07 .08 .07 

G=6 .08 .07 .08 .09 .07 
       

Ng =200 .10 .08 .09 .10 .09 

Ng =600 .08 .06 .07 .07 .06 

Ng =1000 .07 .06 .06 .07 .06 
      

Q=2 .08 .07 .08 .08 .07 

Q=4 .08 .07 .07 .08 .07 
      

PLS .06 .07 .11 .15 .05 

CL .40 .13 .10 .08 .08 .11 

CL .20 .09 .07 .07 .07 .08 

PLD .40 .06 .05 .05 .06 .06 

PLD .20 .06 .05 .05 .05 .06 
      

4 diff. .07 .05 .06 .07 .06 

16 diff. .09 .08 .09 .09 .08 
      

Total .08 .07 .07 .08 .07 
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Table 5. Percentages (%) of data sets for which the Wald test results (α = .01, Bonferroni corrected) for between-group loading differences 

are perfectly correct (i.e., no false positives and no false negatives; % correct), without false positives (0 FP) and without false negatives (0 

FN). For each simulated condition, the best % correct is indicated in bold face. See Table 3 caption for other abbreviations. 
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G=2 43 56 60 61 49  80 57 89 65 92 66 93 67 90 56 

G=4 45 68 71 74 61  64 75 84 82 87 83 89 83 85 73 

G=6 44 67 71 73 64  56 82 77 88 82 88 84 88 81 80 

                 

Ng =200 36 48 50 50 41  77 48 90 54 92 55 92 55 90 46 

Ng =600 48 70 74 77 64  65 79 83 86 87 86 89 87 85 77 

Ng =1000 48 73 78 81 70  58 87 78 95 82 95 86 96 81 87 

                 

Q=2 56 72 76 79 69  73 81 88 84 92 84 94 84 90 78 

Q=4 30 55 58 59 46  60 60 79 72 82 74 82 73 80 60 

                 

PLS 72 79 76 74 93  73 98 79 100 76 100 74 100 94 99 

CL .40 25 57 73 81 50  31 91 63 93 78 94 86 94 57 90 

CL .20 25 51 52 54 49  57 56 91 56 94 56 96 56 91 53 

PLD .40 67 84 86 86 70  86 76 92 91 93 92 92 93 93 74 

PLD .20 31 47 50 50 29  88 33 93 51 94 53 95 52 93 30 

                 

4 diff. 53 74 76 76 68  72 75 90 82 93 82 92 82 90 76 

16 diff. 36 53 58 62 48  62 66 77 74 81 75 85 76 81 63 

                 

Total 44 64 67 69 58  67 71 83 78 87 79 89 79 85 69 



UNRAVELING FACTOR LOADING NON-INVARIANCE 38 

Table 6. Percentages (%) of data sets for which the Wald test results (α = .01, Bonferroni corrected) 

for significant loadings across groups are without false positives (0 FP). See Table 3 caption for 

other abbreviations. 

 .01GP + .99O .10GP + .90O .30GP + .70O .50GP + .50O .01LA + .99O 

G=2 76 71 64 62 76 

G=4 68 56 50 49 69 

G=6 63 47 41 40 63 

       

Ng =200 78 73 67 64 80 

Ng =600 67 54 48 48 67 

Ng =1000 63 47 40 39 61 

      

Q=2 74 63 59 62 73 

Q=4 64 54 45 38 67 

      

PLS 95 38 09 03 96 

CL .40 17 19 30 42 18 

CL .20 48 50 52 56 50 

PLD .40 94 92 84 73 94 

PLD .20 93 92 85 79 95 

      

4 diff. 78 70 61 57 78 

16 diff. 61 46 43 44 61 

      

Total 69 58 52 51 70 

 

 
Figure 1. Decision tree on how to decide on the rotation criterion for an empirical data set.  
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Table 7. Rotated loadings per sexual orientation for the OSRI data and Wald test p-values. ‘M’ refers 

to masculinity, ‘F’ to femininity, ‘Wald(=)’ to tests for loading differences and ‘Wald(0)’ to tests for 

non-zero loadings. P-values that are significant at a Bonferroni-corrected 1% significance level (i.e., 

p < .00014) are in bold face, as well as loadings that differ significantly across groups. 

