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We propose an alternative method of conducting exploratory latent class analysis that 

utilizes latent class factor models, and compare it to the more traditional approach based on 

latent class cluster models.  We show that when formulated in terms of R mutually 

independent, dichotomous latent factors, the LC factor model has the same number of 

distinct parameters as an LC cluster model with R+1 clusters. Analyses over several data 

sets suggest that LC factor models typically fit data better and provide results that are easier 

to interpret than the corresponding LC cluster models.  We also introduce a new graphical 

“bi-plot” display for LC factor models and compare it to similar plots used in 

correspondence analysis and to a barycentric coordinate display for LC cluster models. We 

conclude by describing various model extensions and an approach for eliminating 

boundary solutions that we have implemented in a new computer program called Latent 

GOLD.   
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1.  INTRODUCTION 
 
Latent class (LC) analysis is becoming one of the standard data analysis tools in social, 

biomedical, and marketing research.   While the traditional LC model described by 

Lazarsfeld and Henry (1968) and Goodman (1974a, 1974b) contains only nominal 

indicator variables, variants have been proposed for ordinal (Clogg 1988; Uebersax 1993; 

Heinen 1996) and continuous indicators (Wolfe 1970; McLachlan and Basford 1988; 

Fraley and Raftery 1998), as well as for combinations of variables of different scale types 

(Lawrence and Krzanowski 1996; Moustaki 1996; Hunt and Jorgensen 1999; Vermunt and 

Magidson 2001).  This paper concentrates on exploratory LC analysis with nominal and 

ordinal indicators. 

  In an exploratory LC analysis, the usual approach is to begin by fitting a 1-class 

(independence) model to the data, followed by a 2-class model, a 3-class model, etc., and 

continuing until a model is found that provides an adequate fit (Goodman 1974a, 1974b; 

McCutcheon 1987).  We refer to such models as LC cluster models since the T nominal 

categories of the latent variable serve the same function as the T clusters desired in cluster 

analysis (McLachlan and Basford 1988; Hunt and Jorgensen 1999; Vermunt and Magidson 

2001).  

  Van der Ark and Van der Heijden (1998) and Van der Heijden, Gilula and Van der 

Ark (1999) showed that exploratory LC analysis can be used to determine the number of 

dimensions underlying the responses on a set of nominal items.  A LC model with three 

classes, for example, can be seen as a two-dimensional model similar to a two-dimensional 

joint correspondence analysis (JCA).  However, within the context of LC analysis, a more 

natural manner of specifying the existence of two underlying dimensions for a set of items 

is to specify a model containing two latent variables.   

  Goodman (1974b), Haberman (1979), and Hagenaars (1990, 1993) proposed 

restricted 4-class LC models yielding confirmatory LC models with two latent variables.  

Their approach is confirmatory since, as in confirmatory factor analysis, it requires a priori 

knowledge on which items are related to which latent variables.  In exploratory data 

analysis settings, we do not know beforehand which items load on the same latent variable.  
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Hence, in exploratory analyses with several latent variables, this approach has limited 

practical applicability. 

  In this paper, we propose combining the exploratory model fitting strategy of the 

traditional latent class model with the possibility of increasing the number of latent 

variables to study the dimensionality of a set of items.  Our alternative model fitting 

sequence involves increasing the number of latent variables (factors) rather than the 

number of classes (clusters).  We call the latter sequence the LC factor approach because of 

the natural analogy to standard factor analysis.  The basic LC factor model contains R 

mutually independent, dichotomous latent variables.  To exclude higher-order interactions, 

logit models are specified on the response probabilities.  An interesting feature of the basic 

R-factor model is that it has exactly the same number of parameters as an LC cluster model 

with T = R+1 clusters. In section 2, we describe the two types of exploratory LC models 

using the log-linear formulation introduced by Haberman (1979). 

  Section 3 compares the use of LC cluster and factor models and describes various 

graphical displays that facilitate the interpretation of the results obtained from these 

models.  Specifically, we consider some variations of the ternary diagram originally 

proposed by Van der Ark and Van der Heijden (1998) for LC cluster models, and introduce 

a new display (called a “bi-plot”) for LC factor models to represent various kinds of 

information in a 2-dimensional factor space.  These two graphs are compared to each 

other and to similar displays used in correspondence analysis. 

  Section 4 presents some final remarks regarding the applicability of these models.  

