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Abstract 

In psychological research, statistical models of latent state-trait theory are popular for 

the analysis of longitudinal data. We identify several limitations of available models when 

applied to intensive longitudinal data with categorical observed and latent variables and inter- 

and intraindividually varying time intervals. As an extension of available LST models for 

categorical data, we describe a general mixed continuous-time LST model that is suitable for 

intensive longitudinal data with unobserved heterogeneity and individually varying time 

intervals. This model is illustrated by an application to momentary mood data that were 

collected in an experience sampling study (N=164). In addition, the results of a simulation 

study are reported that was conducted to find out (a) the minimal data requirements with 

respect to sample size and number of occasions, and (b) how strong the bias is if the 

continuous-time structure is ignored. The empirical application revealed two classes for which 

the transition pattern and effects of time-varying covariates differ. In the simulation study, 

only small differences between the continuous-time model and its discrete-time counterpart 

emerged. Sample sizes N=100 and larger in combination with six or more occasions of 

measurement tended to produce reliable estimation results. Implications of the models for 

future research are discussed.  

Keywords: Intensive longitudinal data, mixture distribution models, latent Markov 

models, continuous time, multilevel latent class models 
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Introduction 

Models of latent state-trait (LST) theory have been widely applied in psychological 

research to separate stable from occasion-specific influences in longitudinal data analysis 

(Steyer, Ferring, & Schmitt, 1992; Steyer, Schmitt, & Eid, 1999; Steyer, Mayer, Geiser, & 

Cole, 2015). In most applications, LST models (a) refer to continuous observed and 

continuous latent variables, (b) suppose that the population is homogeneous with respect to 

the parameters of the models, and (c) assume that the time lag between two adjacent 

occasions does not change over time and is the same for all individuals considered. In recent 

years, LST models have been developed that can be applied when these assumptions of 

traditional LST models are not fulfilled. We will briefly review these extensions and other 

approaches developed to meet these challenges. We will go on to integrate these approaches 

into a general mixture distribution LST model for continuous-time data. In an application of 

the model to momentary mood data, we go beyond existing applications by including 

information on varying time intervals and by including time-varying covariates.  

For example, Eid and Hoffmann (1998) have developed an LST model for polytomous 

observed and continuous latent variables, and Eid and Langeheine (1999) and Eid (2002, 

2007) have shown how LST models for categorical observed and categorical latent variables 

can be defined in the framework of latent class analysis. Here, latent classes represent the 

occasion-specific latent state, which is not continuous but limited to a few state types (e.g., 

good mood vs. bad mood). In the same way, latent classes represent stable interindividual 

differences in the trait by some trait types (e.g., cheerful person vs. melancholic). The stable 

trait influence is reflected, for example, in the higher probability of being in a good mood for 

cheerful persons. The latent states are mapped to the manifest responses via conditional 

response probabilities, which reflect measurement error when the mapping is not perfect (a 

person in a good mood state does not necessarily check the good mood response). Concerning 
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the homogeneity of the population, mixture distribution LST models can be applied when the 

population is thought to consist of different subpopulations differing in the parameters of a 

LST model (with both continuous or categorical traits and indicators). Eid and Langeheine 

(Eid & Langeheine, 2003, 2007; Langeheine & Eid, 2003) have shown how mixture 

distribution LST models for categorical variables can be defined and applied to separate 

stable from variable individuals in longitudinal data analysis. Rijmen, Vansteelandt and de 

Boeck (2008) as well as Vermunt (2010) have developed hierarchical mixture distribution 

latent Markov models for categorical variables (hierarchical MLM). These take into account 

the nesting of multiple measurement occasions not only within individuals but, for example, 

also within different days. In these models, there are day-specific classes that differ in the 

within-day change process. These day classes represent “day-specific traits”, that is, 

interindividual differences that are stable within a day. For example, individuals’ mood course 

could differ between weekdays and the weekend. Moreover, changes on the between-day 

level are considered by a second Markov process on the level of day-classes. Crayen, Eid, 

Lischetzke, Courvoisier, and Vermunt (2012) applied the hierarchical MLM to data from an 

experience sampling study to assess interindividual differences in mood regulation. They 

were able to predict latent classes of different mood fluctuation patterns with trait measures of 

perceived effectiveness in mood regulation. Courvoisier, Eid, and Nussbeck (2007) developed 

a similar mixture distribution LST model for continuous variables.  

All models described so far assume that time lags do not differ between individuals or 

across time. A violation of this assumption is particularly troublesome if there is an 

autoregressive structure in an LST model, because the size of an autoregressive parameter 

depends on the time lag (Eid, Courvoisier & Lischetzke, 2012). With respect to varying time 

intervals, modern continuous-time approaches which incorporate trait variables have been 

developed for autoregressive models with continuous observed and continuous latent 
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variables (Oud & Jansen, 2000; Oud, 2002; Voelkle, Oud, Davidov, and Schmidt, 2012) and 

recently implemented into an R package (ctsem; Driver, Oud, and Voelkle, in press). 

However, continuous-time approaches have not been integrated explicitly into the LST 

framework. With respect to categorical latent variables, Böckenholt (2005) presented a 

continuous-time Markov model for categorical observed and latent variables. Yet this model 

does not allow for population heterogeneity with respect to the continuous change process. 

The aim of the current paper is to describe a general mixture distribution LST model for 

continuous-time data that has not been considered so far. It integrates the discrete-time 

hierarchical mixture latent Markov model and continuous-time approaches. We will refer to it 

as hierarchical continuous-time mixture latent Markov model (CT-MLM) and illustrate it with 

an empirical example. To be appropriate for experience sampling method (ESM) data, the 

model should be flexible enough to integrate different types of nesting (occasions of 

measurement nested within days and days nested within individuals).   

For a long time, the use of such longitudinal models for categorical data was limited to 

a small number of measurement occasions. Hence, these models could not be applied to 

studies with many occasions of measurement such as ESM studies. Vermunt, Tran, and 

Magidson (2008) described an efficient algorithm that allows the estimation of longitudinal 

models for data with many measurement occasions and relatively small sample sizes. These 

developments opened up the field of possible applications to ESM data. This efficient 

algorithm was used to estimate the parameters in our empirical example of the hierarchical 

CT-MLM. However, little is known about the conditions under which this estimator leads to 

valid results. Therefore, we conducted a Monte Carlo simulation study to scrutinize the 

minimal conditions with respect to sample size and number of occasions for validly applying 

this model. 



