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Abstract

An overview is provided of recent developments in the use of latent class (LC) and other
types of %nite mixture models for classi%cation purposes. Several extensions of existing models
are presented. Two basic types of LC models for classi%cation are de%ned: supervised and
unsupervised structures. Their most important special cases are presented and illustrated with an
empirical example.
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1. Introduction

Let y denote a discrete dependent, outcome, target, or output variable, and z a
vector of independent, input, predictor, or attribute variables. 1 Classi%cation involves
predicting the discrete outcome variable y as accurate as possible using the information
on the z variables. Recently, latent class (LC), or %nite mixture (FM), models have
been proposed as classi%cation tools in the %eld of neural networks (Jacobs et al.,
1991; Bishop, 1995, pp. 212–220), as well as in the %eld of Bayesian (or belief)
networks (Kontkanen et al., 1996; Monti and Cooper, 1999; Meilã and Jordan, 2000).
This paper gives an overview of these developments and presents several extensions
of the proposed models.

∗ Corresponding author. Tel.: +31-(0)134662748; fax: +31-(0)134663002.
E-mail address: j.k.vermunt@kub.nl (J.K. Vermunt).

1 The discrete y variable is often denoted as the class variable and its categories as classes. Here, we will
not use the term class(es) in order to prevent confusion with the term latent class(es).
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Classi%cation using a statistical model involves specifying either a model for P(y|z),
as in regression analysis, or a model for P(z|y), as in discriminant analysis. In the next
two sections, we present two basic types of LC models for classi%cation: they involve
specifying a model for P(y|z) and P(z|y), respectively. Subsequently, we illustrate the
most important special cases of these two basic types with an empirical example. The
paper ends with a short discussion.

2. Supervised classi�cation structures

The %rst basic type of LC model for classi%cation involves specifying a model for
the conditional distribution of y given z, where a discrete hidden variable x serves as
intervening variable. More precisely, the assumed probability structure for P(y; z) is

P(y; z) = P(z)P(y|z) = P(z)
∑
x

P(x|z)P(y|z; x); (1)

where P(z) is treated as %xed. Besides the above probability structure, regression-type
constraints are imposed on the model probabilities. Since both the latent variable and
the outcome variable are assumed to be discrete, it is most natural to restrict P(x|z)
and P(y|z; x) using (multinomial) logit models. Note that the model is similar to the
concomitant-variable LC model proposed by Dayton and Macready (1988). When the z
variables are qualitative, the model is also a special case of the log–linear models with
latent variables proposed by Hagenaars (1990, Chapter 3) and extended by Vermunt
(1997, Chapter 3).

Maximum-likelihood or maximum posterior estimation is based on a likelihood func-
tion containing only the term P(y|z), which implies that there is a direct relationship
between model %t and classi%cation performance. These LC models belong, therefore,
to the family of supervised classi%cation or supervised learning methods.

In the neural networks %eld, the model described in Eq. (1) is known as the
mixture-of-experts model (Jacobs et al., 1991; Bishop, 1995, pp. 212–220). The orig-
inal motivation was to provide a mechanism for partitioning the prediction problem
between several neural networks. The separate neural networks can be much simpler
than the model that would be needed without such a partitioning. In other words, rather
than a complicated non-linear regression model describing the relationship between z
and y, there is a standard (logistic) regression model for each LC or mixture compo-
nent. As can be seen, the mixing proportions depend on the input variables (predictors),
which means that the input space is divided into regions that diGer with respect to the
nature of the relationships between the input variables and the output variable. In the
interpretation of the model parameters we have to take into account the double role of
the input variables: component-speci%c regression coeHcients de%ning P(y|z; x) hold
for certain combinations of z variables.

A special case of the mixture-of-experts model is the LC regression or mixture
regression model, a model that is popular in the %eld of marketing research (Wedel and
DeSarbo, 1994). In this model, the mixing distributions are assumed to be independent
of z; that is, P(x|z) = P(x). Interpretation of the model parameters is straightforward:



J.K. Vermunt, J. Magidson / Computational Statistics & Data Analysis 41 (2003) 531–537 533

latent classes diGer with respect to the size of regression coeHcients. The predicted
value of y is obtained by a weighted average of the component speci%c predictions,
where the mixing proportions serve as weights.

Another special case is obtained by assuming that P(y|z; x) = P(y|x); that is, when
the eGects of the z variables on the y go completely through x. This yields a structure
that is similar to a feed-forward neural network with a single hidden layer. More
precisely, a model with K latent classes is comparable to a neural network with K − 1
nodes in the hidden layer. We label this model the LC feed-forward model. Siciliano
and Mooijaart (2000) proposed a similar structure for a single discrete input variable,
labeled latent budget model. In the literature, we have, however, not seen the model in
its general form with a logit parameterization of P(x|z) used for classi%cation purposes.
Feed-forward neural networks are often criticized because they yield results that are
diHcult to interpret. In contrast, the interpretation of the parameters of the proposed LC
model is extremely easy. It is assumed that there are K basic output pro%les de%ned
by P(y|x) and that the probability of having one of these output pro%les depends on
the input variables. Predicting y consists of taking a weighted average of the basic
output pro%les, where the weights depend on the input variables.

