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Abstract

Explaining group-level outcomes from individual-level predictors requires aggregating

the observed scores on these predictors to the group level and accounting for the

measurement error in the aggregated scores to prevent biased estimates. However, it is

not clear how to perform the aggregation and the correction for measurement error

when the individual-level predictors are discrete variables. It is shown how to overcome

these problems by a stepwise latent class analysis. In the first step, a latent class model

is estimated in which the scores on a discrete individual-level predictor are used as

indicators for a group-level latent class variable. In the second step, this latent class

model is used to aggregate the individual-level predictor to the group-level by assigning

the groups to the latent classes. In the final step, a group-level analysis is performed in

which the aggregated measures are related to the remaining group-level variables while

correcting for the measurement error in the class assignments. The proposed stepwise

model is compared to existing methods in a simulation study and extended to a

situation with multiple group-level latent variables. In the end, the approach is applied

to an empirical data example in which team productivity (group level) is explained by

job control (individual level), job satisfaction (individual level), and enriched job design

(group level).

Keywords: micro-macro analysis, latent class analysis, multilevel analysis, discrete

variables, stepwise modeling
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Stepwise Latent Class Models for Explaining Group-Level Outcomes Using Discrete

Individual-Level Predictors

Though typically multilevel models attempt to explain an individual-level

dependent variable by means of individual- and group-level predictors (Goldstein, 2011;

Hox, 2010; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012), the prediction of

group-level outcomes is equally important. Snijders and Bosker (2012) refer to the

latter type of multilevel analysis as micro-macro analysis since a micro (or

individual)-level predictor is assumed to affect a macro (or group)-level outcome. Such

a micro-macro analysis is relevant, for example, when a health psychologist is interested

in whether students’ attitudes (micro-level predictor) affect teacher’s stress (macro-level

outcome), or when a developmental psychologist wishes to investigate whether

parenting practices (macro-level predictor) affect their children’s study habits

(micro-level mediator), which in turn affects children’s achievement (micro-level

mediator), which subsequently affects parental stress (macro-level outcome) (Bovaird &

Shaw, 2012). These micro-macro relationships cannot be addressed within the

mainstream multilevel framework (Preacher, Zyphur, & Zhang, 2010).

Traditionally, data from micro-macro designs are analyzed by aggregation; that is,

the group means of the individual-level variables are assigned to the groups, and

subsequently a group-level analysis is performed using the aggregated individual scores

and group-level variables. Note that this is in fact a stepwise procedure since the

aggregation (measurement model) is separated from the group-level analysis (structural

model). An example from group-performance research is provided by van Veldhoven

(2005), who studied the relationships between perceived human resource practices, work

climate, and job stress on the one hand, and prospective and retrospective financial

performance on the other hand. Because the financial performance indicators are only

available at the business level, individual survey scores were aggregated to mean scores

to perform a single-level analysis at the business level.

Although very intuitive, the above aggregation approach has various serious

drawbacks. One is that it implicitly assumes that the group members provide perfect
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information about their group, while in practice it is more realistic to expect that the

group means contain measurement error. Croon and van Veldhoven (2007) showed that

ignoring this measurement error causes a bias in the estimates of the parameters from

the structural model. Another problem of the aggregation approach is that it is not

clear how to aggregate categorical predictors to the group level. For example, for

nominal variables with more than two categories, the group mean has no substantive

meaning. It might be more appropriate to use the group modes instead, but even then

the problem of ignoring measurement error remains.

The current article presents how it is possible to keep working in the same

stepwise matter, so separating the aggregation from the group-level analysis, but correct

the group-level estimates for the bias that is caused by the measurement error in the

aggregated scores. To overcome the measurement error issue, a latent variable model for

two-level data is used, in which the individual-level responses serve as indicators for a

latent variable at the group-level. Then this latent group-level variable is used as a

predictor of the group-level outcome variable (Croon & van Veldhoven, 2007). It is also

possible to perform a micro-macro multilevel analysis with categorical variables in this

way by using a latent class model with a categorical latent variable at the group-level.

A short description of the stepwise procedure is that, in the first step, a latent

class model is estimated in which the scores on the discrete individual-level predictor are

used as indicators for a group-level latent class variable (measurement model). In the

second step, this latent class model is used to aggregate the individual-level predictor to

the group-level by assigning the groups to the latent classes. In the final step, a

group-level analysis is performed in which the aggregated measures are related to the

remaining group-level variables (structural model), while adjusting for the measurement

errors in the class assignments. The latter adjustments are based on earlier work by

Bolck, Croon, and Hagenaars (2004); Vermunt (2010); Bakk, Tekle, and Vermunt

(2013), . This stepwise latent class approach to micro-macro analysis with discrete data

makes it possible to make adjustments in the structural model without changing the

measurement model on which the aggregation is based. So when a group-level variable is
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added or removed from the group-level analysis, the assigned or aggregated group-level

scores remain unchanged. This would not be the case when the measurement and

structural model are estimated simultaneously in a one-step procedure.

The organization of the article is as follows. First, the latent class model for

discrete micro-macro analysis is introduced using a model that contains a single

individual-level variable. Second, it is shown how this model can be applied in a

stepwise manner. Third, a simulation study is presented to evaluate the performance of

the proposed stepwise procedure. Fourth, the stepwise procedure is applied to a more

complex model with two individual-level variables and, last, applied to a real data

example in which enriched job design (macro-level predictor) affects team productivity

(macro-level outcome) directly, and indirectly through job control (micro-level

mediator) and job satisfaction (micro-level mediator).

Multilevel Latent Class Model for Micro-Macro Analysis

To illustrate the multilevel latent class model for micro-macro analysis, let us

consider a simple model that contains a single group-level outcome Yj, a single

group-level predictor Xj, and a single individual-level predictor Zij. Subscript j is used

to denote a particular group and subscript i to denote the individuals within a group.

