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This paper presents Bayesian approaches to parameter estimation in the log-linear analysis of

sparse frequency tables. The proposed methods overcome the non-estimability problems that

may occur when applying maximum likelihood estimation. A crucial point when using

Bayesian methods is the specification of the prior distributions for the model parameters. We

discuss the various possible priors and assess their influence on the parameter estimates by

two empirical examples in which maximum likelihood estimation gives problems. For the

practical implementation of the Bayesian estimation methods, we used a Metropolis

algorithm.
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1 INTRODUCTION

Often the sample size N is not much larger than the number of cells in the contingency table.

This occurs when the size of the sample is small or when the number of categories classifying

the table is large. In those cases, a substantial number of cells may contain no observations.

According to Agresti (1990), a sparse table is a contingency table in which more than about

20 percent of the cells have expected cell counts below 5.
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The analysis of sparse tables can give two types of problems. One class of problems

associated with sparse tables is related to the goodness-of-fit testing since the asymptotic

approximations of the standard chi-squared statistics tend to be poor for these tables. In

certain situations, one might apply exact tests to check the goodness-of-fit (Kim and Agresti

1997), but this is not always the case.

Another class of problems is related to the non-existence of the maximum likelihood

(ML) estimates and the asymptotic standard errors for certain log-linear parameters. More

precisely, sometimes parameter estimates take on values of plus or minus infinity. In such

cases, algorithms like IPF and Newton-Raphson may even fail to converge (Clogg et al.,

1991).

A solution that is often used for the latter problem is to add a small constant, say 0.5,

to every cell of a sparse table prior to analysis. One of the effects of adding a constant is that

the estimates of log-linear parameters smooth toward zero. Another effect is that the sample

size is increased. Goodman (1970, 1971) recommended using this procedure for saturated

models only. A different approach proposed by Clogg et al. (1991) is to preserve the marginal

distribution of the dependent variable when prior observations are divided among cells of the

contingency table. Agresti (1990) recommended performing a sensibility analysis repeating

the analysis with constants of various sizes. It may even be adequate to add an extremely

small constant, such as 10-8, to the empty cells.

From a Bayesian point of view, adding a small constant to every cell is equivalent to

using a particular type of prior information about the parameters. However, this just one of

the many possible ways to specify prior information on the parameters. In this paper, we

explore the various types of priors that can be used in a Bayesian estimation of log-linear

models. Our goal is to find a prior that on the one hand prevents the estimation problems

associated with sparse tables, but on the other hand influences the parameter as less as

possible.

Below, we first introduce two empirical examples in which ML estimation gives

problems. Then we present the Bayesian approaches. The paper ends with some conclusions.

2 TWO EMPIRICAL EXAMPLES

In this section, we present two examples that represent two common estimation problems in

sparse tables.
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2.1 Example 1: Non-existence Problems in the Model of no Three-Factor Interaction

Table 1 gives a 2-by-2-by-2 contingency table that was presented by Clogg et al. (1991).

Table 1.  Contingency table with two sampling zeroes

Predictors Response Variable
x1 x2 Y=1 Y=2
 1  1 0 3
-1  1 9 4
 1 -1 6 3
-1 -1 5 0

Totals 20 10
  Source: Clogg, C. et al. (1991)

The model of interest for this table is the following logit model:

22110 iii xx βββφ ++=  . (1)

This example illustrates the problem of non-existence of ML estimates. It is an interesting

case because all group totals and all sufficient statistics are nonzero. As already mentioned by

Clogg et al, 1991, existing ML routines based on iterative proportional fitting, Newton-

Raphson, or equivalent algorithms have difficulties finding estimates for the log-linear

parameters.  Table 2 reports the results we obtained by a Newton-Raphson algorithm. As can

be seen, the parameters take on very extreme values, and the same applies to their standard

errors.

The standard solution to the estimation problems that were encountered is to add a small

constant, say 0.5, to every cell in the contingency table. Note that since the sample size is

very small (N=30), even with a small number like 0.5 quite a lot of non-observed information

is added with such procedure. As can be seen from the results reported in Table 2, adding 0.5

to each cell smoothes the estimates of log-linear parameters toward zero and gives estimates

for all s.e.'s.