For a more complete version of this paper see Magidson and Vermunt (2001). 

 

 

2.  TWO APPROACHES FOR EXPLORATORY LATENT CLASS ANALYSIS 

 

In this section we describe and compare two competing alternative approaches for 

exploratory LC analysis.  The traditional approach utilizes LC cluster models, while the 

alternative is based on LC factor models.  For the sake of simplicity of exposition, below 

we use the log-linear formulation of LC models introduced by Haberman (1979).  In 
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Appendix A, we give the alternative probability formulation of the two types of LC 

models, as well as the relationship between the two formulations.  

 

2.1  The Latent Class Cluster Model 

 

For concreteness, consider 4 nominal variables denoted A, B, C, and D.  Let X represent a 

nominal latent variable with T categories.  The log-linear representation of the LC cluster 

model with T classes is: 
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 where i = 1,2,…,I;   j=1,2,…,J;   k=1,2,…K;   l=1,2,…L;  and  t=1,2,…T. 

 

For convenience in counting distinct parameters and without loss of generality, we choose 

the following “dummy coding” restrictions to identify the parameters1: 
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      As can be seen, the LC model described in equation (1) has the form of a log-linear 

model for the five-way frequency table cross-classifying the 4 observed variables and the 

latent variable; that is, the table with cell entries Fijklt. The assumed model contains one-

variable terms (“main effects”) associated with the latent variable X and the four observed 

indicators A, B, C, and D, as well as all two-variable “interaction” terms that involve X 

which pertain to the association between X and each of the observed indicators. The one-

variable effects are included because we do not wish to impose constraints on the univariate 

                                                           
1 See Haberman (1979) for an alternative set of identifying restrictions based on ANOVA effects coding. 
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marginal distributions.  The assumption that the observed responses to A, B, C, and D are 

mutually independent given X = t (“local independence”) is imposed by the omission of all 

interaction terms pertaining to the associations between the indicators.  As shown in 

Appendix A, this set of conditional independence assumptions can also be formulated in 

another way, yielding the probability formulation for the LC model. 

    Note that for the 1-class model, since T=1, the model described in equation (1) reduces 

to the usual log-linear model of mutual independence between the 4 observed variables: 
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More generally, for models with any number of variables, we will denote the model of 

mutual independence as H0, and use it as a baseline to assess the improvement in fit to the 

data of various LC models.  The number of distinct parameters2 in the model of 

independence as described in equation (2) is: 

 

    NPAR(indep) = (I-1) + (J-1) + (K-1) + (L-1)        

 

      Expressing the number of distinct parameters in the model described in equation (1) 

as a function of NPAR(indep), yields: 

 

       NPAR(T)  = (T-1) + NPAR(indep) x [1 + (T-1)]    

    = (T-1) + NPAR(indep) x T          

  The number of degrees of freedom (DF) associated with the test of model fit is 

directly related to the number of distinct parameters in the model tested3.  

 

            DF(T)  = IJKL – NPAR(T) - 1         

       = IJKL – [1 + NPAR(indep)] x T      

 

                                                           
2 By convention, we do not count λ as a distinct parameter because of the redundancy to the overall sample 
size, and we subtract 1 from the number of cells when computing degrees of freedom. 
3 It is customary when one or more distinct parameters are unidentified or not estimable (a boundary 
solution), to adjust the DF, increasing it by the number of such unidentified or not estimable parameters. 
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Beginning with this baseline model (T=1), each time the number of latent classes (T) is 

incremented by 1 the number of distinct parameters increases by 1 + NPAR(indep), and, as 

a consequence, the degrees of freedom are reduced by 1 + NPAR(indep).  The first 

additional parameter is the main effect for the additional latent class, and the NPAR(indep) 

further parameters correspond to the effects of each observed (manifest) variable on this 

additional latent class. 

 

2.2  The Latent Class Factor Model 

 

Certain LC models can be interpreted in terms of 2 or more component latent variables by 

treating those components as a joint variable (Goodman 1974b; McCutcheon 1987; 

Hagenaars 1990).  For example, a 4-category latent variable X = {1, 2, 3, 4} can be re-

expressed in terms of 2 dichotomous latent variables V = {1,2} and W = {1, 2} using the 

following correspondence:   

 

 W=1 W=2 

V=1 X =1 X = 2 

V=2 X =3 X = 4 

  

Thus, X=1 corresponds with V=1 and W=1, X=2 with V=1 and W=2, X=3 with V=2 and 

W=1, and X=4 with V=2 and W=2.  