 Hetero- 

sexual Bisexual 

Homo- 

sexual Asexual Other 

Wald(=)  

p-values 

Wald(0)  

p-values 

 M F M F M F M F M F     M F   M F 

Q1 .17 .03 .14 .10 -.06 .15 .07 .11 -.16 .18 .0007 .3100 .0000 .0020 

Q2 -.44 .38 -.23 .54 .00 .56 -.13 .53 .00 .50 .0000 .1100 .0000 .0000 

Q3 .66 -.19 .76 .00 .52 -.09 .48 -.05 .37 -.02 .0000 .0850 .0000 .0094 

Q4 -.42 .60 -.04 .94 -.09 1.09 -.08 1.06 -.04 1.06 .0000 .0000 .0000 .0000 

Q5 .47 -.01 .61 .22 .48 .17 .64 .15 .58 .03 .1000 .0130 .0000 .0001 

Q6 -.14 .52 .02 .65 .05 .83 .12 .61 .03 .73 .0160 .0011 .0320 .0000 

Q7 .21 .06 .07 .06 .11 .08 .12 -.03 .20 .15 .4100 .3200 .0000 .0620 

Q8 -.27 .36 -.18 .50 -.16 .49 -.16 .47 -.14 .56 .4900 .1500 .0000 .0000 

Q9 .43 -.21 .32 -.26 .61 -.24 .50 -.27 .44 -.34 .0150 .5400 .0000 .0000 

Q10 -.34 .56 -.37 .77 -.13 .72 -.16 .81 -.18 .72 .0057 .0110 .0000 .0000 

Q11 .32 -.01 .11 .05 -.08 .03 .19 .00 .15 .10 .0000 .6200 .0000 .5500 

Q12 -.16 .19 -.22 .29 -.26 .35 -.29 .17 -.13 .37 .4300 .0810 .0000 .0000 

Q13 .55 -.27 .61 -.20 .67 -.28 .72 -.25 .74 -.26 .0950 .9100 .0000 .0000 

Q14 -.51 .11 -.31 .13 -.40 .17 -.42 .20 -.15 .17 .0019 .8800 .0000 .0000 

Q15 .63 -.09 .79 .14 .80 .04 .78 .06 .72 .13 .0970 .0092 .0000 .0042 

Q16 -.06 .69 .10 .83 .10 .87 .13 .90 .00 .87 .0420 .0360 .0270 .0000 

Q17 .64 -.17 .70 -.02 .79 -.10 .74 -.06 .72 -.13 .3900 .4200 .0000 .0020 

Q18 -.27 .59 -.12 .70 -.04 .81 -.03 .82 .04 .75 .0025 .0340 .0000 .0000 

Q19 .27 .05 .32 .18 .17 .08 .23 .08 .25 .24 .5700 .1200 .0000 .0001 

Q20 -.35 .44 -.33 .50 -.37 .45 -.39 .32 -.39 .44 .9600 .4400 .0000 .0000 

Q21 .74 -.21 .58 -.20 .49 -.27 .49 -.18 .52 -.05 .0003 .0290 .0000 .0000 

Q22 -.31 .28 -.24 .29 -.52 .38 -.42 .36 -.33 .51 .0065 .0210 .0000 .0000 

Q23 .49 -.24 .47 -.05 .61 -.09 .42 -.07 .54 -.06 .1600 .0410 .0000 .0000 

Q24 -.08 .34 .06 .29 .03 .30 .01 .23 -.08 .38 .2400 .3800 .3000 .0000 

Q25 .40 -.22 .33 -.26 .14 -.16 .32 -.11 .36 -.05 .0270 .0970 .0000 .0000 

Q26 -.29 .40 -.25 .51 -.12 .45 -.24 .33 -.02 .34 .0041 .1100 .0000 .0000 

Q27 .45 -.02 .63 .06 .63 -.03 .72 .12 .64 .04 .0051 .3000 .0000 .2900 

Q28 .20 1.45 .09 .87 -.17 .76 .02 1.05 -.18 .86 .0000 .0000 .0000 .0000 

Q29 .41 -.05 .47 -.06 .38 .13 .54 .03 .57 .21 .1900 .0033 .0000 .0021 

Q30 -.22 .51 -.11 .98 -.05 .83 -.11 .80 -.09 .83 .2700 .0000 .0001 .0000 

