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Abstract

Statistics published by official agencies are often generated using population registries, which are

likely to contain classification errors and missing values. A method that simultaneously handles clas-

sification errors and missing values is Multiple Imputation of Latent Classes (MILC). In this paper,

the MILC method is applied to estimate the number of serious road injuries per vehicle type in the

Netherlands and to stratify the number of serious road injuries per vehicle type into relevant subgroups

using data from two registries. For this specific application, the MILC method is extended to handle

the large number of missing values in the stratification variable ‘region of accident’ and to include more

stratification covariates. After applying the extended MILC method, a multiply imputed dataset is ge-

nerated that can be used to create statistical figures in a straightforward manner, and that incorporates

uncertainty due to classification errors and missing values in the estimate of the total variance.
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1 Introduction

When statistics are published by government or other official agencies, population registries are often

utilized to generate these statistics. Here, caution is advised as population registries are collected for

administrative purposes so they may not align conceptually with the target of interest. Furthermore, they

are likely to contain process delivered classification errors. Another issue is that population registries are

likely to not have registered every single unit in the population of interest, so the population registry is

not complete.
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An official agency dealing with the issues of classification errors and missing units in registers when

generating statistics is the Institute for Road Safety Research (in Dutch Stichting Wetenschappelijk On-

derzoek Verkeersveiligheid, abbreviated as SWOV). An important statistic SWOV publishes every year is

the number of serious road injuries in the Netherlands. The number of serious road injuries is important

because it is used to define the road safety target (Reurings & Stipdonk, 2011). To gain more insight in

the total number of serious road injuries, it can be further stratified by vehicle type, injury severity and

region (Reurings & Bos, 2012). When estimating the number of serious road injuries in the Netherlands,

SWOV uses information from police and hospital registries. These registries contain classification errors

and are incomplete. SWOV estimates the number of units missing in both registries by a method based on

capture-recapture (Reurings & Stipdonk, 2011). However, a procedure to correct for classification errors

and missing values within the observed cases has not been applied.

A method to simultaneously deal with classification errors and missing values within the observed cases

is the recently proposed method Multiple Imputation of Latent Classes (MILC) (Boeschoten et al., 2017).

The MILC method combines two existing statistical methods: multiple imputation and latent class analy-

sis. To apply the MILC method, it is necessary to have multiple population registries that can be linked

on a unit level. Both registries are required to contain identifier variables to link the information for a

specific case in one registry to its information in the other registry. In such a combined dataset, variables

are selected that measure the same construct but originate from the different registries. They are used as

indicators of a latent variable of which it can be said that it contains the ‘true scores’ which is estimated

using a latent class model. Information from the latent class model is then used to create multiple impu-

tations of the ‘true variable’. The multiply imputed datasets can be used to generate statistics of interest,

graphs or frequency tables. Uncertainty due to classification errors and missing cases is reflected in the

differences between the imputations and is incorporated in the estimate of the total variance (Rubin, 1987,

p.76).

In this paper, the MILC method is applied on a linked dataset containing a police and a hospital

registry, to estimate the number of serious road injuries per vehicle type. Next, two variables measuring

vehicle type are used as indicators of a latent variable measuring the ‘true’ vehicle type. To stratify the

serious road injuries into relevant groups, covariates are included in the latent class model.
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A statistic that is currently not straightforward to estimate is the number of serious road injuries per

vehicle type per region, because the variable ‘region of accident’ is only observed in the police registry and

contains many missing cases. To estimate this statistic, the MILC method is extended in two ways. First,

the MILC method is extended to simultaneously estimate two latent variables (‘vehicle type’ and ‘region

of accident’). For the latent variable ‘vehicle type’, two imperfectly measured indicators are specified. For

the latent variable ‘region of accident’, one indicator (containing missing values) is assumed to be a perfect

representation of the latent variable, next to a second, imperfectly measured, indicator. Second, the MILC

method is extended to incorporate more covariates for investigating relevant stratifications in general. In

the remainder of this paper, we refer to this as the ‘extended MILC method’.

In the next section, a more detailed description of the data on which the extended MILC method is

applied is given. In the third section, a detailed description is given of how the extended MILC method is

applied to these datasets. In addition, an illustrative simulation study is performed in this section. Here,

the results obtained after applying the extended MILC method are compared to results obtained after

applying a more traditional hierarchical assignment procedure. In the fourth section, the output from the

latent class model and the number of serious road injuries are discussed.

2 Background

The extended MILC method is applied on a unit linked dataset containing a police and a hospital registry.

It is applied separately to datasets from 1994, 2009 and 2014 as the quality of the registries has changed

substantially over time. In this section, the process of constructing these datasets is described and variables

of interest are discussed in more detail.

For every year, units observed in the two sources are linked by using information on person and ac-

cident characteristics (Reurings & Stipdonk, 2009). Changes in registration systems over time influenced

the success rate of the linking procedure. In addition, a weighting factor was determined for many of the

individual cases (Bos et al., 2017).
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2.1 Variables measuring ‘Vehicle type’

As can be seen in Table 1, the variable ‘Vehicle type’ is observed in both the police and the hospital registry

and has nine categories. The categories make a distinction between injuries caused by motorized vehicles

(with an ‘M’ in the category label) and non-motorized vehicles (with an ‘N’ in the category label). For

example, there is a category ‘M-bicycle’ and ‘N-bicycle’. The difference between these categories is that

for the category ‘M-bicycle’, the injured person was on a bike and got into an accident with a motorized

vehicle, while for the category ‘N-bicycle’, the injured person was on a bike and there was no motorized

vehicle involved in the accident. The distinction between motorized and non-motorized is important be-

cause it provides information on the cause of the injury. For example, when the number of injuries increase

in the category ‘N-bicycle’, it can be caused by unsafe bicycle lanes. If the number of injuries increase in

the category ‘M-bicycle’, it can be caused by a high speed limit on roads shared by cars and bicycles.

As shown in Table 1, many injuries were classified differently by the police and the hospital. In addi-

tion, it can also be seen that injuries in the ‘non-motorized’ (‘N’) categories are particularly often missing

in the police registry, as the police is generally not involved in, for example, one-sided bicycle accidents.

Also note that the category ‘N-other’ is not observed in the police registry at all.

2.2 Variables describing relevant subgroups

Besides estimating the number of serious road injuries per vehicle type, stratifications in relevant sub-

groups need to be made, such as age, gender, injury severity or region of accident. To be able to make

such stratifications, the variables need to be included as covariates in the latent class model that is used

to estimate ‘true vehicle type’.

The reason for estimating the latent class model, is to create imputations for ‘true vehicle type’ for

every observed case. To be able to stratify all cases, the covariates need to be observed completely as well.

For the variables ‘age’, ‘gender’ and ‘injury severity’ this is the case. For the variable ‘region of accident’,

this is a problem, as this variable is only observed in the police registry.