  The LC cluster model given in (1) with T = 4 classes can be re-parameterized as an 

unrestricted LC factor model with two dichotomous latent variables V and W as follows: 
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      The correspondence between the two representations is that the one-variable terms 

pertaining to X are now written as , and the two-variable terms 

involving X as , , etc.  It is 
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easy to verify that this re-parameterization does not alter the number of distinct parameters 

in the model. 

  We define the basic R-factor LC model as a restricted factor model that contains R 

mutually independent, dichotomous latent variables, containing parameters (“factor 

loadings”) that measure the association of each latent variable on each indicator.  

Specifically, the basic R-factor model is defined by placing two sets of restrictions on the 

unrestricted LC factor model.  The resulting 2-factor LC model is a restricted form of the 4-

class LC cluster model.  Without these restrictions, the 2-factor model would be 

unconstrained and would be equivalent to a 4-cluster model.   

  The first set of restrictions sets to zero each of the 3-way and higher-order interaction 

terms.  For the basic 2-factor model, we have   After 

imposing these restrictions, the 2-variable terms in the basic 2-factor model become 
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For variable A, represents the loading of A on factor V and denotes the loading of 

A on factor W, etc. By fixing the three-variable terms to be equal to zero, we obtain a 

model that is conceptually similar to standard exploratory factor analysis: each of the 

factors may have an effect on each indicator, but there are no higher-order interaction 

terms. Constraints of this form are necessary to allow the four latent classes to be 

expressed as a cross-tabulation of two latent variables and thus are essential for 

distinguishing the LC factor model from the LC cluster model.  

AV
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isλ

 
 The second set of restrictions imposes mutual independence between the latent 

variables.  For the 2-factor model, this latter restriction imposes independence in the 2-

way table <VW>. This restriction makes the model more similar to standard exploratory 

factor analysis.  We relax this assumption in section 4, when we present confirmatory LC 

factor models.  

  Although the basic R-factor model is a special case of an LC cluster model 

containing 2R classes, we show in Appendix A that because of the restrictions of the type 

given above, the basic R-factor LC model is actually comparable to an LC cluster model 

with only T = R+1 clusters in terms of parsimony.  This large reduction in number of 
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parameters will be sufficient to achieve model identification in many situations.  That is, in 

practice, it will frequently be the case that the basic R-factor will be identified when the LC 

cluster model with 2R classes is not. 

 

TABLE 1 
Equivalency Relationship between LC Cluster and Basic LC Factor Models  

(Example with 5 Dichotomous Variables) 
LC Cluster Models Basic LC Factor Models 

Number of 
Latent Classes  

Number of 
Parameters 

Degrees of 
Freedom 

Number of  
Factors 

Number of 
Parameters 

Degrees of 
Freedom 

1   5 26 0   5 26 
2 11 20 1 11 20 
3 17 14 2 17 14 
4 23   8 3 23   8 
5 29   2 4 29   2 
   

 

   
 

Table 1 verifies the equivalence in number of parameters (and the associated degrees of 

freedom) between the various identified LC cluster models and the corresponding basic 

LC factor models in the case of 5 dichotomous indicator variables.  From this table we 

can also calculate, for example, that the basic LC 2-factor model requires 23 – 17 = 6 

fewer parameters than the 4-class LC cluster model.  This reduction corresponds to the 5 

restrictions , plus the restriction that V and W are 

independent. 
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  We conclude this section by noting an important difference between our LC factor 

model and the LC models with several latent variables proposed by Goodman (1974b), 

Haberman (1979), McCutcheon (1987), and Hagenaars (1990, 1993).   The basic LC factor 

model described above includes all factor loadings between the latent variables and the 

indicators.  This means that no assumptions need be made about which indicators are 

related to which latent variables. This makes this LC factor model better suited for 

exploratory data analysis than the LC models with several latent variables described in the 

literature. 

  Thus far we have described two alternative approaches for exploratory LC analysis, 

one involving the fitting of LC cluster models, the other fitting basic LC factor models.  

In the next section we consider some examples to illustrate and compare their 
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performance on real data and introduce graphical displays that facilitate the interpretation 

of the obtained results.  