Running head: A CONTINUOUS-TIME MIXTURE LST-MARKOV MODEL 6 

As Eid (2002) has shown, LST models for categorical variables are special cases of 

mixture distribution latent Markov models (or the latent mixed Markov model; Langeheine & 

van de Pol, 1990). In these models, occasion-specific categorical latent state variables are 

linked by an autoregressive (Markov) structure. The latent state of an occasion depends on the 

latent state of the previous occasion. Variability is expressed in probabilities of transitioning 

from one latent state to another. The trait aspect is represented by a latent class variable, 

which allows for unobserved subgroups of variability patterns (several Markov chains with 

different parameters). Mixture distribution latent Markov models are more general than mixed 

LST models for categorical observed and categorical latent variables, because some 

restrictions on response and transition parameters can be relaxed. For example, mixed LST 

models contain no interaction effects of traits and states, so that the state effects are the same 

for different trait types within the same chain (see Eid & Langeheine, 2003). Therefore, we 

will develop the hierarchical CT-MLM as a special mixed latent Markov model for 

continuous time, and we will define the model by referring to the terminology of Markov 

models.  

The paper is organized as follows. First, we will show how the hierarchical CT-MLM 

can be defined. We will then present an application of this model to ESM data. Finally, we 

will evaluate the model performance and explore minimal data requirements for the 

application of the model by conducting a Monte Carlo simulation study. 

The Mixture Latent Markov Model 

We start our description of the discrete-time hierarchical mixture latent Markov model 

with the measurement part, progressing to the within-day structural part and finally to the 

between-day structure. Subsequently, the continuous-time approach is introduced. Let 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

denote the observed response from subject 𝑖𝑖 (𝑖𝑖 = 1, … ,𝑁𝑁), measured on study day 𝑑𝑑 (𝑑𝑑 =

0, … ,𝐷𝐷) at occasion 𝑡𝑡 (𝑡𝑡 = 0, … ,𝑇𝑇) on one of a set of J manifest indicators (𝑗𝑗 = 1, … , 𝐽𝐽). The 
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observed response can take on one of 𝑀𝑀 categories (𝑚𝑚 = 1, … ,𝑀𝑀). While number of 

categories could vary across indicators and number of occasions could vary across days and 

subjects, we refrain from additional indexing (e.g., 𝑀𝑀𝑖𝑖) for better readability. For each 

measurement occasion dt, there is a latent state-class variable 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 with K possible 

values (𝑘𝑘 = 1, … ,𝐾𝐾). These latent categories are related to the categories of the manifest 

indicators via conditional response probabilities 𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚�𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑘𝑘). Unless restricted, 

there are (𝑀𝑀− 1) ∗ 𝐾𝐾 free conditional response probabilities per indicator. The local 

independence assumption from standard latent class analysis (Goodman, 1974) is made here, 

stating that there is no association between the indicators of the same occasion conditional on 

the common latent state.  

The latent state categories can be labeled according to the association pattern eminent 

from the conditional response probabilities. The conditional response probabilities are usually 

restricted to be the same over time to preserve the interpretation of the latent states. For our 

mood example, we assume that the number and meaning of manifest categories directly 

carries over to the latent state categories (i.e., unpleasant - pleasant - very pleasant). If the 

manifest indicators measured the latent construct perfectly (without measurement error), the 

conditional response probabilities given the “true” state would equal 1, and conditional 

response probabilities given all other states would equal 0.  

Therefore, any value lower than 1 and greater than 0 indicate some degree of 

measurement error. The within-day fluctuation process we are interested in is now regarded 

on the level of the occasion-specific latent state variable 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 (we consider only the within-

day process for now but keep the index for the day). The basic temporal structure of the latent 

states adopted here is that of a simple first-order stationary Markov process. This means that 

each state is only dependent on the previous one and that the strength of this dependency is 

the same across occasions. These assumptions can be relaxed and tested to some degree, but 
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we will focus on this most parsimonious case that is well-suited as a starting point. This 

process can be conveniently described by a set of K initial state probabilities 𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖0 = 𝑘𝑘) 

and (in the discrete-time case) a set of 𝐾𝐾 ∗ 𝐾𝐾 transition probabilities 𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑘𝑘| 𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖−1 =

𝑘𝑘′) with 𝑘𝑘 ≠ 𝑘𝑘′.  

 It is of course very restrictive to assume that every person in the sample is well 

described by the same process. Instead, the typological approach used here assumes that there 

is more than one typical pattern, and that individuals can be grouped together according to 

their transition pattern (i.e., it is not necessary to assume individual patterns). Such a latent 

categorical variable that classifies individuals according to their within-day transition pattern 

is situated on the day level and will be called day-class variable (DC) here. The number of 

categories (𝑙𝑙 = 1, … , 𝐿𝐿 ) has to be determined from theory or from the data in an exploratory 

manner. Because there are multiple consecutive days (D), there is one DC for each day. Such 

a day-specific class can be considered a “day-specific trait” that represents stable day-specific 

differences between individuals in their within-day variability and change process. However, 

individuals can switch membership in a day-specific class across days.   

In our example, there are two day-classes that differ with regard to their typical initial 

mood and their mood fluctuation pattern. Conditioning the probabilities introduced so far on 

the day-class of the particular day yields the conditional response probabilities 𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝑚𝑚|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑘𝑘,𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙), the initial state probabilities 𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖0 = 𝑘𝑘|𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙), and state transition 

probabilities 𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑘𝑘 |𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖−1 = 𝑘𝑘′,𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙). For the Markov process on the between-day 

level, there are initial day-class probabilities 𝑃𝑃(𝐷𝐷𝐶𝐶0 = 𝑙𝑙) – also known as the class sizes – and 

day-class transition probabilities 𝑃𝑃(𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙 |𝐷𝐷𝐶𝐶𝑖𝑖−1 = 𝑙𝑙′) with 𝑙𝑙 ≠  𝑙𝑙’.  