To solve the issue of missing values in the variable ‘region of accident’ the traditional MILC method is

extended in such a way that missing values in the variable ‘region of accident’ are imputed simultaneously
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Table 1: Cross-table between the variables measuring vehicle type originating from the police registry
(colums) and from the hospital registry (rows) for the years 1994, 2009 and 2013. Note that there are no
observations for the category ‘Non motorized - other’ in the police registry. Also note that ‘NA’ means
‘missing value’

NA 1. 2. 3. 4. 5. 6. 7. 9. Total

1994
NA - 561 245 318 122 42 137 90 14 1,529
1. M car 918 2,596 11 72 12 22 25 2 1 3,659
2. M moped 702 29 1,131 21 60 2 8 2 1 1,956
3. M bicycle 397 40 70 1,111 2 1 53 25 4 1,703
4. M motorcycle 347 16 41 2 633 3 0 0 0 1,042
5. M other 450 408 106 104 35 50 116 8 2 1,279
6. M pedestrian 421 128 37 231 4 5 537 5 5 1,373
7. N bicycle 3,625 28 41 221 3 3 11 296 3 4,231
8. N other 34 1 0 2 0 4 0 2 0 43
9. N pedestrian 94 2 2 2 0 0 20 6 22 148
Total 6,988 3,809 1,684 2,084 871 132 907 436 52 16,963

2009
NA - 209 111 126 38 20 62 26 6 598
1. M car 779 969 8 29 8 17 3 0 0 1,813
2. M moped 1,117 4 611 10 23 20 2 0 0 1,787
3. M bicycle 565 23 17 701 0 9 20 9 0 1,344
4. M motorcycle 668 9 74 2 367 6 0 0 0 1,126
5. M other 350 51 40 21 11 23 23 1 1 521
6. M pedestrian 363 39 15 62 2 2 202 2 2 689
7. N bicycle 6,369 17 22 161 2 4 5 144 4 6,728
8. N other 99 0 2 4 0 0 0 4 1 110
9. N pedestrian 136 0 1 4 0 0 6 8 16 171
Total 10,446 1,321 901 1,120 451 101 323 194 30 14,887

2013
NA - 59 29 33 15 36 11 5 1 189
1. M car 877 566 3 1 4 65 3 0 0 1,519
2. M moped 2,220 8 419 3 167 63 2 1 0 2,883
3. M bicycle 944 4 11 451 0 155 10 7 0 1,582
4. M motorcycle 69 0 10 0 21 3 0 0 0 103
5. M other 556 18 8 1 19 27 4 0 0 633
6. M pedestrian 392 2 3 30 0 64 123 0 1 615
7. N bicycle 7,230 12 7 41 1 29 2 44 1 7,367
8. N other 13 0 0 0 0 0 0 0 0 13
9. N pedestrian 117 0 0 1 0 4 2 0 5 129
Total 12,418 669 490 561 227 446 157 57 8 15,033
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while the latent variable ‘true vehicle type’ is estimated. To create these imputations, information is used

from the variable ‘region of hospital’, which is observed for the cases that contain missing values for the

variable ‘region of accident’. The two variables have a strong, but not perfect, relationship. For example,

from the serious road injuries in 2013 of which the injured person was in a hospital in Groningen, 53 were

also registered to have taken place in Groningen, while 12 of those accidents were registered to have taken

place in Friesland, a neighbouring region of Groningen. There was also one person in a hospital in Gronin-

gen of which the accident was registered to be in Zuid-Holland, which is quite far away from Groningen

(see Figure 1 for the regions of the Netherlands). A reason for this observation can be classification error

in one of the registries or incorrect linkage of a case in the police registry to a case in the hospital registry

(wrongfully assuming the cases contained the same person). However, it is also possible that this person

indeed had a road accident in Zuid-Holland and was transfered to a hospital in Groningen because it was

closer to the person’s home or it could provide a form of specialized health care.

3 Applying the extended MILC method

In this section, it is described step-by-step how the extended MILC method is applied to estimate the

number of serious road injuries per vehicle type in the Netherlands. The procedure of applying the MILC

method starts with the dataset that is linked and processed as described in the previous section.

3.1 Bootstrapping for parameter uncertainty

In order to account for parameter uncertainty when applying the extended MILC method, we use a non-

parametric bootstrap procedure. This involves creating M bootstrap samples by drawing observations

from the observed data set with replacement. Subsequently, for each bootstrap sample, the latent class

model of interest is estimated and the M imputations are created using the M sets of parameter values

obtained. This is preferable over creating imputations based the maximum-likelihood estimates obtained

with the observed data, which would imply ignoring the uncertainty regarding the estimated parameters of

the latent class model. Thus, by applying a non-parametric bootstrap procedure, parameter uncertainty

is incorporated in the final pooled standard error estimates of the statistics of interest.
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Table 2: Cross-table between the variables region of hospital (columns) and region of accident (rows) for
the years 1994, 2009 and 2013. Note that ‘NA’ means ‘missing value’.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Total

1994
NA 345 419 213 627 772 499 1,152 1,140 123 997 590 111 6,988
1. Groningen 314 4 2 5 2 1 4 2 0 0 2 1 337
2. Friesland 17 393 5 7 0 1 1 5 0 3 1 2 435
3. Drenthe 57 3 230 14 1 1 1 3 0 1 0 0 311
4. Overijssel 2 3 26 711 7 4 6 4 0 9 2 4 778
5. Gelderland 2 0 3 112 977 108 10 23 1 46 4 3 1,289
6. Utrecht 3 3 1 2 52 564 38 7 2 6 3 1 682
7. Noord-Holland 4 2 2 6 15 11 1,538 29 1 14 9 4 1,635
8. Zuid-Holland 6 4 7 8 16 22 30 1,564 4 20 8 2 1,691
9. Zeeland 0 0 0 0 2 0 1 9 212 24 0 0 248
10. Noord-Brabant 1 2 1 5 60 6 17 35 2 1,550 33 0 1,712
11. Limburg 0 2 1 1 19 2 5 3 1 12 690 1 737
12. Flevoland 0 1 0 6 6 5 10 3 0 0 0 89 120
Total 751 836 491 1,504 1,929 1,224 2,813 2,827 3,46 2,682 1,342 218 16,963

2009
NA 435 586 267 667 1,523 865 2,014 1,728 151 1,185 840 185 10,446
1. Groningen 186 5 2 2 3 0 3 1 0 4 1 0 207
2. Friesland 23 200 3 3 0 1 1 0 0 0 0 0 231
3. Drenthe 48 0 91 16 1 0 1 3 1 4 2 0 167
4. Overijssel 2 2 3 265 2 0 2 5 0 1 1 0 283
5. Gelderland 1 2 0 51 516 58 5 5 0 20 2 0 660
6. Utrecht 1 2 0 3 26 323 23 1 1 2 0 0 382
7. Noord-Holland 0 3 2 1 10 11 673 11 2 6 12 0 731
8. Zuid-Holland 2 3 1 3 6 19 13 683 0 6 4 0 740
9. Zeeland 0 0 0 0 0 0 2 3 80 8 1 0 94
10. Noord-Brabant 1 0 0 0 23 4 9 14 0 491 6 0 548
11. Limburg 0 0 0 1 7 0 4 1 1 3 300 1 318
12. Flevoland 1 13 0 22 5 3 6 3 0 0 0 27 80
Total 700 816 369 1,034 2,122 1,284 2,756 2,458 236 1,730 1,169 213 14,887