The group-level predictor is expected to affect the group-level outcome directly and

indirectly via the individual-level predictor. Any theory in which a group-level

intervention is not only expected to influence a group-level (performance) measure

directly, but also indirectly through a characteristic of the group members, can be

tested with this model. These kinds of models are sometimes referred to as 2-1-2 models

since the effect of the level-2 independent variable on the level-2 dependent variable is

mediated by a level-1 variable. Also, the term "bathtub model" is in use here because of

the shape of the conceptual model that is shown in Figure 1. In this conceptual model,

the latent variable is presented in a circle and the manifest variables in rectangles.

Figure 1 about here

The model of interest is a latent class model for two-level data in which the scores
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of the individual-level units i within group j on the micro-level predictor Zij are treated

as indicators of a discrete latent class variable defined at the group-level, ζj. Thus, the

number of indicators of the latent variable equals the number of individuals within a

group. This part of the model is referred to as the measurement part. All group

members are treated as equivalent sources of information about the group-level variable;

therefore, no one is considered as providing more accurate judgments in this respect

than his co-members. This implies that the relationship between the individual-level

variable and the group-level latent variable can be assumed to be the same for all

individuals within a group. According to the local independence assumption commonly

made in latent class analysis, the individual responses of group members are

independent given the score of their group on the latent variable. In the structural part

of the model, the group-level latent classes are related to the group-level independent

variable Xj and the group-level dependent variable Yj.

For the general case where all variables in the latent class model are discrete, the

model can be formally described with three multi-category logit models (Agresti, 2013).

Let there be P , Q, R, and S nominal response categories for, respectively, Zij, ζj, Xj,

and Yj and a particular category is denoted by p, q, r, and s. Then there are P − 1,

Q − 1, and S − 1 different logit equations defined for, respectively, Zij, ζj, and Yj in

which each category is compared to an arbitrary baseline category. When the first

categories are used as baselines, the multinomial logit equations are:

log





P (Zij = p|ζj = q)

P (Zij = 1|ζj = q)



 = βZ
p + βZ

p
ζ
q , (1)

log





P (ζj = q|Xj = r)

P (ζj = 1|Xj = r)



 = βζ
q + βζ

q
X
r , (2)

and

log





P (Yj = s|ζj = q, Xj = r)

P (Yj = 1|ζj = q, Xj = r)



 = βY
s + βY

s
ζ
q + βY

s
X
r . (3)

Each equation contains an intercept term (βZ
p , βζ

q , and βY
s ), and an effect for each of the

predictor variables (βZ
p

ζ
q , βζ

q
X
r , βY

s
ζ
q , βY

s
X
r ).
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Equation 1 describes the measurement part of the model in which the scores of

the individual-level units on the micro-level predictor Zij are treated as exchangeable

indicators of a discrete latent class variable defined at the group-level, ζj. The

structural part of the model is defined in Equations 2 and 3 in which the group-level

latent variable is related to the other group-level variables: ζj is regressed on Xj, and

the outcome Yj is regressed on ζj and Xj.

The parameters of this latent class model can simultaneously be estimated by full

information maximum likelihood estimation and, therefore, this method is further

referred to as the one-step approach. This approach mainly has two drawbacks. First, it

is not intuitive to simultaneously aggregate the individual-level variable to the

group-level and relate the aggregated scores to the remaining variables since researchers

are used to work in a stepwise matter when a manifest mean or mode is used in the

group-level analysis. Second, the definition of the latent group-level variable is not only

determined by the micro-level indicators, but also by the remaining variables in the

structural model. Thus, when the structural part of the model is adapted, say a level-2

covariate or outcome is added or removed, the full model has to be re-estimated and the

measurement model may thus change. Especially, the fact that the meaning and

possibly also the number of the latent classes is affected by the outcome variable is very

undesirable since the latent classes were theoretically intended to predict this outcome.

These problems associated with the simultaneous estimation of the model are

circumvented with a stepwise approach.

Stepwise Estimation

A stepwise estimation procedure of the micro-macro latent class model consists of

the following three steps:

• First step: Estimate the measurement model (i.e., relate the micro-level

predictor to the latent group-level variable).

• Second step: Aggregate the micro-level predictor to the group-level by assigning

groups to latent classes.
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• Third step: Estimate the structural part of the model while correcting for the

classification errors that were made in the second step.

So, as graphically illustrated in Figure 2(a), a measurement model is defined for ζj

and the corresponding latent class model is estimated in the first step of the analysis:

P (Zj) =
Q

∑

q=1

P (ζj = q)
Ij
∏

i=1

P (Zij|ζj = q) . (4)

Here, the vector Zj contains the Ij responses Zij of the members of group j. The model

parameters are the class proportions P (ζj = q) and the conditional response

probabilities P (Zij|ζj = q), which, as shown in Equation 1, are typically parametrized

using a logit equation. As in the one-step model, the responses of the individual group

members on Zij are assumed to be exchangeable and independent given the latent

classes, but the meaning of the latent classes is now only determined by the

individual-level scores on the micro-level predictor and no longer by the scores on the

group-level variables. The number of latent classes of ζj is also determined during this

step.

Figure 2 about here

In the second step, the groups are assigned to the Q latent classes based on their

scores Zj. We denoted the assigned class for group j by Wj. The assignment process in

which the new variable Wj is constructed is graphically illustrated in Figure 2(b). As in

a standard latent class analysis, the class assignments are obtained using the posterior

class membership probabilities P (ζj = q|Zj) from the first step. Several types of

deterministic and probabilistic assignment rules have been proposed, but in the current

article, we focus on modal and proportional assignment. With modal assignment, each

group is assigned to the latent class for which the posterior probability is largest. With

proportional assignment, a group is assigned to each of the Q classes with a probability

equal to the posterior membership probability for the class concerned.

Unless the micro-level predictor is a perfect indicator for the group-level latent

class variable, classification errors will be made during the assignment. In order to

account for these classification errors (in step three), we use the Q × Q classification
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table with entries P (Wj = t|ζj = q). Note that P (Wj = t|ζj = q) is the conditional

probability that a group belonging to class q is assigned to class t of Wj (t = 1, · · · Q).