Rather than having a hidden layer consisting of single nominal latent variable, it is
also possible to have a hidden layer with several dichotomous latent variables. Using
the terminology introduced by Magidson and Vermunt (2001), this amounts to working
with a LC factor rather than a LC cluster structure. A model with J (dichotomous)
latent variables (labeled factors) that are mutually independent given z can be de%ned
as

P(y|z) =
∑
x

[∏
j

P(xj|z)
]
P(y|x);

where P(xj|z) and P(y|x) are again restricted using logit models. Conceptually, this
factor variant of the LC feed-forward model is even more similar to a feed-forward
neural network: each factor plays the role of a node in the hidden layer. A nice
feature of this model is that the eGects of the input variables on the output variable
are explicitly split up into J independent dimensions. Similarly, factor variants of the
mixture-of-experts and the LC regression model can be de%ned.

3. Unsupervised classi�cation structures

In the second basic type of LC model for classi%cation, one models the conditional
distribution of the z variables given y, P(z|y). The decomposing of P(y; z) is now

P(y; z) = P(y)P(z|y) = P(y)
∑
x

P(x|y)P(z|y; x): (2)

Since the likelihood function used in the estimation is based on P(z|y) or P(y; z),
there is no direct relationship between model %t and classi%cation performance. These
methods belong, therefore, to the family of unsupervised classi%cation or unsupervised
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learning methods. The predictive distribution of y given z, P(y|z), that is needed to
perform the classi%cation task can be obtained by the well-known Bayes’ theorem

P(y|z) =
P(y)P(z|y)∑
y P(y)P(z|y) :

With a single mixture component, several well-known classi%ers arise depending on
the form of P(z|y). The Naive Bayes (NB) classi%er, for example, assumes mutual
independence of the z variables within levels of y, P(z|y) =

∏
‘ P(z‘|y). Of course,

the exact form of the conditional density P(z‘|y) depends on the scale type of z‘. Less
restricted forms for P(z|y) are used in Bayesian tree classi%ers and in discriminant
analysis.

Kontkanen et al. (1996) proposed using a standard LC, or standard FM, model
as classi%er. This is the special case of the model de%ned in Eq. (2) obtained when
P(z|y; x) =

∏
‘ P(z‘|x). Typical for this classi%er is that the outcome variable has no

diGerential status: all variables, including y, are assumed to be independent of one
another within latent classes.

Monti and Cooper (1999) proposed combining elements of the standard LC model
and the NB classi%er. Their %nite-mixture augmented Naive-Bayes (FAN) classi%er has
the form

P(y; z) = P(y)
∑
x

P(x)
∏
‘

P(z‘|y; x):

As in the NB model, the distribution of the z‘ variables depends on the outcome
variable y. However, now the latent variable x is included to relax the assumption that
the z‘ variables are conditionally independent given the outcome variable y. Compared
to the LC model, y has back its diGerential status, which should yield a better classi%er.

Note that the FAN model is not a full mixture of NB models since x is assumed to
be independent of y. A natural extension of the FAN is obtained by including such a
dependence; that is, by replacing P(x) with P(x|y). We label this model mixture-of-NB
classi%er. 2 Another extension of the FAN model is the mixture-of-trees model proposed
by Meilã and Jordan (2000).

As discussed in the previous section, also with unsupervised structures it is possible
to replace the single nominal latent variable by several dichotomous latent variables,
which yields what we labeled LC factor models (Magidson and Vermunt, 2001). A
factor variant of the mixture-of-NB model is

P(y; z) = P(y)
∑
x

[∏
j

P(xj|y)
]∑

x

∏
‘

P(z‘|y; x):

Here, P(z‘|y; x) is further restricted in order to exclude interaction eGects between the
factors. By setting P(z‘|y; x) = P(z‘|x) we obtain a factor variant of the standard LC
model, and with P(xj|y) = P(xj) we get a factor variant of Monti and Cooper’s FAN.

2 When all x variables are qualitative, the mixture-of-NB model is equivalent to the multiple-group LC
model proposed by Clogg and Goodman (1984), where y serves as grouping variable.
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Table 1
Error rates and number of parameters for the estimated LC models

Model type Number of latent classes
1 2 3 4 2-by-2

LC feed-forward 0.437 (1)a 0.215 (13) 0.153 (25) 0.151 (37) 0.153 (25)
LC regression 0.260 (11)b 0.213 (23) 0.164 (35) 0.169 (47) 0.169 (35)
Mixture-of-experts 0.260 (11)b 0.163 (33) 0.151 (55) 0.151 (77) 0.151 (55)
Standard LC 0.437 (10) 0.278 (22) 0.241 (34) 0.209 (46) 0.219 (34)
FM-augmented NB 0.282 (20)c 0.203 (41) 0.171 (62) 0.154 (83) 0.185 (62)
Mixture-of-NB 0.282 (20)c 0.197 (42) 0.174 (64) 0.158 (86) 0.156 (64)

aIntercept-only model.
bStandard logit model.
cNaive Bayes model.

