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Abstract

Projected lifetables are used to price life annuities because they include a forecast of
the future trends in mortality. However, such tables may not properly represent future
mortality, originating the so-called longevity risk. The present work purposes to quantify
the uncertainty inherent to mortality projections in the framework of the log-bilinear Poisson
regression model of Brouhns, Denuit & Vermunt (2002).
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1 Introduction and Motivation

As demonstrated in Benjamin & Soliman (1993), McDonald (1997) and McDonald
et al. (1998), mortality at adult and old ages reveal decreasing annual death probabilities.
These changes clearly affect pricing and reserving for life annuities, as stressed e.g. by
Marocco & Pitacco (1998) and Olivieri (2001). The calculation of expected present
values requires thus an appropriate mortality projection to avoid underestimation of future
costs.

Projections are extensions of recent trends as far as they can be perceived from mortality
statistics. Lee & Carter (1992) proposed a simple model for describing the secular change
in mortality as a function of a single time index. The method describes the log of a time
series of age-specific death rates as the sum of an age-specific component that is independent
of time and another component that is the product of a time-varying parameter reflecting
the general level of mortality, and an age-specific component that represents how rapidly
or slowly mortality at each age varies when the general level of mortality changes. This
model is fit to historical data. The resulting estimate of the time-varying parameter is then
modeled and forecast as a stochastic time series using standard Box-Jenkins methods. From
this forecast of the general level of mortality, the actual age-specific rates are derived using
the estimated age effects. Recently, Brouhns, Denuit & Vermunt (2002) resorted to a
Poisson log-bilinear regression model to build projected lifetables. Their approach, inspired
from a comment made by Alho (2000) on Lee (2000), purposed to avoid some drawbacks
inherent to the Lee & Carter (1992) original methodology.

The main statistical tool of Lee & Carter (1992) is least-squares estimation via singular
value decomposition of the matrix of the log age-specific observed forces of mortality. This
implicitly means that the errors are assumed to be homoskedastic, which is quite unrealistic:
the logarithm of the observed force of mortality is much more variable at older ages than at
younger ages because of the much smaller absolute number of deaths at older ages. Moreover,
the required data have to fill a rectangular matrix because of singular value decomposition;
this may pose a problem when the format of the available data has been modified in the
past (the actuary has then first to complete the data using different techniques which may
bias the results). As we will see in Section 3, the method used by Brouhns et al. (2002)
avoid these drawbacks.

Of course, the projection of the mortality itself is affected by uncertainty. The effects of
uncertainty coming from projections, in terms of the risk borne by the insurer, are inves-
tigated. Such an analysis is particularly important to decide upon the reinsurance needed.
In Brouhns et al. (2002), confidence intervals (for annuities and life expectancies) were
obtained by ignoring all the errors except those in forecasting the mortality index. According
to Appendix B of Lee & Carter (1992), these errors dominate the others for annuities
and expected remaining lifetimes. Because of the importance of appropriate measures of
uncertainty in an actuarial context, the present paper aims to derive confidence intervals
taking into account all the sources of variability. The nonlinear nature of the quantities of
interest makes an analytical approach not tractable and we therefore resort to Monte-Carlo
simulation (or parametric bootstrap).

Let us now describe the content of this paper. Section 2 describes the notation and
assumptions adopted throughout this paper. The data used for the numerical illustrations
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are also presented there. Section 3 recalls the basic features of the projection model proposed
by Brouhns et al. (2002). The simulation method to derive confidence intervals for the
quantities of interest is described there. Section 4 illustrates the approach on the mortality
statistics presented in Section 2. Section 5 examines the distribution of the estimator of the
net single life annuity premium and purposes to determine the safety loading with the help
of a quantile of this distribution. Section 6 aims to evaluate the ruin probability relating
to a portfolio of life annuities. The final Section 7 concludes. Appendices gather detailed
numerical results and technical aspects.

2 Notation, assumption and data

2.1 Notation

We analyze the changes in mortality as a function of both age x and time t. Although age
and time are theoretically free to vary in the half-positive real line, we work here with integer
x and t. Henceforth, µx(t) will denote the force of mortality at age x during calendar year
t. Similarly, qx(t) is the one-year death probability at age x in year t and the corresponding
survival probability is px(t) = 1 − qx(t). We denote as Dxt the number of deaths recorded
at age x during year t, from an exposure-to-risk ETRxt (that is, ETRxt is the number of
person years from which Dxt occurred).

2.2 Piecewize constant forces of mortality

In this paper, we assume that the age-specific mortality rates are constant within bands of
time and age, but allowed to vary from one band to the next. Specifically, given any integer
age x and calendar year t, it is supposed that

µx+ξ(t+ τ) = µx(t) for any 0 ≤ ξ, τ < 1. (2.1)

This is best illustrated with the aid of a coordinate system that has calendar time as abscissa
and age as coordinate. Such a representation is called a Lexis diagram after the German
demographer who introduced it. Both time scales are divided into yearly bands, which
partition the Lexis plane into square segments. Model (2.1) assumes that the mortality rate
is constant within each square, but allows it to vary between squares.

2.3 Data

The models presented in this paper are fitted to the matrix of Dutch death rates, from year
1950 to 2000 and for ages 60 to 98. The data relate to the entire Dutch population and
have been supplied by the Centraal Bureau voor de Statistiek (CBS). The observed number
of deaths dxt, is given by age and year, where age is year of death minus year of birth.

The observed population size lxt at January 1 is also given by age and year, where the
age here is the age of the individual at this date. We follow the CBS for defining the risk
population using the population counts at the begin and at the end of a year and calculate
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the exposure as

ETRxt =
lx,t + lx+1,t+1 + dx,t

2
.

The latter definition takes migration into account. A simpler definition is (lx,t + lx+1,t+1)/2,
which is not fully correct but close enough to the reality for practical purpose. The raw
estimate of the force of mortality µx(t) is then given by

µ̂x(t) =
dxt

ETRxt

while the one-year death probabilities are estimated as

q̂x(t) =
dxt
lxt

= 1− p̂xt.

2.4 Quantities of interest

Life expectancies are often used by demographers to measure the evolution of mortality.
Specifically, ex(t) is the average number of years an x-aged individual in year t will survive.
We thus expect that this person will die in year t+ex(t) at age x+ex(t). The formula giving
ex(t) is

ex(t) =
∑

k≥0

{
k∏

j=0

px+j(t + j)

}
. (2.2)

The actual computation of ex(t) requires the knowledge of pξ(τ) for ξ ranging from x until
the ultimate age (ω, say) and for τ ranging from t to t + ω − x. Of course, these survival
probabilities cannot be estimated at time t (since we do not have data at our disposal) and
thus must be extrapolated from the past. We describe in Section 3 how this can be done in
practice.

As actuaries, we are more interested in the price of an immediate life annuity sold to an
individual aged x in year t, given by

ax(t) =
∑

k≥0

{
k∏

j=0

px+j(t + j)

}
vk+1 (2.3)

where v is the yearly discount factor. We will see that mortality projections are particularly
important to compute the premiums relating to such a contract.

3 Mortality projection method

3.1 Poisson log-bilinear model

Because the number of deaths is a counting random variable, according to Brillinger
(1986), the Poisson assumption appears to be plausible. Following Brouhns et al. (2002),
we consider that

Dxt ∼ Poisson
(
ETRxt µx(t)

)
with µx(t) = exp (αx + βxκt) (3.1)
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where the parameters αx, βx and κt are constrained by

∑

t

κt = 0 and
∑

x

βx = 1 (3.2)

ensuring model identification.
The force of mortality is thus assumed to have the log-bilinear form lnµx(t) = αx +βxκt.

Moreover, the expected number of deaths is given by Fxt = ETRxt exp(αx + βxκt). The
meaning of the αx, βx, and κt parameters is essentially the same as in the classical Lee-
Carter model, that is,

expαx: is the general shape across age of the mortality schedule or, more precisely, the geo-
metric mean of µx(t) in the observation period;

κt: represents the time trend;

βx: indicates the sensitivity of the logarithm of the force of mortality at age x to variations
in the parameter κt. The shape of the βx profile tells which rates decline rapidly and
which slowly over time in response of change in κt.

3.2 Estimation of the parameters

We estimate the parameters αx, βx and κt by maximizing the log-likelihood based on model
(3.1), which is given by

L(α,β,κ) =
∑

x,t

{
Dxt(αx + βxκt)− ETRxt exp(αx + βxκt)

}
+ constant.

Because of the presence of the bilinear term βxκt, it is not possible to estimate the proposed
model with commercial statistical packages that implement Poisson regression. However,
the LEM program (Vermunt, 1997a, 1997b) can be used for this purpose. In Appendix A,
we give the quite simple LEM input files that we used for our analyses.

The algorithm implemented in LEM to solve the likelihood equations is a uni-dimensional
or elementary Newton method. Goodman (1979) was the first who proposed this iterative
method for estimating log-linear models with bilinear terms. In iteration step ν+ 1, a single
set of parameters is updated fixing the other parameters at their current estimates using the
following updating scheme

ξ̂(ν+1) = ξ̂(ν) − ∂L(ν)/∂ξ

∂2L(ν)/∂ξ2

where L(ν) = L(ξ̂(ν)). In our application, there are three sets of parameters; that is, the αx,
the βx, and the κt terms.