2013
NA 392 534 372 857 1,696 870 2,643 2,286 324 1,475 815 154 12,418
1. Groningen 53 0 0 0 0 0 0 1 1 2 1 0 58
2. Friesland 12 77 0 1 0 1 1 0 0 0 0 0 92
3. Drenthe 18 0 36 8 1 1 0 0 0 0 1 0 65
4. Overijssel 0 0 0 180 1 0 0 2 0 0 2 0 185
5. Gelderland 0 0 0 37 313 30 2 2 0 5 2 0 391
6. Utrecht 0 0 0 0 13 178 15 1 1 3 2 0 213
7. Noord-Holland 2 0 0 1 3 7 492 3 0 0 1 1 510
8. Zuid-Holland 1 0 1 2 4 8 14 439 1 6 1 2 479
9. Zeeland 0 0 0 0 0 0 0 8 57 5 0 0 70
10. Noord-Brabant 1 1 2 0 19 1 3 11 0 293 3 0 334
11. Limburg 0 0 0 2 14 0 0 3 1 3 141 0 164
12. Flevoland 1 2 0 10 2 2 15 0 0 0 0 22 54
Total 480 614 411 1,098 2,066 1,098 3,185 2,756 385 1,792 969 179 15,033
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Figure 1: A map of the Netherlands
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3.2 Specifying the latent class model

The second step of the extended MILC method is specifying the latent class (LC) model. The LC model is

estimated separately to each bootstrap sample so that the differences between the parameters in the diffe-

rent LC models reflect parameter uncertainty. A graphical overview of the specified LC model can be found

in Figure 2. First, the latent variable measuring vehicle type (X1) is specified. The variables measuring

vehicle type originating from the police registry (Y11) and from the hospital registry (Y21) are specified

as indicators of this latent variable. Note that this notation differs from traditional notation where X

variables are predictors and Y variables are responses, e.g. in regression analysis. As was discussed in the
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Figure 2: Graphical overview of the latent class model specified in Latent GOLD.

background section, the vehicle type indicator variables contain nine categories in total, six representing

motorized vehicles and three representing non-motorized vehicles. However, specifying nine latent classes

would be problematic, since the number of observed non-motorized accidents in the police registry is very

low. Therefore, the non-motorized categories are grouped into one category resulting in the specification

of a seven class model. By saving the original scores of this indicator variable in separate variables, these

can be re-assigned to the accidents which were assigned to the latent class ‘accidents without motorized

vehicle’ after multiple imputation. For this, the proportions of the categories in the observed data are used.

Second, all covariates of interest need to be included in the LC, because otherwise point estimates

describing the relationship between a latent variable and an excluded covariate will be biased (Bolck et

al., 2004). As discussed in the background section, the variable ‘region of accident’ cannot be included

directly as a covariate as it contains a large proportion of missing values. Therefore, multiple imputations

are created for this variable to be able to stratify for the variable ‘vehicle type’ over the different regions

in the Netherlands. For this purpose, a second latent variable is specified to measure ‘region of accident’

(X2). The first indicator is the variable ‘region of accident’ measured in the police registry Y12. The second

indicator variable is ‘region of hospital’ (Y22). Since the first indicator is actually the variable for which

imputations are created, the relationship between the latent variable and the indicator variable is restricted

such that if the indicator variable is observed, this score is assigned directly to the latent variable as well.

Only if this indicator variable contains a missing value, the outcomes of this latent class model are used.

Other covariates needed to make relevant stratifications can be included in the LC model directly, since

they do not contain any missing values. The other covariates included in the LC model are:
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• Age: 0− 17; 18− 44; 46− 69; 70+ (Q1).

• Gender: Male; Female (Q2).

• External information: Standard; Falling; Non-public road; No driving vehicle; Other (Q3).

• Injury severity using Abbreviated Injury Scale (AIS), an anatomical scoring system where injuries

are ranked on a scale from one to six. As ‘one’ represents ‘minor injuries’ and ‘six’ represents

‘unsurvivable injuries’, these do not fit in the scope of this research, as this research pertains to

‘serious road injuries’. Therefore, the following scores on AIS are included: ‘two’ means ‘Moderate’;

‘three’ means ‘Serious’; ‘four’ means ‘Severe’; ‘five’ means ‘Critical’ (Q4) (Wong, 2011).

To ensure that all parameters can be estimated for each bootstrap sample, only main effects of the

covariates are included in the LC model.

The latent class model for response pattern P(Y = y|Q = q) is:

P(Y = y|Q = q) =
7∑

x1=1

12∑
x2=1

2∏
l1=1

P(Yl1,1 = yl1,1|X1 = x1)×

2∏
l2=1

P(Yl2,2 = yl2,2|X2 = x2)×

P(X1 = x1, X2 = x2|Q = q).

(1)

In this latent class model, X1 represents the latent variable ‘vehicle type’ with seven classes and X2

represents the latent variable ‘region of accident’ with 12 classes. Furthermore, Q represents the covariate

variables and Y represents the indicator variables, where l1 stands for the two indicator variables corre-

sponding to X1 and l2 for the two indicator variables corresponding to X2 (which corresponds to what can

be seen in Figure 2). The latent class model is estimated using Latent GOLD 5.1 (Vermunt & Magidson,

2015), where the recommendations by Vermunt et al. (2008) for large datasets have been followed to ensure

convergence. See the Appendix for the Latent GOLD syntax used.

By specifying the previously described latent class model, the first assumption made is that the proba-

bility of obtaining a specific response pattern is a weighted average of all conditional response probabilities,

also known as the mixture assumption. Second, the assumption is made that the observed indicators are

independent of each other given a unit’s score on the underlying true measure. In other words, this me-
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ans that if a classification error is made in the police registry, we assume that this is independent of the

probability of also having a classification error in the hospital registry. For most cases this assumption

can be considered realistic, since the police registry and the hospital registry are generally filled out by

two different and independent persons. In rare situations, dependencies might arise. For example, in a

‘hit-and-run’ situation, both registries will probably be filled out based on information provided by the

victim and are therefore not independent. Third, the assumption is made that the misclassification in the

indicators is independent of the covariates. It is unlikely that scores on covariates such as age or gender

will influence this. However, for example for the variable ‘external information’, it can be the case that if

an accident takes place outside the public road, it is more difficult for the police to reach this location and

therefore the probability of an error can increase. Fourth, the assumption is made that the covariate varia-

bles are free of error. This is, of course, an unrealistic assumption, especially given the substantial amounts

of classification error found in the ‘vehicle type’ indicator variables. At this point we unfortunately do

not have any information available about the extent of possible classification errors in the other variables.