Q31 .50 -.06 .58 -.05 .51 -.03 .57 -.06 .34 -.07 .1300 .9900 .0000 .4700 

Q32 -.34 .35 -.27 .27 -.49 .41 -.30 .27 -.49 .54 .0330 .0065 .0000 .0000 

Q33 .57 -.02 .62 -.11 .39 -.09 .34 -.07 .44 -.12 .0280 .8000 .0000 .2600 

Q34 -.34 .38 -.27 .27 -.32 .29 -.44 .20 -.49 .33 .0750 .2000 .0000 .0000 

Q35 .51 -.14 .58 -.13 .63 -.13 .47 -.11 .68 .00 .1500 .3500 .0000 .0055 

Q36 -.38 .52 -.18 .82 -.10 .83 -.21 .80 -.08 .89 .0004 .0000 .0000 .0000 

Q37 .23 -.11 .46 -.05 .50 .03 .57 -.02 .64 -.19 .0000 .0910 .0000 .0058 

Q38 -.44 .31 -.48 .53 -.24 .52 -.25 .47 -.26 .43 .0086 .0360 .0000 .0000 

Q39 .51 -.19 .68 .00 .69 .10 .72 -.10 .69 -.07 .0110 .0008 .0000 .0001 

Q40 -.36 .70 -.04 1.13 -.03 1.04 -.30 1.03 -.01 .99 .0000 .0000 .0000 .0000 

Q41 .55 -.15 .80 -.06 .79 -.06 .73 -.13 .80 .03 .0012 .1100 .0000 .0074 

Q42 -.28 .34 -.22 .48 -.09 .54 -.06 .41 -.08 .60 .0200 .0087 .0000 .0000 

Q43 .47 -.06 .49 .05 .61 .20 .66 -.03 .59 .05 .1100 .0270 .0000 .0330 

Q44 .19 1.51 .08 .92 -.20 .79 .00 1.10 -.16 .86 .0000 .0000 .0000 .0000 
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Appendix A 

An example syntax for a twenty-item four-factor multigroup EFA with optimal rotation is: 

options 

   algorithm  

      tolerance=1e-008 emtolerance=0.01 emiterations=2500 nriterations=500; 

   startvalues 

      seed=0 sets=5 tolerance=1e-005 iterations=100 PCA; 

   missing includeall; 

   rotation oblimin procrustes=.50; 

   output       

      iterationdetail classification parameters=effect standarderrors rotation 

writeparameters=’results_parameters.csv’ write=’results.csv’ writeloadings=’results_loadings.txt’; 

variables 

   dependent V1 continuous, V2 continuous, V3 continuous, V4 continuous, V5 continuous, V6 

continuous, V7 continuous, V8 continuous, V9 continuous, V10 continuous, V11 continuous, V12 

continuous, V13 continuous, V14 continuous, V15 continuous, V16 continuous, V17 continuous, V18 

continuous, V19 continuous, V20 continuous ; 

   independent G nominal;             

   latent 

      F1 continuous,  

      F2 continuous, 

      F3 continuous, 

      F4 continuous; 

equations 

// factor variances and covariances 

   F1 | G; 

   F2 | G; 

   F3 | G; 

   F4 | G; 

   F1 <-> F2 | G; 

   F1 <-> F3 | G; 