 

 

3.   EXAMPLES AND GRAPHICAL DISPLAYS 

 

Comparison of the two approaches for exploratory LC analysis across several data sets 

found that the factor approach resulted in a more parsimonious and easier to interpret 

model almost every time.  Since our selection of data sets was not random, we do not 

present those results here.  Rather, for purposes of illustration, this section considers the 

analysis from two data sets where a basic 2-factor model fits the data.  In the first 

example, the comparable cluster model also provides an acceptable (but not as good) fit 

to the data; in the second example, the comparable cluster model provides a much worse 

fit, one that is not acceptable for these data.  
 

3.1. Example 1: 1982 General Social Survey Data 

 
Our first example, taken from McCutcheon (1987) and reanalyzed by Van der Heijden, 

Gilula, and Van der Ark (1999) involves four categorical variables from the 1982 General 

Social Survey.  Two items are evaluations of surveys by white respondents and the other 

two are evaluations of these respondents by the interviewer.  A summary of various LC 

models fit to these data is given in Table 2.  

 
 
 
 
TABLE 2: Results from Various LC Models Fit to General Social Survey Data 
 

 
Model 

 
Model Description 

 
BIC 

 
L² 

 
DF 

 
p-value 

% Reduction 
in L²( H0) 

H0 1-class   51.6 257.26    29 2.0x10-38               0   % 
H 1 2-class  -76.7   79.34    22     2.1x10-8 69.1% 
H 2C 3-class  -98.7   21.89 15+2†     0.19 91.5% 
H 2F Basic 2-factor  -109.6   10.93 15+2†     0.86 95.7% 
H 3 4-class  -72.0     6.04    8+3†     0.87 97.7% 
HR2F Restricted 2-factor  -140.9   22.17 22+1† 0.51 91.4% 
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H1F3 1-factor (3 levels) -71.7   77.25    21 2.3x10-8 70.0% 
† DF is increased by these boundary solutions 
 

 

Model H0 is the baseline model given in equation (2) which specifies mutual 

independence between all four variables.  Model H0 is a 1-class LC model (a 1-cluster 

model) which can also be interpreted as the equivalent 0-factor LC model. Since L2 = 

257.26 with DF = 29, this model is rejected.  Next, consider the 2-class model (H1) that can 

be interpreted as either a 2-cluster model or the equivalent 1-factor model where the factor 

is dichotomous.  The L2 is now reduced to 79.34, a 69.1% reduction from the baseline 

model, but too high to be acceptable with DF = 22.   

Next, consider the two 15-DF models4 -- H2C, the 3-cluster model and H2F, the 

basic 2-factor model.  Each of these models provide an adequate fit to the data, although 

the factor model fits better, the L2 being half that of the comparable cluster model.  For 

comparison, Table 3 also provides results for the 4-cluster model (H3).  Among the first 5 

models listed in Table 3, H2F is preferred according to the BIC criteria.  The last 2 models 

in Table 3 are extended models that will be discussed in the next section. 

TABLE 3 
Comparison of results from the 3-Cluster Model with the Basic 2-Factor Model 
Conditional Membership Probability of being in Cluster j =1,2,3 (for Model H2C) 
or level 1 of Factor k=1,2 (for Model H2F) 

 Model H 2C  Model H 2F 
 Cluster 1 Cluster 2 Cluster 3  Factor1(1) Factor2(1) 

Indicators       
       
PURPOSE       

Good 0.72 0.25 0.03  0.83 0.71 
Depends 0.38 0.17 0.45  0.65 0.28 

Waste 0.24 0.02 0.73  0.59      0 † 
ACCURACY       

Mostly True 0.73 0.26 0.01  0.83 0.83 
Not True 0.50 0.15 0.35  0.71 0.28 

                                                           
4 For both models H2C and H2F, the maximum likelihood solution contains 2 boundary solutions and hence, 
by convention (see note 3) we increased the DF by 2. Adding the number of parameters estimated on the 
boundary to the number of degrees of freedom is a convention in LC analysis (see, for instance, 
McCutcheon, 1987). In our opinion, there is no good reason to do so, but it is outside the scope of this 
paper to present alternative testing methods for situations in which boundary estimates occur. For model 
H2C, McCutcheon (1987) reported an adjusted DF of 16, increasing the usual DF by only 1 because the 
solution reported was not fully converged and contained, therefore, only 1 boundary solution.  The solution 
presented in Van der Heijden et. al. (1999) is the same solution as that presented here (containing 2 
boundary solutions) but they also misreport the DF to be 16 instead of 17. 
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UNDERSTAND       
good 0.76 0.08 0.16  0.89 0.53 