However, these errors are considered less problematic as long as they are random. Lastly, assumptions

are made with respect to the missingness mechanisms present in the data. More specifically, the mecha-

nism that governs the probability each data point has of being missing is considered Missing At Random

(MAR) for the variables ‘vehicle-type observed in the police registry’ (Y11) and ‘region of accident’ (Y12),

as the probability of being missing is larger for ‘non-motorized’ vehicles, which is measured by the hospital

registry (Y21). Formally, it can be stated that Y11 consists of a part Y11,obs and Y11,mis and that a vector

R can be defined

R = 0 if Y11,obs (2)

R = 1 if Y11,mis. (3)

As we assume the missingness mechanism to be MAR, the distribution of missing values is related to Y21:

P(R = 0|Y11,obs, Y11,mis, Y21) = P(R = 0|Y11,obs, Y21). (4)

What holds for Y11, holds for Y12 as well. Furthermore, the mechanism that governs the probability of

being missing is considered Missing Completely At Random for the variable ‘vehicle type observed in the
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hospital registry’ (Y21). Here,

P(R = 0|Y21,obs, Y21,mis, Y11) = P(R = 0). (5)

The latent class model gives different forms of relevant output. The first form of relevant output is the

entropy R2. Entropy can be formally defined as:

EN(α) = −
N∑
j=1

X∑
x=1

αjxlogαjx, (6)

where αjx is the probability that observation j is a member of class x, X the number of classes, and N

is the number of units in the combined dataset. Rescaled to values between zero and one, entropy R2 is

measured by:

R2 = 1− EN(α)

N logX
, (7)

where one means perfect prediction (Dias & Vermunt, 2008). Boeschoten et al. (2017) show that the per-

formance of the MILC method is closely related to the entropy R2 of the corresponding latent class model.

A second form of relevant output are the conditional response probabilities. They provide us the pro-

bability of obtaining a specific response on the indicator conditional on belonging to a certain latent class.

These values can be used to investigate the relationships between the indicator variables and the latent

variables into detail. For example, they show us the probability of having the score ‘M-car’ on the indicator

originating from the police registry given that the model assigned a case to the latent class ‘M-car’, but

also the probability of having the score ‘M-bicycle’ on the indicator given that the model assigned a case

to the latent class ‘M-car’. Here, the former should be much higher compared to the latter. By compa-

ring the conditional response probabilities to the cross-table between the variables measuring vehicle type

originating from the police registry and the hospital registry (as seen in Table 1), it can be investigated

if the latent classes identified as certain categories of vehicle-type are related to other categories in the

indicator variables in a comparable way as in the observed data. In this way, it is checked if the latent class

model reflects the main relations found in the observed data, which is an important indication of adequate

imputations in the next step.

Third, the posterior membership probabilities represent the probability that a unit belongs to a latent
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class given its combination of scores on the indicators and covariates used in the latent class model. These

values are used to create multiple imputations for the latent variables, and the exact procedure for this is

described in the next section.

3.3 Creating multiple imputations

The posterior membership probabilities are used to create multiple imputations of the latent variables

containing the ‘true scores’. The posterior membership probabilities can be estimated by applying Bayes’

rule to the latent class model described in Equation 1:

P(X1 = x1, X2 = x2|Y = y,Q = q) =
P(X1 = x1, X2 = x2,Y = y|Q = q)

P(Y = y|Q = q)
, (8)

where

P(X1 = x1, X2 = x2,Y = y|Q = q) =
2∏

l1=1

P(Yl1,1 = yl1,1|X1 = x1)×

2∏
l2=1

P(Yl2,2 = yl2,2|X2 = x2)×

P(X1 = x1, X2 = x2|Q = q).

(9)

and P(Y = y|Q = q) is defined in Equation 1.

Since there are two latent variables specified in this model, the joint posterior membership probabilities

are obtained which represent the probability that a unit is a member of a specific latent class in the latent

variable ‘vehicle type’, and a member of a specific latent class in the latent variable ‘accident region’. Since

the variable ‘vehicle type’ has seven classes and the variable ‘accident region’ has 12 classes, there are 84

posterior membership probabilities which add up to one, and there is a different set of posterior members-

hip probabilities for each combination of scores on the indicators and covariates. Parameter estimation

was constrained in such a way that if a case had an observed score on the variable ‘accident region’ in

the police registry, this score is automatically assigned to the latent variable as well. In those cases, there

are only seven posterior membership probabilities with a value larger than zero (those representing the

different classes for ‘vehicle type’ in combination with that specific region); all other posterior membership

probabilities are exactly zero.
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For each case in the original dataset, the posterior membership probabilities corresponding to its com-

bination of scores on the indicators and covariates are used as a multinomial distribution to draw a joint

score on both latent variables. These joint scores are then used to create separate imputations for the

variables ‘vehicle type’ and ‘accident region’.

By drawing multiple times from the posterior membership probabilities, multiple imputations for both

latent variables are created. The scores assigned to the latent variables can be different for the different

imputations. The differences between them reflect the uncertainty due to the missing and conflicting values

in the indicator variables. Boeschoten et al. (2017) concluded that a low number of imputations, such as

five is already sufficient for a correct estimation of the standard errors. However, in that simulation study

the number of classes was much lower compared to the number of classes needed for this dataset. To

evaluate what the appropriate number of imputations would be, the number of imputations was gradually

increased and the fraction of missing information was compared between the differing numbers of impu-

tations (Graham et al., 2007), resulting in 20 imputations. This is in line with the recommendations by

Wang et al. (2005).

3.4 Pooling of the results

At this point, 20 imputations are created for ‘vehicle type’ and ‘region of accident’ for every unit in the

combined dataset. The goal is to obtain estimates of interest using these imputed variables. This is done by

obtaining the estimate of interest for every imputed variable, and pooling these estimates using the pooling

rules defined by Rubin (Rubin, 1987, p.76). Although our context differs from the traditional statistical

context for which the pooling rules were originally developed, the rules are considered appropriate for the

context of multiple imputation for measurement error (Reiter & Raghunathan, 2007). For this specific

research, the main estimates of interest are frequency tables.

The first step is to calculate a pooled frequency table. In other words, we take the average over the

imputations for every cell in the frequency table. This can be for the imputed variable ‘vehicle type’, for the

imputed variable ‘region of accident’ or for a cross-table between (one of) these variables and covariate(s).

A pooled cell count is obtained by:

θ̂j =
1

m

m∑
i=1

θ̂ij , (10)
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where θ refers to a cell count, j refers to a specific cell in the frequency table, i refers to one imputation

and m refers to the total number of imputations.

Next, an estimate of the uncertainty around these frequencies is of interest. Therefore, the pooled

frequencies need to be transformed into pooled proportions:

p̂j =
1
m

∑m
i=1 θ̂ij∑s

j=1
1
m

∑m
i=1 θ̂ij

, (11)

where s refers to the number of cells in the frequency table.