   F1 <-> F4 | G; 

   F2 <-> F3 | G; 

   F2 <-> F4 | G; 

   F3 <-> F4 | G; 

// regression models for items 

   V1 - V20 <- 1 | G + F1 | G + F2 | G + F3 | G + F4 | G; 

// unique variances  

   V1 - V20 | G; 
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The categorical variable ‘G’ indicates the group memberships of the observations and ‘V1’ to 

‘V20’ refer to the twenty items – they are to be replaced by the variable labels in the data set at 

hand. Details about the technical settings can be found in the Latent Gold manual (Vermunt & 

Magidson, 2013). ‘PCA’ refers to randomized PCA-based starting values that are described in De 

Roover, Vermunt, Timmerman, and Ceulemans (2017). Note that both the factor variances and 

covariances are free to vary across groups and that the optimal rotation is requested by ‘rotation 

oblimin procrustes=.50’. In general, the latter has the following structure: 

rotation <simple structure criterion> <agreement criterion>=<w> 

The simple structure criterion (see Section 2.3.1.1) can be ‘oblimin’, ‘geomin’ or ‘varimax’ – 

where the latter is orthogonal and should be used with factor covariances equal to zero (i.e., 

deleting the ‘Fx <-> Fx | G’ lines in the syntax). The agreement criterion (see Section 2.3.2.1) can 

be either ‘procrustes’ for generalized procrustes or ‘alignment’ for loading alignment. When one 

wants to use alignment with a user-specified value for   (the default is 1 × 10-12), the command 

becomes, e.g., ‘rotation oblimin alignment=.01 epsilon=1e−6’. 

As an alternative simple structure criterion, target rotation can be applied by using 

‘target=’filename.txt’’, where the file should contain group-specific targets (i.e., one for each 

group) or one target to be used for all groups. Note that ‘−99’ or ‘.’ is used to indicate non-specified 

parts of the targets. For instance, two semi-specified group-specific targets for eight items and two 

factors would be communicated as follows:  

‘0 −99 

0 −99 

0 −99 

0 −99 

−99 0 

−99 0 

−99 0 
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−99 −99 
 

−99 −99 

0 −99 

0 −99 

0 −99 

0 −99 

−99 0 

−99 0 

−99 0’ 

To start from user-specified parameter values and only perform the rotation (e.g., to try 

different rotation criteria without repeating the model estimation), the ‘algorithm’ and ‘startvalues’ 

options can be modified as follows: 

   algorithm  

      tolerance=1e-008 emtolerance=0.01 emiterations=0 nriterations=0; 

   startvalues 

      seed=0 sets=1 tolerance=1e-005 iterations=0; 

The user-specified parameter values are communicated through a text file containing the parameter 

values in the internal order of the parameters (Vermunt & Magidson, 2013), which is specified at 

the end of the syntax as ‘startingvalues.txt’.  
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Appendix B 

When the unrotated factors of group g are orthonormal, the true (i.e., population-level) 

optimally rotated factor loadings gΛ  and factor covariance matrix gΨ  can be expressed as 

functions of the unrotated orthonormal true loadings Ag as follows: 

 
 

1

g g g

g g g







Λ A T

Ψ T T
  (12) 

where Tg indicates the group-specific Q × Q rotation matrix. As opposed to Jennrich (1973), no 

restrictions are imposed on the diagonal of (any of) the group-specific factor covariance matrices 

gΨ . Instead, the following restriction is imposed across all groups, where the ‘diag’ operator 

extracts the diagonal elements of gΨ  (see Section 2.3.2.): 

        
1 1

1 G G

g gQ Q
g g

diag or diag G
G  

  Ψ 1 Ψ 1   (13) 

The differentials of the relations in Equations 12 and 13 are as follows: 

 g g g g gd d d Λ A T A T  ; (14) 

 ( )g g g g g g gd d d   Ψ Ψ T T T T Ψ  ; (15) 