Fair, poor     0 †    0.77 0.23  0.28 0.71 
COOPERATE       

Interested 0.70 0.17 0.13  0.86 0.58 
Cooperative 0.27 0.40 0.33  0.38 0.51 

Impatient/ Hostile     0 † 0.39 0.61      0 † 0.35 
       

Overall 
Probability  

0.62 0.21 0.17  0.78 0.57 

 
† indicates a boundary solution 

 
 

Table 3 compares results obtained from the 3-cluster Model (H 2C) with that from 

the basic 2-factor model (H 2F).  The cell entries in the left-most columns are “rescaled 

parameter estimates” suggested by Van der Heijden, Gilula, and Van der Ark (1999), and 

represent the estimated conditional probabilities of being a member of one of the three 

clusters.  The right-most columns contain corresponding quantities for the basic 2-factor 

model, representing the estimated probabilities of being at level 1 for each of the 2 

factors.  Unconditional membership probabilities for the clusters and for level 1 of the 

factors are given in the last row of the table. 

Graphical displays of the conditional probabilities reported in Table 3 are useful 

in comparing results between the two models. For the 3-cluster model H2, Van der 

Heijden, Gilula, and Van der Ark (1999, Figure 4) present a ternary diagram for 

visualizing the results and show the close relationship to 2-dimensional plots produced by 

joint correspondence analysis (JCA).  A slightly modified graphic, referred to here as a 

“barycentric coordinate” display is given in Figure 1 for the 3-cluster model H2C.  The 

shaded triangle in Figure 1 with lines emanating to the sides represents the overall sample 

which is plotted at the point corresponding to the unconditional membership probabilities 

for the clusters. 
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FIGURE 1.  Barycentric Coordinate Display of Results for Model H2C 
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FIGURE 2. Bi-plot of Results Reported for Model H2F 
 

A different display for LC factor-models called the “bi-plot”5 (Vermunt and 

Magidson, 2000) is given in Figure 2 for the 2-factor model H2F.  For comparability to 

the barycentric coordinate plot where cluster 1 is assigned to the top vertex, we take 

factor 1 to be the vertical axis and factor 2 the horizontal.  By comparing these plots we 

can see the large degree of similarity between the models, the primary difference being 

the relative positioning of COOPERATION = Impatient/ Hostile and 

UNDERSTANDING = Fair, poor. 

 

                                                           
5 In the context of correspondence analysis, the term “biplot” refers to a particular joint display of points 
representing both the rows and columns of a frequency table (Greenacre, 1993). On the other hand, Gower 
and Hand (1996) stress that the “bi” in biplots arises from the fact that cases and variables are presented in 
the same plots.  In Vermunt and Magidson (2000), we chose the term “bi-plot” because of the similarity of 
our plots to the plots used in correspondence analysis.  However, despite the fact that in most of our 
examples we depict only variable categories, it is also possible to depict cases (or answer patterns) in our 
plots as we illustrated in our Figures 4, 6 and 8.  For more detail about our plots see Appendix B. 

 12 



Factor2
0.0 0.2 0.4 0.6 0.8 1.0

Factor1
1.0

0.8

0.6

0.4

0.2

0.0

PURPOSE
ACCURACY

UNDERSTANDING
COOPERATION

Good

Depends

Waste

Mostly True

Not True

Good

Fair,poor

Interested

Cooperative

Impatient/Hostile

 
FIGURE 3. Bi-plot for Model H2F with Lines connecting categories of a Variable 
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Lines connecting the categories of a variable can make it easier to see to which 

factor the variables are most related. For example, Figure 3 shows that separation 

between the categories of the two respondent evaluation variables, PURPOSE and 

ACCURACY occurs primarily along Factor 2 (the horizontal axis in Figure 3) while for 

the two interviewer evaluation variables, UNDERSTANDING and COOPERATION 

separation occurs primarily along Factor 1 (the vertical axis).  This makes clear that 

Factor 1 pertains primarily to the interviewer valuation while Factor 2 pertains primarily 

to the respondent valuation.  These two factors are not only distinct (i.e., the 1-factor 

model H1 does not fit these data) but according to model H2F, they are mutually 

independent. 