Again, relaxing the assumption that these probabilities hold for the total sample, a 

stable latent trait-class (TC) variable with a number of categories (𝑤𝑤 = 1, … ,𝑊𝑊) is introduced 

with class size 𝑃𝑃(𝑇𝑇𝐶𝐶 = 𝑤𝑤). Just like the state-class process is conditioned on the day-class, the 
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day-class process is now conditioned on the trait-class. The probability for a certain day-class 

now depends on the trait class, 𝑃𝑃(𝐷𝐷𝐶𝐶0 = 𝑙𝑙 | 𝑇𝑇𝐶𝐶 = 𝑤𝑤), as well as the transition probabilities 

on the between-day level: 𝑃𝑃(𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙 |𝐷𝐷𝐶𝐶𝑖𝑖−1 = 𝑙𝑙′,𝑇𝑇𝐶𝐶 = 𝑤𝑤).  

Now we define the model for the probability of subject i's responses 𝐲𝐲𝑖𝑖 as a 

combination of the probability types introduced. For the most general case, we also condition 

the response probabilities, the initial state probabilities, and the state transition probabilities 

on the trait-class. This way, there could be trait classes with completely different parameters. 

From a substantive point of view, it is often preferable to have some degree of invariance, at 

least in the measurement part of the model. The between-day sub-model is given by 

 

𝑃𝑃(𝐲𝐲𝑖𝑖|𝐳𝐳𝑖𝑖) = � � � …
𝐿𝐿

𝑙𝑙1=1

𝐿𝐿

𝑙𝑙0=1

� 𝑃𝑃(𝑇𝑇𝐶𝐶 = 𝑤𝑤 | 𝐳𝐳𝑖𝑖) 𝑃𝑃(𝐷𝐷𝐶𝐶0 = 𝑙𝑙 |𝑇𝑇𝐶𝐶 = 𝑤𝑤, 𝐳𝐳𝑖𝑖0)
𝐿𝐿

𝑙𝑙𝐷𝐷𝑖𝑖=1

𝑊𝑊

𝑤𝑤=1

 

��𝑃𝑃(𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙 |𝐷𝐷𝐶𝐶𝑖𝑖−1 = 𝑙𝑙′,
𝑇𝑇𝐶𝐶 = 𝑤𝑤, 𝐳𝐳𝑖𝑖𝑖𝑖)

𝐷𝐷
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𝑖𝑖=0
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(1) 

and the within-day part by 
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� 𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖0 = 𝑘𝑘|𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙,𝑇𝑇𝐶𝐶 = 𝑤𝑤, 𝐳𝐳𝑖𝑖𝑖𝑖0)
𝐾𝐾

𝑘𝑘𝑇𝑇𝑑𝑑=1

 

��𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑘𝑘 |𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖−1 = 𝑘𝑘′ ,𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙,𝑇𝑇𝐶𝐶 = 𝑤𝑤, 𝐳𝐳𝑖𝑖𝑖𝑖𝑖𝑖)
𝑇𝑇𝑑𝑑

𝑖𝑖=1

� 

���𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚�𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑘𝑘,𝐷𝐷𝐶𝐶𝑖𝑖 = 𝑙𝑙,𝑇𝑇𝐶𝐶 = 𝑤𝑤, 𝐳𝐳𝑖𝑖𝑖𝑖𝑖𝑖�
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(2) 

with z denoting covariates on the various levels. 

Continuous time 
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So far, we have treated the within-day measurement occasions as if they were equally 

spaced (with a constant time interval). However, in ESM studies, intervals between 

measurement occasions usually vary within and between individuals. The set of transition 

probabilities from a discrete-time model is most correctly interpreted as being representative 

for a time interval equal to the overall mean interval. Still, the estimated transition process 

will not be precise, because the effect of the previous state is assumed to be constant across 

time. In the data, more closely spaced observations will have stronger associations (higher 

stability) than more distant observations. Another assumption in discrete-time models 

concerns the timing of transitions: These can only occur when a state is observed. A 

continuous-time process with transitions occurring at any point in time is often more in line 

with psychological theory. For example, continuous trajectories of emotions can provide 

information on evaluative processes operating in the extended process model of emotion 

regulation (Gross, 2015; Kuppens & Verduyn, 2015).  

The continuous-time approach has a long history in Markov model theory (Singer & 

Spilerman, 1976; Kalbfleisch & Lawless, 1985; Böckenholt, 2005). The main difference 

between the discrete-time (DT in the following) and the continuous-time (CT) approach is 

that instead of transition probabilities, transition intensities are defined (Coleman, 1981; 

Kalbfleisch & Lawless, 1985). Transition intensities (or rates) can be thought of as probability 

per very small time unit. For a transition from state a to state b, they can be written as 

 
𝑞𝑞𝑎𝑎𝑎𝑎 = lim

∆𝑖𝑖→0

𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑏𝑏 |𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−∆𝑖𝑖) = 𝑎𝑎)
∆𝑡𝑡

  and 
(3) 

 𝑞𝑞𝑎𝑎𝑎𝑎 ∗ ∆𝑡𝑡 = 𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑏𝑏 | 𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−∆𝑖𝑖) = 𝑎𝑎)   𝑎𝑎 ≠ 𝑏𝑏. (4) 

When two states are observed at nearly the same time point (Δ𝑡𝑡 → 0), it is highly 

unlikely to observe a transition. The longer the time interval, the more likely it becomes to 

observe a transition. The transition intensity is the parameter that defines this rate of change in 

transition probabilities. Just like the transition probabilities in each row of a transition 
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probability matrix sum to 1, the corresponding transition intensities sum to 0, thereby making 

it convenient to obtain the non-transition rate 

 𝑞𝑞𝑎𝑎𝑎𝑎 = −� 𝑞𝑞𝑎𝑎𝑎𝑎
𝑎𝑎≠𝑎𝑎

. (5) 

 

Note that while the specific transition probabilities are a function of the time interval, the 

transition rates themselves are constant over time (stationary process). Just like the 

probabilities, they are assumed to be constant for all subjects within the same day-class. In 

order to obtain a set of transition probabilities from the intensities for a specific time interval, 

the following relationship is crucial: 

 𝐏𝐏(∆𝑡𝑡) = 𝑒𝑒𝐐𝐐𝑖𝑖Δ𝑖𝑖, (6) 

   

where 𝐏𝐏(∆𝑡𝑡) is the transition probability matrix for the specific time interval ∆𝑡𝑡, 𝑒𝑒𝐐𝐐𝑖𝑖Δ𝑖𝑖 is the 

matrix exponential and 𝐐𝐐𝑖𝑖 is the transition intensity matrix. For three states, the transition 

intensity matrix is 

 
𝐐𝐐𝑖𝑖 = �

−(𝑞𝑞𝑎𝑎𝑎𝑎 + 𝑞𝑞𝑎𝑎𝑎𝑎) 𝑞𝑞𝑎𝑎𝑎𝑎 𝑞𝑞𝑎𝑎𝑎𝑎
𝑞𝑞𝑎𝑎𝑎𝑎 −(𝑞𝑞𝑎𝑎𝑎𝑎 + 𝑞𝑞𝑎𝑎𝑎𝑎) 𝑞𝑞𝑎𝑎𝑎𝑎
𝑞𝑞𝑎𝑎𝑎𝑎 𝑞𝑞𝑎𝑎𝑎𝑎 −(𝑞𝑞𝑎𝑎𝑎𝑎 + 𝑞𝑞𝑎𝑎𝑎𝑎)

�. 