Table 2. Maximum likelihood estimates for example 1

ML ML after adding 0.5
Predictor Parameter s.e. Parameter s.e.
Constant 0.75 0.46 0.62 0.40
x1 -144.90 685.93 -1.15 0.58
x2 -144.84 685.93 -1.07 0.58
Model fit L2= 0.00, df= 1 L2= 0.16, df = 1
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2.2 Example 2: Non-existence Problems in a Model with a Sufficient Statistic zero

Table 3 gives a 2-by-2-by-2-by-2 contingency table that was presented by Fahrmeir and Tutz

(1994) showing data on infection following birth by Caesarean section. The response variable

is the occurrence or non-occurrence of infection. Three dichotomous covariates were

considered.

Table 3. Contingency table with zero sufficient statistics

Caesarean planned Not planned
Infection Infection

yes No Yes No
Antibiotics

Risk factors 1 17 11 87
No risk factors 0 2 0 0

No antibiotics
Risk factors 28 30 23 3

No risk factors 8 32 0 9
Source: Fahrmeir, L. and Tutz, G. (1991)

The model considered is a logit model with an interaction effect between Antibiotic and Risk

factors,

.3243322110 iiiiii xxxxx βββββφ ++++= (2)

This example illustrates the non-existence of ML estimates because zeroes in the

sufficient statistics. In such cases, ML routines based on iterative proportional fitting,

Newton-Raphson, or equivalent algorithms have difficulties to estimate the parameters

concerned, in this case, the interaction parameter.

Table 4 presents results obtained with Newton-Raphson. We can observe that our

program has problems to estimate the parameter whose sufficient statistics contains a zero. If

a small constant (0.5) is added to each cell, also the interaction parameter can be estimated

and the other parameters are smoothed towards zero. The effect of adding a constant does not

seem to be very large since the ratio between the parameter values and the standard

deviations remains approximately the same.
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Table 4. Maximum likelihood estimates for example 2

ML ML after adding 0.5
Predictor Parameter s.e. Parameter s.e.
Constant -9.03 5.30 -2.16 0.33
x1 6.31 5.29 -0.12 0.31
x2 8.00 5.30 1.22 0.31
x3 -1.99 0.32 -1.64 0.26
x2 x3 -7.29 5.30 -0.59 0.31
Model Fit L2= 0.95, df = 3 L2= 8.30, df = 3

3 BAYESIAN APPROACH

The main difference between ML and Bayesian approaches is that in the latter the likelihood

function is combined with a prior. The objective is to provide information of the posterior

distribution of the parameters. The posterior distribution can be obtained from  the likelihood

and the priors by the Bayes rule; that is,

)()/(
)()/(
)()/()/( θθ
θθθ

θθθ pyp
dpyp

pypyp ∝=
∫

, (3)

where θ is the parameter vector, y represents the observed data, )|( θyp  is the likelihood

function, )(θp  denotes the prior distribution of the parameters, and )/( yp θ  denotes the

posterior distribution of the parameters.

When analysing the sparse contingency tables, the prior information can be to make

sure that estimates of the parameter can be calculated. However, there are many possible

choices for the prior distribution. In some cases, an informative prior may be more adequate

because there are some theories about the model. But, in other cases, no a priori information

about the model is available or the objective is to get the same estimates that would be

obtained by a classical approach.

Nowadays, it is becoming more and more common to use noninformative priors.

There is, however, a controversy with respect the definition of noninformative prior

distributions in multinomial models, The introduction of covariates, as in our examples,

makes the problem even more complicated.

Four kinds of priors have been proposed for Bayesian estimation of logit models:

natural conjugate priors (Koop and Poirier, 1993, 1994, and 1995), normal priors (Koop and

Poirier, 1993), the Jeffreys' prior (Ibrahim and Laud, 1991), and uniform priors for the logit

coefficients (Koop and Poirier 1993, 1994, 1995,  and Ibrahim and Laud 1991).
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The estimation of the marginal posterior densities of the parameters reported below

was performed with a Metropolis algorithm. We used independent univariate normals as

jump functions. The jump functions have means equal to the previous estimates and variances

that are set after the burning in. The algorithm generates initial runs of 1000 iterations as a

“burn-in” in order to reach convergence. After that, it performs iterations until a maximum of

100.000 iterations or until the convergence criterion was less than 1.001. We monitor

convergence of the iterative simulation by the factor:

,)/(rva
W

yR ψ+

=
))

(4)

where,

B
n

W
n

ny 11)/(rva +−=+ ψ) . (5)

Here, B and W are the between- and within-sequence variances. This statistic decline to 1 as

n→∞. We used three chains to calculate the convergence factor. When this factor is around

one3, we have reasons to believe that we are simulating from the posterior distribution. The

program we made also calculates posterior modes by a Newton-Raphson.