The off-diagonals of this table represent classification error probabilities. In

Appendix A, we show how these probabilities can be obtained from the latent class

model parameters.

In the third step, the structural model is estimated; that is, the assigned scores Wj

are related to the other group-level variables, in this case Xj and Yj. As shown by Bolck

et al. (2004) biases are caused by the classification errors introduced in the second step;

that is, by the fact that we have Wj instead of ζj. However, they also indicated that it

is possible to adjust for the classification errors, which prevent biases. Key for their

adjustment method is the following relationship between P (Yj, Wj|Xj) and P (Yj, ζj|Xj):

P (Yj, Wj|Xj) =
Q

∑

q=1

P (Yj, ζj = q|Xj)P (Wj|ζj = q)

=
Q

∑

q=1

P (ζj = q|Xj)P (Yj|Xj, ζj = q)P (Wj|ζj = q) . (5)

This equation shows that a model for P (Yj, ζj|Xj) is obtained by estimating a model for

P (Yj, Wj|Xj) and correcting for the probabilities P (Wj|ζj = q). Note that the

P (Wj|ζj = q) were computed in step two. The resulting model is shown graphically in

Figure 2(c).

The model defined in Equation 5 can be estimated by maximum likelihood (ML).

This involves performing a latent class analysis in which Wj is used as a single indicator,

and in which the probabilities P (ζj = q|Xj) and P (Yj|Xj, ζj = q) and the corresponding

logit coefficients (see Equation 2 and 3) are freely estimated, and in which P (Wj|ζj = q)

is treated as known and thus fixed. We refer to this approach as the ML 3-step method

(Bakk et al., 2013; Vermunt, 2010). An alternative proposed by Bolck et al. (2004) –

and that we therefore call the BCH 3-step approach – involves reformulating the

problem into a weighted analysis (see also Vermunt (2010)). More specifically, by

weighting the data points by the inverse of the classification probabilities P (Wj|ζj), we

adjust for the fact that the Wj contain classification errors. The reweighted data can be

used as observed data to estimate the structural parameters of interest.
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From previous research on three-step latent class analysis, it is known that the

bias adjusted stepwise approaches work very well in situations encountered in practice.

However, this approach may fail when a small sample size is combined with a very large

proportion of classification errors, where the latter can also be quantified as class

separation (Bakk et al., 2013; Vermunt, 2010). In such situations, the maximum

likelihood estimates of the step-1 latent class model will tend to yield classes being more

different than they truly are (Galindo-Garre & Vermunt, 2006). Consequently, the

amount of classification errors is underestimated and the structural parameters are not

adjusted to a sufficient degree.

The proportion of classification errors and the class separation is mainly a

function of the number of indicator variables (in micro-macro analysis, this equals the

number of individuals within each group), the number of classes, and the response

probabilities for the most likely response. Since all group members are assumed to be

exchangeable, the response probabilities for the most likely response are the same for

individuals within the same group, which makes the measurement model of a

micro-macro model more parsimonious than a regular latent class analysis. The

following simulation study, we investigate under which conditions class separation is

large enough to perform an unbiased stepwise analysis for the current model.

Simulation Study

In this section, the performance of the stepwise approaches is first evaluated and

compared to manifest aggregation with a group mode, one-step latent aggregation, and

stepwise latent aggregation without correcting for measurement error. Second, the lower

boundary of the separation between classes is explored at which still unbiased results

are obtained with the stepwise approaches. All analyses were carried out with Latent

GOLD 5.0 (Vermunt & Magidson, 2013).

Data are generated according to the model shown in Figure 1 with all

dichotomous variables. An average situation is created by fixing the between-effects

from the structural part of the model to .4 on a logistic scale using effect coding
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(βY X = βζX = βY ζ = .4). The number of groups was fixed to 100 (J = 100) and the

number of individuals within a group to 10 (nj = 10) which are minimum sample sizes

for this type of analysis (Bennink, Croon, & Vermunt, 2013). It is expected that larger

samples provide slightly better results. The relationship between the scores on the

micro-level predictor and the latent variable is varied from weak to strong, again using

effect coding (βZζ =.2, .4, .6, or .8). This corresponds to class separations, measured

with the entropy based R-square, of R2

entr = .24, .64, .88, and .97. For each of the four

conditions, 500 datasets were generated and analyzed with manifest mode aggregation,

the latent variable one-step approach, and the latent variable three-step approaches.

The three-step procedures were applied with both modal and proportional assignment.1

Table 1 about here

The average estimated structural parameters in each condition are presented in

Table 1 and should be compared with their true value of .4. As expected, the one-step

and the corrected three-step procedures provide unbiased results, regardless whether the

modal or proportional assignment rule was used. Only when the quality of the

indicators is extremely poor (βZζ = .2) do both methods perform less well, which, as

shown below, is the situation in which classes are estimated as being more different

than they truly are. Furthermore, as can be seen, the standard deviations of the

estimates decrease when the quality of the indicators increases.

The other methods fail. When the uncorrected three-step method is used, the

estimates of the group-level relationships in which ζj is involved are underestimated in

line with Bolck et al. (2004), regardless whether the modal or proportional assignment

rule was used. Because the indirect effect is underestimated, the direct effect is

overestimated. The bias decreases when the strength of the relationship between Zij

and ζj increases. When Zij is aggregated to the group-level using the manifest group

1In the one-step and the three-step ML methods, we used weakly informative priors for the model

probabilities to prevent boundary estimates for the logit parameters. Because this does not work in

the three-step BCH method, 82 datasets with the modal assignment rule and 73 datasets with the

proportional assignment rule did not converge and were excluded from the further analysis.
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mode, the estimates of the between-parameters are biased and this bias decreases when

the quality of the indicators improves. In line with previous research (Bennink et al.,

2013), the parameter estimates are only unbiased when the strength of the relationship

between the individual-level predictor and the corresponding group-level variable is very

good (βZζ = .8). The standard deviations of the estimates obtained with mode

aggregation and uncorrected three-step are stable over the true quality of the indicators.