    
1

G

g Q
g

diag d


 Ψ 0  . (16) 

Let Kg be defined as: 

 1 1sog g g g g g g gd d  K T T Ψ T T K Ψ  . (17) 

Equations 14 through 16 then become: 

 1

g g g g g gd d  Λ A T Λ K Ψ   (18) 

 ( )g g gd   Ψ K K   (19) 
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    
1 1 1

( ) (2 )
G G G

g g g g Q
g g g

diag d diag diag
  

       Ψ K K K 0   (20) 

It follows that  
1

( )
G

g Q
g

diag


 K 0 . Due to these restrictions, the diagonal elements of gK  may 

be decomposed as follows: 

          
1

1 G

g g g g

g

diag diag diag diag diag
G





   K K K K K . (21) 

When gΛ  are the optimally rotated loadings for groups g = 1, …, G, the differential in Equation 

5 is equal to zero, thus6:  

    
1 1 1 1 1 1 1

0
MG MGQ QG G J G J

MG

g gjq g jq
g g j q g j qgjq gjq

R R
dR d d

       

 
  

 
  Λ Λ ,  (22) 

where  g jq
dΛ  refers to the element in row j and column q of the differential in Equation 18. Since 

the optimal rotation restrictions affect the rotated loadings through the rotation matrix Tg only, the 

differential becomes: 

  1

1 1 1

0
MGQG J

g g g jq
g j q gjq

R





  





 Λ K Ψ .  (23) 

Since restrictions are imposed (across groups) on the diagonal elements of gK , but not on the 

offdiagonal elements, we will elaborate Equation 23 for its diagonal and offdiagonal elements 

separately. To this end, we introduce the matrix  * ,g u uK  which consists of zeros except for the 

element in row u and column u, which is equal to the corresponding element of gK , i.e., guuk . 

                                                           
6 The total differential is the sum of the partial derivatives multiplied by the corresponding differential/infinitisemal 

change. 
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Similarly, 
uuk refers to the element in row u and column u of the matrix K  introduced in Equation 

21. Then Equation 23 is equivalent to requiring: 

 

  

 

* 1

1 1 1

1

1 1 1

1

1 1 1

1 1

1 1 1

,
MGQG J

g g g jq
g j q gjq

MGQG J

gju guu guq

g j q gjq

MGQG J

gju guu uu guq

g j q gjq

MG MGQG J

gju guu guq gju uu guq

g j q gjq gjq

MG

g

R
u u

R
k

R
k k

R R
k k

R



 


 


   
 





  



  



  

 

  











 



  
  

   














Λ K Ψ

1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1 1

1

1

1

MGQ QG J G J

gju guu guq gju uu guq

g j q g j qjq gjq

MG MGQ QG J G J G

gju guu guq gju g uu guq

g j q g j q ggjq gjq

MG MG

gju guu guq

gjq g

R
k k

R R
k k

G

R R
k

G

   


   
 

 
 

 

     

 



      








  
   

   

 
 

 

 

  

1

1 1 1 1 1 1 1

1 1

1 1 1 1 1 1 1

1 1

1

1

Q QG J G J G

gju g uu guq

g j q g j q g jq

MG MGQ QG J G G J

gju guu guq g ju guu g uq

g j q g g j qgjq g jq

MG MG

gju guu guq g ju guu g uq

gjq g jq

k

R R
k k

G

R R
k k

G

 

   
 

   
 





      

 

 

       

 

 



 
 

 

 
 

 

 

 

1 1 1 1 1 1

0
Q QG J G J

g j q g j q     

 
  

 
  

  (24) 

Without loss of generality, assume that 1guuk  , so that Equation 24 is equivalent to: 

 

1 1

1 1 1 1 1 1

1 1

1 1 1 1 1 1

1

1
0

MG MGQ QG J G J

gju guq g ju g uq

g j q g j qgjq g jq

MG MGQ QG J G J

gju gqu g ju g qu

g j q g j qgjq g jq

R R

G

R R

G

   
 