The updating scheme is as follows: starting with α̂
(0)
x = 0, β̂

(0)
x = 1, and κ̂

(0)
t = 0 (random

values can also be used)
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α̂(ν+1)
x = α̂(ν)

x −
∑

t

(
dxt − F̂ (ν)

xt

)

−∑t F̂
(ν)
xt

, β̂(ν+1)
x = β̂(ν)

x , κ̂
(ν+1)
t = κ̂

(ν)
t ,

κ̂
(ν+2)
t = κ̂

(ν+1)
t −

∑
x

(
dxt − F̂ (ν+1)

xt

)
β̂

(ν+1)
x

−∑x F̂
(ν)
xt

(
β̂

(ν+1)
x

)2 , α̂(ν+2)
x = α̂(ν+1)

x , β̂(ν+2)
x = β̂(ν+1)

x ,

β̂(ν+3)
x = β̂(ν+2)

x −
∑

t

(
dxt − F̂ (ν+2)

xt

)
κ̂

(ν+2)
t

−∑t F̂
(ν+2)
xt

(
κ̂

(ν+2)
t

)2 , α̂(ν+3)
x = α̂(ν+2)

x , κ̂
(ν+3)
t = κ̂

(ν+2)
t ,

where F̂
(ν)
xt = ETRxt exp(α̂

(ν)
x + β̂

(ν)
x κ̂

(ν)
t ) is the estimated number of deaths after iteration

step ν. The criterion used to stop the procedure is a very small increase of the log-likelihood
function (the default value of LEM is 10−6, but it can be recommended to set the criterion
a little bit sharper, so to 10−10).

After updating the κt parameters, we have to impose a location constraint. LEM uses the
centering constraint

∑
t κ̂t = 0, which is the same constraint as in (3.2). This constraint is

specified with a design matrix, namely the spe(...) statement in the code given in Appendix
A. After updating the βx parameters, a scaling constraint has to be imposed. The scaling
constraint used by LEM is β̂1 = 1, which is different from (3.2). In order to obtain the

parameterization in which
∑

x β̂x = 1, one has to divide the LEM estimates for βx by
∑

x β̂x
and multiply the LEM estimates for κt by the same number.

3.3 Modelling the time-factor

As in the Lee-Carter methodology the time factor κt is intrinsically viewed as a stochastic
process. Box-Jenkins techniques are therefore used to estimate and forecast κt within an
ARIMA(p, d, q) times series model, which takes the general form

(1− B)dκt = µ+
Θq(B)εt
Φp(B)

where

B is the delay operator, B(κt) = κt−1, B2(κt) = κt−2, . . . ;

1−B is the difference operator, (1−B)κt = κt− κt−1, (1−B)2κt = κt− 2κt−1 +κt−2, . . . ;

Θq(B) is the Moving Average polynomial, with coefficients θ = (θ1, θ2 . . . θq);

Φp(B) is the Autoregressive polynomial, with coefficients φ = (φ1, φ2 . . . φp);

εt is white noise with variance σ2
ε .
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The parameters of the models are µ, θ, φ and σε. The method we use to obtain estimates for
the ARIMA parameters is conditional least squares. Forecasted values of time parameters
will be denoted by κ∗t .

As is discussed in the next sections, the parameter estimates of the Poisson model and the
forecasts κ∗t can be used to obtain projected age-specific mortality rates, life expectancies,
and annuities single premiums. We also present a simulation-based method that can be used
to take the various error sources into account.

3.4 Confidence intervals for the parameters

In forecasting, it is important to provide information on the uncertainty of the forecasted
quantities. In that respect, confidence intervals are particularly useful. However, in the
current application it is impossible to derive the relevant confidence intervals analytically.
The reason for this is that two very different sources of uncertainty have to be combined:
sampling errors in the parameters of the Poisson model and forecast errors in the projected
ARIMA parameters. An additional complication is that the measures of interest – mortality
rates, life expectancies, and annuities single premiums – are complicated non-linear functions
of the Poisson parameters αx, βx, and κt and the ARIMA parameters µ, θ, φ, and σε.

Because of the problems associated with analytic methods, we propose estimating confi-
dence intervals by Monte-Carlo simulation. Our simulation procedure yields M samples of
αx, βx, and κt parameters and future values of the time parameters, denoted by κ∗t . Let the
mth simulated set of these basic parameters be denoted by ξm and the measures of interest
by ψ. Since the ψ parameters are (non-linear) functions of the basic parameters ξ, the mth
set of ψ parameter can be obtained by ψm = f(ξm). In other words, our procedure yields
M samples of ψ parameters which can be used to compute their confidence intervals.

The two sources of uncertainty that have to be combined are the sampling fluctuation in
the αx, βx, and κt parameters and the forecast error in the κ∗t parameters. Since we resorted
to maximum likelihood to estimate the parameters of the Poisson model, we know that
(α̂, β̂, κ̂) is asymptotically multivariate normally (MVN) distributed, with mean (α,β,κ)
and covariance matrix given by the inverse of the Fisher information matrix I, whose ele-
ments equal minus the expected value of the second derivatives of the log-likelihood with
respect to the parameters of interest. Appendix B shows how to obtain the information
matrix and how to sample values from the MVN distribution of interest. The second source
of uncertainty is captured by the estimated ARIMA standard error σ̂ε.

Once we estimated the parameters αx, βx and κt of the Poisson model (3.1) as described
in Section 3.2 as well as their variance-covariance matrix I−1 as described in Appendix B,
the mth sample in the Monte Carlo simulation is obtained by the following 4 steps:

1. Generate αmx , βmx , and κmt from the appropriate MVN distribution (see Appendix B
for details).

2. Estimate the ARIMA model using the κmt as data points. This yields a new set µm,
θm, φm, and σmε of the parameters µ, θ, φ, and σε.

3. Generate a projection of κ∗mt using the ARIMA parameters. The future errors ε∗mt
are sampled from a univariate normal distribution with a mean of 0 and a standard
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deviation of σmε .

4. Compute the measures of interest ψm.

The first step is meant to take into account the insecurity about the Poisson parameters.
The second step deals with the fact that the insecurity about the ARIMA parameters depends
on the insecurity about the Poisson parameters. The third makes that the insecurity about
the forecasted κ∗t not only depends on the ARIMA standard error, but also on the insecurity
of the ARIMA parameters themselves. Finally, in the computation of the relevant measures
in step four, all sources of insecurity are taken into account.

4 An application to Dutch population mortality statis-

tics

4.1 Estimation of the parameters

We apply the Poisson modelling to the Dutch data presented in the introductory section.
The Poisson parameters αx, βx and κt involved in (3.1) are estimated by the procedure
described in Section 3.2. Figure 4.1 plots the estimated αx, βx and κt. We can see that

the α̂x’s represent the average of the ln µ̂x(t)’s accross time. The α̂x’s clearly increase in

x, reflecting higher mortality at older ages, as expected. The β̂x’s decrease with age but
remain positive. The κ̂t’s for women exhibit regular behavior decreasing from 10 to -10.
This reveals the improvements of mortality at ages 60 to 98 for Dutch women during the
observation period. The κ̂t’s for men behave quite irregularly, beginning to decrease only in
the seventies.

4.2 Modelling the time factor

Following the early work of Lee & Carter (1992), we use the Box-Jenkins methodology
(identification - estimation - diagnosis) to generate the appropriate ARIMA time series model
for the male and female mortality indexes.

A good model for the women is ARIMA(0,1,0), which is a random walk with drift:

(1−B)κt = κt − κt−1 = µ+ εt. (4.1)

For the men, the situation is a bit more complicated. Looking at the data (see Figure 4.1)
gives the feeling that there is a break in the serie: data before year 1970 behave differently
from data after 1970. We thus split the serie into two parts, each having its own stochastic
behaviour. In the following we will use data from 1970 for projecting the κt for the male
population. Moreover, the ARIMA(0,1,0) model (4.1) appears to be a good choice in this
case as well, bringing us close to the work of Lee & Carter (1992).

The estimated parameters for the ARIMA(0,1,0) models (4.1) are given in Table 4.1 for
men and women. The sex-specific estimated values of κt together with the projected κ∗t are
shown with their 95% interval forecasts in Figure 4.2.
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Figure 4.1: Estimations of αx, βx et κt for women (left panels) and men (right panels).

8



Sex µ̂ σ̂ε
Women -0.4293 0.8698

Men -0.2503 0.3749

Table 4.1: Estimation of the parameters µ and σε of the ARIMA(0,1,0) models.

Figure 4.2: Estimated and projected values of κt for males and females.
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4.3 Confidence intervals

A Monte Carlo simulation is then used to generate 10, 000 samples of the original parameters
αx, βx and κt. All the details of the simulation are summarized in the tables gathered in the
appendices (Tables C1-C2 for the αx’s, D1-D2 for the βx’s, E1-E3 for the κt’s and E2-E4

for the κ∗t ’s). The second column of these tables give the point estimates α̂x, β̂x and κ̂t
(for t ≤ 2, 000) and the forecasted κ∗t for t > 2, 000. The third column gives the average
over the 10,000 samples. Both values closely agree, as expected. Next, the fourth column
provides the actuary with an estimate of the standard error, computed on the basis of the
10,000 simulated samples. Finally, the last five columns give the 5%, 25%, 50%, 75% and 95%
percentiles of the simulated parameters. This gives an idea of the dispersion of the simulation
outcome. The simulation also gives a sample of size 10, 000 of the ARIMA parameters, whose
significant percentile values are given in Table 4.2. The interval [q̂0.05, q̂0.95] is best regarded
as an approximate 90% confidence interval for the quantities of interest.