Table 2 about here

As shown above, the corrected three-step approaches perform less well with poor

indicators, the situation corresponding with an extremely low class separation of .24. 2

To illustrate why this occurs, the true and estimated proportion of classification errors

are shown in Table 2 for each condition. As can be seen, the proportion of classification

errors is underestimated in the condition in which R2

entr = .24 resulting in third-step

parameters which are not sufficiently corrected. To explore what would be a sufficiently

high class separation, also indicators with βZζ values of .25, .30, and .35, corresponding

to R2

entr values of .35, .45, and .55, are added to the table. As can be seen, with a class

separation of .45, the estimated proportion of classification errors gets close to the

actual proportion. This applies to both modal and proportional assignment. It can also

be seen, that the variability (the standard deviation) of the estimated proportion of

classification error decreases when the true quality of the indicators increases.

To conclude, the adjusted three-step approaches provide estimates that are as

good as the estimates from a one-step analysis, as long as the parameters as the class

separation is sufficient (R2

entr = .45). It does not matter whether a BCH or ML

correction is used or whether modal or proportional assignment is used. When the

relationship between the micro-level predictor and the group-level variable is very

strong, all methods provide unbiased estimates, but this is not a realistic situation in

2As stated before, class separation is not only a function of the quality of the indicators but also of

the number of indicators which in our application equals the number of individuals within a group. For

example, an indicator with a βZζ-value of .2 yields a R2

entr = .42 when nj = 20 and R2

entr = .55 when

nj = 30.
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practice. When the relationship between the micro-level predictor and the group-level

variable is moderate, a latent variable should be used for the aggregation since the

manifest mode aggregation provides biased estimates. When the relationship between

the micro-level predictor and the group-level variable is extremely weak, all methods

may provide biased estimates for the group-level sample size investigated in the current

simulation study.

Multiple Macro-Level Latent Variables

The simple model discussed so far is extended to a model with two micro-level

predictors, Z1ij and Z2ij, and thus two latent variables, ζ1j and ζ2j, as shown in

Figure 3. The corresponding multinomial logit equations for Z1ij and Z2ij are the same

as described in Equation 1, and the ones for ζ1j and ζ2j are the same as described in

Equation 2.

Figure 3 about here

When Xj, ζ1j ζ2j, and Yj contain, respectively, R, W , Q, and S categories and a

particular category is denoted by r, w, q, and s, the multinomial logit equation for Yj is:

log





P (Yj = s|ζ1j = w, ζ2j = q, Xj = r)

P (Yj = 1|ζ1j = w, ζ2j = q, Xj = r)



 = βY
s + βY

s
ζ1

w + βY
s

ζ2

q + βY
s

X
r . (6)

The first categories are used as baseline categories, βY
s is the intercept of the response

variable, and βY
s

ζ1

w , βY
s

ζ2

q , and βY
s

X
r are the regression parameters of the predictor

variables.

When the two individual-level predictors would be continuous variables, it would

be common practice to include both their between- and within-group correlation in the

model. In the case of discrete variables, this concept is translated by incorporating an

association between Z1ij and Z2ij (aZ1Z2
), and between ζ1j and ζ2j (aζ1ζ2

). Thus, Z1ij

and Z2ij are not expected to be independent given the latent group-level variables.

Instead, while keeping the latent group-level variables constant, there may still be some

residual within-group association between the micro-level predictors. At the
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between-level, it is also expected that there is some residual association between ζ1j and

ζ2j, after controlling for Xj.

While estimating this model in a single step is straightforward, when estimating it

stepwise, it has to be decided how to define the first step model(s). The first option

would be to formulate a separate measurement model for ζ1j and ζ2j as described in

Equation 4. By formulating two measurement models, the meaning of the latent classes

is only influenced by the individual-level scores on the corresponding micro-level

predictors. The number of latent classes for ζ1j and ζ2j can be determined without

being influenced by the variables from the structural part of the model, but the

eventual residual within-association among Z1ij and Z2ij is ignored.

An alternative would be to formulate a single simultaneous measurement model

for the two latent variables which includes the residual within-association between Z1ij

and Z2ij:

P (Z1j, Z2j) =
W
∑

w=1

Q
∑

q=1

P (ζ1j = w, ζ2j = q)
Ij
∏

i=1

P (Z1ij, Z2ij|ζ1j = w, ζ2j = q) . (7)

By doing so, the meaning of the latent classes is still not influenced by the group-level

variables from the structural part of the model, but the number of latent classes for ζ1j

and ζ2j should be determined simultaneously.

An analysis is carried out to explore whether the misspecification of the

measurement model arising from ignoring the residual within-association among Z1ij

and Z2ij affects the estimates of the between-level parameters. Since sampling

fluctuation is not of primary interest here, one very large data set (J = 10000, Ij = 100)

is generated in each of the investigated conditions. If it turns out that ignoring the

within-association provides biased estimates in such very large samples, the estimates in

smaller samples can be expected to be even worse because of sampling fluctuation.

The population models varied in the strength of the relationship between the

latent variables and the corresponding micro-level predictors (indicators), and the

strength of the within-association among the micro-level predictors (within-association):

• indicators (βZ1ζ1 and βZ2ζ2): 0.2, 0.4, or 0.6

• within-association (aZ1Z2
): 0, 0.2, 0.4, or 0.6
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Similar to the previous simulation study, all variables, including the latent ones, are

dichotomous and the between-effects from the structural part of the model are fixed to

.4 on the logistic scale using effect coding

(βζ1X = βζ2X = aζ1ζ2
= βY ζ1 = βY ζ2 = βY X = .4). A final remark is that because of the

large number of individuals within a group, the R2

entr value is very high (>.90) in all

conditions.