 

(7) 

To give an example, the set of transition intensities leading to the transition probabilities 

reported in Table 3 for Day Class 1 in the applied continuous-time model is 

 
𝐐𝐐𝑖𝑖 = �

−.70 . 70 . 00
. 13 −.28 . 15
. 06 . 66 −.72

�. 

 

(8) 

As would be expected, stability decreases and transition probabilities increase exponentially 

with a longer time interval. This is illustrated in Figure 1 with the transition probability from 

an unpleasant to a pleasant mood state as a function of the time interval. 



Running head: A CONTINUOUS-TIME MIXTURE LST-MARKOV MODEL 12 

The hierarchical CT-MLM model presented here perfectly matches the initially stated 

typical characteristics of ESM data: Through its transition process on the level of categorical 

latent variables, the chronological order of the multivariate longitudinal categorical indicators 

is taken into account. Depending on the nesting of measures, two processes at different time 

units are defined. And finally, heterogeneity and varying time intervals are incorporated. 

Application 

Here, we briefly review the application of the discrete-time hierarchical Mixture latent 

Markov model reported in Crayen et al. (2012). There, the best fitting DT model that emerged 

according to information criteria (BIC, AIC3) contained a single stable trait class (W=1), L=2 

classes on the day level and K=3 classes on the within-day state-level. This DT model with 33 

parameters is a special case of the model developed (e.g., no mixture distribution for day-

class transitions) and will serve us as a baseline model. In the current application, we will fit 

the extended models to the same data as used by Crayen et al. (2012), but we will go beyond 

Crayen et al. (2012) by extending this baseline model to include (a) information on varying 

time intervals between within-day measurement occasions and (b) time-varying covariates.  

Sample and measures 

We use data from the original ESM study described in Crayen et al. (2012). The 

sample consisted of N=164 students (88 women; mean age = 23.7, SD = 3.3). The ESM 

period lasted seven days and included eight signals per day. The signaling schedule differed 

both over time and between individuals. Of the 56 possible individual measurement 

occasions, 51 were answered on average (SD = 6.1). The length of the time interval between 

signals was roughly normally distributed (scaled to units corresponding to the mean of 100 

minutes: M=1, SD=.2, min=.6, max=1.7, excess kurtosis=-.38). 

Two bipolar items (well–unwell and good–bad) with three categories each (e.g., very 

well, rather well, not well) of an adapted short version of the Multidimensional Mood 
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Questionnaire (Steyer, Schwenkmezger, Notz, & Eid, 1997) were used as indicators for 

momentary pleasant mood. Reports of positive and/or negative events served as time-varying 

covariates. Subjects were prompted on each measurement occasion with items asking whether 

there had been any positive (resp. negative) event since the last measurement occasion. 

Possible answers were no (=0) and yes (=1). Subjects had been instructed during the initial 

training session to report even ordinary events similar to the ones identified in the daily 

hassles and uplifts scale (DeLongis, Folkman, & Lazarus, 1988). Subjects reported a positive 

event on 28% of the occasions and a negative event on 16% of the occasions. There was 

neither a positive or negative event reported on 62% of the occasions, and both a positive and 

a negative event on 6% of the occasions.  

Data Analysis 

The baseline model comprised three latent momentary mood states labeled unpleasant, 

pleasant, and very pleasant. There were two latent classes on the day level, which differed in 

the initial state probabilities and the transition pattern of the momentary mood states. Most 

measurement model parameters were held equal across classes.1 Day classes were not 

perfectly stable, so that it was possible (albeit unlikely) for people to change day classes 

between days. By including information on the length of the time interval (scaled to the mean 

of 100 minutes), a CT model was estimated which did not differ otherwise from the original 

DT model. In a third model, the dummy coded positive and negative event variables were 

included in the CT model to assess the relation between reported events and the momentary 

states. All models were estimated using Latent Gold 5.0 (Vermunt & Magidson, 2013). 

Results 

                                                           
1 There was a constant difference between classes in the log odds of adjacent categories (parameters 8 and 15 in 
Table 1). This reflected a tendency of the second day class to respond with higher manifest categories compared 
to the first day class given the same latent state. 
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A complete list of estimated parameters common to all applied models is provided in 

Table 1. Model fit information can be found in Table 2. For the CT model, the estimated 

transition intensity parameters can be used to calculate transition probabilities for any given 

time interval (R script provided in Electronic Supplementary Material 1). As an example, we 

obtained two sets for intervals that represent the extremes of the sampled intervals (one hour, 

d=.6 and three hours, d=1.8). Resulting transition probabilities for all models are given in 

Table 3. Transition probabilities obtained from the CT model for the mean interval of 100 

minutes are congruent with the DT values and therefore omitted. In each of the three sets of 

transition probabilities, the distinct character of the day classes became apparent: The larger 

Day Class 1 that comprised about two thirds of the sample was very stable in the pleasant 

mood state and was likely to return to this state. For the smaller Day Class 2, the unpleasant 

and pleasant mood states were less stable, but the very pleasant mood state was the most 

stable. This pattern appeared refined in the results from the CT covariate model, in which 

transition probabilities differed according to the report of a positive and/or a negative event: 

When no event was reported, both day classes were more likely to stay in and to return to the 

pleasant mood state compared to estimates from the model without covariates. However, there 

was a stronger tendency to stay in a positive mood class or to move into it in the second day 

class. The second class was better able to maintain positive mood and to repair negative 

mood.  