Since our models yield estimated membership probabilities for each individual 

case, both displays can easily be extended to include points for individual cases and 

covariate levels as well as any other desired groupings of the cases (see Appendix B).  

Our methodology is unified in the sense that the same methods and models that yield our 

displays for LC cluster models also yield the bi-plots for the LC factor models.  Our 

barycentric coordinate display can be more easily extended in this manner than the 

methods proposed by Van der Heijden, Gilula, and Van der Ark (1999) with the ternary 

diagram.  In our next example we will illustrate the inclusion in our plots of cases by 

including specific cases with selected response patterns. Then in section 4, we show how 

the display of all response patterns can be used to identify a natural ordering between the 

classes (when such an ordering exists), and we describe two different approaches for 

overlaying covariate values (levels) onto the displays. 

The bi-plots offer several advantages over the related plots produced in 

correspondence analysis (CA) even when the data justifies a 2-dimensional CA solution6. 

That is because the 2-dimensional CA solution is closely related to the 3-cluster solution 

(Gilula and Haberman 1986; De Leeuw and Van der Heijden, 1991) which we have 

found typically does not fit the data as well as the 2-factor solution.  As suggested in this 

paper, the LC factor models generally provide simpler explanations of data than LC 
                                                           
6 An extensive comparison between the LC cluster model and (joint) correspondence analysis is given by 
Van der Heijden, Gilula and Van der Ark (1999). They showed that (joint) correspondence analysis is very 
similar to what we labeled the LC cluster model. More precisely, a 2-dimensional joint correspondence 
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cluster models and the related canonical models used in CA and principal components 

analysis. 

Our LC factor model is more closely related to traditional factor analysis than to 

CA.  Advantages over traditional factor analysis include 1) the variables can include 

different scale types – nominal, ordinal, continuous and/or counts, 2) solutions are 

typically uniquely identified and interpretable without the need for a rotation – there is no 

rotational indeterminacy, and 3) factor scores can be obtained for each case without the 

need for additional assumptions.  Like traditional factor analysis, LC factor analysis can 

be used as a first step in a more confirmatory analysis.  In the next section we describe a 

more confirmatory analysis of the data analyzed above. 

 

4.  SOME EXTENSIONS OF THE BASIC LC FACTOR MODEL 
 

In this section we consider some modifications and extensions of the basic LC factor 

model that may be of interest in certain situations.  First, although in example 1 we 

treated the trichotomous variables COOPERATE (A) and PURPOSE (C) as nominal, 

they can be treated as ordinal in several different ways.  The most straight-forward 

approach is to assume the middle category to be equidistant from the others and modify 

the log-linear model described in equation (3) by using the uniform scores v and  A
i

C
kv

A
iv = {0 if i = 1, 0.5 if i=2, 1 if i = 3} 

C
kv = {0 if k = 1, 0.5 if k=2, 1 if k = 3} 

for the categories of variables A and C. Secondly, analogous to confirmatory factor 

analysis, we may wish to allow the two factors V and W to be correlated (with 

association parameter ) and restrict the variables COOPERATION (A) and 

UNDERSTANDING (B) to load only on factor 1 and PURPOSE (C) and ACCURACY 

(D) to load only on factor 2.  The log-linear representation for a confirmatory model of 

this type as compared to the basic 2-factor model in Appendix A is as follows: 

VW
rsγ

 

                                                                                                                                                                             
analysis can describe exactly the results – the estimated frequencies in all two-way tables -- of a 3-cluster 
model. 
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The results of fitting this restricted 2-factor model (HR2F) are reported in Table 3. These 

suggest that this model fits the data very well (L2 = 22.17, DF=23; p = .51). The 

corresponding bi-plot is shown in Figure 4 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 4.  Bi-plot for Model HR2F with Lines connecting the categories of a Variable 

 

Our examples thus far utilized only dichotomous factors.  To extend the factor 

model so that any factor may contain more than 2 ordered levels, we assign equidistant 

numeric scores between 0 and 1 to the levels of the factor. Clogg (1988) and Heinen 

(1996) used the same strategy for defining LC models that are similar to certain latent 

trait models. The use of fixed scores for the factor levels in the various two-way 
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interaction terms guarantees that each factor captures a single dimension. For factors with 

more than two levels, in the bi-plot we display conditional means rather than conditional 

probabilities (see Appendix B). Note that if we assign the score of 0 to the first level and 

1 to the last level (or vice versa), for dichotomous factors the conditional mean equals the 

conditional probability of being at level 2 (or level 1). 