Since we work with a multiply imputed dataset, an estimate of the variance is obtained that is a

combination of sampling uncertainty and uncertainty due to missing and conflicting values in the dataset.

This is the total variance that consists of a ‘within imputation’ and ‘between imputation’ component:

VARtotalj = VARwithinj + VARbetweenj +
VARbetweenj

m
. (12)

VARwithinj is the within imputation variance of p̂j calculated by

VARwithinj =
1

m

m∑
i=1

VARwithinij , (13)

where VARwithinij is estimated as the variance of p̂ij :

p̂ij(1− p̂ij)

N
, (14)

where N is the total size of the observed dataset and p̂ij is estimated as

p̂ij =
θ̂ij∑s
j=1 θ̂ij

. (15)

VARbetweenj is calculated by

VARbetweenj =
1

m− 1

m∑
i=1

(p̂ij − p̂j)(p̂ij − p̂j)
′. (16)

When VARtotalj is estimated, it can be used to estimate the standard error of p̂j

SE(p̂j) =
√

VARtotalj . (17)
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From here, the confidence interval around p̂j can be estimated by

p̂j ± 0.975× SE(Pj), (18)

where 0.975 corresponds to the 1− α
2 quantile of a standard normal distribution for α = 0.05. The values

obtained here can simply be multiplied by N to obtain the 95% confidence intervals around the observed

frequencies θ̂j . Note that a standard normal distribution is assumed so problems can be encountered when

dealing with very small proportions.

3.5 Performance of the MILC method

Boeschoten et al. (2017) introduced the MILC method, and evaluated the method under a range of con-

ditions in terms of data quality. To investigate how the MILC method performs in comparison to the

hierarchical assignment procedure traditionally used by SWOV(Bos et al., 2017), an illustrative simulation

study is performed.

Figure 3: Graphical overview of the latent class model used for the simulation study.

In the theoretical population used for this simulation study, latent variable X has two categories with

probabilities:

X = 1 0.6

X = 2 0.4

. (19)
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The probability distribution of P(X,Q1) is:


Q1 = 1 Q1 = 2

X = 1 0.48 0.12

X = 2 0.32 0.08

 (20)

and the probability distribution of P(X,Q2) is:


Q2 = 1 Q2 = 2 Q2 = 3

X = 1 0.36 0.18 0.06

X = 2 0.24 0.12 0.04

 (21)

From this population stucture, 1, 000 samples are drawn. In each sample, indicator (Y1) of X is created

with 5% misclassification and a Missing At Random (MAR) mechanism, where the probability of being

missing is related to a person’s score on the Q2 covariate.

Q2 = 1,P(Y1 = NA) = 0.20; (22)

Q2 = 2,P(Y1 = NA) = 0.15; (23)

Q2 = 3,P(Y1 = NA) = 0.10. (24)

A second indicator (Y2) of X is created with 15% misclassification and 5% missing cases which are Missing

Completely At Random (MCAR). The latent class models had an entropy R2 value of approximately 0.75.

The MILC method as described in sections 3.1, 3.2 and 3.3 is applied on the sample datasets, where

five bootstrap samples are drawn and subsequently five imputations of X are created. As an illustration,

the MILC method is also applied without the bootstrap procedure; so with one latent class model directly

estimated on the observed data and five imputations drawn from one single set of posterior membership

probabilities. Furthermore, the hierarchical assignment procedure as used by SWOV is also applied. At

SWOV, the score observed in the police registry (Y1) is assigned if it is observed. Otherwise, the score

observed in the hospital registry (Y2) is assigned.

The imputations are evaluated in terms of bias, coverage of the 95% confidence interval, confidence

interval width, average standard error of the estimates divided by the standard deviation over the estimates

17



and the root mean squared error. Furthermore, the proportion of correctly classified cases is evaluated for

imputation and hierarchical assignment.

To evaluate the methods, the marginals of the imputed latent variable (W ) are compared to the hier-

archically assigned variable (Wass). In addition the estimated relationships of the latent variable with

covariates (W ×Q1, Wass ×Q1, W ×Q2 and Wass ×Q2) are examined.

In Table 3 the results of the simulation study comparing the MILC method (with and without boot-

strap) and the hierarchical assignment procedure are shown. We first discuss the performance of the MILC

method in comparison to the hierarchical assignment method. The results obtained with hierarchical as-

signment especially show substantial amounts of bias for Wass ×Q2 as compared to both implementations

of the MILC method. For the unbiased parameters obtained when applying hierarchical assignment, the

RMSE is in general lower and more stable compared to the RMSE of MILC. The fact that with hierarchical

assignment, bias is especially found in the results relating to Q2, can be explained by the fact that the

missingness mechanism of Y1 is defined by Q2.

Comparison of the MILC method with and without bootstrap shows clearly that standard errors are

very much underestimated when no bootstraps are performed; that is, coverage rates are too low and the

ratios between the average standard error and the standard deviation across replications are far below one.

In contrast, these ratios are larger than one when the bootstrap is included in the MILC method, meaning

the standard errors are somewhat overestimated. The large difference between the two approaches is cau-

sed by the fact that the statistics we are interested in are tables containing the latent variable X. By not

applying the bootstrap, one seriously underestimates the uncertainty about the latent class proportions.

The fact that the bootstrap procedure yields slightly too large standard errors can be considered to be less

problematic than having (much) too small standard errors.

The percentage of incorrectly classified cases is 4.5% for X = 1 and 10.1% for X = 2 when hierarchical

assignment is applied (these results are not shown in Table 3). When the MILC method (including boot-

strap) is applied, the percentage of incorrectly classified cases is 8.6% for X = 1 and 20.5% for X = 2.

Although this percentage is substantially larger for MILC compared to hierarchical assignment, this does

not seem to affect the ability of the methods to produce unbiased results with appropriate standard errors.
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Table 3: Results of a simulation study where the hierarchical assignment procedure is compared to the
MILC method, which is performed with and without a non-parametric bootstrap. Results are shown for
the imputed mixture variable, denoted by W , and of the relationship of W with covariates Q1 and Q2.
Results are given in terms of bias, coverage of the 95% confidence interval, confidence interval width, the
average standard error of the estimate divided by the standard deviation over the estimates, and the root
mean squared error.