The generated datasets were analyzed with the one-step and the bias adjusted

three-step approaches. In the one-step procedure, we used both the correct specification

containing the residual within-association and the incorrect model excluding this

association. In the first step of the BCH and ML bias adjusted stepwise procedures, we

used either a single joint measurement model with the association between Z1ij and Z2ij

or two separate measurement models which ignore this association. Both modal and

proportional assignment rules were used to assign the groups to latent classes in the

second step of the analysis. The manifest mode-aggregation and uncorrected three-step

procedures were not used because the previous simulation study showed that these

methods already fail in a simpler model.

Table 3 about here

Table 3 presents the results for the conditions in which aZ1Z2
is varied and βZ1ζ1

and βZ2ζ2 are fixed to .4. The reported results concern the between-level parameter

which is most strongly affected by ignoring the within association; that is, the

association between ζj1 and ζj2 (aζ1ζ2
), which has a true value of .4. As can be seen,

when the within-association among Z1ij and Z2ij is correctly modeled, both the one-step

and the bias adjusted three-step methods provide unbiased estimates. However, when

this within-association is not taken into account, the between association estimate is

biased with all estimation procedures. The larger the value of the ignored

within-association among Z1ij and Z2ij, the more the between-association among ζ1j

and ζ2j is overestimated. Note that the estimates obtained with the one-step and the

various types of bias adjusted three-step estimates are all very similar. The estimates of

the remaining between-effects are not as much biased as the between-association. When
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there is bias in the remaining between-parameters it is a downwards bias that probably

compensates the overestimation of the between-association among ζ1j and ζ2j.

Table 4 about here

Table 4 shows how the bias that is caused by ignoring the within-association among the

micro-level predictors interacts with the quality of the micro-level scores as indicators

for the group-level latent variables. With bad indicators and a strong ignored

within-association (βZ1ζ1 = βZ2ζ1 = 0.2 and aZ1Z2
= 0.6 ), the estimates of the

between-association among ζ1j and ζ2j are very biased, while with good indicators and a

small ignored within-association (βZ1ζ1 = βZ2ζ1 = 0.6 and aZ1Z2
= 0.2 ) the estimates

are still good.

All together, these results show that the bias adjusted three-step procedures can

be used for this micro-macro model without introducing more bias compared to the

one-step procedure, as long as the within-association among the micro-level predictors

is modeled in the first step. The within-association can only be ignored when the

micro-level scores are very good indicators of the group-level latent variables and the

within-association is small.

Data example

The stepwise micro-macro model with two micro-level predictors is now applied to

a real data example. Since the BCH and ML correction procedures and the modal and

proportional assignment rules provided similar results in the simulation study, only one

method is applied here, namely the ML three-step approach with modal assignment.

The inspiration for the current data example comes from a paper by Croon, van

Veldhoven, Peccei, and Wood (2014). These authors show the relevance of bathtub

multilevel mediation models, such as the one discussed in this paper, for research on

human resource management (more specifically on job design) and organizational

performance by using an example from the Workplace Employment Relations Survey

2004 (WERS2004). This is a publicly available large-scale dataset from the United

Kingdom with representative sampling at both the employee and the workplace level.
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More information about the survey can be found at www.wers2004.info. Croon et al.

(2014) investigated to what extent the relationship between the adoption of enriched

job designs at the level of the workplace, on the one hand, and workplace labor

productivity, on the other hand, was mediated, at the individual level, by employees’

experienced sense of job control and job satisfaction. For the current application, all

measures from Croon et al. (2014), enriched job design, job control, and job satisfaction,

were categorized into variables with three categories of approximately equal size (low,

medium and high), while labor productivity was transformed into a variable with two

approximately equally sized categories (low and high). To keep the discussion simple,

the current illustration ignores that the variables were originally measured with

multiple items. The analyses were performed on 18,505 employees nested within 1,455

workplaces. More information about the Latent GOLD 5.0 (Vermunt & Magidson,

2013) syntax used in this analysis is given in Appendix B.

In the first step of the procedure, a measurement model is formulated in which the

individual-level scores on job control (Z1ij) and job satisfaction (Z2ij) were used as

exchangeable indicators for two latent variables at the group-level (ζ1j and ζ2j) with a

residual within-association (aZ1Z2
) among the individual-level measures on job control

and job satisfaction included as well. The optimal number of latent classes for the two

latent variables was determined simultaneously by comparing fit indices of models with

all possible combinations of one to five classes for each latent variable. Because the

decision is about the number of classes at the group level, the fit indices that

incorporate the sample size are based on the number of groups (Lukočienė, Varriale, &

Vermunt, 2010). BIC, AIC3, CAIC, and SABIC were lowest for the model with three

latent classes for both job control and job satisfaction. Contradictorily, AIC was lowest

when both latent variables contained four latent classes. Since most fit indices point

towards this direction and the individual-level observed variables had three response

categories, the three-class solutions for both group-level latent variables were retained.

Table 5 about here

Table 5 displays the class sizes and the class-specific response probabilities for
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both latent variables. These can be used to interpret the latent classes. Table 5(a)

shows that the first latent variable has a class that contains 35% of the groups, and

these workplaces contain mostly employees with a high probability of scoring low

(p = .70) on job control. There is a second latent class that contains 56% of the groups,

and in these workplaces, employees have the highest probability to score medium on job

control (p = .84). The final class of workplaces contains 9% of groups that contain

individuals that, like the ones from the second latent class, have the highest probability

to score medium (p = .66), but they have a higher probability to score high (p = .33) on

job control . From Table 5(b) it can be seen that the second latent variable has a class

that contains 61% of the groups and these workplaces have the highest probability to

score low on job satisfaction (p = .88). The second class contains 23% of the workplaces

with employees having the highest probabilities to score medium (p = .62) on job

satisfaction. The last class contains 16% of the workplaces in which employees have the

highest probability to score high on job satisfaction. The groups from the third class

also have quite a high probability to score low (p = .34), but this is probably caused by

the fact that overall most groups score low on job satisfaction(p = .69). Based on these

posterior probabilities, all workplaces are assigned to a particular latent class using a

modal assignment rule. The class separation was .39 for the latent variable job control

and .43 for job satisfaction which is relatively low for a three-step analysis.