In order to evaluate the strength of the relationship between reported events and 

momentary states within each class, it is useful to consult Table 4 and the lower half of Table 

3. Compared to situations without any reported event, transitioning into or staying in an 

unpleasant mood state was much more likely in both classes when a negative event was 

reported. Even in these situations, Day Class 2 still exhibited a substantial probability of 

staying in the very pleasant mood state. For situations in which a positive event was reported, 
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the pattern differed between classes. Particularly interesting is the high probability of a direct 

transition from an unpleasant to a very pleasant mood state (.60) in Day Class 2. A more fine-

grained study design would be necessary to shed light on the underlying mechanisms of 

mood-event interaction. 

Simulation study 

Given that few studies to date applied or simulated the hierarchical CT-MLM model, 

little is known about the general performance and data requirements of the model. Our goal 

was to explore the minimal data requirements needed for trustworthy results by means of a 

Monte Carlo simulation study. Monte Carlo simulations are a tool to evaluate the performance 

of statistical models under various conditions (Harwell, Stone, Hsu, & Kirisci, 1996). 

Multiple data sets are sampled based on a population model with known parameters. The data 

sets may differ with regard to sample size, or, in our case, number of time points. Each 

sampled data set is then analyzed along the lines of real empirical data and all results from 

one condition are aggregated to yield sampling distributions for the estimated parameters. 

These can then be compared to known population parameters to detect systematic deviations 

(bias). In a Monte Carlo simulation study, the sample and model characteristics are the 

independent factors and indicators of model performance are the dependent measures. Our 

general expectations were that additional empirical information would lead to more precise 

parameter estimation.  

Method 

Conditions. Apart from comparing the performance of the two model types (CT vs 

DT), the amount of empirical information was varied according to three design aspects of an 

ambulatory assessment study: The number of subjects in the sample (N), the length of the 

study period (or number of days, D), and the number of measurement occasions within each 

day (T). Based on a literature review of ambulatory assessment studies that examined 
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affective processes (e.g., Hedeker, Mermelstein, Berbaum, & Campbell, 2009; Miller, 

Vachon, & Lynam, 2009), five values for the sample size were chosen with an emphasis on 

small samples: 35, 50, 75, 100, and 150. For the number of days, a short period (D = 3) and 

the very common period of one week (D = 7) were selected. The number of measurement 

occasions within a day (T) varied between 4, 6, and 8. The simulation design was fully 

crossed and resulted in 30 conditions per model type (CT vs. DT).  

Data generation and estimation. The population model for the simulation study was 

a simplified version of the CT model reported in the application.2 Note that the data 

generating model was always a CT model, because even in most DT applications, the 

underlying psychological process is assumed to be continuous in nature. Population 

parameters for the DT model were adjusted depending on the mean time interval in the 

generated data. All population parameters can be found in Table 1 (CT column in the 

simulation section). For each CT condition, 500 replications were generated. First, time points 

were randomly drawn from a uniform distribution within segments of a presumed observation 

day lasting from 8 am to 10 pm (840 minutes), with the additional condition of a minimum 

distance of 30 minutes. The resulting time intervals for the different number of within-day 

measurement occasions were approximately normally distributed within their possible value 

range. Based on the time intervals and the parameters of the population model, the manifest 

responses on the two items with three categories were generated by Latent Gold 5 (Vermunt 

& Magidson, 2013). Within the same software, both CT and DT models were applied to each 

of the 15,000 data sets with the population values serving as starting values, the number of 

iterations for the EM algorithm set to 300 and the number of iterations for the Newton-

                                                           
2 Four parameters associated with the conditional response probabilities linking the extreme manifest categories 
to the opposite latent state-class were fixed to low values (implying probabilities near 0). In addition, four 
transition parameters for the direct transition between the extreme state-classes (unpleasant to very pleasant) 
were also fixed to extremely low values. In CT models, this still allows for indirect transitions through the 
pleasant state. The estimated DT models, however, had to include these additional parameters. They are colored 
grey in Table 1 and did not enter the analysis. 
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Raphson algorithm set to 200. The estimated parameters, standard errors and statistics were 

exported and further processed in R (R CoreTeam, 2015). 

Measures. In order to quantify estimation problems, the proportion of non-converged 

replications and replications with estimation problems was recorded for each condition. As a 

measure of parameter estimation quality, the root median squared error (RMdSE) was 

calculated. It is calculated as the square root of the median of the squared differences between 

parameter estimate and population value. This median-based measure is less sensitive to few 

extreme estimates than measures commonly used in the context of factor analysis (mostly 

standardized deviations, see, for example, Bandalos, 2006). Extreme estimates occur more 

frequently when the loglinear and logit parametrizations are used. As a robust measure for the 

quality of standard error estimation, the median width of the 95% CI (CIMd) was used. The 

standardized standard error bias measure often used as an outcome in factor analysis 

simulations derives its population value from the simulation estimates, which are themselves 

susceptible to bias in small samples. 

Statistical Analysis. For the calculation of the performance measures, non-converged 

replications and replications with other estimation problems (mainly rank deficiency) were 

excluded. In addition, single parameter estimates with an absolute value of 15 or larger and 

standard errors with values above 100 were counted as boundary values and, together with the 

corresponding standard error or parameter estimate, excluded from further analysis (but 

remaining parameters of the replication were kept). Inspection of day-class specific 

parameters did not show any indication for label-switching.  

Performance measures were aggregated as the median across parameters of the same 

type. Parameters were divided into five types: (1) parameters pertaining to the measurement 

part of the model, (2) initial state parameter, (3) state-class transition parameters, (4) the 

(initial) day-class size parameter, and (5) day-class transition parameters. The parametrization 
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for parameter types 2, 3, and 5 differed between CT and DT models. The bias measures for 

the DT model were based upon the converted parameters (which differed for different T; see 

Table 1). The time interval between days was set to a constant corresponding to 8 hours 

(d=4.8). The evaluation of estimation quality is based on descriptive information and 

graphical representation. In addition, a table with effect sizes is provided in Electronic 

Supplementary Material 2. 