   
 

 

 

      

 

 

      

  
    

  
      

  

  

  (25) 

Similarly, by using the matrix  * ,g u vK  where u v  and assuming that 1guvk  , we derive the 

following for the offdiagonal elements: 
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  * 1

1 1 1

1

1 1 1

1

1 1 1

1

1 1 1

,

0

MGQG J

g g g jq
g j q gjq

MGQG J

gju guv gvq

g j q gjq

MGQG J

gju gvq

g j q gjq

MGQG J

gju gqv

g j q gjq

R
u v

R
k

R

R



 


 


 




  



  



  



  
















 











Λ K Ψ

  (26) 

Therefore, the optimal rotation restrictions for each group can be expressed in matrix form as 

follows: 

  1 1

1

1MG MGG
MG

g g g g Q Q
gg g

dR dR
diag

d G d

 

  
 

 
     

 
F Λ Ψ Λ Ψ 0

Λ Λ
  (27) 

where – in this case – the ‘diag’ operator indicates that the offdiagonal elements are set to zero. 

Note that, when one prefers to use a reference group with factor variances fixed to one instead of 

restricting the across-group mean of the factor variances (Section 2.2.2), one can use the 

restrictions  1
MG

g g Q Q

g

dR

d




 Λ Ψ 0

Λ
 for the non-reference groups and the restrictions in Equation 2 

(Jennrich, 1973) for the reference group. In that case, the agreement part of the criterion RMG is 

essential to prevent the factor variances of the non-reference groups to become very large in order 

to minimize the oblimin criterion. 
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Appendix C 

List of items for the Open Sex Role Inventory and what they intend to measure between 

brackets; ‘M’ refers to masculinity and ‘F’ to femininity: 

Q1. I have studied how to win at gambling (M). 

Q2. I have thought about dying my hair (F). 

Q3. I have thrown knives, axes or other sharp things (M). 

Q4. I give people handmade gifts (F). 

Q5. I have day dreamed about saving someone from a burning building (M). 

Q6. I get embarrassed when people read things I have written (F). 

Q7. I have been very interested in historical wars (M). 

Q8. I know the birthdays of my friends (F). 

Q9. I like guns (M). 

Q10. I am happiest when I am in my bed (F). 

Q11. I did not work very hard in school (M). 

Q12. I use lotion on my hands (F). 

Q13. I would prefer a class in mathematics to a class in pottery (M). 

Q14. I dance when I am alone (F). 

Q15. I have thought it would be exciting to be an outlaw (M). 

Q16. When I was a child, I put on fake concerts and plays with my friends (F). 

Q17. I have considered joining the military (M). 

Q18. I get dizzy when I stand up sharply (F). 

Q19. I do not think it is normal to get emotionally upset upon hearing about the deaths of people 

you did not know (M). 

Q20. I sometimes feel like crying when I get angry (F). 

Q21. I do not remember birthdays (M). 

Q22. I save the letters I get (F). 

Q23. I playfully insult my friends (M). 

Q24. I oppose medical experimentation with animals (F). 

Q25. I could do an impressive amount of push ups (M). 

Q26. I jump up and down in excitement sometimes (F). 

Q27. I think a natural disaster would be kind of exciting (M). 

Q28. I wear a blanket around the house (F). 

Q29. I have burned things up with a magnifying glass (M). 

Q30. I think horoscopes are fun (F). 

Q31. I don't pack much luggage when I travel (M). 

Q32. I have thought about becoming a vegetarian (F). 

Q33. I hate shopping (M). 

Q34. I have kept a personal journal (F). 
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Q35. I have taken apart machines just to see how they work (M). 

Q36. I take lots of pictures of my activities (F). 

Q37. I have played a lot of video games (M). 

Q38. I leave nice notes for people now and then (F). 

Q39. I have set fuels, aerosols or other chemicals on fire, just for fun (M). 

Q40. I really like dancing (F). 

Q41. I take stairs two at a time (M). 