µ q̂0.05 q̂0.95 σε q̂0.05 q̂0.95

Women -0.4286 -0.4374 -0.4200 0.8995 0.8371 0.9631
Men -0.2501 -0.2611 -0.2391 0.3947 0.3506 0.4398

Table 4.2: Simulation outcomes for the parameters of the ARIMA(0,1,0) models: µ is the
average over the 10,000 samples of the estimations for µ, and σε is the analogue for σε. These
values are supplemented with the 5% and 95% percentiles of the outcomes.

The last step is then to compute values for the quantities of interest. As explained in
Section 3.4, each set αmx , β

m
x , κ

m
t and κ∗mt of simulated αx, βx, κt and κ∗t gives a realization of

this quantity, so that the procedure also provides the actuary with a sample of size 10,000 on
the basis of which standard errors and quantiles can be estimated. If we consider for example
the evolution of the mortality rates at 65 through years, we obtain 10,000 realizations from

µm65(t) = exp(αm65 + βm65κ
m
t )

for t ≤ 2, 000 and
µm65(t) = exp(αm65 + βm65κ

∗m
t )

for t ≥ 2, 001. This is represented on Figure 4.3. Similarly, the evolution of the mortal-
ity rates in 2005 through ages from 60 is depicted in Figure 4.4. For each situation, the
point estimates (given by the average over the 10,000 samples) are supplemented with 90%
confidence bands [q̂0.05, q̂0.95].

5 Distribution of the estimator of the life annuity net

single premium

Using the projected lifetables generated in the preceding section, we deduce confidence inter-
vals on life expectancies ex(t) and on the net present values ax(t). These quantities indeed
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Figure 4.3: Mortality rates µ65(t), t ≥ 1950, with 90% confidence intervals.

Figure 4.4: Mortality rates µx(2005), x ≥ 60, with 90% confidence intervals.
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depend on the future evolution of mortality. Specifically, having generated mortality rates
µmx (t), m = 1, . . . , 10, 000, we get one-year survival probabilities from

px(t+ ∆t) = exp
(
− µmx (t+ ∆t)

)
, ∆t = 1, 2, . . .

We can thus compute emx (t) and amx (t) according to formulas (2.2) and (2.3). Figure 5.5

displays an estimation of the density function of ̂e65(2000) and ̂a65(2000) for women and
Figure 5.6 is the analogue for men, with v = 1.04−1.

Once the estimation of the density of ̂a65(2000) is available, the actuary can decide about
the height of the safety loading. Indeed, the company could charge the 90 or 95th percentile

of ̂a65(2000). This approach has the advantage to offer a clear understanding of the way the
safety margin is computed.

Figure 5.5: Life expectancies and annuities distributions for women.

6 Projecting cash flows of a life annuity portfolio

Let us consider a portfolio of n immediate life annuities (n = 10, 000 in all the numerical
illustrations), sold to 65-year-old individuals at 1/1/t0 and providing them with a unit capital
at the end of each year. The random number of contracts at time t (calendar year t0 + t,
with t0 = 2000, say) is Nt. Having generated a sequence of µm65+t(2000 + t) as explained in
the preceding sections we generate sequences of pm65+t(2000 + t) and qm65+t(2000 + t), m =
1, . . . , 10, 000. Under the assumption (2.1), the exposure-to-risk is expressed in terms of
one-year probabilities as

ETRxt = − lx(t)qx(t)
ln px(t)

for integer age x and year t. Let us now simulate the future evolution of this portfolio.
Starting from L65(2000) = N0 = n, we first calculate the exposure as

ETR65,2000 = −L65(2000)
q65(2000)

ln p65(2000)
.
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Figure 5.6: Life expectancies and annuities distributions for men.

Then we simulate the number of deaths at age 65 in year 2000 as

D65(2000) ∼ Poisson
(
ETR65,2000µ65(2000)

)

and the number of survivors of age 66 in year 2001 as

N1 = L66(2001) = L65(2000)−D65(2000)

The company pays an amount N1 and gets returns on the reserve.
Proceeding iteratively for t = 1, 2, . . . , we simulate until the cohort totally vanished

according to the following equations:

ETR65+t,2000+t = −L65+t(2000 + t)
q65+t(2000 + t)

ln p65+t(2000 + t)

D65+t(2000 + t) ∼ Poisson
(
ETR65+t,2000+tµ65+t(2000 + t)

)

and
L65+t+1(2000 + t + 1) = L65+t(2000 + t)−D65+t(2000 + t).

is the amount to be paid by the company at the end of year 2000 + t.
Let us now project the future cash flows corresponding to this portfolio. At time 0 the

company gets na65(2000). Then we observe the extinction of the cohort and compute the
cashflows and the evolution of the reserves each year. For the reserves, we have taken the
same yearly interest rate as the one used in the calculation of the annuity, namely i = 4%,
which corresponds to a quite pessimistic view. In Table 6.1, four methods for computing the
net single premiums have been compared, namely

1. the transversal vision, based on observed data from 1998 to 2000: in this case, the
mortality rates are estimated on the basis of the statistics related to the years 1998-
2000 and are used directly (without projection) to price the life annuity contracts;
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2. the longitudinal vision, pure premium: the mortality rates are projected according to
the method described in Section 3 but no safety loading is added to the pure premium
so obtained;

3. The longitudinal vision, 90-th percentile value: the mortality rates are projected and

a safety loading is added by charging the 90th percentile of ̂a65(2000), as discussed in
Section 5;

4. The longitudinal vision, 95-th percentile value: the mortality rates are projected and

a safety loading is added by charging the 95th percentile of ̂a65(2000), as discussed in
Section 5.

The different columns of Table 6.1 give the following results:

1. the net single premium of the life annuity, computed according to the 4 strategies
described above;

2. the global probability of ruin (in %) at total extinction of the cohort, that is, the
probability that the premium income got in 2000 does not suffice to fund all the
promised payments, if the interest rate obtained on the reserves is equal to 4% (which
is a quite pessimistic scenario);

3. The mean time to ruin (in years), that is, the average number of years elapsed before
ruin, given that ruin occurs;

4. The mean severity of ruin (the year the ruin occurs), which is the deficit the year the
company runs out of funds;

5. the mean number of remaining contracts when ruin occurs;

6. the interest rate on the reserves needed to ensure that the global probability of ruin is
below 1%.

Let us comment the results of Table 6.1. First and foremost, they enlighten the im-
portance of mortality projections: ratemaking on the basis of transversal data results in
negative cashflows in almost 100 % of the cases simulated (99.84% for women and 97.94%
for men). Moreover, it appears to be necessary to include a safety loading since charging
the pure premium leads to ruin in about 50% of the cases (as expected). It is interesting
to notice the different results obtained according to the gender of the policyholders. When
the percentile premium calculation principle is used, the ruin probability is higher for men
than for women, ruin occurs on average more rapidly for men than for women (provided ruin
indeed occurs) but the deficit is much higher for women than for men. Similarly, the number
of pending policies when ruin occurs (that is, the victims of the bankruptcy) is higher for
women. The last column shows that, as it is well known by practitioners, it is possible to
counteract the longevity risk by sufficiently high financial returns on the reserves.
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7 Conclusion

To the knowledge of the authors, the present paper offers the first attempt to quantify the
longevity risk, that is, the variability of the life annuity premiums computed on the basis
of projected mortality rates. Since in the log-bilinear Poisson regression approach, this
amounts to combine different sources of sampling fluctuations (namely, the variability of

the estimations α̂x, β̂x and κ̂t together with the prediction errors of the κ∗t ), an analytical
approach turns out to be virtually impossible. Therefore, we have opted for a Monte-Carlo
approach. The simulation strategy adopted in this paper is fully parametric (in the sense
that the confidence intervals are obtained under the hypothesis that the model (3.1) is
correct) and based on large sample properties of the ML estimators. Specifically, we have

generated M samples from the multivariate normal distribution with mean vector (α̂, β̂, β̂)t

and covariance matrix Î−1.
There are other possibilities for dealing with the insecurity of the parameters of the

Poisson model. Two of these are semiparametric and nonparametric bootstrapping. Both
procedures involve generating M new tables of observed numbers of deaths and reestimating
the Poisson model with each of these generated data matrices. This yields the M sets of
αx, βx, and κt parameters that are needed in the subsequent steps. The two bootstrapping
methods differ in the manner in which the M new data sets are generated. A straightforward
manner to implement the semiparametric bootstrap is to generate observed numbers of
deaths from the Poisson distribution defined by estimates of the Poisson parameters and the
observed exposures times. Another, more complicated, implementation involves generating
cohort survival tables using the estimated Poisson rates, where the risk population is adapted
depending on the numbers of deaths in the previous year. In the nonparametric bootstrap,
the M new data matrices are obtained by means of sampling with replacement from the
original data matrix.

In a forthcoming paper, we will compare the fully parametric approach worked out in
the present article to semi- and nonparametric bootstrap, to check whether the confidence
intervals on the life annuitiy premiums derived in this paper are not artificially too small.

To end with, let us mention that the study of the variability of the amounts of premium,
and of the corresponding ruin probabilities, are of prime importance for deciding upon the
level of reinsurance needed.