Table 6 about here

In the third step, the assigned latent class variables were related to the group-level

measures of enriched job design (Xj) and labor productivity (Yj) in a latent class model

in which the assigned class membership scores from the second step were used as single

indicators with known measurement errors, namely the classification errors from the

second step. The group-level parameters obtained with the ML bias adjusted three-step

approach are presented in Table 6, from which the estimates of the parameters for the

main effects of the response variables are omitted. For all effects, dummy coding was

used with the first categories as reference categories. Only the significance of the global
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effects are reported since the significance of the category-specific parameters depends on

coding.

The overall effect of enriched job design on ζ1j (job control) is significant

(χ2 = 23.71, df = 4, p < 0.001) and the category-specific parameters are presented in

Table 6(a). All category-specific parameters are positive; thus, the reference category

scores lower than the other categories. β
ζ1

2

X
3

and β
ζ1

3

X
3

differ more from the reference

category than β
ζ1

2

X
2

and β
ζ1

3

X
2

. The overall effect of enriched job design on ζ2j (job

satisfaction) is also significant (χ2 = 29.82, df = 4, p < 0.001). The category-specific

parameters from Table 6(b) show that the β
ζ2

2

X
2

and β
ζ2

2

X
3

are positive and β
ζ2

3

X
2

and

β
ζ2

3

X
3

are negative. Hence, the first two categories score higher than the reference group

and the latter two score lower than the reference group.

The overall association among ζ1j and ζ2j is significant

(χ2 = 13.92, df = 4, p = 0.008), but the category-specific variables from Table 6(c) are

not significant. It is, therefore, difficult to interpret the association.

The overall effect of ζ1j (job control) on labor productivity is not significant

(χ2 = 1.37, df = 2, p = 0.51) , while the overall effects of ζ2j (job satisfaction) and

enriched job design are significant (χ2 = 22.87, df = 2, p < 0.001 and

χ2 = 4.97, df = 2, p = 0.08), although the latter only at a significance level of 10% and

not at 5%. The category-specific parameters are presented in Table 6(d). All categories

except βY
2

ζ2

3 score higher than the reference group.

To conclude, there is a significant direct effect of enriched job design on labor

productivity. The two paths of the indirect effect of enriched job design (macro-level) on

labor productivity (macro-level) through job satisfaction (micro-level) are significant,

while only the first part of the indirect path through job control (micro-level) is

significant and the second part is not significant.

Discussion

A stepwise multilevel latent class model was proposed to predict group-level

outcomes by means of discrete individual- and group-level predictors. In the first step, a
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latent class model was estimated in which the individual-level predictor was used as an

indicator for a group-level latent class variable (measurement model). In the second

step, the individual-level predictor was aggregated to the group level based on the

latent class model from the first step. This had two important advantages. First, the

measurement error in the aggregated scores is known. Second, it is an elegant way of

aggregating a discrete variable since it is not very clear how to do this with a manifest

mean or mode. Next, the aggregated scores are related to the remaining group-level

variables while correcting for the known measurement error (structural model). It is

shown that the bias adjusted stepwise procedures work without introducing bias since

the results of the stepwise approaches were very similar to the parameters that are

obtained when the measurement and structural model are simultaneously estimated in a

one-step analysis. Since researchers are used to working in a stepwise manner when

they aggregate with a manifest mode, they can continue to work in the way they are

used to while accounting for measurement error in the aggregated scores and still get

unbiased results.

Two issues are of importance. First, in case the model contains multiple

macro-level latent variables, the within-association among the micro-level indicators

needs to be included in the first step of the stepwise procedure, unless the

within-association is small and the micro-level scores are very good indicators of the

group-level latent variables. Conceptually, it would suit the philosophy of stepwise

estimation better to formulate two separate measurement models in the first step, one

for each latent variable, but the simulation study showed that ignoring this

within-association provides biased estimates of the between-association among the

latent variables. It is unrealistic to assume that there is no residual within-association

among the predictors since that would imply that all associations among the micro-level

predictors can be explained through the group-level latent variables. Second, class

separation needs to be sufficiently high (R2

entr = .45 ) since results with poorly

separated classes are only correct with large sample sizes. In practice, this is no

problem, since it is of little use to aggregate a variable that will not or only weakly be
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related to the group-level.

The stepwise ML procedure is applied to a real data example in which labor

productivity (group-level outcome) is explained by enriched job design (group-level

predictor), job control (individual-level predictor) and job satisfaction (individual-level

predictor). All variables from the example were constructed from multiple items but

were used as single variables in the model. For the continuous version of the current

application, Croon et al. (2014) found that the factor analytic model was better

equipped to detect bathtub-type linkages than a model using scale scores. A nice

direction for further research would be to see whether this is also the case for discrete

variables, thus look at micro-macro models in which especially the micro-level

predictors, but also the group-level outcome and predictor, are latent variables

measured with multiple items.