In order to assess the effect of different priors on the parameters, we use the ratio

between means (or modes) and standard errors. The main objective is to get stable estimates

of  the significance of the parameters changes when different kinds of priors are used. As we

will show, when priors are less informative both the parameter estimates and standard

deviations tend to increase.

3.1 Uniform prior

Using a uniform prior is equivalent to estimation without prior information. In this case, the

prior density is constant, where the constant is typically set to 1. The uniform prior was

popularised by Laplace (1812).

                                                          
3 Gelman, et al. (1995) suffested that values bellow 1.2 are acceptable.
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Table 5. Results with uniform prior

Coeffic. Mean s.e. z Mode s.e. z
Example 1

β0 -66.49 0.49 1.73 0.75 0.46 1.62
β1 -66.49 63.33 -1.05 -144.90 685.93 -0.21
β2 -66.44 63.33 -1.05 -144.84 685.93 -0.21

Example 2
β0 -9.03 5.30 -1.70 -9.53 3.16 -3.01
β1 6.31 5.29 1.19 6.91 3.16 2.18
β2 8.00 5.30 1.51 8.52 3.16 2.69
β3 -1.99 0.32 -6.20 -1.91 0.30 -6.36
β4 -7.29 5.30 -1.38 -7.83 3.16 -2.48

We observe from Table 5 that the values of the parameters and standard deviations are

extremely high in the first example. Another problem is that the Metropolis algorithm does

not converge. The value of convergence is 1.44 in example 1 and 1.46 in example 2, which

indicates that after 100000 iteration the simulations are not from the target distribution.

It seems that with sparse tables this type of prior information is not very useful because it

has the same problems as ML estimation.

3.2  Jeffreys’ prior

Another interesting prior is the Jeffreys' prior. This prior exhibits many nice features making

it an attractive reference prior. One of its properties is that it is parameterization invariance.

Jeffrey's prior also has the property of being approximately noninformative in the sense of

Box and Tiao (1973), who motivated Jeffreys' prior by introducing the notion of data

translated likelihood. The Jeffreys' prior is defined by

( ) 2
1

)( θθ Ip = , (6)

where | .|  denotes the determinant, and I(θ) is the expected Fisher information matrix

calculated using the log-likelihood function. A common approach, assuming that ''ignorance''

is consistent with ''independence '', is to obtain a noninformative prior for each parameter

individually, and calculate the joint prior as the product of these individual prior (Schafer,

1995). For an unrestricted multinomial distribution this prior is a flattering prior with constant

value c=1/2. When there are no covariates, the prior obtained by using this method

corresponds to a natural conjugate prior.
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Ibrahim and Laud (1991) developed a general formulation to obtain the Jeffreys prior

for the family of generalised linear models. In the case of a multinomial model with

covariates, the Jeffreys' prior can be obtained as follows:

( ) ( )[ ] ( )[ ] 2
1

1 1

)( ∑∑
= =

′−⋅−⋅∝
N

n

J

j
nnjnnjnj xxxxpp θθθθ , (7)

where xnj  is and element of the design matrix and x n(θ) is a weighted average of xn

characteristics for observation n.

Table 6. Results with Jeffreys’ priors

Coefficient Mean s.d. z Mode s.d. z
Example 1

β0 0.76 0.46 1.63 0.67 0.43 1.54
β1 -2.15 1.18 -1.82 -1.45 0.77 -1.89
β2 -2.10 1.19 -1.77 -1.38 0.76 -1.78

Example 2
β0 -2.81 0.56 -4.99 -2.49 0.42 -5.87
β1 0.19 0.53 0.36 -0.04 0.40 -0.09
β2 1.80 0.54 3.30 1.50 0.40 3.72
β3 -1.91 0.30 -6.39 -1.84 0.29 -6.40
β4 -1.11 0.54 -2.06 -0.84 0.40 -2.09

The results in Table 6 show that in comparison with the uniform prior the

Jeffreys’prior is quite informative. It yields guarantees that one obtains stable estimates of the

parameters as well as their standard errors. The advantage of this prior is that it is calculated

in a standard way and no ad hoc choice has to make about the amount of information that has

to be added. We will take this prior as a reference to compare with the others priors presented

below. A disadvantage of the Jeffrey's prior that it is takes much more time to calculate it

than other priors, which can become problematic when using simulation methods like the

metropolis algorithm.