Finally, the extension to include covariates in a log-linear LC model is 

straightforward.  To illustrate the use of covariates and the extension to a 3-level factor, 

we will use the depression scale data for white respondents from the “Problems of 

Everyday Life” study conducted in 1972 by Pearlin (Pearlin and Johnson 1977) as reported 

separately for males and females (Schaeffer,1988).  Persons who reported having the 

symptom during the previous week were coded 1, all others 0.  The symptoms measured 

were lack of enthusiasm, low energy, sleeping problem, poor appetite and feeling hopeless.   

Gender was included in the model as an active covariate (see the discussion in 

Appendix B on ‘active vs. inactive covariates’).  Note that in the case of a single covariate, 

the log-linear LC model is identical whether GENDER is treated as a covariate or as 

another indicator (Clogg 1981; Hagenaars 1990).  

 
TABLE 4 

Results from Various LC Models Fit to the Depression Data 
Model 

 
Model 

Description 
 

BIC 
 

L² 
 

DF 
 

p-value 
% Reduction  

in L²( H0) 
H0 1-class 672.8 1097.1 57          2.3x10-192 0 
H 1 2-class -233.7 138.5 50        3.1x10-10 87.4% 
H 2C 3-class -260.5 59.6 43 0.05 94.6% 
H 2F Basic 2-factor -274.6 45.5 43+1† 0.37 95.9% 
H 1F3 1-factor 

(3-levels) 
-297.8 67.0 49 0.05 93.9% 

† df is increased by these boundary solutions
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Table 5 Conditional Probabilities Estimated under the 3-Cluster model and 
the 1-Factor 3-level model 

 
      3-Cluster Model      1-Factor 3-level Model  

 Cluster1 Cluster2 Cluster3  Level1  Level2  Level3   
Cluster Size 0.46 0.44 0.10  0.45 0.45 0.10  
ENTHUS         
Lack of enthusiasm 0.26 0.82 0.96  0.26 0.81 0.98  
No 0.74 0.18 0.04  0.74 0.19 0.02  
ENERGY         
Low energy 0.03 0.63 0.95  0.03 0.61 0.99  
No 0.97 0.37 0.05  0.97 0.39 0.01  
SLEEP         
Sleeping problem 0.10 0.37 0.78  0.09 0.38 0.79  
No 0.90 0.63 0.22  0.91 0.62 0.21  
APPETITE         
poor appetite 0.04 0.22 0.73  0.04 0.24 0.72  
No 0.96 0.78 0.27  0.96 0.76 0.28  
HOPELESS         
Hopeless 0.03 0.10 0.67  0.02 0.13 0.61  
No 0.97 0.90 0.33  0.98 0.87 0.39  

 

Table 4 shows the results from fitting various LC models to these data.  The 

traditional strategy required 3 classes as neither the 1- or 2-class models provided adequate 

solutions. We see again that the basic 2-factor model fits the data better than the 

comparable 3-cluster model. The results for the 3-cluster solution are shown in Table 5 in 

terms of conditional response probabilities.  Notice that those probabilities conditional on 

cluster 2 are ordered between the corresponding probabilities conditional on clusters 1 and 

3, a pattern that is consistent with the depression scale being uni-dimensional, and suggests 

that we consider fitting a 3-level 1-factor model to these data.   

Table 5 shows that the 3-level factor solution is very similar to that given by the 3-

class solution.  Both suggest that 10% of the population are in the “depressed” group 

(cluster 3 in the cluster model and level 3 in the factor model), and the rest are about 

equally distributed among the “healthy” (cluster 1) and the “troubled” cluster 2.  The 3-

level model provides an acceptable fit to these data and only contains one parameter more 

than the 2-class model (see Table 5).  Unlike the 3-class extension to the 2-class model 

which requires 7 additional parameters, the 3-level model provides an attractive alternative 
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to the 3- (unordered) class model. The BIC suggests that the 3-level 1-factor model should 

be preferred over all models including the basic 2-factor model. 