Women
Premium Annuity Global ruin Mean time to Mean severity Mean nb of i (in %)
Principle probability (in %) ruin (in years) of ruin remaining contracts
Transv. 11.82 99.84 22.8 -194 407 5.2
Long. 12.57 55.58 28.7 -90 190 4.6

Long. 90% 12.85 17.37 30.5 -65 146 4.3
Long. 95% 12.93 11.00 31.3 -62 131 4.3

Men
Premium Annuity Global ruin Mean time to Mean severity Mean nb of i (in %)
Principle probability (in %) ruin (in years) of ruin remaining contracts
Transv. 9.97 97.94 22.0 -100 214 4.9
Long. 10.30 50.66 25.8 -50 109 4.5

Long. 90% 10.40 26.90 26.7 -41 90 4.4
Long. 95% 10.43 22.12 27.0 -38 85 4.3

Table 6.1: Risk measures for the annuity portfolio.
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Appendices

A LEM input files

This is the LEM input file that estimates the Poisson parameters αx, βx and κt involved in
(3.1):

man 2

dim 39 51

lab X T

mod {wei(XT), X, spe(T,1a,X,b)}

dat deaths.dat

sta wei(XT) exposures.dat

The command “man” indicates the number of (manifest) variables, in this case 2 (age
and calendar time). With “dim”, one specifies the number of levels of the variables. For
females, we had 39 age groups and 51 time points. The command “lab” is used to specify
variable labels. The “mod” statement is used to specify the three relevant model terms: the
exposures [wei(XT)], the age effect [X], and the bilinear term [spe(T,1a,X,b)]. It is assumed
that the files “deaths.dat” and “exposures.dat” contain the tables with observed counts dxt
and exposure ETRxt. The commands “dat” and “sta” are used to specify these data files.

B Fisher Information matrix

In other to simplify notation in the description of the elements of the Fisher information
matrix, we write the expected number of deaths at age x in year t for an exposure to risk
ETRxt in the Poisson model in a slightly different form; that is,

Fxt = ETRxt exp

[(
xmax∑

y=xmin

axyαy

)
+

(
xmax∑

y=xmin

bxyβy

)(
tmax∑

r=tmin

ktrκr

)]

where xmin, xmax, tmin and tmax have obvious meanings. Here, axy, bxy, and, ktr, denote
elements of three design matrices A, B, and K, whose columns are associated with the
three sets of Poisson parameters. More precisely, axy and bxy equal 1 if x = y, and 0
otherwise. Moreover, ktr equals 1 if t = r, -1 if t = tmax, and 0 otherwise. Note that setting
ktmaxr = −1 amounts to saying that κtmax = −∑tmax−1

r=tmin
κr, which is needed for identification.

As a result, K contains only tmax− tmin instead of tmax− tmin +1 columns. For identification,
we also fix βxmin

to 1. As was explained in the text, it is straightforward to switch from this
parameterization to the Lee-Carter parameterization in which

∑xmax

y=xmin
βy = 1. With this

parameterization, it is much easier to derive the Fisher information matrix.
Using L as a shorthand for L(α,β,κ), the elements of the Fisher information matrix for

the free parameters αxmin
to αxmax, βxmin+1 to βxmax , and κtmin

to κ(tmax−tmin) can be obtained
by
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−E
(

∂2L

∂αyαy′

)
=

∑

x

∑

t

Fxtaxyaxy′

−E
(

∂2L

∂βyβy′

)
=

∑

x

∑

t

Fxt (κtbxy) (κtbxy′)

−E
(

∂2L

∂κrκr′

)
=

∑

x

∑

t

Fxt (βxktr) (βxktr′)

−E
(

∂2L

∂αyβy′

)
=

∑

x

∑

t

Fxtaxy (κtbxy′)

−E
(

∂2L

∂αyκr

)
=

∑

x

∑

t

Fxtaxy (βxktr)

−E
(
∂2L

∂βyκr

)
=

∑

x

∑

t

Fxt (κtbxy) (βxktr)

In the first step of the our Monte Carlo simulation procedure, we generate αmx , βmx , and κmt
from a MVN distribution with means equal to the maximum likelihood (ML) estimates α̂x,

β̂x, and κ̂t and covariance matrix equal to Î−1. Note that the estimated Fisher information
matrix is obtained by filling in the ML estimates in the above formulas.

In practice, simulation from a MVN distribution is done as follows:

ξm = ξ̂ + Ĉum.

Here, ξ̂ denotes the vector with ML estimates, um is a vector of independent standard normal
deviates, and Ĉ is the Choleski decomposition of Î−1.

Before going to the second step in which the ARIMA model is estimated using κmt as data
points, we rescale the βmx and κmt terms so that they are in agreement with the Lee-Carter
parameterization.
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C Values of α with confidence intervals

age x α̂x ᾱx
�

σα̂x
�

q0.05

�

q0.25

�

q0.50

�

q0.75

�

q0.95

60 -4.8060 -4.8060 3.87E-05 -4.8162 -4.8140 -4.8059 -4.7980 -4.7957
61 -4.7220 -4.7219 3.75E-05 -4.7318 -4.7297 -4.7219 -4.7141 -4.7117
62 -4.6148 -4.6147 3.41E-05 -4.6244 -4.6222 -4.6148 -4.6072 -4.6051
63 -4.5114 -4.5114 3.12E-05 -4.5206 -4.5187 -4.5114 -4.5044 -4.5023
64 -4.4126 -4.4125 2.82E-05 -4.4212 -4.4193 -4.4125 -4.4056 -4.4037
65 -4.3019 -4.3019 2.62E-05 -4.3104 -4.3085 -4.3019 -4.2953 -4.2934
66 -4.1932 -4.1931 2.42E-05 -4.2012 -4.1995 -4.1931 -4.1869 -4.1852
67 -4.0823 -4.0822 2.28E-05 -4.0900 -4.0883 -4.0822 -4.0761 -4.0744
68 -3.9784 -3.9784 2.10E-05 -3.9858 -3.9842 -3.9784 -3.9725 -3.9708
69 -3.8666 -3.8667 1.97E-05 -3.8741 -3.8724 -3.8667 -3.8611 -3.8594
70 -3.7520 -3.7520 1.81E-05 -3.7589 -3.7574 -3.7520 -3.7466 -3.7450
71 -3.6335 -3.6335 1.67E-05 -3.6401 -3.6387 -3.6335 -3.6282 -3.6266
72 -3.5212 -3.5212 1.59E-05 -3.5278 -3.5264 -3.5212 -3.5162 -3.5146
73 -3.4012 -3.4013 1.48E-05 -3.4076 -3.4062 -3.4013 -3.3963 -3.3950
74 -3.2804 -3.2804 1.36E-05 -3.2865 -3.2850 -3.2805 -3.2757 -3.2744
75 -3.1620 -3.1621 1.31E-05 -3.1680 -3.1667 -3.1620 -3.1575 -3.1561
76 -3.0362 -3.0362 1.24E-05 -3.0419 -3.0406 -3.0362 -3.0317 -3.0303
77 -2.9326 -2.9326 1.21E-05 -2.9383 -2.9371 -2.9326 -2.9282 -2.9269
78 -2.8043 -2.8042 1.12E-05 -2.8098 -2.8085 -2.8042 -2.7999 -2.7987
79 -2.6891 -2.6891 1.18E-05 -2.6947 -2.6936 -2.6891 -2.6847 -2.6835
80 -2.5593 -2.5593 1.12E-05 -2.5649 -2.5636 -2.5593 -2.5551 -2.5538
81 -2.4354 -2.4353 1.12E-05 -2.4408 -2.4396 -2.4353 -2.4310 -2.4298
82 -2.3448 -2.3448 1.18E-05 -2.3504 -2.3491 -2.3448 -2.3404 -2.3391
83 -2.2247 -2.2247 1.24E-05 -2.2306 -2.2293 -2.2247 -2.2202 -2.2189
84 -2.1087 -2.1087 1.26E-05 -2.1145 -2.1132 -2.1086 -2.1042 -2.1029
85 -1.9983 -1.9983 1.35E-05 -2.0044 -2.0030 -1.9983 -1.9937 -1.9923
86 -1.8926 -1.8927 1.53E-05 -1.8991 -1.8977 -1.8926 -1.8876 -1.8863
87 -1.7865 -1.7865 1.68E-05 -1.7933 -1.7917 -1.7865 -1.7813 -1.7798
88 -1.6820 -1.6819 1.94E-05 -1.6891 -1.6876 -1.6819 -1.6762 -1.6747
89 -1.5911 -1.5911 2.31E-05 -1.5989 -1.5972 -1.5911 -1.5849 -1.5831
90 -1.5006 -1.5005 2.89E-05 -1.5093 -1.5074 -1.5005 -1.4935 -1.4916
91 -1.4010 -1.4012 3.58E-05 -1.4112 -1.4088 -1.4011 -1.3935 -1.3914
92 -1.3074 -1.3074 4.59E-05 -1.3185 -1.3160 -1.3074 -1.2987 -1.2962
93 -1.2339 -1.2337 6.17E-05 -1.2467 -1.2437 -1.2338 -1.2237 -1.2206
94 -1.1572 -1.1572 8.47E-05 -1.1726 -1.1689 -1.1572 -1.1454 -1.1420
95 -1.0798 -1.0797 1.18E-04 -1.0974 -1.0935 -1.0800 -1.0655 -1.0618
96 -1.0045 -1.0048 1.69E-04 -1.0268 -1.0216 -1.0047 -0.9883 -0.9836
97 -0.9710 -0.9710 2.56E-04 -0.9967 -0.9914 -0.9712 -0.9502 -0.9443

Table C.1: α’s for the female population (α̂x is the estimation obtained on the Dutch data
with the method described in Section 3.2, αx is the average of the simulated α-values over
the 10,000 samples, σ̂ �

αx is the estimation of the standard error on α̂x, q̂0.05, q̂0.25, q̂0.50, q̂0.75

and q̂0.95 are the 5th, 25th, 50th, 75th and 95th quantiles of the 10,000 simulated α-values).
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age x α̂x ᾱx
�

σα̂x
�

q0.05

�

q0.25

�

q0.50

�

q0.75

�

q0.95

60 -4.1482 -4.1482 2.16898E-05 -4.1558 -4.1542 -4.1482 -4.1423 -4.1406
61 -4.0483 -4.0483 2.03232E-05 -4.0556 -4.0541 -4.0484 -4.0426 -4.0410
62 -3.9398 -3.9398 1.84472E-05 -3.9469 -3.9453 -3.9399 -3.9344 -3.9328
63 -3.8457 -3.8457 1.76356E-05 -3.8526 -3.8511 -3.8457 -3.8403 -3.8388
64 -3.7462 -3.7462 1.60883E-05 -3.7528 -3.7514 -3.7462 -3.7411 -3.7397
65 -3.6434 -3.6434 1.5304E-05 -3.6498 -3.6484 -3.6434 -3.6385 -3.6370
66 -3.5484 -3.5485 1.49165E-05 -3.5548 -3.5534 -3.5484 -3.5435 -3.5422
67 -3.4480 -3.4480 1.39065E-05 -3.4541 -3.4527 -3.4480 -3.4433 -3.4419
68 -3.3537 -3.3537 1.34389E-05 -3.3598 -3.3584 -3.3537 -3.3490 -3.3477
69 -3.2708 -3.2708 1.29118E-05 -3.2768 -3.2754 -3.2708 -3.2662 -3.2649
70 -3.1744 -3.1744 1.24884E-05 -3.1802 -3.1789 -3.1744 -3.1698 -3.1685
71 -3.0699 -3.0699 1.1889E-05 -3.0756 -3.0743 -3.0699 -3.0654 -3.0641
72 -2.9745 -2.9745 1.14112E-05 -2.9801 -2.9788 -2.9744 -2.9701 -2.9689
73 -2.8800 -2.8800 1.10546E-05 -2.8853 -2.8842 -2.8800 -2.8757 -2.8744
74 -2.7857 -2.7857 1.09117E-05 -2.7911 -2.7900 -2.7857 -2.7815 -2.7803
75 -2.6860 -2.6859 1.07098E-05 -2.6913 -2.6902 -2.6859 -2.6818 -2.6806
76 -2.5898 -2.5898 1.08182E-05 -2.5952 -2.5940 -2.5899 -2.5856 -2.5844
77 -2.5121 -2.5121 1.08986E-05 -2.5175 -2.5163 -2.5121 -2.5078 -2.5067
78 -2.4080 -2.4080 1.08749E-05 -2.4134 -2.4122 -2.4080 -2.4037 -2.4025
79 -2.3189 -2.3188 1.12752E-05 -2.3243 -2.3231 -2.3189 -2.3146 -2.3133
80 -2.2291 -2.2291 1.15956E-05 -2.2347 -2.2335 -2.2291 -2.2248 -2.2235
81 -2.1314 -2.1314 1.16362E-05 -2.1370 -2.1358 -2.1314 -2.1270 -2.1257
82 -2.0570 -2.0571 1.26778E-05 -2.0629 -2.0616 -2.0571 -2.0525 -2.0513
83 -1.9476 -1.9476 1.34382E-05 -1.9537 -1.9523 -1.9476 -1.9429 -1.9415
84 -1.8666 -1.8666 1.47597E-05 -1.8730 -1.8715 -1.8666 -1.8616 -1.8602
85 -1.7730 -1.7730 1.59289E-05 -1.7797 -1.7782 -1.7729 -1.7678 -1.7664
86 -1.6909 -1.6909 1.77457E-05 -1.6978 -1.6963 -1.6910 -1.6854 -1.6840
87 -1.6010 -1.6011 2.01515E-05 -1.6085 -1.6068 -1.6011 -1.5953 -1.5937
88 -1.5196 -1.5195 2.35266E-05 -1.5275 -1.5258 -1.5195 -1.5134 -1.5114
89 -1.4436 -1.4435 2.83534E-05 -1.4523 -1.4503 -1.4436 -1.4367 -1.4348
90 -1.3644 -1.3643 3.34913E-05 -1.3739 -1.3717 -1.3643 -1.3569 -1.3549
91 -1.2852 -1.2853 4.30473E-05 -1.2961 -1.2938 -1.2853 -1.2769 -1.2744
92 -1.2076 -1.2077 5.47078E-05 -1.2197 -1.2172 -1.2077 -1.1983 -1.1956
93 -1.1306 -1.1307 7.10632E-05 -1.1446 -1.1414 -1.1308 -1.1200 -1.1168
94 -1.0610 -1.0608 9.40428E-05 -1.0767 -1.0734 -1.0608 -1.0484 -1.0448
95 -1.0165 -1.0164 0.000136464 -1.0355 -1.0316 -1.0163 -1.0015 -0.9972
96 -0.9570 -0.9569 0.000183075 -0.9791 -0.9742 -0.9566 -0.9399 -0.9346
97 -0.9171 -0.9173 0.000278921 -0.9445 -0.9386 -0.9173 -0.8959 -0.8897

Table C.2: α’s for the male population (α̂x is the estimation obtained on the Dutch data
with the method described in Section 3.2, αx is the average of the simulated α-values over
the 10,000 samples, σ̂ �

αx is the estimation of the standard error on α̂x, q̂0.05, q̂0.25, q̂0.50, q̂0.75

and q̂0.95 are the 5th, 25th, 50th, 75th and 95th quantiles of the 10,000 simulated α-values).
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D Values of β with confidence intervals

age x β̂x β̄x
�

σ
β̂x

�

q0.05

�

q0.25

�

q0.50

�

q0.75

�

q0.95

60 0.02140 0.02144 7.69E-07 0.02007 0.02035 0.02140 0.02258 0.02296
61 0.02397 0.02398 7.13E-07 0.02257 0.02289 0.02397 0.02505 0.02538
62 0.02476 0.02476 6.52E-07 0.02346 0.02374 0.02476 0.02579 0.02610
63 0.02584 0.02583 6.07E-07 0.02456 0.02484 0.02583 0.02683 0.02712
64 0.02802 0.02801 5.59E-07 0.02680 0.02707 0.02801 0.02898 0.02926
65 0.02822 0.02822 5.20E-07 0.02703 0.02729 0.02821 0.02915 0.02941
66 0.03023 0.03024 4.92E-07 0.02909 0.02934 0.03024 0.03115 0.03140
67 0.02962 0.02963 4.48E-07 0.02855 0.02877 0.02963 0.03049 0.03074
68 0.03165 0.03164 4.20E-07 0.03058 0.03081 0.03163 0.03247 0.03271
69 0.03334 0.03334 3.90E-07 0.03232 0.03254 0.03333 0.03413 0.03436
70 0.03280 0.03280 3.61E-07 0.03181 0.03204 0.03280 0.03357 0.03379
71 0.03455 0.03456 3.45E-07 0.03359 0.03380 0.03456 0.03530 0.03552
72 0.03451 0.03449 3.21E-07 0.03357 0.03377 0.03449 0.03523 0.03544
73 0.03620 0.03619 3.02E-07 0.03529 0.03549 0.03618 0.03689 0.03708
74 0.03627 0.03627 2.91E-07 0.03538 0.03558 0.03628 0.03696 0.03716
75 0.03567 0.03568 2.78E-07 0.03482 0.03501 0.03568 0.03636 0.03654
76 0.03741 0.03741 2.63E-07 0.03658 0.03676 0.03741 0.03807 0.03827
77 0.03380 0.03380 2.59E-07 0.03295 0.03314 0.03380 0.03444 0.03463
78 0.03535 0.03535 2.51E-07 0.03453 0.03471 0.03534 0.03599 0.03617
79 0.03329 0.03329 2.45E-07 0.03248 0.03266 0.03329 0.03394 0.03411
80 0.03417 0.03416 2.40E-07 0.03336 0.03354 0.03416 0.03479 0.03497
81 0.03336 0.03336 2.38E-07 0.03254 0.03273 0.03337 0.03398 0.03416
82 0.03003 0.03003 2.46E-07 0.02922 0.02939 0.03003 0.03067 0.03085
83 0.02901 0.02902 2.51E-07 0.02818 0.02837 0.02902 0.02966 0.02983
84 0.02838 0.02838 2.62E-07 0.02754 0.02772 0.02838 0.02904 0.02921
85 0.02774 0.02774 2.81E-07 0.02687 0.02706 0.02774 0.02841 0.02860
86 0.02579 0.02579 3.03E-07 0.02488 0.02508 0.02579 0.02648 0.02669
87 0.02387 0.02387 3.33E-07 0.02293 0.02313 0.02387 0.02461 0.02483
88 0.02236 0.02237 3.78E-07 0.02137 0.02159 0.02236 0.02316 0.02340
89 0.02040 0.02040 4.48E-07 0.01929 0.01954 0.02040 0.02126 0.02150
90 0.01857 0.01857 5.56E-07 0.01734 0.01762 0.01858 0.01953 0.01979
91 0.01618 0.01617 6.84E-07 0.01483 0.01510 0.01619 0.01724 0.01754
92 0.01605 0.01605 8.62E-07 0.01454 0.01486 0.01606 0.01724 0.01756
93 0.01426 0.01427 1.17E-06 0.01250 0.01288 0.01427 0.01564 0.01606
94 0.01172 0.01170 1.55E-06 0.00962 0.01009 0.01170 0.01331 0.01374
95 0.01138 0.01139 2.14E-06 0.00896 0.00953 0.01139 0.01328 0.01381
96 0.00721 0.00716 3.03E-06 0.00429 0.00492 0.00716 0.00940 0.00999
97 0.00261 0.00262 4.85E-06 -0.00096 -0.00017 0.00260 0.00548 0.00630