3.3 Dirichlet prior

One of the most interesting characteristics of the Dirichlet distribution is that it is a member

of the same family as the multinomial distribution. More precisely, these two distributions are

conjugate since their kernels are of the same form. This is attractive in sensitivity analyses

since it is easy to quantify the impact of the prior on the estimates. The consequence of the

multinomial and Dirichlet distributions being conjugate is that when they are combined one
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obtains another Dirichlet distribution with parameters equal to the sum of the multinomial

parameters and the Dirichlet prior parameters. If we have little prior information then it may

be appropriate to take the Dirichlet parameters equal to a common value. However, there is

not a unique choice for this value that clearly represents a state of ignorance about the

parameters. An interesting option is described by Clogg et. al., (1991): they proposed using a

Dirichlet that preserves the marginal distribution of the dependent variable, and that takes

number of cells of the contingency table into account. Koop and Poirier (1993, 1994, and

1995) used similar types of conjugate priors in the estimation of logit models.

When a constant (c) is added to every cell, the information equivalent to c multiplied

by the size of the table is introduced. This implies that that if the sample size is small, the

information that is added can be even larger than the actual sample size. In the absence of

strong prior beliefs about the parameters, it is probably unwise to add prior information that

amounts to more than about 10-20% of the actual sample size (see Schafer, 1997)

Therefore, it can be appropriate to consider other types of priors in which a certain

number of prior observations is added. Also the way of splitting them into the prior

information can be chosen by the researcher.Clogg et al. (1991) advocated a strategy in

which prior observations are divided among cells of the contingency table in such a way that

the marginal distribution of one of the variables is preserved. In the same way, it is possible

to use a prior that preserves the marginal distributions of all the variables in the contingency

table. These approaches prevent smoothing parameters towards a uniform model, which can

distort inference about parameters when the marginal distributions of the variables are far

from uniform.

As can be seen from Table 7, in the first example, the equiprobability prior with c=0.5

smoothes the estimates more towards zero that the Jeffreys’ prior, which is not surprising

given that the constant added is quite high for this sample size (N=30). When c=0.1,there is

on the one hand less smoothing, but on the other hand because the standard deviations

increase even more, effects which were significant with c=0.5 are no longer significant.

Compared to the equiprobability priors, the independence priors shrink the intercept

less to zero. However, the to effects are quite similar between equiprobability and

independence prior. When using the independence prior with small constants the results are

most similar to the results with a Jeffreys’ prior.  When using smaller constants, the posterior-

mode seems to be more stable than the posterior mean. However, the ratios between

means/modes and standard deviations are approximately the same in all the cases.
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For example 2, we get similar results, but changes are less important in this example

than in the first one. When c=0.5, changes in parameter values and standard deviations are

smaller because the sample size is larger than in example 1. When c=0.1, changes are also

smaller because the contingency table has a larger number of cells and the amount of

information added is higher than in the other example.

3.4 Univariate normal priors

Another possible specification of the priors is to assume the log-linear parameters to come

from independent univariate normal distributions. For each parameter, we have to specify the

mean and the variance. The mean of the normal prior will typically be set to 0. The size of the

variance affects to the amount of prior information that is added. A noninformative prior is

obtained by setting variances to a very large value.