Bias Coverage CI width se/sd RMSE
Hierarchical assignment

Wass = 1 -0.0134 0.2180 0.0193 0.9981 0.1158
Wass = 2 0.0134 0.2180 0.0193 0.9981 0.1158

Wass = 1×Q1 = 1 -0.0106 0.4220 0.0196 0.9894 0.1029
Wass = 2×Q1 = 1 -0.0028 0.8380 0.0126 0.9964 0.0532
Wass = 1×Q1 = 2 0.0107 0.3590 0.0184 0.9963 0.1036
Wass = 2×Q1 = 2 0.0027 0.8380 0.0108 1.0191 0.0518
Wass = 1×Q2 = 1 0.0012 0.3560 0.0134 0.9433 0.0346
Wass = 2×Q2 = 1 -0.1676 0.6390 0.0107 1.0053 0.4094
Wass = 1×Q2 = 2 -0.2910 0.7770 0.0066 0.9898 0.5394
Wass = 2×Q2 = 2 -0.1115 0.3050 0.0121 0.9702 0.3339
Wass = 1×Q2 = 3 -0.2261 0.5920 0.0092 1.0201 0.4755
Wass = 2×Q2 = 3 -0.3022 0.7990 0.0056 1.0552 0.5498

MILC method, bootstrap excluded
W = 1 -0.0317 0.1300 0.0216 0.1425 0.1781
W = 2 0.0317 0.1300 0.0216 0.1425 0.1781

W = 1×Q1 = 1 -0.0252 0.1660 0.0213 0.1751 0.1586
W = 2×Q1 = 1 -0.0066 0.4410 0.0132 0.3912 0.0810
W = 1×Q1 = 2 0.0253 0.1660 0.0205 0.1683 0.1591
W = 2×Q1 = 2 0.0064 0.3980 0.0118 0.3628 0.0800
W = 1×Q2 = 1 -0.0191 0.2270 0.0201 0.2151 0.1380
W = 2×Q2 = 1 -0.0095 0.3470 0.0157 0.3278 0.0976
W = 1×Q2 = 2 -0.0031 0.5820 0.0096 0.5341 0.0560
W = 2×Q2 = 2 0.0191 0.1980 0.0188 0.2029 0.1380
W = 1×Q2 = 3 0.0095 0.3150 0.0142 0.2980 0.0977
W = 2×Q2 = 3 0.0031 0.5510 0.0085 0.4962 0.0559

MILC method including bootstrap
W = 1 -0.0304 0.8880 0.1790 1.5797 0.1745
W = 2 0.0304 0.8880 0.1790 1.5797 0.1745

W = 1×Q1 = 1 -0.0241 0.8950 0.1439 1.5811 0.1553
W = 2×Q1 = 1 -0.0063 0.9050 0.0383 1.4324 0.0796
W = 1×Q1 = 2 0.0243 0.8940 0.1437 1.5744 0.1559
W = 2×Q1 = 2 0.0062 0.9160 0.0378 1.4887 0.0785
W = 1×Q2 = 1 -0.0183 0.8880 0.1087 1.5375 0.1352
W = 2×Q2 = 1 -0.0091 0.9020 0.0560 1.5192 0.0956
W = 1×Q2 = 2 -0.0030 0.9290 0.0205 1.4125 0.0551
W = 2×Q2 = 2 0.0183 0.8910 0.1085 1.5562 0.1352
W = 1×Q2 = 3 0.0092 0.9050 0.0555 1.5085 0.0957
W = 2×Q2 = 3 0.0030 0.9280 0.0200 1.4670 0.0548
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4 Results

First, results in terms of relevant model output will be discussed. Second, substantial results obtained

after creating multiple imputations for the latent variables are given.

4.1 Latent class model output

Table 4: Entropy R2 values for the latent variables ‘Vehicle type’ and ‘Region of accident’ for the years
1994, 2009 and 2013.

Vehicle type Region of accident
1994 0.8219 0.9050
2009 0.7444 0.8267
2013 0.8031 0.8077

The first relevant model output from the latent class models comes in terms of the entropy R2. A

separate entropy R2 value is estimated for the two latent variables and for each year. The results are

shown in Table 4. These results are obtained after applying an LC model on the original dataset. Here

it can be seen that the entropy R2 value in 2013 increased compared to 2009 for the variable ‘Vehicle

type’. Pankowska et al. (2017) showed in their simulation studies that when a latent class model is used

to correct for misclassification in combined datasets, the model also treats inconsistencies due to incorrect

linkage as misclassification and thereby corrects for it in a similar way. This implies that the increase in

terms of entropy R2 in 2013 in comparison to 2009 for the latent variable ‘vehicle type’ makes sense as the

police improved their registration system in 2013. This improvement caused an increase in the number of

correctly linked cases and therefore also improved the entropy R2.

In Table 5, the probability of correct classification for the indicators of both latent variables are shown,

for the three different time-points, obtained after applying an LC model to the original dataset. Class-

specific response probabilities indicate the probability of having a score on the indicator variable that is

equal to the latent class. A high probability of correct classification indicates that when a specific case

belongs to a certain latent class, the probability is large that this same score was obtained on an indicator

variable. For example, the probability of correct classification of the 1994 indicator variable ‘Hospital’ for

the latent class ‘Vehicle type = M car’ is 0.8226. This means that the probability of having scored ‘M car’
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Table 5: Class-specific response probabilities for latent variables ‘vehicle type’ and ‘region of accident’ for
the years 1994, 2009 and 2013.

1994 2009 2013
Vehicle
type

Hospital Police Hospital Police Hospital Police
1. M car 0.8226 0.9782 0.8004 0.9742 0.9590 0.8973
2. M moped 0.8458 0.9781 0.7194 0.9786 0.9693 0.8848
3. M bicycle 0.7393 0.9170 0.7635 0.9620 0.9263 0.7376
4. M motorcycle 0.8353 0.9686 0.8876 0.9129 0.0774 0.7577
5. M other 0.6890 0.0578 0.5276 0.2629 0.0000 0.4243
6. M pedestrian 0.7132 0.8213 0.8758 0.8104 0.5358 0.6412
7. N all 0.9920 0.6162 0.9916 0.5273 0.9931 0.3897

Region of
accident

Region of Region of Region of Region of Region of Region of
hospital accident hospital accident hospital accident

1. Groningen 0.9351 1 0.8798 1 0.9167 1
2. Friesland 0.9063 1 0.8740 1 0.8433 1
3. Drenthe 0.7338 1 0.5897 1 0.6556 1
4. Overijssel 0.9103 1 0.9290 1 0.9675 1
5. Gelderland 0.7551 1 0.7961 1 0.8119 1
6. Utrecht 0.8292 1 0.8259 1 0.8149 1
7. Noord-Holland 0.9378 1 0.9267 1 0.9673 1
8. Zuid-Holland 0.9240 1 0.9248 1 0.9094 1
9. Zeeland 0.8506 1 0.8248 1 0.7941 1
10. Noord-Brabant 0.9084 1 0.9055 1 0.8884 1
11. Limburg 0.9397 1 0.9466 1 0.8725 1
12. Flevoland 0.7771 1 0.5374 1 0.4694 1

on the indicator variable ‘Vehicle type measured by hospital’ is 0.8226 given that this case truly belongs

to the latent class ‘M car’.