Q42. I bake sweets just for myself sometimes (F). 

Q43. I think a natural disaster would be kind of exciting (M). 

Q44. I decorate my things (e.g. stickers on laptop) (F). 
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Online supplements 

 

Table 1s. Base loading matrix and the derived group-specific loading matrices, in case of two factors and primary loading decreases 

of .20. Differences are indicated in bold face and differences between brackets are only induced in the case of 16 loading differences.  

 Base loading matrix  Group-specific loading matrix 1  Group-specific loading matrix 2 

 F1 F2  F1 F2  F1 F2 

V1 .6  0  .6 −.20  0  .6  0 

V2 .6  0  .6  (−.20) 0  .6  0 

V3 .6  0  .6  (−.20) 0  .6   0 

V4 .6  0  .6  (−.20) 0  .6  0 

V5 .6  0  .6  0  .6 −.20  0 

V6 .6  0  .6  0  .6  (−.20) 0 

V7 .6  0  .6  0  .6  (−.20) 0 

V8 .6  0  .6  0  .6  (−.20) 0 

V9 .6  0  .6  0  .6  0 

V10 .6  0  .6  0  .6  0 

V11 0 .6   0 .6 −.20   0 .6  

V12 0 .6   0 .6  (−.20)  0 .6  

V13 0 .6   0 .6  (−.20)  0 .6   

V14 0 .6   0 .6  (−.20)  0 .6  

V15 0 .6   0 .6   0 .6 −.20  

V16 0 .6   0 .6   0 .6  (−.20) 

V17 0 .6   0 .6   0 .6  (−.20) 

V18 0 .6   0 .6   0 .6  (−.20) 

V19 0 .6   0 .6   0 .6  

V20 0 .6   0 .6   0 .6  
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Table 2s. Base loading matrix and the derived group-specific loading matrices, in case of four factors and primary loading decreases of .40. 

Differences are indicated in bold face and differences between brackets are only induced in the case of 16 loading differences. 

 Base loading matrix  Group-specific loading matrix 1  Group-specific loading matrix 2 

 F1 F2 F3 F4  F1 F2 F3 F4  F1 F2 F3 F4 

V1 .6  0 0 0  .6 −.40 0 0 0  .6  0 0 0 

V2 .6   0 0 0  .6 (−.40) 0 0 0  .6  0 0 0 

V3 .6  0 0 0  .6  0 0 0  .6 −.40 0 0 0 

V4 .6  0 0 0  .6  0 0 0  .6 (−.40) 0 0 0 

V5 .6  0 0 0  .6  0 0 0  .6  0 0 0 

V6 0 .6  0 0  0 .6 −.40 0 0  0 .6  0 0 

V7 0 .6  0 0  0 .6 (−.40) 0 0  0  .6  0 0 

V8 0 .6  0 0  0 .6  0 0  0 .6 −.40 0 0 

V9 0 .6  0 0  0 .6  0 0  0 .6 (−.40) 0 0 

V10 0 .6  0 0  0 .6  0 0  0 .6  0 0 

V11 0 0 .6  0  0 0 .6 (−.40) 0  0 0 .6  0 

V12 0 0 .6  0  0 0 .6 (−.40) 0  0 0 .6  0 

V13 0 0 .6  0  0 0 .6  0  0 0 .6 (−.40) 0 

V14 0 0 .6  0  0 0 .6  0  0 0 .6 (−.40) 0 

V15 0 0 .6  0  0 0 .6  0  0 0 .6  0 

V16 0 0 0 .6   0 0 0 .6 (−.40)  0 0 0 .6  

V17 0 0 0 .6   0 0 0 .6 (−.40)  0 0 0 .6  

V18 0 0 0 .6   0 0 0 .6   0 0 0 .6 (−.40) 

V19 0 0 0 .6   0 0 0 .6   0 0 0 .6 (−.40) 

V20 0 0 0 .6   0 0 0 .6   0 0 0 .6  

 