In sparse tables, this procedure helps to get estimates of the log-linear parameters

because it permits to calculate the value of log-linear parameters even when they are close to

the boundary.
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Table 7.  Results with Dirichlet prior

Coefficient Mean s.e. z Mode s.e. z
Example 1
Equiprobability (c= 0.5)

β0 0.68 0.44 1.54 0.62 0.40 1.53
β1 -1.43 0.70 -2.04 -1.15 0.58 -1.99
β2 -1.36 0.71 -1.91 -1.07 0.58 -1.84

Equiprobability (c= 0.1)
β0 0.75 0.48 1.58 0.72 0.45 1.60
β1 -3.65 2.36 -1.55 -1.92 1.16 -1.65
β2 -3.59 2.36 -1.52 -1.86 1.17 -1.59

Independence (c1= 0.5, c2= 0.25)
β0 0.79 0.45 1.77 0.73 0.42 1.73
β1 -1.66 0.81 -2.04 -1.29 0.65 -1.97
β2 -1.60 0.82 -1.95 -1.23 0.66 -1.86

Independence (c1= 0.3, c2= 0.1)
β0 0.85 0.47 1.80 0.77 0.44 1.73
β1 -2.36 1.32 -1.79 -1.59 0.85 -1.87
β2 -2.31 1.33 -1.74 -1.54 0.86 -1.79

Example 2
Equiprobability (c= 0.5)

β0 -2.34 0.40 -5.85 -2.16 0.33 -6.48
β1 -0.01 0.37 -0.01 -0.12 0.31 -0.40
β2 1.38 0.38 3.65 1.22 0.31 3.93
β3 -1.68 0.27 -6.31 -1.64 0.26 -6.36
β4 -0.74 0.37 -1.97 -0.59 0.31 -1.92

Equiprobability (c= 0.1)
β0 -3.14 0.85 -3.68 -2.72 0.60 -4.48
β1 0.48 0.84 0.57 0.17 0.59 0.30
β2 2.12 0.84 2.52 1.72 0.59 2.90
β3 -1.93 0.31 -6.25 -1.85 0.29 -6.38
β4 -1.42 0.84 -1.69 -1.05 0.59 -1.77

Independence (c1= 0.5, c2= 0.25)
β0 -2.33 0.39 -5.92 -2.15 0.33 -6.44
β1 -0.04 0.36 -0.11 -0.14 0.31 -0.45
β2 1.38 0.37 3.74 1.22 0.31 3.93
β3 -1.71 0.27 -6.24 -1.66 0.26 -6.34
β4 -0.73 0.37 -1.99 -0.59 0.31 -1.92

Independence (c1= 0.3, c2= 0.1)
β0 -2.59 0.47 -5.56 -2.36 0.40 -5.95
β1 0.09 0.44 0.21 -0.06 0.37 -0.15
β2 1.61 0.45 3.62 1.40 0.37 3.73
β3 -1.81 0.28 -6.41 -1.75 0.28 -6.36
β4 -0.94 0.44 -2.12 -0.74 0.37 -2.00
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Table 8.  Results with univariate normal priors

Coefficien
t

Mean s.e. z Mode s.e. z

Example 1
µ= 0, σ2=10

β0 0.78 0.47 1.67 0.72 0.45 1.60
β1 -2.66 1.31 -2.03 -1.92 1.06 -1.81
β2 -2.61 1.33 -1.97 -1.86 1.07 -1.74

µ= 0, σ2=100
β0 0.81 0.49 1.66 0.75 0.46 1.62
β1 -6.50 4.18 -1.55 -2.89 2.74 -1.05
β2 -6.44 4.18 -1.54 -2.83 2.75 -1.03

Example 2
µ= 0, σ2=10

β0 -3.30 0.79 -4.20 -2.80 0.64 -4.38
β1 0.63 0.78 0.80 0.23 0.63 0.37
β2 2.27 0.78 2.93 1.80 0.63 2.87
β3 -1.95 0.31 -6.31 -1.87 0.29 -6.40
β4 -1.58 0.77 -2.03 -1.12 0.63 -1.79

µ= 0, σ2=100
β0 -6.48 2.87 -2.26 -3.33 1.68 -1.98
β1 3.76 2.86 1.31 0.72 1.68 0.43
β2 5.44 2.86 1.90 2.32 1.68 1.38
β3 -1.99 0.31 -6.32 -1.91 0.30 -6.36
β4 -4.74 2.86 -1.66 -1.64 1.68 -0.98

From the results reported in Table 8 we can observe that in the first example the

parameters are quite dependent on the prior distribution. However, again the posterior modes

are less dependent on the specification of the prior than the posterior means. In addition, the z

values are much less influenced by the choice of the prior than the parameter estimates

themselves. In both examples, normal priors with a variance of 10 seem to work best. In

addition, the results obtained with these priors are similar to the ones obtained with Jeffreys’

prior.