When looking at the probabilities of correct classification for a specific latent class, the two probabilities

corresponding to the two indicators are often not equal. This may be due to differences in the quality of

the data. A low probability of correct classification can be caused by the fact that for this specific latent

class, this category is observed many times in one indicator (here this is often the indicator ‘Hospital’),

while in the other indicator (‘Police’), these cases are often missing. This can clearly be seen for the latent

class ’N-all’. Conditional on truly belonging in this latent class, the probability of obtaining this score on

the hospital indicator was 0.9920 in 1994. In other words, almost everyone who is assigned to this class by

the model, obtained this score in the hospital registry as well. However, the probability of obtaining this

score by the police is only 0.6162. A substantial part of the cases belonging to this latent class obtained

another score or no score at all by the police.

In general, it can be seen that the probabilities of correct classification for the police indicator in 1994
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and 2009 are larger compared to the hospital indicator for all motorized classes except the class ‘motori-

zed, other’ and the ‘all non-motorized’ category. However, in 2013 all probabilities of correct classification

are higher for the hospital indicator compared to the police indicator. This result might be related to

the improvement in the linking in 2013. An exception is the category ‘M motorcycle’, which is the only

category with a probability of correct classification below 0.90 in the hospital registry. This is caused by

the fact that some of the hospitals used a different registration system, that categorizes both motorcycles

and mopeds into the motorcycle category.

When investigating the probabilities of correct classification for the latent variable ‘region of accident’,

it can be seen that they are all exactly 1 for the indicator variable ‘region of accident’. Conditional on

being in a specific class in the latent variable ‘region of accident’, the probability of obtaining the same

score on the indicator variable ‘region of accident’ is 1. This restriction was imposed on the latent class

model. The probabilities of correct classification of the indicator variable ‘region of hospital’ now show us

the probability that conditional on an accident truly happening in a specific region, what is the probability

of also going to a hospital in that same region. These probabilities are generally quite high and stable over

the different time-points. The regions Drenthe and Flevoland stand out because the probability of going to

a hospital in these regions when having a serious road accident in this region is somewhat lower compared

to other regions.

4.2 Pooled results output

In Figure 4, the number of serious road injuries per vehicle type are shown for the three different years

investigated. For every year, the results obtained after applying the hierarchical assignment procedure are

compared to results obtained when the extended MILC method is applied. Here, it can be seen that in

general the frequencies obtained after applying the extended MILC method are quite similar compared

to the results obtained after applying the hierarchical assignment procedure. When the extended MILC

method is applied, the number of cases assigned to the category ‘M-other’ is larger while the number of

cases assigned to the category ‘N-bicycle’ is smaller compared to the hierarchical assignment procedure,

particularly in 2013. This corresponds to a large amount of missing cases for ‘N-bicycle’ and a substantial

amount of cases differently categorized by the police and hospital. Furthermore, in 2013 the number of

cases categorized as ‘M-other’ by the hospital increased, while this category was often classified differently
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Figure 4: The three graphs represent results obtained for three different years. On the left side of each
graph, the number of serious road injuries per vehicle type and corresponding 95% confidence intervals
are shown when the hierarchical assignment procedure is applied. On the right side of each graph, pooled
frequencies and 95% confidence intervals are shown when the extended MILC method is applied.
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by the police (see Table 1). At last, it can be seen that the width of the 95% confidence intervals are

substantially larger for all categories when the extended MILC method is applied.

In Figure 5, the number of serious road injuries per region are shown for the three different years

investigated. For every year, the results obtained after applying the hierarchical assignment procedure are

compared to results obtained when the extended MILC method is applied, which are very similar. The 95%

confidence intervals are larger when the extended MILC method was applied compared to the hierarchical

assignment procedure, but the difference is not as substantial as was the case for the variable ‘vehicle type’

in Figure 4.

5 Discussion

In this article, an extension of the MILC method was developed and applied to estimate the number of

serious road injuries per vehicle type and to stratify this number in relevant subgroups. Information on

serious road injuries was found in registries from both police and hospitals, which are both incomplete

and contain misclassification. These variables were used as indicators of a latent variable of which it can

be said that it contains the ‘true scores’. Posterior membership probabilities obtained from this latent

class model were then used to create multiple imputations of these ‘true scores’. Simultaneously, multiple
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Figure 5: The three graphs represent results obtained for three different years. On the left side of each
graph, frequencies of serious road injuries per region and corresponding 95% confidence intervals are shown
when the hierarchical assignment procedure is applied. On the right side of each graph, pooled frequencies
and 95% confidence intervals are shown when the extended MILC method is applied.
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imputations were created for the missing values in the variable ‘region of accident’ by using this variable as

a perfectly measured indicator of the latent variable ‘region of accident’ and supplementing it by specifying

the variable ‘region of hospital’ as an imperfectly measured indicator.

Multiple imputations were created for the variable ‘vehicle type’ and for the variable ‘region of acci-

dent’. All variables are now fully imputed for every case in the dataset. Descriptive statistics of these

variables, or estimates of relationships with other variables can now be investigated in a straightforward

manner.

The extended MILC method was applied on datasets for the years 1994, 2009 and 2013. The quality

of the data for these years was very different, which can be seen in the number of observations per registry

per year and which is reflected in the entropy R2 of the corresponding latent class model. In general the

quality of the data was sufficient for applying the MILC method. In contrast, the results of the extended

MILC method were compared to the results obtained when the hierarchical assignment procedure was

applied (traditionally used to generate these statistics). A clear difference was that the extended MILC

method generated wider 95% confidence interval widths. Based on the results obtained from the simulation

study performed in section 3.5, it can be concluded that these wider confidence interval widths were indeed

necessary to obtain nominal coverage rates.
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A number of issues are worth reflecting on a bit further. First of all, it is important to note that our

results heavily depend on the model assumptions made. In particular, the assumption is made that the

classification errors are independent of covariates (also known as ‘ICE’ and ‘homogeneous CE’). Further-

more, the assumption is made that the covariate variables are free of error. Violating this assumption does

not necessarily have to be an issue if these errors are random. However, there is currently no literature on

this topic, so more research in this specific area is needed in order to be able to adapt the model. A more

crucial assumption is that the missingness is at random (MAR). Although from a theoretical perspective

this assumption is likely to hold, it could however lead to substantial bias in cases where this assumption

is violated.

A second issue is how the extended MILC method dealt with non-motorized vehicles. This was an

ad hoc procedure to handle an issue that could not be handled by the latent class model. This ad-hoc

procedure turned out to be useful. It can be investigated whether a comparable procedure could be applied

to handle a moped/motorcycle issue in the 2013 dataset and whether there are other issues that can be

solved like this.

This particular dataset contained a number of issues, of which a substantial part has been investigated

by means of a simulation study. The results of this simulation study made clear that the extended MILC

method was able to handle the missing values in the indicator variables and that the non-parametric boot-

strap was required to obtain nominal coverage rates. It is however not investigated if and how large numbers

of categories influence the results. Therefore, the number of imputations was increased and evaluated using

methods to evaluate the number of imputations for missing values. A more thorough investigation could

provide insight into whether these methods are suitable to evaluate the number imputations needed when

the MILC method is applied, and how many imputations are needed to evaluate datasets with larger num-

bers of categories.