Table D.1: β’s for the female population (β̂x is the estimation obtained on the Dutch data
with the method described in Section 3.2, βx is the average of the simulated β-values over
the 10,000 samples, σ̂ �

βx
is the estimation of the standard error on β̂x, q̂0.05, q̂0.25, q̂0.50, q̂0.75

and q̂0.95 are the 5th, 25th, 50th, 75th and 95th quantiles of the 10,000 simulated β-values).
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age x β̂x β̄x
�

σ
β̂x

�

q0.05

�

q0.25

�

q0.50

�

q0.75

�

q0.95

60 0.07539 0.07548 7.14E-06 0.07120 0.07209 0.07540 0.07895 0.08003
61 0.07314 0.07316 6.63E-06 0.06895 0.06990 0.07315 0.07653 0.07743
62 0.07159 0.07158 6.41E-06 0.06743 0.06831 0.07160 0.07479 0.07578
63 0.06535 0.06540 5.82E-06 0.06145 0.06231 0.06538 0.06851 0.06940
64 0.06418 0.06422 5.50E-06 0.06037 0.06121 0.06423 0.06725 0.06811
65 0.06394 0.06396 5.24E-06 0.06027 0.06103 0.06394 0.06688 0.06777
66 0.05692 0.05695 4.70E-06 0.05339 0.05417 0.05695 0.05970 0.06050
67 0.05714 0.05716 4.59E-06 0.05364 0.05446 0.05715 0.05989 0.06068
68 0.05535 0.05538 4.20E-06 0.05203 0.05281 0.05536 0.05803 0.05873
69 0.05149 0.05148 4.00E-06 0.04823 0.04892 0.05146 0.05407 0.05480
70 0.04701 0.04698 3.76E-06 0.04381 0.04450 0.04701 0.04943 0.05013
71 0.04641 0.04641 3.59E-06 0.04326 0.04395 0.04641 0.04883 0.04950
72 0.04092 0.04091 3.36E-06 0.03791 0.03858 0.04088 0.04329 0.04398
73 0.03540 0.03536 3.22E-06 0.03245 0.03309 0.03535 0.03770 0.03833
74 0.03381 0.03382 3.12E-06 0.03095 0.03158 0.03381 0.03609 0.03673
75 0.03113 0.03115 2.92E-06 0.02835 0.02899 0.03115 0.03331 0.03394
76 0.02969 0.02970 2.92E-06 0.02689 0.02754 0.02971 0.03191 0.03252
77 0.02445 0.02445 2.87E-06 0.02167 0.02227 0.02445 0.02659 0.02724
78 0.01839 0.01841 2.79E-06 0.01567 0.01626 0.01843 0.02055 0.02116
79 0.01697 0.01699 2.92E-06 0.01416 0.01481 0.01698 0.01919 0.01985
80 0.01521 0.01522 3.05E-06 0.01235 0.01300 0.01522 0.01745 0.01808
81 0.01192 0.01193 3.04E-06 0.00910 0.00973 0.01191 0.01415 0.01481
82 0.01067 0.01062 3.19E-06 0.00764 0.00836 0.01062 0.01290 0.01356
83 0.00573 0.00570 3.32E-06 0.00274 0.00340 0.00569 0.00807 0.00870
84 0.00774 0.00772 3.64E-06 0.00459 0.00529 0.00774 0.01015 0.01085
85 0.01294 0.01290 3.87E-06 0.00964 0.01034 0.01295 0.01543 0.01609
86 0.00579 0.00580 4.29E-06 0.00239 0.00315 0.00581 0.00843 0.00920
87 0.00661 0.00661 4.84E-06 0.00293 0.00374 0.00665 0.00939 0.01018
88 0.00519 0.00516 5.78E-06 0.00121 0.00209 0.00515 0.00826 0.00916
89 0.00159 0.00161 6.87E-06 -0.00273 -0.00175 0.00161 0.00497 0.00587
90 -0.00452 -0.00453 8.46E-06 -0.00933 -0.00821 -0.00455 -0.00080 0.00022
91 -0.00122 -0.00126 1.00E-05 -0.00647 -0.00534 -0.00124 0.00278 0.00392
92 0.00618 0.00613 1.29E-05 0.00023 0.00152 0.00616 0.01072 0.01197
93 0.00167 0.00166 1.68E-05 -0.00511 -0.00355 0.00164 0.00689 0.00836
94 -0.00194 -0.00189 2.14E-05 -0.00971 -0.00792 -0.00181 0.00396 0.00553
95 -0.00909 -0.00909 3.02E-05 -0.01812 -0.01607 -0.00908 -0.00210 -0.00001
96 -0.00792 -0.00794 4.43E-05 -0.01915 -0.01654 -0.00787 0.00056 0.00298
97 -0.02522 -0.02531 6.84E-05 -0.03906 -0.03584 -0.02528 -0.01476 -0.01197

Table D.2: β’s for the male population (β̂x is the estimation obtained on the Dutch data
with the method described in Section 3.2, βx is the average of the simulated β-values over
the 10,000 samples, σ̂ �

βx
is the estimation of the standard error on β̂x, q̂0.05, q̂0.25, q̂0.50, q̂0.75

and q̂0.95 are the 5th, 25th, 50th, 75th and 95th quantiles of the 10,000 simulated β-values).
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E Values of κ with confidence intervals
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year t κ̂t κ̄t
�

σ �

κt

�

q0.05

�

q0.25

�

q0.50

�

q0.75

�

q0.95

1950 12.49 12.47 0.04 12.14 12.21 12.47 12.73 12.81
1951 11.91 11.89 0.04 11.56 11.63 11.89 12.15 12.22
1952 10.86 10.85 0.04 10.52 10.59 10.85 11.11 11.18
1953 11.34 11.32 0.04 11.00 11.08 11.32 11.57 11.64
1954 10.16 10.15 0.04 9.83 9.90 10.14 10.40 10.46
1955 9.97 9.95 0.04 9.63 9.70 9.95 10.20 10.27
1956 11.09 11.07 0.04 10.76 10.83 11.07 11.31 11.38
1957 9.10 9.09 0.04 8.78 8.85 9.09 9.33 9.40
1958 8.43 8.42 0.04 8.11 8.17 8.41 8.66 8.72
1959 7.40 7.39 0.04 7.08 7.15 7.39 7.63 7.70
1960 7.33 7.32 0.03 7.01 7.08 7.32 7.55 7.62
1961 6.22 6.21 0.03 5.91 5.98 6.21 6.44 6.51
1962 6.85 6.83 0.03 6.54 6.61 6.83 7.06 7.13
1963 6.58 6.56 0.03 6.28 6.34 6.56 6.79 6.85
1964 4.28 4.27 0.03 3.98 4.05 4.27 4.50 4.57
1965 5.09 5.08 0.03 4.79 4.86 5.08 5.31 5.36
1966 4.91 4.90 0.03 4.62 4.68 4.90 5.12 5.18
1967 3.26 3.25 0.03 2.97 3.03 3.25 3.47 3.54
1968 4.02 4.01 0.03 3.74 3.80 4.01 4.23 4.29
1969 4.16 4.15 0.03 3.88 3.94 4.15 4.36 4.42
1970 3.65 3.64 0.03 3.38 3.44 3.64 3.85 3.91
1971 3.32 3.31 0.03 3.05 3.11 3.31 3.52 3.58
1972 3.32 3.32 0.03 3.06 3.11 3.32 3.52 3.58
1973 1.27 1.26 0.03 1.00 1.06 1.27 1.47 1.53
1974 0.14 0.14 0.03 -0.12 -0.06 0.14 0.35 0.41
1975 0.30 0.30 0.03 0.04 0.09 0.30 0.50 0.56
1976 -0.68 -0.68 0.03 -0.94 -0.89 -0.68 -0.47 -0.41
1977 -3.03 -3.02 0.03 -3.30 -3.24 -3.02 -2.82 -2.76
1978 -2.82 -2.81 0.03 -3.07 -3.02 -2.81 -2.61 -2.55
1979 -4.23 -4.22 0.03 -4.48 -4.43 -4.22 -4.02 -3.97
1980 -4.80 -4.79 0.03 -5.05 -4.99 -4.79 -4.59 -4.53
1981 -5.30 -5.29 0.03 -5.55 -5.49 -5.29 -5.09 -5.03
1982 -5.66 -5.65 0.03 -5.91 -5.85 -5.65 -5.44 -5.38
1983 -6.56 -6.55 0.03 -6.81 -6.75 -6.55 -6.35 -6.29
1984 -6.43 -6.42 0.02 -6.68 -6.62 -6.42 -6.22 -6.16
1985 -6.29 -6.28 0.02 -6.53 -6.47 -6.28 -6.08 -6.02
1986 -6.37 -6.36 0.02 -6.60 -6.55 -6.36 -6.16 -6.11
1987 -8.08 -8.07 0.02 -8.32 -8.27 -8.07 -7.86 -7.81
1988 -7.97 -7.96 0.02 -8.21 -8.16 -7.96 -7.76 -7.71
1989 -7.35 -7.34 0.02 -7.58 -7.53 -7.34 -7.15 -7.09
1990 -7.77 -7.76 0.02 -8.01 -7.95 -7.76 -7.56 -7.50
1991 -7.91 -7.89 0.02 -8.15 -8.09 -7.90 -7.70 -7.65
1992 -8.53 -8.52 0.02 -8.77 -8.71 -8.52 -8.33 -8.27
1993 -6.98 -6.97 0.02 -7.21 -7.16 -6.97 -6.78 -6.73
1994 -8.27 -8.26 0.02 -8.50 -8.44 -8.26 -8.07 -8.01
1995 -8.37 -8.35 0.02 -8.59 -8.54 -8.35 -8.17 -8.11
1996 -8.34 -8.33 0.02 -8.56 -8.51 -8.33 -8.14 -8.09
1997 -8.98 -8.97 0.02 -9.21 -9.16 -8.97 -8.78 -8.72
1998 -9.12 -9.10 0.02 -9.35 -9.29 -9.10 -8.91 -8.86
1999 -8.63 -8.61 0.02 -8.85 -8.80 -8.61 -8.42 -8.37
2000 -8.97 -8.96 0.02 -9.20 -9.15 -8.96 -8.77 -8.72