Last, in the current article, only attention is paid to the parameter estimates of

the model and not to the standard errors of these parameters. Theory suggest that

when fixed parameter estimates, obtained in the first step of the stepwise procedure, are

plugged into the likelihood function, the effect of their sampling variability on the

uncertainty about the estimates in the third step should be accounted for (Murphy &

Topel, 1985). Fortunately, an easily accessible correction method for the standard errors

is already made available by Bakk, Oberski, and Vermunt (accepted). In situations with

a large sample size, like the current simulation study and data example, correction of

the standard errors is not needed because the uncertainty about the estimates from the

first step is very small (Bakk et al., accepted).
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Table 1

Estimates Between-Effects Simple Micro-Macro Model

Mode 1-step 3-step

none BCH ML

modal prop modal prop modal prop

Estimates of βY X(SD)1

True βZζ =.2 .49(.12) .41(.19) .49(.12) .50(.11) .45(.17) .43(.18) .45(.17) .45(.13)

True βZζ =.4 .46(.12) .41(.14) .46(.12) .47(.12) .42(.14) .41(.14) .42(.14) .42(.14)

True βZζ =.6 .42(.12) .40(.13) .42(.12) .42(.12) .41(.13) .41(.13) .41(.13) .41(.13)

True βZζ =.8 .41(.13) .41(.14) .41(.13) .41(.13) .41(.14) .41(.14) .41(.14) .41(.14)

Estimates of βζX(SD)1

True βZζ =.2 .18(.10) .45(.25) .19(.14) .12(.08) .36(.28) .42(.26) .37(.26) .34(.18)

True βZζ =.4 .31(.11) .42(.14) .32(.11) .28(.09) .41(.15) .41(.14) .41(.16) .41(.14)

True βZζ =.6 .40(.12) .40(.12) .37(.12) .36(.11) .40(.13) .40(.12) .40(.12) .40(.12)

True βZζ =.8 .40(.11) .41(.11) .40(.11) .40(.11) .41(.11) .41(.11) .41(.11) .41(.11)

Estimates of βζY (SD)1

True βZζ =.2 .17(.12) .50(.33) .19(.16) .12(.09) .38(.34) .43(.30) .40(.33) .34(.21)

True βZζ =.4 .30(.13) .42(.17) .31(.13) .27(.11) .42(.19) .42(.18) .41(.18) .41(.16)

True βZζ =.6 .37(.12) .41(.13) .38(.12) .36(.11) .41(.13) .41(.13) .41(.13) .41(.13)

True βZζ =.8 .39(.13) .40(.13) .39(.13) .39(.12) .40(.13) .40(.13) .40(.13) .40(.13)

J = 100, nj = 10, true value between-effects = .4

1The estimates are averaged over 500 replications

ζ should be replaced by the manifest group mode of Z in case of mode aggregation
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Table 2

True and Estimated Proportion of Classification Errors

Modal Proportional

R2

entr True βZζ True Estimated (SD)1 True Estimated (SD)1

.24 .20 .27 .21(.08) .35 .29(.09)

.35 .25 .22 .18(.05) .30 .25(.06)

.45 .30 .18 .15(.03) .24 .22(.04)

.55 .35 .14 .13(.03) .19 .18(.04)

.64 .40 .11 .10(.02) .15 .15(.03)

.88 .60 .04 .03(.01) .05 .05(.01)

.97 .80 .01 .01(.00) .01 .01(.01)

J=100, nj = 100, true value between-effects = .4

1The estimates are averaged over 500 replications
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Table 3

Estimates Between-Association ζ1j and ζ2j (aζ1ζ2
)

1-step BCH modal BCH prop ML modal ML prop

aZ1Z2
yes no yes no yes no yes no yes no

.0 .40 .40 .39 .40 .40 .40 .39 .40 .40 .40

.2 .40 .44 .40 .43 .40 .44 .40 .43 .40 .44

.4 .40 .50 .40 .48 .40 .50 .40 .48 .40 .50

.6 .41 .60 .42 .56 .43 .59 .42 .56 .43 .59

J = 10000, nj = 100, true value aζ1ζ2
= 0.4

yes = aZ1Z2
is incorporated in measurement model

no = aZ1Z2
is not incorporated in measurement model
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Table 4

Estimates Between-Effects Under Different True Values of Indicators (βZ1ζ1 and βZ2ζ1)

and Within-Association Z1ij and Z2ij (aZ1Z2
) when Within-Association is not Modeled

1-step BCH modal BCH prop ML modal ML prop

βZ1ζ1 and βZ2ζ1 .6 .2 .6 .2 .6 .2 .6 .2 .6 .2

aZ1Z2
.2 .6 .2 .6 .2 .6 .2 .6 .2 .6

βζ1X .41 .34 .41 .35 .41 .35 .41 .35 .41 .35

βζ2X .39 .33 .39 .34 .39 .34 .39 .34 .39 .34

aζ1ζ2
.38 .91 .38 .81 .38 .88 .38 .81 .38 .87

βY ζ1 .40 .32 .40 .34 .40 .33 .40 .33 .40 .33

βY ζ2 .40 .30 .40 .32 .40 .31 .40 .32 .40 .31

βY X .44 .45 .44 .44 .44 .44 .44 .45 .44 .44

J = 10000, nj = 100, true value between-effects = .4
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Table 5

Class sizes and Class-Specific Response Probabilities Measurement model First Step

(a) Job control

Group-level

latent classes

1 2 3 Overall

Size .35 .56 .09

Job control

Low .70 .13 .01 .32

Medium .30 .85 .66 .64

High .00 .02 .33 .04

(b) Job satisfaction

Group-level

latent classes

1 2 3 Overall

Size .61 .23 .16

Job satisfaction

Low .88 .38 .34 .69

Medium .08 .62 .00 .19

High .04 .00 .66 .12
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Table 6

Bias-Adjusted ML Parameters Structural Model

(a)

β
ζ1

l
X
q b se

β
ζ1

2

X
2

0.18 0.29

β
ζ1

3

X
2

1.54 0.57

β
ζ1

2

X
3

0.98 0.31

β
ζ1

3

X
3

1.96 0.58

(b)

βζ2

n
X
q b se

β
ζ2

2

X
2

0.67 0.34

β
ζ2

3

X
2

-0.79 0.45

β
ζ2

2

X
3

1.31 0.32

β
ζ2

3

X
3

-0.32 0.44

(c)

a
ζ1

l
ζ2

n b se

a
ζ1

2

ζ2

2 -0.79 0.49

a
ζ1

2

ζ2

3 -1.23 0.77

a
ζ1

3

ζ2

2 -0.15 1.04

a
ζ1

3

ζ2

3 1.68 0.87

(d)