Furthermore, in the initial model proposed by Boeschoten et al. (2017), bootstrap samples were taken of

the original data to incorporate parameter uncertainty in the estimate of the total variance. This appeared

to be problematic for larger models with many interactions as those used in our application, because not

all parameters can be estimated for every bootstrap sample. Alternatives to incorporate parameter uncer-

25



tainty can be Bayesian MCMC or a parametric bootstrap. However, it should also be investigated whether

such a step is still necessary for larger sample sizes as parameter uncertainty can become minimal in such

cases. As the simulation study showed that it was necessary to incorporate parameter uncertainty when

creating imputations for this specific case, a model with only main effects was used to enable estimation

of all parameters.

At last, it is important to note that missing values in the combined dataset and classification errors in

the observed data are not the only issues when estimating the total number of serious road injuries per

vehicle type. There is also a number of serious road injuries that are neither observed by the hospital

nor by the police. Weighting and capture/recapture methods are typically used to obtain an estimate of

the total number of serious road injuries; approaches which can easily be combined with MILC by ap-

plying the methods on the imputations separately. A variance estimate would then include uncertainty

about the total number of injuries which is typically estimated by making use of bootstrapping. This can

also be applied separately to every imputation before pooling of the results is applied (Gerritse et al., 2016).

By creating multiple imputations using a latent class model, multiply imputed versions of variables

that contained missing values and/or classification errors are created. These can be used to easily provide

frequencies, to further divide these frequencies into relevant subgroups or to create statistical figures. This

application showed that the initial MILC method can be extended to handle problems that are dataset-

specific. Furthermore, this application highlighted various new problems that one may need to deal with

when applying the MILC approach. In future research, these will be investigated more thoroughly to fully

exploit the potential of the MILC method for dealing with classification error problems.

Acknowledgement

The authors would like to thank Niels Bos and Jacques Commandeur from the Institute of Road Safety

Research (SWOV) for providing us with the data and for their useful comments on earlier versions of this

manuscript.

26



Appendix A Latent GOLD syntax

options

maxthreads=all;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=20000 nriterations=0;

startvalues

seed=0 sets=200 tolerance=1e-005 iterations=500;

bayes

categorical=1 variances=1 latent=1 poisson=1;

missing

includeall;

output

profile;

outfile

’posteriors1.dat’ classification

keep

LRM2, BRON2, wfactor;

variables

caseweight b1;

dependent LRM nominal 7, BRON nominal 7, prov_hosp nominal 12, prov_acc nominal 12;

independent ernst nominal, external nominal, gender nominal, age nominal;

latent X nominal 7, Xacc nominal 12;

equations

LRM <- 1 | X;

BRON <- 1 | X;

prov_acc <- (a~wei)Xacc;

prov_hosp <- 1 | Xacc;

X <- 1 | ernst + external + gender + age;

Xacc <- 1 | ernst + external + gender + age;

X <-> Xacc;

a={1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1};

To ensure convergence and to minimize the probability of obtaining local maxima, the number of

random start sets is set to 200 with 500 iterations each. The use of Newton Rapson iterations is suppressed

and the number of EM iterations is increased to 20, 000, following the suggestions by Vermunt et al. (2008).

27



To reduce computation time, the storing of parameters and the computation of standard errors is sup-

pressed, since conditional and posterior response probabilities are of main interest.

To ensure that in the latent variable ‘Accident of region’ (Xacc in the Latent GOLD syntax) the value

observed in the indicator variable ‘Accident of region’ (prov acc in the Latent GOLD syntax) is assigned

in cases where this variable is observed, the relationship between Xacc and prov acc is restricted using the

matrix denoted by ‘a’ in the Latent GOLD syntax.

28



References

Boeschoten, L., Oberski, D., & de Waal, T. (2017). Estimating classification errors under edit restrictions

in composite survey-register data using multiple imputation latent class modelling (milc). Journal of

Official Statistics, 33(4), 921–962.

Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical

variables: One-step versus three-step estimators. Political Analysis, 12(1), 3–27.

Bos, N., Stipdonk, H., & Commandeur, J. (2017). Ernstig verkeersgewonden 2016.

SWOV Instituut voor Wetenschappelijk Onderzoek Verkeersveiligheid. Retrieved from

https://www.swov.nl/publicatie/ernstig-verkeersgewonden-2016

Dias, J. G., & Vermunt, J. K. (2008). A bootstrap-based aggregate classifier for

model-based clustering. Computational Statistics, 23(4), 643–659. Retrieved from

http://dx.doi.org/10.1007/s00180-007-0103-7 doi: 10.1007/s00180-007-0103-7

Gerritse, S. C., Bakker, B. F., de Wolf, P.-P., & van der Heijden, P. G. (2016). Undercoverage of the

population register in the netherlands, 2010. CBS Discussion paper, 2016.

Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How many imputations are really needed?

some practical clarifications of multiple imputation theory. Prevention science, 8(3), 206–213.

Pankowska, P., Bakker, B., Oberski, D., & Pavlopoulos, D. (2017, 3). Estimating employment mobility

using linked data from different sources. does linkage error matter?

Reiter, J. P., & Raghunathan, T. E. (2007). The multiple adaptations of multiple imputation. Journal of

the American Statistical Association, 102(480), 1462–1471.

Reurings, M. C. B., & Bos, N. M. (2012). Ernstig verkeersgewonden in de jaren 2009 en 2010: update van

de cijfers.

Reurings, M. C. B., & Stipdonk, H. L. (2009, December). Ernstig gewonde verkeersslachtoffers in neder-

land in 1993-2008. Stichting Wetenschappelijk Onderzoek Verkeersveiligheid SWOV. Retrieved from

https://www.swov.nl/publicatie/ernstig-gewonde-verkeersslachtoffers-nederland-1993-2008

29



Reurings, M. C. B., & Stipdonk, H. L. (2011). Estimating the number of serious road injuries in the

netherlands. Annals of epidemiology, 21(9), 648–653.

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys (wiley series in probability and

statistics).

Vermunt, J. K., & Magidson, J. (2015). Upgrade manual for Latent GOLD 5.1. Statistical Innovations

Inc.

Vermunt, J. K., Van Ginkel, J. R., Der Ark, V., Andries, L., & Sijtsma, K. (2008). Multiple imputation

of incomplete categorical data using latent class analysis. Sociological Methodology, 38(1), 369–397.

Wang, C.-P., Brown, C. H., & Bandeen-Roche, K. (2005). Residual diagnostics for growth mix-

ture models. Journal of the American Statistical Association, 100(471), 1054-1076. Retrieved from

https://doi.org/10.1198/016214505000000501 doi: 10.1198/016214505000000501

Wong, E. (2011). Abbreviated injury scale. In J. S. Kreutzer, J. DeLuca, & B. Caplan (Eds.),

Encyclopedia of clinical neuropsychology (pp. 5–6). New York, NY: Springer New York. Retrieved

from https://doi.org/10.1007/978-0-387-79948-3 2 doi: 10.1007/978-0-387-79948-3 2

30