Results 

Estimation problems. Overall, 20% of replications in the CT condition and 14% in 

the DT condition exhibited estimation problems. As can be seen in Figure 2, the rate of 

estimation problems was very high in conditions of the short study period (D = 3) in 

combination with few measurement occasions (T = 4) and small sample sizes (N < 100), but 

much lower for other conditions. There were hardly any estimation problems in conditions 

with many measurement occasions (T=8). Non-convergence was more frequent for the CT 

model (6% of all replications) than for the DT model (1%). The remaining estimation 

problems were almost uniquely due to rank deficiency and equally frequent in both model 

types. Because replications with estimation problems were excluded from further analysis, 

five conditions were left with less than 100 valid replications.3 These conditions have been 

omitted in the evaluation of estimation quality. All remaining conditions had at least 230 valid 

replications.  

 Estimation Quality. As expected, parameter recovery and standard error size 

improved with larger sample sizes, a longer study period and more measurement occasions. 

More surprisingly, there were only minor differences between the model types. Because the 

estimation of the different types of transition parameters in the different models is of core 

interest here, we will focus on the evaluation of state-class and day-class transition parameters 

                                                           
3 The five conditions are (1) DT model, D=3, N=35, T=4; (2) DT model, D=3, N=50, T=4; (3) CT model, D=3, 
N=35, T=4;  (4) CT model, D=3, N=50, T=4; and (5) CT model, D=3, N=35, T=6. 
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(Figures 3 to 6). Figures for the remaining parameter types are provided in Electronic 

Supplementary Material 3. There was a striking similarity in the estimation pattern of state-

class transition parameters between the different model types, which can be observed in 

Figure 3 (RMdSE) and Figure 5 (CIMd). Here, the underlying parameters differed (logs of 

transition rates vs. logits of transition probabilities). For few measurement occasions and a 

short study period, the CT model exhibited larger standard errors. There was a considerable 

drop in both measures when the number of measurement occasions was increased from 4 to 6 

in short study period conditions. The effect was less pronounced in long study period 

conditions. Interestingly, an additional increase in sample size above N=75 on in the long 

study period with many measurement occasions had little effect on the parameter estimation 

quality, but still on the size of the standard error. 

Parameter recovery of the day-class transition parameters was much worse than of the 

state-class transition parameters (see Figure 4). This is not surprising given the shorter chain 

of days compared to repeated signal-chains, and the rather small transition probabilities used 

as population values. Consequently, increasing the length of the study period had a large 

effect. For a short study period, only conditions with the largest sample size and many 

measurement occasions seemed to stabilize estimation. Many measurement occasions were 

also necessary to compensate for smaller sample sizes in the long study period conditions. 

There was an unexpected peak in parameter bias for D=7, T=4, N=75 for both model types 

not mirrored in the standard error measure. This may have been due to the fact that these 

measures were aggregated across only two day-class transition parameters (compared to eight 

state-class transition parameters). For measurement model parameters, the effect of T and N 

was especially pronounced for a short study period. For the long study period, RMdSE values 

converged for sample sizes of 75 and larger. However, the effects of T and N on the CIMd 

remained in these conditions. The class size parameter was not well estimated for few 
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measurement occasions. The quality was much better for six or eight occasions. In these 

conditions, the study period and the sample size had only small effects on the RMdSE, while 

there was a clear effect of the sample size and the number of occasions (but not study period) 

on the magnitude of the CIMd. Notable differences between model types were only found in 

the estimation of the initial state parameters. Here, the CT model performed better with the 

overall mean RMdSE for the CT model only about half the size (.153) of the corresponding 

DT value (.286). The CIMd reflected the same, with smaller values for the CT model.  

Discussion 

In the empirical example, the hierarchical CT-MLM model was successfully applied to 

ESM data. It was also extended to incorporate time-varying covariates—that is, information 

on situational influences on mood such as negative and positive daily events. The relation 

between positive and negative events and the mood fluctuation pattern was substantial. This 

may suggest either that the latent day-classes differ with regard to their reactivity to events, or 

the likelihood of events varies depending on day class, or both. While the model matches the 

structure of ESM mood data very well, another potential field of application are burst designs, 

in which it is common to collect daily measures for several days during bursts that are placed 

weeks, months, or even years apart (Nesselroade, 1991). For each burst, there could be latent 

classes of fluctuation patterns, and transitions between these burst-classes could depend on 

the time lag. This example shows two noteworthy points: First, varying time intervals may 

also come into play on the higher-level Markov process once the stable day structure is left, 

and second, the pattern of transition between burst-classes might hold important information 

and exhibit heterogeneity. In studies on cognitive aging, for example, it could be interesting to 

separate individuals that are stable in their performance pattern across some time-span from 

declining or flourishing individuals by including stable trait classes in the hierarchical CT-

MLM model. 
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Concerning minimal data requirements for the simulated data conditions, reasonable 

precision in estimation was accomplished for three days/bursts only if the design included 

eight measurement occasions and a sample size of at least N=100. For a standard ESM design 

with a measurement period of one week, the same precision was accomplished with fewer 

measurement occasions (6 or even 4) and a smaller sample size (N=75). The simulation study 

was designed to closely match the properties of EMA studies in mood regulation research. 

While the resulting data requirements are credible for this line of research, the study is limited 

to its specific set up with a certain number of indicators, state-classes, day-classes, a single-

trait class and a high degree of measurement invariance. Several modeling issues have not 

been addressed by this study and would benefit from future research. (1) Model performance 

when the model does not match the population (misspecification); (2) the ability of model fit 

indices to recover the “true” model, and (3) the performance of competing models that 

represent population heterogeneity differently, for example with continuous random effects. 

In general, the decision on the type of latent variables (continuous vs. categorical) cannot be 

decided by model fit criteria alone. While the categorical nature of the measures in EMA 

study designs makes state classes seem intuitive, the categorical nature of day-classes and trait 

classes of fluctuation patterns should be justifiable in theory. In addition, the level at which 

the latent class is modeled (day or trait) has to be at least partly determined from theory. For 

example, the day classes in the application were very stable, but a model with day-classes was 

preferred because (slightly) different mood fluctuation patterns across days can be expected 

on theoretical grounds. If the construct had been one for which fluctuations across days/bursts 

would not make sense, variability across days would have to be accounted for differently. 

Because there is still little experience with the performance of these models, we recommend 

conducting specific simulations depending on the study planned, taking into account 

theoretical expectations.  
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The proposed hierarchical continuous-time mixture latent Markov model has several 

advantages compared to previously described LST models, especially for the analysis of ESM 

data. First, because it is a model for categorical observed variables, the measurement model 

can be tested on the level of the actual response process. The model would allow identifying 

unknown subgroups of response styles (mixture on the level of measurement occasions). 