Table E.1: Estimated κ’s for the female population (κ̂t is the estimation obtained on the
Dutch data with the method described in Section 3.2, κt is the average of the simulated κ-
values over the 10,000 samples, σ̂ �

κt is the estimation of the standard error on κ̂t, q̂0.05, q̂0.25,
q̂0.50, q̂0.75 and q̂0.95 are the 5th, 25th, 50th, 75th and 95th quantiles of the 10,000 simulated
κ-values).
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year t κ∗t κ̄∗t
�

σκ∗t

�

q0.05

�

q0.25

�

q0.50

�

q0.75

�

q0.95

2001 -9.40 -9.38 0.83 -10.88 -10.55 -9.38 -8.19 -7.87
2002 -9.83 -9.81 1.64 -11.89 -11.43 -9.83 -8.17 -7.67
2003 -10.26 -10.25 2.46 -12.77 -12.24 -10.26 -8.21 -7.67
2004 -10.69 -10.67 3.21 -13.60 -12.97 -10.68 -8.37 -7.75
2005 -11.12 -11.10 3.98 -14.41 -13.66 -11.10 -8.59 -7.83
2006 -11.55 -11.54 4.81 -15.13 -14.36 -11.54 -8.72 -7.87
2007 -11.98 -11.97 5.70 -15.88 -14.98 -11.98 -8.90 -8.00
2008 -12.41 -12.41 6.50 -16.65 -15.66 -12.42 -9.10 -8.27
2009 -12.84 -12.84 7.31 -17.33 -16.32 -12.84 -9.37 -8.41
2010 -13.27 -13.26 8.07 -17.99 -16.85 -13.26 -9.60 -8.59
2011 -13.70 -13.68 8.88 -18.59 -17.49 -13.68 -9.82 -8.80
2012 -14.13 -14.12 9.74 -19.16 -18.12 -14.15 -10.06 -8.99
2013 -14.56 -14.54 10.53 -19.82 -18.66 -14.54 -10.32 -9.20
2014 -14.99 -14.98 11.40 -20.49 -19.27 -14.98 -10.62 -9.44
2015 -15.41 -15.41 12.32 -21.09 -19.88 -15.39 -10.92 -9.56
2016 -15.84 -15.84 13.14 -21.75 -20.47 -15.82 -11.22 -9.94
2017 -16.27 -16.27 13.89 -22.41 -21.08 -16.23 -11.52 -10.22
2018 -16.70 -16.70 14.76 -23.06 -21.61 -16.68 -11.79 -10.39
2019 -17.13 -17.13 15.62 -23.66 -22.18 -17.12 -12.03 -10.67
2020 -17.56 -17.56 16.46 -24.31 -22.83 -17.51 -12.32 -10.98
2021 -17.99 -18.01 17.29 -24.86 -23.32 -17.98 -12.71 -11.24
2022 -18.42 -18.44 18.09 -25.39 -23.86 -18.43 -13.06 -11.54
2023 -18.85 -18.86 19.04 -25.96 -24.50 -18.86 -13.29 -11.79
2024 -19.28 -19.27 19.78 -26.63 -25.02 -19.24 -13.65 -12.05
2025 -19.71 -19.71 20.63 -27.19 -25.57 -19.65 -13.91 -12.46
2026 -20.14 -20.13 21.49 -27.87 -26.09 -20.08 -14.24 -12.61
2027 -20.57 -20.57 22.50 -28.47 -26.66 -20.52 -14.52 -12.88
2028 -21.00 -21.00 23.34 -29.02 -27.25 -20.94 -14.87 -13.08
2029 -21.42 -21.42 24.30 -29.61 -27.83 -21.38 -15.20 -13.37
2030 -21.85 -21.86 25.11 -30.20 -28.38 -21.84 -15.48 -13.74
2031 -22.28 -22.28 26.00 -30.82 -28.93 -22.22 -15.77 -13.98
2032 -22.71 -22.71 26.85 -31.32 -29.49 -22.71 -16.08 -14.27
2033 -23.14 -23.14 27.70 -31.85 -29.98 -23.10 -16.44 -14.55
2034 -23.57 -23.58 28.63 -32.47 -30.54 -23.55 -16.81 -14.86
2035 -24.00 -24.02 29.45 -32.89 -31.03 -23.97 -17.12 -15.18
2036 -24.43 -24.45 30.21 -33.46 -31.55 -24.42 -17.43 -15.39
2037 -24.86 -24.88 30.97 -34.04 -32.07 -24.83 -17.76 -15.83
2038 -25.29 -25.33 31.74 -34.65 -32.53 -25.28 -18.11 -16.10
2039 -25.72 -25.77 32.53 -35.22 -33.01 -25.75 -18.50 -16.39
2040 -26.15 -26.20 33.46 -35.71 -33.61 -26.17 -18.89 -16.69
2041 -26.58 -26.64 34.07 -36.25 -34.06 -26.62 -19.22 -17.11
2042 -27.01 -27.06 35.01 -36.78 -34.65 -27.09 -19.52 -17.44
2043 -27.44 -27.48 36.09 -37.27 -35.15 -27.45 -19.84 -17.70
2044 -27.86 -27.92 37.06 -37.84 -35.68 -27.92 -20.14 -18.01
2045 -28.29 -28.36 37.86 -38.43 -36.18 -28.31 -20.50 -18.40
2046 -28.72 -28.79 38.57 -38.91 -36.68 -28.74 -20.91 -18.61
2047 -29.15 -29.24 39.51 -39.53 -37.24 -29.19 -21.19 -18.93
2048 -29.58 -29.67 40.27 -40.05 -37.73 -29.61 -21.53 -19.30
2049 -30.01 -30.10 40.98 -40.58 -38.21 -30.05 -21.94 -19.58
2050 -30.44 -30.53 41.74 -41.11 -38.81 -30.45 -22.20 -19.87

Table E.2: Projected κ’s for the female population (κ∗t is the prediction obtained on the
Dutch data from the ARIMA(0,1,0) model, κ∗t is the average of the simulated κ-values over
the 10,000 samples, σ̂κ∗t is the estimation of the standard error on κ∗t , q̂0.05, q̂0.25, q̂0.50, q̂0.75

and q̂0.95 are the 5th, 25th, 50th, 75th and 95th quantiles of the 10,000 simulated κ-values).
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year t κ̂t κ̄t
�

σ �

κt

�

q0.05

�

q0.25

�

q0.50

�

q0.75

�

q0.95

1950 -0.59 -0.59 0.02 -0.83 -0.78 -0.59 -0.40 -0.34
1951 -0.70 -0.70 0.02 -0.94 -0.89 -0.70 -0.51 -0.45
1952 -1.19 -1.18 0.02 -1.44 -1.38 -1.18 -0.99 -0.94
1953 -0.51 -0.51 0.02 -0.75 -0.70 -0.51 -0.33 -0.28
1954 -0.69 -0.69 0.02 -0.94 -0.88 -0.69 -0.51 -0.46
1955 -0.30 -0.30 0.02 -0.53 -0.48 -0.30 -0.12 -0.06
1956 0.15 0.14 0.02 -0.08 -0.03 0.15 0.32 0.37
1957 -0.48 -0.48 0.02 -0.71 -0.65 -0.48 -0.30 -0.24
1958 -0.54 -0.54 0.02 -0.76 -0.71 -0.54 -0.36 -0.31
1959 -0.38 -0.38 0.02 -0.60 -0.55 -0.38 -0.21 -0.16
1960 -0.26 -0.26 0.02 -0.48 -0.43 -0.26 -0.09 -0.04
1961 -0.20 -0.20 0.02 -0.41 -0.37 -0.20 -0.03 0.02
1962 0.89 0.89 0.02 0.68 0.72 0.89 1.05 1.10
1963 1.22 1.22 0.02 1.01 1.05 1.22 1.38 1.43
1964 0.91 0.91 0.02 0.70 0.75 0.91 1.08 1.12
1965 1.26 1.26 0.02 1.06 1.10 1.26 1.42 1.47
1966 1.44 1.44 0.02 1.24 1.28 1.44 1.60 1.64
1967 1.47 1.47 0.01 1.27 1.31 1.47 1.63 1.67
1968 1.95 1.95 0.01 1.75 1.79 1.95 2.10 2.15
1969 2.36 2.36 0.01 2.16 2.20 2.36 2.52 2.56
1970 2.64 2.64 0.01 2.45 2.49 2.64 2.79 2.84
1971 2.31 2.31 0.01 2.11 2.15 2.31 2.46 2.51
1972 2.84 2.83 0.01 2.64 2.68 2.83 2.99 3.03
1973 2.07 2.06 0.01 1.87 1.91 2.06 2.22 2.26
1974 1.60 1.60 0.01 1.40 1.45 1.60 1.75 1.79
1975 2.44 2.44 0.01 2.25 2.29 2.44 2.59 2.63
1976 2.53 2.53 0.01 2.33 2.37 2.53 2.67 2.72
1977 1.38 1.38 0.01 1.19 1.23 1.38 1.53 1.57
1978 1.85 1.84 0.01 1.66 1.70 1.84 1.99 2.04
1979 1.24 1.23 0.01 1.04 1.09 1.23 1.38 1.42
1980 1.14 1.14 0.01 0.95 0.99 1.14 1.28 1.33
1981 0.92 0.92 0.01 0.73 0.77 0.92 1.07 1.11
1982 0.88 0.88 0.01 0.70 0.74 0.88 1.03 1.07
1983 0.56 0.56 0.01 0.38 0.42 0.56 0.71 0.75
1984 0.38 0.38 0.01 0.20 0.23 0.38 0.52 0.56
1985 0.43 0.43 0.01 0.24 0.28 0.43 0.57 0.61
1986 0.41 0.41 0.01 0.23 0.27 0.41 0.55 0.59
1987 -0.47 -0.47 0.01 -0.65 -0.61 -0.47 -0.33 -0.29
1988 -0.58 -0.58 0.01 -0.77 -0.73 -0.58 -0.44 -0.40
1989 -0.65 -0.65 0.01 -0.83 -0.79 -0.65 -0.51 -0.47
1990 -1.14 -1.14 0.01 -1.33 -1.29 -1.14 -0.99 -0.95
1991 -1.44 -1.44 0.01 -1.63 -1.58 -1.44 -1.29 -1.25
1992 -1.96 -1.96 0.01 -2.15 -2.11 -1.96 -1.81 -1.76
1993 -1.31 -1.31 0.01 -1.50 -1.45 -1.31 -1.17 -1.13
1994 -2.40 -2.39 0.01 -2.59 -2.54 -2.39 -2.24 -2.20
1995 -2.42 -2.42 0.01 -2.61 -2.57 -2.42 -2.27 -2.22
1996 -2.66 -2.65 0.01 -2.85 -2.81 -2.65 -2.50 -2.46
1997 -3.60 -3.59 0.02 -3.80 -3.76 -3.59 -3.43 -3.39
1998 -3.69 -3.69 0.02 -3.90 -3.85 -3.69 -3.52 -3.48
1999 -4.25 -4.24 0.02 -4.47 -4.41 -4.24 -4.08 -4.03
2000 -4.87 -4.87 0.02 -5.10 -5.05 -4.87 -4.69 -4.64

Table E.3: Estimated κ’s for the male population (κ̂t is the estimation obtained on the
Dutch data with the method described in Section 3.2, κt is the average of the simulated κ-
values over the 10,000 samples, σ̂ �

κt is the estimation of the standard error on κ̂t, q̂0.05, q̂0.25,
q̂0.50, q̂0.75 and q̂0.95 are the 5th, 25th, 50th, 75th and 95th quantiles of the 10,000 simulated
κ-values).
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year t κ∗t κ̄∗t
�

σκ∗t

�

q0.05

�

q0.25

�

q0.50

�

q0.75

�

q0.95

2001 -5.12 -5.12 0.17 -5.80 -5.65 -5.11 -4.58 -4.44
2002 -5.37 -5.37 0.33 -6.32 -6.10 -5.37 -4.62 -4.43
2003 -5.62 -5.61 0.49 -6.77 -6.50 -5.61 -4.72 -4.47
2004 -5.87 -5.86 0.65 -7.20 -6.90 -5.85 -4.82 -4.53
2005 -6.12 -6.11 0.80 -7.59 -7.27 -6.11 -4.96 -4.64
2006 -6.37 -6.36 0.95 -7.98 -7.60 -6.36 -5.10 -4.76
2007 -6.62 -6.61 1.11 -8.36 -7.97 -6.61 -5.28 -4.87
2008 -6.87 -6.86 1.28 -8.77 -8.31 -6.84 -5.44 -5.00
2009 -7.12 -7.12 1.43 -9.11 -8.66 -7.11 -5.60 -5.18
2010 -7.37 -7.37 1.59 -9.47 -9.00 -7.36 -5.76 -5.32
2011 -7.62 -7.62 1.73 -9.80 -9.32 -7.60 -5.96 -5.46
2012 -7.87 -7.87 1.89 -10.16 -9.64 -7.86 -6.12 -5.62
2013 -8.12 -8.12 2.05 -10.48 -9.94 -8.09 -6.29 -5.81
2014 -8.37 -8.37 2.22 -10.83 -10.29 -8.36 -6.47 -5.96
2015 -8.62 -8.62 2.37 -11.16 -10.60 -8.59 -6.64 -6.14
2016 -8.87 -8.87 2.52 -11.50 -10.91 -8.85 -6.84 -6.31
2017 -9.12 -9.11 2.66 -11.84 -11.21 -9.08 -7.04 -6.48
2018 -9.37 -9.36 2.81 -12.15 -11.52 -9.33 -7.23 -6.68
2019 -9.62 -9.61 3.00 -12.49 -11.84 -9.59 -7.42 -6.83
2020 -9.87 -9.86 3.16 -12.80 -12.14 -9.84 -7.59 -6.99
2021 -10.12 -10.11 3.32 -13.14 -12.45 -10.09 -7.78 -7.18
2022 -10.37 -10.36 3.49 -13.47 -12.73 -10.35 -7.98 -7.33
2023 -10.62 -10.60 3.66 -13.79 -13.03 -10.59 -8.13 -7.51
2024 -10.87 -10.86 3.81 -14.08 -13.33 -10.85 -8.35 -7.71
2025 -11.13 -11.11 3.94 -14.40 -13.63 -11.09 -8.57 -7.85
2026 -11.38 -11.35 4.10 -14.68 -13.93 -11.36 -8.75 -8.05
2027 -11.63 -11.60 4.28 -15.01 -14.23 -11.59 -8.98 -8.21
2028 -11.88 -11.85 4.44 -15.30 -14.53 -11.83 -9.16 -8.36
2029 -12.13 -12.10 4.58 -15.62 -14.82 -12.08 -9.37 -8.56
2030 -12.38 -12.35 4.75 -15.96 -15.14 -12.35 -9.55 -8.76
2031 -12.63 -12.60 4.92 -16.28 -15.42 -12.59 -9.74 -8.95
2032 -12.88 -12.85 5.13 -16.59 -15.72 -12.82 -9.97 -9.11
2033 -13.13 -13.10 5.27 -16.88 -16.01 -13.09 -10.22 -9.33
2034 -13.38 -13.36 5.41 -17.23 -16.29 -13.35 -10.44 -9.55
2035 -13.63 -13.60 5.56 -17.48 -16.60 -13.58 -10.61 -9.73
2036 -13.88 -13.85 5.72 -17.80 -16.87 -13.83 -10.84 -9.99
2037 -14.13 -14.10 5.87 -18.07 -17.18 -14.11 -11.05 -10.14
2038 -14.38 -14.35 6.03 -18.37 -17.46 -14.37 -11.28 -10.36
2039 -14.63 -14.60 6.21 -18.68 -17.75 -14.60 -11.47 -10.54
2040 -14.88 -14.85 6.41 -19.01 -18.08 -14.86 -11.66 -10.70
2041 -15.13 -15.10 6.59 -19.27 -18.36 -15.09 -11.82 -10.91
2042 -15.38 -15.35 6.72 -19.61 -18.62 -15.36 -12.06 -11.11
2043 -15.63 -15.60 6.92 -19.88 -18.96 -15.58 -12.24 -11.26
2044 -15.88 -15.85 7.07 -20.20 -19.23 -15.83 -12.44 -11.50
2045 -16.13 -16.09 7.22 -20.53 -19.52 -16.07 -12.66 -11.71
2046 -16.38 -16.35 7.36 -20.76 -19.81 -16.32 -12.85 -11.90
2047 -16.63 -16.60 7.50 -21.10 -20.07 -16.57 -13.08 -12.13
2048 -16.88 -16.85 7.66 -21.41 -20.37 -16.82 -13.29 -12.32
2049 -17.13 -17.09 7.87 -21.72 -20.67 -17.08 -13.48 -12.47
2050 -17.38 -17.34 8.04 -22.03 -20.96 -17.32 -13.67 -12.70

Table E.4: Projected κ’s for the male population (κ∗t is the prediction obtained on the Dutch
data from the ARIMA(0,1,0) model, κ∗t is the average of the simulated κ-values over the
10,000 samples, σ̂κ∗t is the estimation of the standard error on κ∗t , q̂0.05, q̂0.25, q̂0.50, q̂0.75 and
q̂0.95 are the 5th, 25th, 50th, 75th and 95th quantiles of the 10,000 simulated κ-values).
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