4. An application

We applied the various LC models for classi%cation to data of 9949 employees of a
large national (American) corporation who where asked about their job satisfaction (see
Table 5:10 in Agresti, 1990). The outcome variable (job satisfaction) has two levels:
satis%ed and not satis%ed. The predictors are race, gender, age (three age groups) and
regional location (seven regions). The data set was randomly split into a training and
a validation sample, consisting of 5007 and 4942 cases, respectively.

This example was selected because application of a standard logit model revealed
that, besides the main eGects, almost all %rst- and higher-order interactions are needed
in order to get a model that %ts the data and that classi%es as well as possible.
We wanted to know how well the various LC models performed in such a
situation.

Table 1 reports the misclassi%cation rates and the number of parameters for six types
of LC models. For each type, we estimated models with 1–4 components, as well as a
model with two dichotomous latent variables. Classi%cation is based on max[P(y|z)].
In models with multiple maxima, we report the error rate of the solution with the
largest log-likelihood value.

The intercept-only model yields the upper bound for the error rate, in this case
0.437. The other two models with a single component, the standard logit model and
the NB model, have error rates of 0.260, and 0.282, respectively. We are interested in
determining whether the LC classi%ers improve upon these standard classi%ers.

It can be seen that with a small number of latent classes, the classi%cation per-
formance of the supervised methods is better than that of the unsupervised methods.
Among the supervised methods, the mixture-of-experts and the LC feed-forward models
yield the lowest error rates. Taking into account parsimony and easiness of interpre-
tation, either the 3-class or 2-factor feed-forward model would be our choice for this
data set. The 3-class model yields classes with probabilities of 0.114, 0.909, and 0.902
of being satis%ed. The logit parameters in the model for x indicate which subgroups
are most satis%ed, or have a higher probability of belonging to classes 2 or 3.
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Table 2
L2 values and df for the estimated models

Model type Number of latent classes
1 2 3 4 2-by-2

LC feed-foward 3124 (83)a 1408 (71) 376 (59) 262 (47) 376 (59)
LC regression 1739 (73)b 844 (61) 594 (49) 467 (37) 594 (49)
Mixture-of-experts 1739 (73)b 333 (51) 66 (29) 13 (7) 53 (29)
Standard LC 5602 (156) 3969 (144) 2864 (132) 2286 (120) 2811 (132)
FM-augmented NB 4019 (146)c 2316 (125) 1425 (104) 834 (83) 1337 (104)
Mixture-of-NB 4019 (146)c 2305 (124) 1421 (102) 806 (80) 1264 (102)

aIntercept-only model.
bStandard logit model.
cNaive Bayes model.

The extended NB classi%ers perform better than the standard LC model, which is
not surprising given the quite restrictive assumptions of the latter. This is, however, at
the cost of a much larger number of parameters in the former. The error rate of the
standard LC model can, however, substantially be decreased by increasing the number
of latent classes: a model with 6 classes has an error rate of 0.156.

We %rst concentrated on the classi%cation performance of the various LC models
because that is our main interest. It is, however, also informative to compare their
goodness-of-%t. Table 2 reports the value of the likelihood-ratio statistic (L2) and the
number of degrees of freedom (df) for our six types of LC models.

The goodness-of-%t information shows that the supervised methods %t the data much
better than the unsupervised methods. Actually, with the more restricted unsupervised
structures we should considerably increase the number of latent classes to obtain a rea-
sonable %t. It can also be seen that the standard logit model %ts badly, which shows that
there are important higher-order interactions. The various supervised methods capture
these higher-order interactions quite well. If we would base model selection on strict
goodness-of-%t tests, the 4-class mixture-of-experts model should be the %nal model
because it is the only one that passes the test at a 5% signi%cance level. In our point
of view, however, the more parsimonious models that classify equally well should be
preferred.

5. Discussion

We described two basic types of LC models for classi%cation. Advantages of the
unsupervised methods are that their estimation is much faster, that they are less prone to
local maxima, and that they can easily deal with missing data in the predictor variables.
The most important advantage of the supervised methods is their better classi%cation
performance.

Among the unsupervised methods, the standard LC model (including factor variant)
yields results that are most easy to interpret. Classi%cation may, however, be poor with
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a small number of components. In such cases, FAN and mixture-of-NB models yield
much lower misclassi%cation rates.

Among the supervised methods, the new LC feed-forward structure seems to be
most attractive. Its computation time is lower and interpretation easier than of the
mixture-of-experts model, and prediction is usually better than with the LC regression
model. Like feed-forward neural networks, it is able to describe complicated interaction
eGects. Unlike feed-forward neural networks, the parameters of LC feed-forward models
are easy to interpret.
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