In our experience with various data, increasing the number of levels in a factor does 

often provide a significant improvement in fit.  This is, however, not always the case. For 

example, with our first data set we found that 2 distinct factors were required to provide an 

adequate fit to the data.  In that situation, increasing the number of levels from 2 to 3 in the 

single factor solution provides no benefit.  Table 3 shows only a slight, non-significant 

reduction in the L2 due to the inclusion of the additional parameter -- from 79.34 for the 1-

factor 2-level solution to 77.25 for the 1-factor 3-level solution.  On the other hand, in the 

present example, the addition of this single parameter causes a reduction of the L2 from 

138.5 for the 1-factor 2-level solution to 67.0 under the 1-factor 3-level model (see Table 

5). 

An informative graph can provide an attractive alternative to a table (such as 

TABLE 5) when the goal is to determine whether a natural ordering exists among a set of 

clusters.  For example, a standard profile plot will show immediately that the conditional 

probabilities associated with cluster 2 always fall between the corresponding conditional 

probabilities associated with clusters 1 and 3.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5: Barycentric Coordinate Display of the 64 Response Patterns for Males and Females 
based on the 3-class Model (H2c) 
. 
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Note: The area of each triangle is proportional to the estimated expected frequency associated with the 
corresponding response pattern (subject to a minimum size). 
 

As an alternative to the profile plot, we will now examine the implications obtained 

from a barycentric coordinate display (FIGURE 5) of the 3-cluster solution which includes 

a point for each observation (i.e., each observed response pattern).  Note the obvious 

pattern that the points appear primarily along the left and right sides of the triangle, and not 

along the base.  This visual pattern can be interpreted as follows -- among persons who are 

likely to be “troubled“ (those with response patterns plotted near the top vertex, associated 

with cluster 2), there is a substantial amount of overlap with the other clusters.  Some of 

these cases also have a substantial probability of belonging to the “healthy” cluster and 

some have a substantial probability of belonging to the  “depressed” cluster.  However, 

there is virtually no overlap between those likely to be “healthy” and those likely to be 

“depressed” (the inner part of the base of the triangle contains no points).  This asymmetric 

pattern suggests that cluster 2 (“troubled”) is the middle cluster. 
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FIGURE 6: One-dimensional plot associated with the 3-level Factor Model 
 

In both the 3-cluster model and the 3-level 1-factor model, we find that GENDER 

has a significant relationship with the latent variable, females being more likely to be in the 

depressed group.  Figure 6 displays a 1-dimensional plot resulting from the 3-level factor 

model (the bi-plot reduces to one dimension in the case of a single factor). In general, 

inclusion of covariates in a model can provide useful descriptive information on the latent 

variable(s).  

 

 

5.   FINAL REMARKS 
 

This paper presented a new method for performing exploratory LC analysis. Rather than 

increasing the number of classes, we proposed increasing the number of latent variables. 

We showed that because of the imposed constraints, the basic LC factor model with R 
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latent variables has the same number of parameters as the LC cluster model with R+1 

classes. This is an important result because it shows that in terms of parsimony, 

increasing the number of factors is equivalent to increasing the number of clusters. 

The examples showed that in most cases the LC factor model provides a more 

parsimonious and easier to interpret description of the data. There is a simple explanation 

for this phenomenon. When applying a LC cluster model it is not known how many 

dimensions the solution will capture: A 3-cluster model may describe either one or two 

dimensions, while a 4-cluster model may describe either one, two, or three dimensions. 

When a 3-cluster model describes one dimension, it is very probable that a 1-factor 

model with 3 or more levels will describe the data almost as well (see the depression 

example). When a 3-cluster model describes two dimensions, it has the disadvantage that 

it can not capture all four basic combinations – (low, low), (high, low), (low, high) and 

(high, high) – of the two latent dimensions. Therefore, the 2- factor model will fit better 

than the 3-cluster model in these cases. In situations in which the 4-cluster model gives a 

2-dimensional solution (as in the rheumatic arthritis data set where the 4 clusters 

represent the 4 possible latent combinations), it can be expected that a restricted 4-cluster 

model (the 2-factor model) will fit the data almost as well (and may be better in terms of 

BIC or p-value). 

The above explanation yields strong arguments for using the two approaches in 

combination with one another, as we have been doing in the examples. There are two 

things that can happen when switching from the cluster to the factor model. First, the 

factor model may give a simpler description of the data than the cluster model. This 

occurs when the 3-cluster solution is one dimensional or when the 4-cluster solution is 

two dimensional, both of which are situations where the LC cluster model is 

overparametrized. Second, the factor model may give a better fit. We saw that this occurs 

when the three-cluster model is two-dimensional.  
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