Second, it separates the observed variability into measurement error, true occasion-specific 

variability and true stable interindividual differences on different time levels (day, week, etc.). 

Third, the model allows for population heterogeneity in the change process on the various 

time levels. Fourth, the model takes into account varying time intervals between measurement 

occasions, so that the parameters describing the change process are independent of time 

intervals in the specific study design and allow for a better comparison of stability and change 

scores across studies. This is one of the reasons why the CT model should always be preferred 

over the DT model – even though the simulation study revealed only small differences in 

parameter estimation qualities. From a theoretical point of view, the CT model also mirrors 

the underlying process more accurately if this is construed to be continuous in nature. 

Combined with the possibility to include covariates on the different time levels, the 

hierarchical CT-MLM represents a powerful tool that satisfies many challenges posed by 

complex data resulting from complex study designs. 
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Electronic Supplementary Material 

ESM 1. R script (ESM1_Rates2Probs.pdf). In this script, calculation of transition probabilities 

from parameters of the continuous-time model is demonstrated.  

ESM 2. Table 1 (ESM2_Table.pdf). Table of ANOVA effect sizes for manipulated factors in 

the simulation study.  

ESM 3. Figures 1-6 (ESM3_Figures.pdf). Figures showing the RMdSE and CIMd pattern for 

the three remaining parameter types (measurement part, initial state-class, day-class 

size) in the simulation study. 
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Tables 

Table 1 

Overview of parameter values for the three models in the application and for the simulation.    

    Application  Simulation 

    DT CT CT cov  CT  DT  

Index Parametrization (DT)       T=4 T=6 T=8 

Initital day-class size          

1  ln �
𝑃𝑃(𝐷𝐷𝐶𝐶0 = 2)
𝑃𝑃(𝐷𝐷𝐶𝐶0 = 1)

�  -0.8 -0.7 -0.7  -0.7    

Measurement part          

2  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 2|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 1|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -2.3 -2.3 -2.2  -2.4    

3  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 3|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 1|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -5.6 -5.6 -5.6  -15*    

4  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 1|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 2|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -3.0 -3.0 -3.1  -2.9    

5  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 3|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 2|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -4.1 -4.0 -3.9  -3.6    

6  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 1|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 3|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -8.2 -8.3 -8.5  -15*    

7  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 2|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖1 = 3|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -0.5 -0.4 -0.6  -0.6    

8  ln �
𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑1=2|𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑=1,𝐷𝐷𝐶𝐶𝑑𝑑=2)
𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑1=1|𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑=1,𝐷𝐷𝐶𝐶𝑑𝑑=2)
𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑1=2|𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑=1,𝐷𝐷𝐶𝐶𝑑𝑑=1)
𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑1=1|𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑=1,𝐷𝐷𝐶𝐶𝑑𝑑=1)

� etc.  1.2 1.2 1.2  1.2    

9  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 2|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 1|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -2.7 -2.7 -2.4  -2.7    

10  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 3|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 1|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -7.4 -7.4 -7.3  -15*    

11  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 1|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 2|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -3.7 -3.7 -3.8  -3.6    
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    Application  Simulation 

    DT CT CT cov  CT  DT  

Index Parametrization (DT)       T=4 T=6 T=8 

12  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 3|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 2|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -4.3 -4.4 -4.2  -3.6    

13  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 1|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 3|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -6.5 -6.7 -6.6  -15*    

14  ln �
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 2|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖2 = 3|𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -0.1 -0.1 -0.1  -0.3    

15  ln �
𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑2=2|𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑=1,𝐷𝐷𝐶𝐶𝑑𝑑=2)
𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑2=1|𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑=1,𝐷𝐷𝐶𝐶𝑑𝑑=2)
𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑2=2|𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑=1,𝐷𝐷𝐶𝐶𝑑𝑑=1)
𝑃𝑃(𝑦𝑦𝑑𝑑𝑑𝑑2=1|𝑆𝑆𝐶𝐶𝑑𝑑𝑑𝑑=1,𝐷𝐷𝐶𝐶𝑑𝑑=1)

� etc.  2.0 2.0 1.9  1.9    

Day-class transition          

16  ln �
𝑃𝑃(𝐷𝐷𝐶𝐶𝑖𝑖 = 2|𝐷𝐷𝐶𝐶𝑖𝑖−1 = 1)
𝑃𝑃(𝐷𝐷𝐶𝐶𝑖𝑖 = 1|𝐷𝐷𝐶𝐶𝑖𝑖−1 = 1)

�  -4.1 -4.1 -3.7  -2.2 -0.7   

17  ln �
𝑃𝑃(𝐷𝐷𝐶𝐶𝑖𝑖 = 1|𝐷𝐷𝐶𝐶𝑖𝑖−1 = 2)
𝑃𝑃(𝐷𝐷𝐶𝐶𝑖𝑖 = 2|𝐷𝐷𝐶𝐶𝑖𝑖−1 = 2)

�  -2.2 -2.3 -2.6  -2.3 -0.8   

Initial state-class size          

18  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖0 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖0 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  1.5 0.5 0.5  0.5 1.5   

19  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖0 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖0 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)

�  -1.0 -2.0 -2.4  -2.1 -1.1   

20  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖0 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖0 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)

�  1.3 0.1 0.4  0.2 1.4   

21  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖0 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖0 = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)

�  1.0 -0.1 -0.3  -0.1 1.1   

State-class transition          

22  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)�

  -0.2 -0.4 -0.4  -0.4 0.8 0.3 -0.1 

23  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)�

  -2.9 -5.8 -28.4  -15* -1.4 -2.3 -2.8 

24  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)�

  0.3 0.0 -0.1  0.5 1.1 0.9 0.7 
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    Application  Simulation 

    DT CT CT cov  CT  DT  

Index Parametrization (DT)       T=4 T=6 T=8 

25  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 1,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)�

  -0.3 -1.2 -1.7  -15* 0.8 0.1 -0.5 

26  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)�

  -2.3 -2.0 -2.2  -2.0 -1.8 -2.0 -2.2 

27  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)�

  -2.1 -1.9 -2.6  -2.0 -1.9 -2.0 -2.2 

28  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)�

  -1.4 -1.1 -1.8  -0.9 -1.3 -1.3 -1.4 

29  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 2,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)�

  -0.7 -0.8 -1.35  -0.7 -0.1 -0.4 -0.6 

30  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)�

  -2.3 -2.8 -2.8  -15* -1.3 -2.1 -2.7 

31  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 1)�

  -0.2 -0.4 -0.12  -0.3 0.9 0.4 0.0 

32  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 1|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)�

  -2.7 -2.9 -3.5  -15* -2.1 -2.6 -2.9 

33  ln �
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 2|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)
𝑃𝑃(𝑆𝑆𝐶𝐶𝑖𝑖𝑖𝑖 = 3|𝑆𝑆𝐶𝐶𝑖𝑖(𝑖𝑖−1) = 3,𝐷𝐷𝐶𝐶𝑖𝑖 = 2)�

  -1.3 -1.1 -0.9  -0.9 -0.6 -0.8 -1.1 

Note. Models in the application study: DT=Discrete-time model; CT=Continuous-time model; 

CT cov = Continuous-time model with time-varying covariates. Models in the simulation 

study: CT=data generating continuous-time model; DT= estimated discrete time model. DT 

values stated were calculated from CT parameters and used in the assessment of estimation 

performance. Unless otherwise stated, DT model values equal the corresponding CT values 

(day-class size and measurement part) or the value of the neighboring DT model (day-class 

transition, initial transition). Values with an asterisk (*) are fixed parameters. Values marked 

grey were the four additional transition parameters in DT models not included in the 

assessment of estimation performance. 
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Table 2 

Goodness-of-Fit Statistics for models in the application. 

Model LL No. par. BIC 

DT -10,166 33 20,500 

CT -10,177 33 20,522 

CT cov  -9,717 57 19,724 

Note. DT=Discrete-time model; CT=Continuous-time model; CT cov = Continuous-time 

model with time-varying covariates; LL = logLikelihood; par. = parameters; BIC = Bayesian 

Information Criterion. 
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Table 3 

Day-class specific transition probabilities in different models, depending on time interval (CT 

model) and reported events (CT covariate model). 

        Day Class 1  Day Class 2 

         State    State  

Model   d  Event  State-1  1 2 3  1 2 3 

      1:   .53 .44 .03  .33 .43 .24 

DT  -  -  2:   .09 .82 .10  .14 .57 .29 

      3:   .05 .43 .52  .05 .21 .74 

CT 

 
.6 

(1 hour) 

   1:   .67 .32 .01  .49 .36 .16 

  -  2:   .06 .87 .07  .11 .69 .20 

    3:   .03 .30 .66  .03 .15 .82 

 
1.8 

(3 hours) 

   1:   .34 .59 .07  .20 .44 .36 

  -  2:   .12 .76 .13  .14 .47 .39 

    3:   .09 .57 .34  .08 .29 .63 

CT cov 

     1:   .53 .45 .01  .36 .49 .15 

   None  2:   .08 .88 .04  .09 .73 .18 

     3:   .05 .54 .40  .03 .29 .67 

 
1 

(100 min) 

   1:   .26 .61 .12  .03 .37 .60 

  Positive  2:   .02 .74 .24  .03 .52 .45 

    3:   .01 .31 .68  .01 .12 .87 

     1:   .77 .23 .00  .72 .24 .03 

   Negative  2:   .37 .62 .01  .36 .55 .09 

     3:   .42 .51 .07  .30 .33 .36 

Note. DT = Discrete-time model; CT = Continuous-time model; CT cov = Continuous-time 

model with covariates; d = length of time interval in 100 minutes; State-1 = occupied state at 
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preceding time point; State 1:  = unpleasant mood state; State 2:  = pleasant mood state; 

State 3:  = very pleasant mood state. Values for the infrequent concurrent report of a 

positive and a negative event do not appear in the table. 
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Table 4 

Loglinear effects of events on the transition intensities in the CT covariate model (standard 

errors in parentheses). The respective “no transition” category served as reference. Negative 

values imply a decrease in transition intensity (increase in stability), positive values describe 

an increase. 

   Day Class 1  Day Class 2 

    State    State  

 State-1  1 2 3  1 2 3 

Positive 

Event 

1:   0 
0.72 

(0.09) 

1.35 

(0.57) 
 0 

0.98 

(0.34) 

2.42 

(0.42) 

2:   
-0.93 

(0.37) 
0 

1.61 

(0.22) 
 

0.22 

(0.44) 
0 

0.87 

(0.22) 

3:   
-30.96 

(1.34) 

-0.66 

(0.29) 
0  

-0.88 

(0.79) 

-0.85 

(0.30) 
0 

Negative 

Event 

1:   0 
-0.63 

(0.12) 

-2.91 

(2.95) 
 0 

-0.84 

(0.26) 

-2.06 

(0.44) 

2:   
1.63 

(0.18) 
0 

-0.77 

(0.44) 
 

1.19 

(0.32) 
0 

-0.20 

(0.32) 

3:   
2.66 

(1.07) 

0.77 

(0.39) 
0  

2.64 

(0.99) 

0.51 

(0.35) 
0 
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Figure captions 

Figure 1. Transition probability from the unpleasant to the pleasant mood state for Day Class 

1 as a function of the time interval as estimated in the continuous-time model. Marked 

are the time intervals used in Table 3 (d=0.6 and d=1.8). 

Figure 2. Proportion of 500 simulated replications affected by estimation problems such as 

non-convergence. The left panels contain results for continuous-time models, the right 

panels contain results for discrete time models. Upper panels represent conditions with 

D=3 days, lower panels represent conditions with D=10 days. Lines denote different 

numbers of measurement occasions.  

Figure 3. Estimation quality (root median squared error) of the state-class transition 

parameters for simulated conditions. Conditions with fewer than 100 valid replications 

are omitted. 

Figure 4. Estimation quality (root median squared error) of the day-class transition 

parameters for simulated conditions. Conditions with fewer than 100 valid replications 

are omitted. 

Figure 5. Standard error estimation (median width of the confidence interval) for state-class 

transition parameters and simulated conditions. Conditions with fewer than 100 valid 

replications are omitted. 

Figure 6. Standard error estimation (median width of the confidence interval) for day-class 

transition parameters and simulated conditions. Conditions with fewer than 100 valid 

replications are omitted. 
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Figure 1 
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Figure 3 
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Figure 5 
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Figure 6 

 