βY
p b se

βY
2

ζ1

2 0.26 0.25

βY
2

ζ1

3 0.18 0.41

βY
2

ζ2

2 1.08 0.28

βY
2

ζ2

3 -0.20 0.34

βY
2

X
2

0.27 0.15

βY
2

X
3

0.30 0.15

Note: X = Enriched job design, ζ1 = Job control,

ζ2 = Job satisfaction, and Y = Labor productivity
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individual-level

group-level

Yj

ζj

Zij

Xj

Figure 1 . Micro-macro latent variable model with one individual-level predictor.
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individual-level

group-level

ζj

Zij

(a) First step

individual-level

group-level

Zij

Wj

(b) Second step

individual-level

group-level

Yj

ζj

Wj

Xj

(c) Third step

Figure 2 . Graphical representation of stepwise procedure.
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individual-level

group-level

Yj

ζj

Z1ij

Xj

ζ2j

Z2ij

ζ1j

Figure 3 . Micro-macro latent variable model with multiple macro-level latent variables.
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Appendix A

Technical Details on the Computation of P (W = t|ζ = q)

This Appendix shows how P (W = t|ζ = q) is computed using the classification

information from the second step of the stepwise analysis. A more detailed description

is provided by Bakk et al. (2013) and Vermunt (2010).

Let P (ζj = q|Zj) denote the posterior class membership probability for group j

and P (Wj = t|Zj) denote the probability by which a group is assumed to belong to

class t of Wj given the applied assignment rule. Using the modal class assignment rule,

also called modal a posterior assignment (MAP), groups are assigned to that category

of Wj for which P (ζj = q|Zj) is largest:

P (Wj = t|Zj) =















1 if P (ζj = t|Zj) > P (ζj = s|Zj) ∀s 6= t

0 otherwise
. (8)

Using the proportional assignment rule, each group is assumed to belong to a particular

latent class with a probability equal to the posterior membership probability for the

class concerned. Therefore,

P (Wj = t|Zj) = P (ζj = t|Zj) . (9)

The probability of being assigned to class t conditional on belonging to the true

class q, P (W = t|ζ = q), is theoretically defined as:

P (W = t|ζ = q) =

∑

Z P (Z)P (ζ = q|Z)P (W = t|Z)

P (ζ = q)
. (10)

Note that the sum is taken over all possible patterns of Z. Because the number of

possible patterns can be very large, it is more practical to take the sum over the data

pattern of the groups present in the available data sets, which yields:

P (W = t|ζ = q) =

∑J
j=1

P (ζj = q|Zj = zj)P (Wj = t|Zj = zj)
1

J

P (ζj = q)
. (11)

As shown by Vermunt (2010), when the specified model is correct, the theoretical and

empirical definition of P (W = t|ζ = q) provide very similar results.
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Appendix B

Latent GOLD 5.0 Syntax Data example

To perform a bias adjusted stepwise analysis on a micro-macro model with two

micro-level predictors in Latent GOLD 5.0 (Vermunt & Magidson, 2013), the data need

to be structured in a long file format with the number of rows equal to the number of

individuals. An identifier variable, here labeled id, is needed to identify which

individuals belong to which group. The scores on the group-level variables are only

assigned to a single group member, for convenience the first group member, so that

Yij = Yj for i = 1, and Yij is missing for i 6= 1, and Xij = Xj for i = 1, and Xij is

missing for i 6= 1.

The relevant parts of the syntax for the first-step measurement model are:

options

<default settings>

outfile ‘step3data.txt’ classification keep y, x;

variables

caseid id;

dependent z1 nominal, z2 nominal;

latent zeta1 nominal 3, zeta2 nominal 3;

equations

zeta1 <- 1;

zeta2 <- 1;

z1 <- 1 + zeta1;

z2 <- 1 + zeta2;

z1 <-> z2;

To save the posterior class membership probabilities to a data file, one has to add the

command outfile ’datastep3.txt’ classification to the options section. The

command keep is used to add the variables from the structural part of the model, that

are not used in the first-step model, to the output dataset datastep3.txt as well. For
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the remaining part, one can use the default settings for the options.

In the variables section, the id variable should be defined as the caseid. In the

same section, a list of the dependent and latent variables should be provided. For

nominal latent variables, the number of latent classes is specified after the definition of

the scale type.

The regression equations of the first step model are formulated in the equations

section of the syntax. These include the equations defining the measurement part of the

model (z1 <- 1 + zeta1 and z2 <- 1 + zeta2), together with the intercepts for the

latent variables (zeta1 <- 1 and zeta2 <- 1), and an equation describing the

within-association among the micro-level predictors (z1 <-> z2).

The relevant parts of the syntax to estimate the bias corrected third-step

structural model are:

options

<default settings>

step3 ml modal simultaneous;

variables

dependent y nominal;

independent x nominal;

latent zeta1 nominal posterior=(zeta1#1 zeta1#2 zeta1#3),

zeta2 nominal posterior=(zeta2#1 zeta2#2 zeta2#3);

equations

zeta1 <- 1 + x;

zeta2 <- 1 + x;

zeta1 <-> zeta2;

y <- 1 + zeta1 + zeta2 + x;

This syntax needs to be run on the data file datastep3.txt, that was created in the

previous step of the analysis. By default, records with missing values are excluded from

the analysis, which results in keeping only the first record of each group, and thus
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ensures that the analysis is performed at the group-level. The step3 command specifies

the options to be used in the step-three analysis. These concern the correction method

(either none, ml or bch) and the assignment rule (modal or prop). The command

simultaneous is needed to make sure that all equations from the equations section are

estimated at once rather than one by one.

In the variables section, the dependent, independent and latent variables from

the structural part need to be specified. The two latent variables are connected to the

stored posterior membership probabilities from the data file using the commands

posterior=(zeta1#1 zeta1#2 zeta1#3) and posterior=(zeta2#1 zeta2#2

zeta2#3). Finally, all equations from the structural part of the model are specified

under equations.