3.5 Multivariate normal priors

Since log-linear parameters are usually related, it is may be better to consider a multivariate

normal prior distribution for the parameter vector. Ibrahin and Laud (1991) propose using a

normal distribution with mean 0 and covariance matrix k(X’IX)-1, where k is a known

positive constant. Here, the value of k represents the amount prior information that the

researcher wishes to add. If k is near to zero, then the prior will be near to noninformative.

However, in our examples (X’IX) is a diagonal matrix with the same number on each
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diagonal prior. This means that it yields the same prior as the set of independent univariate

normal priors presented above.

Another option is to approximate the covariance matrix using the observed cell

frequencies plus a small number, say 0.1, to circumvent the observed zeroes. More precisely,

we propose using a multivariate normal distribution with covariance matrix equal to k times

the approximate covariance matrix of the beta parameters. Here, k is again a constant

influencing the effect of the prior. Table 9, presents the results of k=1 and k=0.01.

Table 9. Results with multivariate normal priors

Coefficien
t

Mean s.e. z Mode s.e. z

Example 1
k=1

β0 0.38 0.31 1.23 0.37 0.31 1.20
β1 -1.56 0.69 -2.27 -1.34 0.63 -2.12
β2 -1.53 0.69 -2.22 -1.30 0.63 -2.07

k=0.01
β0 0.81 0.48 1.70 0.74 0.46 1.61
β1 -10.37 6.96 -1.49 -3.29 4.14 -0.79
β2 -10.32 6.96 -1.48 -3.23 4.14 -0.78

Example 2
k=1

β0 -1.85 0.38 -4.87 -1.69 0.34 -5.02
β1 0.42 0.38 1.11 0.27 0.33 0.83
β2 1.28 0.37 3.41 1.12 0.33 3.39
β3 -1.06 0.17 -6.27 -1.05 0.17 -6.28
β4 -0.90 0.37 -2.41 -0.75 0.33 -2.28

k=0.01
β0 -5.53 2.42 -2.28 -3.45 2.18 -1.58
β1 2.85 2.41 1.18 0.86 2.18 0.39
β2 4.50 2.42 1.86 2.45 2.18 1.12
β3 -1.96 0.31 -6.39 -1.89 0.30 -6.38
β4 -3.81 2.42 -1.58 -1.77 2.18 -0.81

In the first example we see that k=1 smoothes the parameters towards a model of

equiprobability: the effect is similar to the effect of using Dirichlet equiprobability prior with

c=0.5. Compared to the first example 1, in the second example the effect of different values

of k is less important. This is comparable to what to found with the Dirichlet priors
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3.6 The Maximal Data Information Prior ( MDIP )

This prior was developed in Zellner (1971), based on information theoretic arguments. It is

given by π(θ)=exp{∫p(x/θ)logp(x/θ)dx}, where p(x/θ) is the data density function. In our

examples with sparse tables, this prior was not useful because it gave convergence problems.

4   CONCLUSIONS

In this paper we showed that Bayesian methods may be used solve the estimation problems

associated with maximum likelihood estimation when the contingency table contains ampling

zeroes. The problem is, however, to find the most appropriate prior given the sample size and

the number of cells in the contingency table.

We saw that the less informative the priors, the more extreme the parameter values.  On

the other hand, the significance of parameters (the z values) seem to be quite stable under

different priors because the standard errors tend to change in the same direction as the

parameter estimates when the priors become less informative.

The posterior mode estimates seem less dependent of the amount of prior information

than the posterior mean estimates. This effect has been observed with all priors used in our

paper.

When using too noninformative priors, such as uniform priors or normal priors with large

variances, we encountered the same problems as with maximum likelihood estimation. Our

conclusion is that irrespective of the type of prior that is used - Dirichlet, univariate normal or

multivariate normal, there is a kind of equilibrium at which the amount of prior information is

just enough to obtain stable estimates of both parameters and standard errors.

The Jeffreys’ prior proved useful in our examples because the contingency tables and the

number of parameters were not very large. However, in larger problems it is more difficult to

apply because of its computational intensity.

Simulation studies in which one starts from a known population distribution should be

performed to get more insight in the bias introduced by each of the types of the priors.

Another point of future research is the comparison of posterior mean and posterior mode

estimation.
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